
Liu et al. Molecular Cancer           (2022) 21:98  
https://doi.org/10.1186/s12943-022-01561-5

REVIEW

Reprogramming the tumor 
microenvironment by genome editing 
for precision cancer therapy
Ke Liu1,2,3,4†, Jia‑Jia Cui1,2,3,4†, Yan Zhan1,2,3,4†, Qian‑Ying Ouyang1,2,3,4†, Qi‑Si Lu5, Dong‑Hua Yang6, 
Xiang‑Ping Li7* and Ji‑Ye Yin1,2,3,4,8* 

Abstract 

The tumor microenvironment (TME) is essential for immune escape by tumor cells. It plays essential roles in tumor 
development and metastasis. The clinical outcomes of tumors are often closely related to individual differences in the 
patient TME. Therefore, reprogramming TME cells and their intercellular communication is an attractive and promising 
strategy for cancer therapy. TME cells consist of immune and nonimmune cells. These cells need to be manipulated 
precisely and safely to improve cancer therapy. Furthermore, it is encouraging that this field has rapidly developed in 
recent years with the advent and development of gene editing technologies. In this review, we briefly introduce gene 
editing technologies and systematically summarize their applications in the TME for precision cancer therapy, includ‑
ing the reprogramming of TME cells and their intercellular communication. TME cell reprogramming can regulate cell 
differentiation, proliferation, and function. Moreover, reprogramming the intercellular communication of TME cells can 
optimize immune infiltration and the specific recognition of tumor cells by immune cells. Thus, gene editing will pave 
the way for further breakthroughs in precision cancer therapy.
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Introduction
The cellular environment in which tumor cells reside is 
called the tumor microenvironment (TME). It consists 
of immune cells, fibroblasts, endothelial cells and mesen-
chymal cells [1]. The TME allows tumor cells to escape 
host immunity and is involved in cancer development 
and metastasis. Recent studies have shown that the TME 
varies among individuals and is strongly associated with 

clinical prognosis [2, 3]. Therefore, TME reprogramming 
is becoming an essential strategy for cancer treatment 
(Fig. 1).

The understanding of TME reprogramming was pre-
viously restricted due to technological limitations. 
Researches in this field have rapidly increased with 
recent advances in gene editing technologies. Currently, 
it is possible to individualize cancer therapy by repro-
gramming different cells in the TME, and some of these 
strategies have already been used in the clinic. This per-
sonalized approach represents one of the most attractive 
and promising strategies for cancer therapy in the future. 
However, systematic reviews on the role of gene editing 
in TME reprogramming are scarce. Herein, we summa-
rize the recent advances in TME reprogramming based 
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on the application of gene editing to affect TME cells and 
their communication.

Gene editing technologies
In 1952, Salvador Luria discovered the DNA restriction-
modification system of bacteria. Based on this discovery, 
researchers have created a series of technologies to mod-
ify genes, including gene targeting and RNA interference. 
After more than half a century of perfecting and improv-
ing these approaches, gene editing technologies have 
become increasingly mature. Currently, there are four 
main types of gene editing technologies: Meganucleases 
(MegaNs), Zinc finger nucleases (ZFNs), Transcription 
activator-like effector nucleases (TALENs), and Clus-
tered regularly interspaced short palindromic repeats 
(CRISPR)/CRISPR-associated proteins (Cas) systems 
(Fig. 2, Table 1).

MegaNs splice DNA at specific recognition sites 
that naturally and occasionally occur in any genome. 

MegaNs have often been used to edit genes in crop or 
animal cells but rarely those in human cells [4]. ZFNs 
are artificially engineered endonucleases that consist of 
a DNA recognition domain and the nonspecific endo-
nuclease FokI [5]. The former is responsible for iden-
tifying the base sequence of DNA-specific sites, and 
the latter performs the splicing function. ZFNs have 
been used to edit tumor and immune cells to optimize 
precision cancer therapy [6]. Similar to ZFNs, TAL-
ENs contain a recognition domain that is composed of 
highly conserved repeats derived from transcription 
activator-like effectors (TALEs) [7]. This customiz-
able DNA-binding domain guides the FokI enzyme to 
trim sequences in the specified site. A repeat can rec-
ognize only one nucleotide, which makes the editing 
performed by TALENs more flexible and specific [8]. 
T cells engineered with TALENs enhance the antitu-
mor efficacy of adoptive immunotherapy [9]. TALENs 
have also been applied to edit the genome of human 

Fig. 1  Reprogramming the TME via genome editing in precision cancer therapy. The personalized treatment process based on TME reprogramming 
is summarized in this figure. The top panel represents different TMEs in different tumor patients, and the middle panel represents gene editing 
strategies used for TME cell reprogramming and cellular communication reprogramming. The gene-edited TME of convalescent patients is shown 
in the bottom of the figure
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induced pluripotent stem cells (iPSCs), making these 
cells differentiate into immune cells with potential 
antitumor activity [10]. The emergence of the CRISPR/
Cas system produced a revolution in gene editing tech-
nology. CRISPR/Cas is an acquired immune system in 
bacteria that is used to fight invading DNA, plasmids, 
and phages [11]. The CRISPR/Cas system consists 
of CRISPR-derived RNA (crRNA) and Cas proteins. 
crRNA directs the Cas proteins to a specific location, 

while the Cas proteins are responsible for splicing DNA 
[12, 13]. The CRISPR/Cas system, the fastest growing 
editing technology in recent years, can also be used to 
eliminate tumors by editing target genes in TME cells. 
Currently, the leading gene editing technologies used 
to reprogram the TME are TALENs and the CRISPR/
Cas system. The effectiveness and safety of gene editing 
technologies in cancer treatment have been established 
in several clinical trials [14, 15].

Fig. 2  Gene editing technologies. Editing principles of the four technologies. A Meganucleases, B Zinc Finger Nucleases, C Transcription 
Activator-Like Effector Nucleases, D CRISPR-Cas Nucleases. DSB: DNA double-strand break; PAM: protospacer adjacent motif

Table 1  Comparison of MegaNs, ZFNs, TALENs and CRISPR-Cas systems

MegaNs ZFNs TALENs CRISPR-Cas systems

DNA recognition domain Homing endonucleases 
(binding domain)

Zinc finger protein a series of repeats of 
transcription activator-like 
effector proteins

Single-strand guide RNA

DNA cleavage domain Homing endonucleases 
(cleaving domain)

FokI endonuclease FokI endonuclease Cas protein

Target sequence size 14–40 bp 18–36 bp 28–40 bp 20 bp gRNA sequence and 
PAM sequence

Mechanism of target 
specificity

Naturally occurring One zinc finger protein 
recognizes three nucleo‑
tides

One repeat of transcrip‑
tion activator-like effector 
proteins recognizes one 
nucleotide

sgRNA imparts targeting 
specificity through DNA-RNA 
complementarity

Advantages High specificity
Easy to deliver in vivo

Moderately specificity
Easy to deliver in vivo

High specificity
Relatively easy to engineer

High specificity
Easy to engineer

Disadvantages Hard to engineer Hard to engineer Relatively hard to deliver Limited in vivo delivery
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Cell reprogramming
Cells in the TME can be categorized into immune and 
nonimmune cells. Both are important for the develop-
ment of tumors and can be reprogrammed. Different 
gene editing strategies should be selected based on cell 
function and characteristics. In general, gene editing 
can be performed to eliminate tumors based on three 
aspects: controlling the direction of naive cell differentia-
tion/polarization, promoting proliferation, and enhanc-
ing the function of effector cells (Fig. 3, Table 2).

Immune cells
Immune cells are the primary effectors involved in elimi-
nating tumor cells. The primary target cells for gene edit-
ing in the TME are T cells, natural killer (NK) cells, and 
macrophages.

CD8+ T cells
T cells coordinate multiple aspects of adaptive immu-
nity throughout life, including responses to pathogens, 
allergens, and tumors. They are classified as CD8+ and 
CD4+ T cells based on their expression of CD8 or CD4 
molecules, respectively. CD8+ T cells are the main subset 
that directly kill tumor cells in the TME. Their infiltra-
tion is correlated with prognosis in several solid tumors 
[161, 162]. However, long-term antigenic stimulation in 
the TME causes CD8+ T cells to be unable to prolifer-
ate effectively and function persistently, preventing them 
from killing tumor cells [163]. Therefore, gene editing 
strategies aim to restore or enhance these two aspects of 
CD8+ T cells in the TME.

CD8+ T-cell proliferation is mainly stimulated by 
cytokines. Therefore, cytokine receptors on the cell sur-
face are primary targets for gene editing. Cytokine recep-
tors can be divided into two categories: those expressed 
in a variety of cells and those expressed in specific cells. 
Interleukin (IL)-2 was the first essential cytokine iden-
tified to maintain the survival and growth of T cells 
in vitro [164]. It has been used as a clinical cancer ther-
apy. However, the pleiotropic properties of IL-2 cause 
severe toxicity due to the low specificity of IL-2 receptor 
(IL-2R) [164–168]. IL-2Rα on CD8+ T cells can be edited 
to bind to mutant IL-2 precisely [169]. Thus, intraperi-
toneal injection of mutant IL-2 was shown to specifi-
cally promote the proliferation of gene-edited CD8+ T 
cells in mice. This approach reprograms CD8+ T cells to 
be specifically stimulated to proliferate. Increasing IL-2 
accumulation in the TME via fusion of IL-2 with tumor-
targeting molecules is another way to explicitly promote 
CD8+ T-cell proliferation and reduce toxic side effects 
[170]. The second category of receptors can be artifi-
cially expressed in effector CD8+ T cells to promote cell 
proliferation specifically. For example, effector CD8+ 

T cells can be artificially engineered to express IL-7Rα. 
These reprogrammed cells can proliferate effectively in 
response to IL-7 stimulation both in  vivo and in  vitro, 
even in the presence of regulatory T cells (Tregs) [171]. 
Compared with IL-2-based approaches, these strategies 
can precisely promote the proliferation of effector CD8+ 
T cells and reduce cytokine-induced side effects by tak-
ing advantage of receptor specificity. In addition to IL-7, 
IL-15 and IL-21 specifically promote memory cell pro-
liferation and are also candidates for gene editing [172, 
173].

The ability of CD8+ T cells to persistently function is 
mainly limited by T-cell exhaustion due to prolonged 
antigenic stimulation. Exhausted CD8+ T cells are char-
acterized by the loss of effector functions resulting from 
the upregulation of inhibitory receptors, such as pro-
grammed cell death 1 (PD-1), hepatitis A virus cellular 
receptor 2 (TIM-3), lymphocyte activating 3 (LAG-3), 
cytotoxic T-lymphocyte associated protein 4 (CTLA-
4), T-cell immunoreceptor with Ig and ITIM domains 
(TIGIT) and other immune checkpoints [171, 174]. Gene 
editing can reprogram CD8+ T cells to maintain func-
tion in two ways: inhibiting exhaustion development 
and restoring or enhancing exhausted cell function. The 
development of exhaustion in CD8+ T cells is regulated 
by several transcription factors, including T-bet, Eomes, 
Blimp1, NFAT, BATF, VHL, FOXO1, FOXP1, TCF1, 
nuclear receptor subfamily 4 group A (NR4A), IRF4, and 
thymocyte selection-associated high mobility group box 
(TOX) [47, 48, 175–177]. Altering the expression of these 
factors can reduce CD8+ T-cell exhaustion [178, 179]. For 
example, TOX is a recently identified vital transcription 
factor that promotes CD8+ T-cell exhaustion. It func-
tions in cooperation with NR4A [176]. CD8+ T cells from 
mice with TOX or NR4A knocked out were transplanted 
into tumor-bearing mice and showed reduced exhaus-
tion [49, 180]. Controlling the expression of transcription 
factors via gene editing allows CD8+ T cells to remain 
functional and effectively destroy tumor cells. On the 
other hand, gene editing can be used to restore exhausted 
CD8+ T-cell functions by eliminating inhibitory recep-
tors or reversing inhibitory receptor signaling. The most 
widely studied inhibitory receptor is PD-1. Knocking out 
PD-1 in CD8+ T cells with the CRISPR/Cas9 system was 
demonstrated to have antitumor effects in several pre-
clinical and clinical studies, including studies on cancers 
including melanoma, glioblastoma, ovarian cancer, pros-
tate cancer, B-cell lymphoma, gastric cancer, and breast 
cancer [181–189]. In addition, gene editing can be used 
to reverse inhibitory signaling. CD28 is a founding mem-
ber of the costimulatory molecule subfamily and plays 
a role in amplifying TCR signaling [190]. Fusing PD-1 
expressed by CD8+ T cells to CD28 via CRISPR/Cas9 
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Fig. 3  Reprogramming TME cells via gene editing. Gene editing is mainly used to reprogram CD8+ T cells, CD4+ T cells, NK cells, TAMs, and TAFs. 
① The proliferation of CD8+ T cells is promoted by editing cytokine receptors on the CD8+ T-cell surface (above). The function of exhausted 
CD8+ T cells is restored by knocking out inhibitory receptors, altering the expression of transcription factors, or fusing inhibitory receptors and 
costimulatory domains (below). ② The differentiation of naive CD4+ T cells is regulated by altering the expression of transcription factors or 
surface-localized cytokine receptors. ③ The proliferation of NK cells is promoted by editing cytokines on the NK-cell surfaces (above). The function 
of exhausted NK cells is restored by knocking out inhibitory receptors, and their cytotoxicity is enhanced by altering the expression of genes 
involved in the ADCC process (below). ④ The polarization of M1 macrophages can be promoted by knocking out genes regulating cytokines in 
M0 macrophages or cytokine receptors expressed on M1 macrophages. ⑤ The differentiation of TAFs is regulated by altering their expression of 
cytokine receptors, and the function of cancer-promoting TAFs is weakened by inhibiting their release of inflammatory factors
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gene editing reverses the original inhibitory signaling 
to achieve stimulatory cell signaling. This reprogram-
ming strategy ultimately restores the effector function of 
exhausted CD8+ T cells [187–189].

CD4+ T cells
Although CD8+ T cells are currently the most studied T 
cells, a large number of studies have shown that CD4+ 
T cells also have essential functions in the TME [191]. 
CD4+ T cells can differentiate into different subtypes. 
Their roles in the TME are different or even opposite in 
terms of immunity. CD4+ T helper cells and Tregs are 
two major subtypes. CD4+ T helper cells help regulate 
the gene expression profiles of CD8+ T cells to enhance 
tumor-eliminating effects [192]. In contrast, Tregs act as 
immune suppressors [193].

Two strategies can be employed to reprogram CD4+ T 
cells using gene editing: controlling their differentiation 
into helper cells and inhibiting Treg function. Currently, 
the genes known to influence the differentiation fate of 
CD4+ T cells mainly include IL2Rα, PPARG, and IKA-
ROS family zinc finger 2 (IKZF2) [66, 194, 195]. Based on 
function, different strategies should be used. For example, 

knocking out the IL2Rα enhancer with CRISPR/Cas9 
reprograms CD4+ T cells to differentiate from naive cells 
into Th17 cells [195]. In contrast, knocking out IKZF2 
via CRISPR/Cas9 reprograms human fetal naive CD4+ T 
cells to differentiate into Tregs [194]. Gene editing could 
be designed to induce CD4+ T cells to differentiate into 
cells that promote immune responses.

Furthermore, gene editing has been utilized to reverse 
the immunosuppressive effects of Tregs [196]. This type 
of cell is characterized by high expression of forkhead box 
P3 (FOXP3), which plays a vital role in immunosuppres-
sive functions [197]. Loss of FOXP3 function is associ-
ated with autoimmunity in both humans and mice [198]. 
Knocking out FOXP3 in Tregs via gene editing is ben-
eficial for promoting an immune response in the TME. 
Therefore, identifying genes upstream of FOXP3 via gene 
editing technology can help reverse the immunosup-
pressive phenotype. Several studies have used CRISPR 
screening to identify upstream regulators of FOXP3, 
including ubiquitin specific peptidase 22 (Usp22), bro-
modomain containing 9 (Brd9), and Rnf20 [67, 68]. 
Knocking out Usp22 and Brd9 was shown to reduce 
FOXP3 expression and impair the immunosuppressive 

Table 2  Potential edited genes that regulate cells proliferation, differentiation or function in TME

Cell type Function Gene Reference

CD8+T cell Promote proliferation IL-2Rα, IL-2Rβ, IL-4Rα, IL-7Rα, IL-10Rα, IL-10Rβ, IL-12R, IL-15Rα, GITR, 
HDAC1, NFAT1, NR4A1, SLAT, SUMO2, TL1A, DOCK8, TIS21, STAT6, 
TNFRSF4, TNFRSF8, TNFRSF9, TNFRSF25, CD25, CD4, CD62L, CD27, 
CD70

[16–37]

Inhibit proliferation FOXP1, FOXO3, JNK2, VDR, IL-10R2, PD-1, TIM-3, CD38, CD160 [38–46]

Inhibit function PD-1, TIM-3, LAG-3, CTLA-4, TIGIT, T-bet, BLIMP1, NFAT, BATF, VHL, 
FOXO1, FOXP1, SLAMF6, TCF1, NR4A1, TOX, FGL1, B7H3, CD73, CD39, 
CD244, CD160

[47–65]

CD4+T cell Control differentiation IL2Rα, IL-4R, IL-6R, IL-10R, IL-12R, IL-13R, IL-21R, IL-23R, IL-25R, STAT1, 
STAT4, STAT6, GATA3, PPARG, IKZF2, CXCR5, FOXO1, FOXP3, CD8α, 
CD103, USP22, BRD9, RNF20, IRF4, CIC, PRDM1, TBX21, SATB1, HIVEP2, 
HDAC6, BCL6

[66–86]

NK cell Promote proliferation IL-2, IL-4, IL-12, IL-10, IL-15, IL-18, IL-21, IL-15Rα, CD16A, KLF2, TNFRSF4 [87–97]

Inhibit proliferation CD2 [98]

Enhance toxicity effect NKG2D, TNFRSF9, GRAIL, CD16, CD244, NTB-A, CS1, SCF [99–104]

Inhibit function LAG-3, PD-1, TIM-3, TIGIT, KLRG1, KIR, NKG2A, CD96 [105–109]

TAF Activate IL-1R1, FGFR, GPER, TGFR, TNFR, GFs, VDR, NF-κB, JAK, STAT3, NLRP3, 
YAP, TAZ

[110–118]

Regulate immune microenvironment TGFβ, CCL2, CCL5, CCL7, CCL16, CXCL1, CXCL2, CXCL8, CXCL12, G-CSF, 
LIF, IL-6, IL-11, IL-33, NOX4, M-CSF, PGE2

[110, 119–127]

Promote tumor growth, migration, invasion 
and epithelial-mesenchymal transformation

HGF, FGF1, PDGF, POSTN, OPN, CTGF, FOXF1, IL-17A, Cav1, FAP, α-SMA, 
FN1, VEGF, MMPs, MFAP5, ET-1

[122, 128–142]

Inhibit tumor growth ISLR, WFDC1 [143, 144]

TAM Polarize to M1 TLR, DNMT3b, JMJD1A, HDAC3, HDAC9, STAT1, NF-κB, IRF5, Notch 
signaling, ERK5, MGLL, IRF1, IRF5, IRF8

[145–151]

Polarize to M2 CSF-1R, CCR2, IL-1R, IL-4R, IL-10, IL-12R, IL-13R, IL-18R, GPR132, PRMT1, 
SMYD3, JMJD3, SIRT, BET, STAT3, STAT6, MYC, IRF3, IRF4, KLF4, PPARγ, 
COX-2, PI3Kγ

[146, 148, 152–160]
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function of Tregs in mice. The CRISPR/Cas9 system can 
be employed in this strategy to reprogram the immuno-
suppressive effect of Tregs and ultimately inhibit tumor 
growth. Other FOXP3 regulators identified using the 
CRISPR library include FOXO1, IRF4, GATA3, CIC, 
PRDM1, TBX21, SATB1, and HIVEP2 [199]. They pro-
vide several targets for Treg reprogramming.

NK cells
NK cells can kill tumor cells directly, showing better 
safety than CD8+ T cells with minor cytokine release 
syndrome (CRS) and neurotoxicity [200–202]. The limi-
tations related to the clinical use of NK cells are weak 
proliferation and cytotoxicity. Given these two points, 
gene editing can reprogram NK cells to promote their 
effective proliferation and persistent functionality.

The proliferation of NK cells is mainly regulated by 
the cytokines IL-2, IL-12, IL-15, IL-21, and IL-18 [203]. 
Among these cytokines, IL-15 is recognized to have 
essential roles in cell survival and proliferation. Gene 
editing can be used to edit IL-15 in NK cells to promote 
NK-cell proliferation in  vivo. NK cells overexpressing 
IL-15 exhibit both a stronger proliferative ability and 
potential side effects [204]. Therefore, membrane-bound 
IL-15 (mbIL-15) was developed. This protein is a fusion 
protein of IL-15 and the NK-cell CD8α transmembrane 
structural domains located on the cell membrane [205]. 
This engineering allowed mbIL-15 to stimulate adjacent 
NK cells without inducing the side effects caused by free 
cytokines. This strategy has the potential to maintain 
NK-cell proliferation.

The toxic effect of NK cells can be enhanced by pro-
moting their toxic effects or restoring the toxic effects 
of inhibitory cells. NK92 cells are an NK cell line with an 
indefinite proliferative ability that are widely used in clin-
ical trials [206, 207]. However, they exhibit lower toxicity 
to tumor cells than primary NK cells, which has limited 
their development. Gene editing can be used to over-
come this challenge. Antibody-dependent cell-mediated 
cytotoxicity (ADCC) is one of the most critical mecha-
nisms by which NK cells kill tumor cells. CD16 expressed 
on NK cells recognizes the Fc portion of IgG bound to 
the tumor cell surface and eliminates tumor cells through 
ADCC [207]. Therefore, CRISPR/Cas9 can be used to 
reprogram NK cells to improve the ADCC effect by over-
expressing CD16 [208]. On the other hand, the func-
tion of NK cells is limited by the activation of inhibitory 
receptors. Knocking out these receptors via gene editing 
can restore cell function. The primary identified inhibi-
tory receptors of NK cells are LAG-3, PD-1, TIM3, and 
TIGIT [209]. TIGIT is a newly identified shared inhibi-
tory receptor in exhausted CD8+ T and NK cells. Moreo-
ver, TIGIT but not CTLA-4 or PD-1 is associated with 

NK-cell exhaustion in tumor-bearing mice and colon 
cancer patients [105]. CRISPR/Cas9 has been used to 
specifically knock out TIGIT in mouse NK cells. The 
results showed that these cells exhibited restored cyto-
toxicity and killing ability specific for tumor cells [105]. 
Similar to TIGIT, other inhibitory receptors on NK cells 
can be knocked out to restore the tumor-killing function 
of these cells.

Tumor‑associated macrophages (TAMs)
TAMs are macrophages in the TME. They are a dou-
ble-edged sword for tumor cells. Cytokines can polar-
ize TAMs into M1 or M2 macrophages that exhibit 
anticancer or procancer functions, respectively. There 
are two strategies to reprogram TAMs via gene editing: 
polarizing them into M1 macrophages and promoting 
M2 macrophage death. TAM polarization into M1 mac-
rophages is mainly regulated by the cytokines IL-9, IL-27, 
and IL-12 [210–212]. Upregulation of these cytokines 
by gene editing promotes M1 macrophage polariza-
tion. It was reported that high expression of IL-12 in 
TAMs results in a more than four-fold increase in the 
M1/M2 macrophage ratio [212]. In addition, regulating 
upstream signaling pathways of IL-2, including the sig-
nal transducer and activator of transcription 3 (STAT3)/
NF-Kappab/C-REL and inhibitor of nuclear factor-kappa 
B kinase subunit beta (IKKβ)/NF-Kappab signaling path-
ways, can also affect the TAM polarization direction. 
Knocking out STAT3 or IKKβ in TAMs via gene editing 
was shown to induce M1 macrophage polarization and 
effectively inhibit tumor growth in mice [213, 214]. TAM 
polarization into M2 macrophages is mainly related to 
the activation of colony-stimulating receptor (CSF1R) 
and C-C motif chemokine receptor 2 (CCR2) on the 
cell surface. Knocking out CSF1R repolarizes M2 mac-
rophages into M1 macrophages and enhances phagocytic 
activity [215]. Current phase I and II clinical trials of 
drug therapies targeting CSF1R in giant cell tumors have 
yielded promising results [216]. However, serious side 
effects were observed in patients. Blocking the CCL2/
CCR2 signaling pathway via gene editing results in TAM 
polarization into M1 macrophages and promotes antitu-
mor immune responses in various mouse models, includ-
ing lung, esophageal, and liver cancer models [217–219].

Nonimmune cells
Nonimmune cells in the TME are culprits in tumori-
genesis, providing nutrition and energy for tumor cells. 
There are many nonimmune cells in the TME, including 
tumor-associated fibroblasts (TAFs), endothelial cells, 
mesenchymal stem cells, and adipocytes. Currently, gene 
editing is mainly used to reprogram TAFs, which are the 
main focus of our discussion.
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TAFs
TAFs are significant components of the TME cell popula-
tion in solid tumors [220, 221]. They are heterogeneous and 
act as either the foundation or walls of tumors. Depending 
on their roles in tumors, they can be classified into cancer-
promoting TAFs and cancer-suppressing TAFs [222, 223]. 
The former promotes tumor progression dependent on 
IL-1R activation and the subsequent release of inflamma-
tory factors, including TSLP, IL-6, and CXCL12 [223]. The 
latter may inhibit tumor progression by remodeling the 
collagen structure [143]. Therefore, gene editing can repro-
gram TAFs to inhibit tumor progression by inhibiting the 
function of cancer-promoting TAFs or enhancing the func-
tion of cancer-suppressing TAFs.

For cancer-promoting TAFs, gene editing aims to 
inhibit their activation. IL1/IL-1R is essential for acti-
vating cancer-promoting TAFs and promotes the release 
of proinflammatory factors via the activation of the 
JAK/STAT3, PI3KCA/AKT, and NF-κB signaling path-
ways [224–226]. Therefore, gene editing can reprogram 
TAFs by blocking IL-1R activation and reducing the 
secretion of inflammatory factors. In a study, fibroblasts 
with or without IL-1R1 knocked out and breast can-
cer cells were coimplanted into the lateral abdomen of 
BALB/c mice. Compared with the WT fibroblast group, 
the Il1r1−/− fibroblast group showed inhibition of tumor 
cell growth following coimplantation [225]. In addition, 
TAFs have been shown to have a reduced proinflamma-
tory phenotype when the downstream IL1/IL-1R path-
way (JAK/STAT3 and PI3KCA/AKT) is inhibited.

For cancer-suppressing TAFs, gene editing can alter 
the expression of genes to increase their tumor-suppres-
sive ability. Cancer-suppressing TAFs have been poorly 
studied. To date, it has been found that TAFs express-
ing immunoglobulin superfamily containing leucine 
rich repeat (ISLR) or Caveolin-1 (CAV-1) can inhibit 
tumor progression [143, 227]. ISLR was the first iden-
tified marker of cancer-suppressing TAFs in human 
and mouse pancreatic ductal carcinoma (PDAC). High 
expression of ISLR in TAFs correlates with a good 
patient prognosis [143]. Ablation of TAFs expressing 
ISLR in mouse models leads to malignant progression, 
while exogenous expression of ISLR inhibits tumor pro-
gression. ISLR is a potential therapeutic target for repro-
gramming TAFs for cancer therapy. The mechanism of 
tumor growth inhibition mediated by CAV-1-express-
ing fibroblasts is unclear. The functional mechanism of 
tumor-suppressive TAFs needs to be further studied.

Other cells
In addition, gene editing can also reprogram other 
cells, such as B cells and dendritic cells (DCs). B cells 

produce membrane-bound or secretory immuno-
globulins in lymphoid tissues or plasma. At present, 
researchers mainly use gene editing to induce B cells to 
express antibodies [228, 229]. Since tumor cells often 
evade host immunity by expressing inhibitory recep-
tors, gene editing can reprogram B cells to express 
monoclonal antibodies. This is a potential approach for 
cancer treatment, as these antibodies can competitively 
bind to inhibitory receptors. DCs are special antigen-
presenting cells, and their costimulatory signaling mol-
ecule CD40 is critical in regulating T-cell activation 
and promoting graft rejection. Knocking out CD40 in 
DCs via CRISPR/Cas9 prevents transplant rejection, 
which is one of the barriers to adoptive therapy for can-
cers [230]. Many other cell types have not been thor-
oughly studied. They are also potential target cells for 
gene editing.

Reprogramming cell–cell communication
Complex intercellular communication among TME 
cells provides inhibitory or stimulatory signals that 
influence tumor cell fate [231]. Therefore, the effec-
tiveness of tumor cell killing by immune cells is deter-
mined by the intrinsic properties of both cell types and 
is intimately associated with intercellular communica-
tion. Gene editing provides a flexible and safe tool to 
reprogram TME intercellular communication for can-
cer therapy (Fig.  4). It is becoming a focus in tumor 
immunotherapy.

Immune cell–tumor cell communication
T cells and tumor cells
Intercellular communication between T cells and 
tumor cells is the most studied type of intercellular 
communication. It includes adjacent cell–cell commu-
nication through recognition between receptors and 
ligands on the cell surface and distant communication 
through secreted mediators (cytokines, chemokines, 
adhesion molecules, and exosomes). At present, gene 
editing is more widely used to modulate the for-
mer. The Food and Drug Administration (FDA) has 
approved genetically modified T cells as drugs for the 
treatment of tumors, including tisagenlecleucel (Tisa-
cel), axicabtagene ciloleucel (Axi-cel), lisocabtagene 
maraleucel (Liso-cel), and brexucabtagene autoleucel 
(Brexu-cel) [232–234]. This section will introduce how 
gene editing is used to reprogram cell–cell communi-
cation to eliminate tumors.

Adjacent communication  Adjacent cell–cell com-
munication is dependent on physically adjacent struc-
tures or ligand–receptor interactions. The latter can 
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be reprogrammed by gene editing. Currently, the most 
effective and promising application in this area is adop-
tive T-cell therapy (ACT) [232, 235]. ACT refers to iso-
lating T cells from a patient, equipping the T cells with 

modified antigen recognition receptors via gene editing, 
and reinfusing them into the patient’s body after expan-
sion. According to the autologous or allogenic modified 
antigen recognition receptor introduced, T cells utilized 

Fig. 4  Reprogramming TME intercellular communication via gene editing. Gene editing is used to reprogram TME intercellular communication, 
including communication between tumor cells and immune cells or between different immune cells. The former includes T cell–tumor cell, NK 
cell–tumor cell, and macrophage–tumor cell communication, while the latter includes T cell–DC and T cell–Treg communication. The application 
of gene editing in immune cell–tumor cell communication facilitates enhancement or restoration of the ability of immune cells to recognize 
tumor cells. In immune cell–immune cell communication, gene editing is mainly used to promote antigen presentation by DCs and inhibit the 
immunosuppressive activity of Tregs. As shown in the panels, ①-③ show communication between tumor and immune cells, and ④⑤ show 
communication between different immune cells
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for ACT can be divided into chimeric antigen recep-
tor T (CAR-T) cells and recombinant T-cell receptor T 
(TCR-T) cells [236].

CAR-T cells are designed to recognize cancer cells that 
escape surveillance by unmodified T cells. They bind 
to specific antigens on the tumor cell surface; secrete 
the cytokines IL-12, IL-15, and IL-18; and then rec-
ognize and eliminate tumor cells [237]. The CAR con-
sists of extracellular recognition, transmembrane, and 
intracellular signaling domains. Modifying the CAR 
extracellular domain via gene editing enables T cells to 
recognize antigens on tumor cells. Cancer cells in tis-
sues are highly heterogeneous. The antigens on the cell 
surface may differ, or several antigens may be expressed 
simultaneously. The elasticity of gene editing makes 
the antigen recognition mode of CAR-T cells flexible, 
thus promoting clinical application. The main target 
antigens and applied tumor types for CAR-T cells are 
shown in Table  3. Among these antigens, CD19 is the 
most important and studied. It is evenly distributed 
in malignant B cells and considered a prime target for 
T-cell recognition [238]. Gene-edited CAR-T cells tar-
geting CD19 can identify and eliminate tumor cells 
[239]. Compared with single antigen-recognition, multi-
ple-antigen recognition increases the affinity of CAR-T 
cells for tumor cells. These CAR-T cells can recognize 
tumor cells expressing various antigens individually or 
simultaneously. Gene editing has supported the genera-
tion of second-, third-, and fourth-generation CAR-T 
cells. In addition to CD19, CD22 is widely distrib-
uted on the B-cell surface in most cases of B-cell acute 
lymphoblastic leukemia (B-ALL) [240]. These antigens 
can exist on the same or different tumor cell surfaces. 
A tandem CAR was developed and introduced to T cells 
to target these two antigens. CD19-CD22 CAR-T cells 
exhibited better tumor elimination than CD19 CAR-T 
cells in patient-derived xenograft (PDX) models [241]. 
Compared with previous approaches, CAR recognition 
of three antigens has further improved the recogni-
tion ability and affinity. A typical example is as follows. 
Human epidermal growth factor receptor 2 (HER2), 
interleukin-13 receptor subunit alpha-2 (IL13Rα2), and 
ephrin-A2 (EphA2) are specifically expressed on the 
surface of glioblastoma, recurrent medulloblastoma, 
and ependymoma cells [242]. CAR-T cells targeting 
these three antigens can recognize and eliminate tumor 
cells in PDX mouse models [242, 243].

TCR-T cells are cells with a modified endogenous TCR 
antigen recognition domain designed to enhance the 
recognition of tumor cells by T cells [15]. They have 
been mainly used to recognize the mutation-derived 

neoantigens of cancer cells. TCR-T cells recognize spe-
cific antigens presented in linear 8–11 amino acid pep-
tides presented by MHC class I. Thus, TCR-T cells can 
recognize peptides derived from an entire cell, including 
the cell surface, cytoplasm, and nucleus. Gene editing 
can be used to modify the endogenous TCR antigen rec-
ognition domain to recognize a mutant peptide derived 
from a neoantigen. Currently, nearly 200 clinical trials are 
evaluating the safety or effectiveness of TCR-T cell ther-
apy. The most commonly targeted and promising cancer 
cell antigen is NY-ESO-1. NY-ESO-1c259-specific TCR-T 
cells were produced with the goals of recognizing and 
eliminating antigen-positive tumor cells [15, 336]. TCR-T 
cell treatment has shown a relatively good clinical effect. 
Twelve recurrent or metastatic synovial sarcoma patients 
received NY-ESO-1c259 TCR-T cell treatment, tumors 
shrank significantly in half of the patients, and no fatal 
severe adverse events occurred [337]. Similarly, TCR-T 
cells recognizing the MyD88L265P mutation can target 
tumor cells carrying this mutation in B-cell malignancies 
[338]. In addition to cytoplasmic antigens, membrane 
antigens can be recognized by TCR-T cells. The most 
studied antigen is mesothelin (MSLN). Compared with 
TCR-T cells targeting other epitopes, TCR-T cells specifi-
cally targeting Msln406–414 epitopes show relatively high 
affinity for tumor cells in pancreatic ductal adenocarci-
nomas (PDAs).

During ACT treatment, a considerable amount of tumor 
tolerance is observed. Immune escape mediated by 
immune checkpoints is recognized as one of the main 
reasons. To promote immune escape, immune check-
point molecules expressed on the tumor cell membrane 
bind to paired receptors on the surface of immune cells. 
Knocking out immune checkpoint molecules in CAR-T 
and TCR-T cells with CRISPR/Cas9 technology allows 
these cells to recognize escaped tumor cells and restores 
intrinsic recognition. Compared with immune check-
point inhibitors, gene editing targets specific immune 
cells and does not require systemic immune blockade or 
induce immune-related side effects [339]. In addition, 
according to the individual differences among patients, 
gene editing can knock out one or multiple immune 
checkpoint genes to achieve personalized immunother-
apy. PD-1 and CTLA4 are the most studied checkpoint 
molecules. In a refractory pan-cancer dataset, knocking 
out PD-1 improved the recognition of tumor cells by NY-
ESO-1c259 TCR-T cells [15]. Similarly, in CD19 CAR-T 
cells, PD-1 knockout significantly improved the recogni-
tion of tumor cells in refractory non-small cell lung can-
cer, lymphoma, and chronic myelogenous leukemia [14]. 
In acute lymphoblastic leukemia (ALL) and bladder can-
cer, knocking out CTLA-4 augmented recognition by T 
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Table 3  Targeted antigens of CAR-T cells, CAR-NK cells and CAR-Ms in cancers

Cell Type Target antigen Application Reference

CD8+ T cell CD19 Acute Lymphoblastic Leukaemia, Multiple Myeloma, B-Cell Lymphoma [244–247]

CD20 Melanoma, Diffuse Large B-Cell Lymphoma, Non-Hodgkin Lymphoma, Burkitt Lymphoma [247–251]

CD22 B Acute Lymphoblastic Leukemia, Burkitt Lymphoma [251, 252]

CD30 Hodgkin’s Lymphoma [253]

CD33 Acute Myeloid Leukemia [254]

CD56 Rhabdomyosarcoma [255]

CD70 Renal Carcinoma, B-Cell Lymphoma [256–258]

CD133 Cholangiocarcinoma, Hepatocellular Carcinoma, Pancreatic Carcinomas, Colorectal Carcino‑
mas

[259, 260]

CD138 Multiple Myeloma [261]

CD171 Neuroblastoma [262]

HER2 Biliary Tract Cancer, Pancreatic Cancers [263]

EGFR Non-Small Cell Lung Cancer, Cholangiocarcinoma, Biliary Tract Cancers, Pancreatic Carci‑
noma

[259, 264–266]

MSLN Gastric Cancer, Pancreatic Cancer, Pleural Mesothelioma, Ovarian Carcinoma, Biliary Tract 
Cancer, Tubal Cancer, Esophageal Cancer, Cervical Cancer, Triple-Negative Breast Cancer

[189, 267–270]

LMP1 Lymphoma, Nasopharyngeal Carcinoma [271, 272]

FR-α Ovarian Carcinoma, Colorectal Carcinomas, Pancreatic Cancer, Lung Cancer [273]

EGFRIII Glioblastoma [274, 275]

GPC3 Hepatocellular Carcinoma, Pancreatic Carcinoma, Ovarian Carcinoma [276, 277]

PSCA Chronic Myelogenous Leukemia, Gastric Cancer [278, 279]

MUC1 Lung Cancer, Seminal Vesicle Cancer, [280, 281]

MAGE-A1/3/4 Lung Adenocarcinoma [282]

EPCAM Chronic Myelogenous Leukemia, Breast Cancer, Lung Cancer, Acute Myeloid Leukemia, 
Colorectal Cancer

[283–286]

PSMA Prostate Cancer [287]

AXL Breast Cancer [288]

MUC16 Ovarian Cancer [289]

DR5 B-Cell Malignancies [290]

c-MET Hepatocellular Carcinoma, Gastric Cancer, Renal Cell Carcinoma [291–293]

BCMA Multiple Myeloma [294–296]

GPC3 Hepatocellular Carcinoma [297]

CS1/SLAMF7 Multiple Myeloma, [298]

NKG2D Hepatocellular Carcinoma, Glioblastoma [299, 300]

CLL-1 Acute Myeloid Leukemia [301, 302]

CEA Colorectal Cancers, Pancreatic Malignancy, Hepatocellular Carcinoma [270, 303, 304]
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cells. In addition, gene editing can simultaneously inhibit 
the expression of multiple immune checkpoint molecules 
via knock out of mutual regulators. For example, nuclear 
factor of activated T cells (NFAT) is a key transcription 
factor regulating T-cell activation [340]. It increases 
the expression of multiple inhibitory receptors, includ-
ing PD1, LAG3, TIM-3, and GITR, on the cell surface. 
Knocking out NFAT using gene editing was shown to sig-
nificantly inhibit the expression of these inhibitory recep-
tors in vivo [50].

Distant communication  Distant T cells and tumor 
cells can communicate through mediators, including 
cytokines, chemokines, adhesion molecules, and extra-
cellular vesicles (EVs). These factors can also be repro-
grammed. However, gene editing strategies targeting 
these factors are still in the preclinical phase. Among 
them, the most studied target is EVs. EVs are nanoscale 

vesicles secreted by almost all cells and contain bioac-
tive molecules. They transmit information from donor to 
recipient cells and participate in physiological and patho-
logical processes. In recent years, they have been found 
to regulate the TME and affect immune cell functions 
[341, 342].

Gene editing can be used to edit cells to produce attrac-
tive substrates that can be delivered by EVs and enhance 
EV targeting. Gene editing can be used to add genes 
encoding CAR-targeting antigens to traditional CAR 
molecules, allowing CAR-T cells to express such antigens. 
These antigens are then packaged into EVs and deliv-
ered to tumor cells. Specifically, the EVs localize at the 
tumor cell membrane and deliver antigens to the tumor 
cells. Then, the target tumor cells develop increased anti-
gen expression on the cell surface. In this way, CAR-T 
cells can recognize tumor cells without expression or 

Table 3  (continued)

Cell Type Target antigen Application Reference

NK cell CD5 T Cell Malignancies [305]

CD7 Lymphoma, Leukemia [306]

CD19 Acute Lymphoblastic Leukaemia, Chronic Lymphocytic Leukemia, B Lymphoblastoid, Mono‑
cytic Leukemia, Ovarian Cancer, Chronic Myelocytic Leukemia, Breast Cancer, Lung Cancer, 
Gastric Cancer, Epidermoid Carcinoma, Bladder Cancer

[201, 307, 308] [309–311]

CD20 B-Cell Malignancies, Burkitt Lymphoma [312, 313]

CD33 Acute Myeloid Leukemia. [314]

CD38 Acute Myeloid Leukemia. [315]

CD123 Acute Myeloid Leukemia, Blastic Plasmacytoid Dendritic Cell Neoplasm [316–318]

CD138 Multiple Myeloma [319]

CS1 Ovarian Cancer, Multiple Myeloma [320, 321]

EBNA3C Leukemia [322]

EGFRvIII Glioblastoma [323]

EPCAM Breast Carcinoma [324]

GD2 Neuroblastoma, Ewing Sarcomas, [325, 326]

GPA7 Melanoma [327]

GPC3 Ovarian Cancer [328]

HER-2 Glioblastoma, Breast Cancer, Renal Cell Carcinoma [329–331]

HLA-A2 Melanoma [327]

HLA-DR Glioblastoma [332]

HLA-G Leukemia [333]

MSLN Ovarian Cancer [334]

PSCA Ladder Carcinoma [335]

Macrophage HER2 Chronic Myelocytic Leukemia [309]

MSLN Chronic Myelocytic Leukemia [309]
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with low expression of antigens [343]. Gene editing can 
directly modify EVs derived from T cells so that cargo 
can be more accurately packaged into the EVs. The tet-
raspanin CD9 is a marker molecule located on the EV 
membrane [344]. In T cells, genetic fusion of CD9 with 
other proteins can better enrich the target molecules in 
EVs. Then, these molecules can play a role in suppressing 
tumors after the EVs reach the target cells. For example, 
fusing CD9 with HuR by gene editing can enrich HuR-
binding RNAs in EVs. These RNAs reach target cells in 
the EVs and kill tumor cells [345]. Similarly, fusing CD9 
with PhoCl can achieve light-controlled release of cargo 
proteins after arrival. Fusion of CD9 with CD70 can suc-
cessfully localize CD70 on the surface of target cells and 
thus provide costimulation to T cells [346]. In addition to 
EVs, other factors secreted by CAR-T cells, such as IL-12, 
IL-15, and IL-18, play roles in killing tumor cells [347].

NK cells and tumor cells
In the clinic, CAR-T cell treatment is limited by graft-ver-
sus-host disease (GVHD) and the long production cycle. 
Thus, CARs can be introduced into other immune cells 
as well. Among these cells, NK cells are most commonly 
used. Compared with T cells, NK cells have a more com-
prehensive tumor recognition range and more robust 
antitumor function. The lack of TCR expression by NK 
cells prevents them from causing GVHD. The assembly 
of antigen recognition receptors on the surface of NK 
cells can enable CAR-engineered NK (CAR-NK) cells to 
recognize tumors more accurately and exert a powerful 
tumor-killing effect. The development of CAR-NK cells is 
attracting significant attention.

Gene editing can reprogram NK cells to increase spe-
cific recognition and remove inhibitory immune check-
point molecules on the surface. Most of the CARs that 
have been introduced into NK cells were designed for 
CAR-T cells. Working from traditional CAR structures, 
using gene editing to replace 4-1BB/CD28 with 2B4 (an 
NK cell-specific costimulatory domain), CARs specifi-
cally designed for NK cells can be obtained. The main 
target antigens and applied tumor types for CAR-NK 
cells are shown in Table 3. For these antigens, the most 
studied CARs are those recognizing CD19 and CD5. NK 
cells equipped with CD19 showed powerful recogni-
tion and a strong killing effect against CD19+ relapsed 
or refractory tumors. Eight patients showed remission 
among the 11 lymphoid patients who received treatment 
[201]. Moreover, due to the lack of TCR expression and 
IL-6 release, patients who received CAR-NK allografts 
did not develop CAR-T cell-related serious toxic effects, 
including neurotoxicity, cytokine release syndrome, and 
GVHD [201]. CD5 is highly expressed in malignant T 

cells and considered one of the characteristic antigens of 
malignant T cells [348]. In this case, due to the similar-
ity between normal and malignant T cells, CD5 CAR-T 
cells may produce fratricide and cause normal T-cell 
hypoplasia. CD5 CAR-NK cells can be used to accurately 
recognize CD5+ tumor cells and prolong T-cell acute 
lymphoblastic leukemia (T-ALL) xenograft mouse sur-
vival [305]. Other similar targets include CD20, CD123, 
GPC3, MSLN, CD38, CD147 and EGFR [312, 315, 349]. 
Gene editing can modify them to produce the corre-
sponding CAR-NK cells to eliminate tumors. However, 
CAR-NK cells are still in the preclinical research stage. 
Inhibitory immune checkpoint molecules, such as PD-1 
and TIGIT, are also expressed on the surface of NK cells 
and inhibit their recognition activity. In colon cancer, by 
knocking out these inhibitory immune checkpoint mol-
ecules, CRISPR/Cas9 technology restores the recognition 
ability of NK cells and promotes NK cell-dependent anti-
tumor immunity [105].

Macrophages and tumor cells
In most cancers, macrophages are widely distributed 
in the TME. Compared with other immune cells, mac-
rophages can penetrate tumor tissues more readily. The 
lack of TCR expression prevents macrophages from caus-
ing GVHD. In addition, macrophages perform phago-
cytosis and antigen presentation and exhibit cytotoxic 
activity [350]. While the recognition function of mac-
rophages is nonspecific, equipping macrophages with 
CARs via gene editing can increase their recognition of 
tumor cells. The main target antigens and applied tumor 
types for CAR macrophages (CAR-Ms) are shown in 
Table 3. In addition, gene editing can be used to enhance 
phagocytosis by macrophages.

Primarily, gene editing can be used to increase the rec-
ognition of tumor cells. Similarly, the most important 
and studied CAR introduced into macrophages is the 
CD19 CAR. For instance, CD19 CAR-Ms were shown to 
decrease the tumor burden and prolong overall survival 
in solid tumor xenograft mouse models [309]. In addi-
tion, MSLN is another common molecule exploited in 
gene editing. MSLN is highly expressed in mesothelioma, 
pancreatic adenocarcinoma, ovarian cancer, and lung 
adenocarcinoma [349]. CAR-Ms targeting MSLN show 
increased phagocytic activity against ovarian/pancreatic 
cancer cells expressing MSLN [310].

CARs for phagocytosis (CAR-Ps) can be introduced 
into macrophages to enhance phagocytosis. For example, 
multiple EGF-like domains (Megf10) and an Fc recep-
tor (FcRɣ) robustly trigger phagocytosis in macrophages. 
Inclusion of Megf10 and FcRɣ in CD19 CAR-Ms vastly 
enhances their phagocytic ability [311]. An additional 
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tandem PI3K recruitment domain further promotes the 
phagocytosis of tumor cells.

Immune cell–immune cell communication
Interactions among different immune cells in the TME 
exert immunostimulatory or immunosuppressive effects. 
Gene editing can be used to reprogram immune cell–
immune cell communication to eliminate tumors. How-
ever, there are only a few investigations in this area.

T cells and Tregs
Immunosuppression mediated by Tregs is an important 
cause of CAR-T-cell failure in clinical practice. Gene edit-
ing can be used to suppress the communication between 
effector T cells and Tregs to inhibit the immunosuppres-
sive effect of Tregs. Conventional CAR-T cells secrete 
IL-2 upon antigen encounter, which leads to the genera-
tion of Tregs. CD28 induces the production of IL-2, while 
mutant CD28 can inhibit the production of IL-2. Uti-
lizing gene editing to substitute two amino acids in the 
PYAP Lck binding motif in the CD28 domain (ΔCD28) of 
CARs can inhibit the production of IL-2 and generation 
of Tregs [351]. In this way, decreasing Treg levels weak-
ens their immunosuppressive effect. In addition, gene 
editing can be used to suppress Treg function. IL-12 is 
critical in suppressing the function of Tregs. When IL-12 
is included in CAR molecules, CAR-T cells can secrete 
IL-12 to inhibit the suppressive function of Tregs. Sig-
nificant Treg inhibition and tumor clearance have been 
observed in animal models of thymoma and glioblastoma 
[347, 352].

T cells and DCs
DCs are essential antigen-presenting cells. Most antigens 
are processed by DCs and then presented to T cells. Gene 
editing can be used to improve communication between 
T cells and DCs. For example, the highly structured non-
coding RNA RN7SL1 can be introduced into CAR-T 
cells via gene editing. Then, RN7SL1 can be carried by 
exosomes to act on DCs and promote their activation and 
antigen-presenting functions [343]. In addition, factors 
released by gene-edited T cells can increase the infiltra-
tion of DCs. CCL19 and CD40L are important DC chem-
oattractants. Engineered T cells with inserted CCL19 or 
CD40L can release these molecules, increasing the infil-
tration of DCs into tumors [353, 354].

Conclusion and perspective
In this review article, we summarize the application of 
gene editing for reprogramming TME cells and intercel-
lular communication. In this way, gene editing promotes 
the killing effect of immune cells on tumor cells. Tumor 

tissues are highly heterogeneous, and the features of 
tumor cells and immune cells in the TME are very dif-
ferent even within a single tumor. In response to this 
heterogeneity, gene editing can accurately change the 
features of immune cells or tumor cells in a flexible and 
changeable way. The entire microenvironment is repro-
grammed to become unsuitable for tumor survival. With 
the application of gene editing technology in epigenet-
ics, epitranscriptomics, and proteomics, the methods 
for reprogramming the TME have expanded from tradi-
tional gene knock in and out strategies to making various 
modifications to genes, transcripts, and proteins. This 
means that cell reprogramming can be more diversified 
and accurate according to cell features. In addition, the 
number of cell types that can undergo gene editing has 
increased and now includes pluripotent stem cells and 
hematopoietic stem cells. To date, FDA-approved gene 
editing treatments are based on T cells. In short, with 
further improvements in the safety and effectiveness of 
gene editing, an increasing number of edited cell types 
will be used in the clinical treatment of tumors. Overall, 
gene editing can be used to reprogram the TME and pro-
mote precision treatment of tumors.
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