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Abstract 

Gastrointestinal cancer is the most common human malignancy characterized by high lethality and poor prognosis. 
Emerging evidences indicate that N6‑methyladenosine (m6A), the most abundant post‑transcriptional modification 
in eukaryotes, exerts important roles in regulating mRNA metabolism including stability, decay, splicing, transport, 
and translation. As the key component of the m6A methyltransferase complex, methyltransferase‑like 14 (METTL14) 
catalyzes m6A methylation on mRNA or non‑coding RNA to regulate gene expression and cell phenotypes. Dysregu‑
lation of METTL14 was deemed to be involved in various aspects of gastrointestinal cancer, such as tumorigenesis, 
progression, chemoresistance, and metastasis. Plenty of findings have opened up new avenues for exploring the 
therapeutic potential of gastrointestinal cancer targeting METTL14. In this review, we systematically summarize the 
recent advances regarding the biological functions of METTL14 in gastrointestinal cancer, discuss its potential clinical 
applications and propose the research forecast.
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Introduction
Increasing studies demonstrated that epigenetics plays a 
crucial role in cancer occurrence and progression [1, 2]. 
Different to genetic alterations, epigenetic modifications 
are reversible and inheritable processes which regulate 
gene expression without DNA sequences changes [3, 4]. 
Although the scope of epigenetics is not fully explored, it 
is commonly defined as chemical modifications, includ-
ing chromatin rearrangement, DNA and RNA meth-
ylation, non-coding RNA and histone modification 
[5]. Previous reports mainly focused on the biological 

functions of DNA methylation, non-coding RNAs regula-
tion and histone modification [6–8]. Recently, mounting 
studies have identified more than 100 kinds of chemical 
modifications in RNA, which exploits a new research 
field of epigenetic regulation controlled by RNA modi-
fication [9–11]. RNA methylation is the main form of 
RNA modifications, including N6-methyladenosine 
(m6A), m1A, 1-methylguanosine (m1G), m2G, m6G, 
m7G, 5-methylcytosine (m5C), 2ʹ-O-methylation (Nm), 
pseudouridine (Ψ) and Inosine (I), among which m6A 
modification is the most abundant kind accounting for 
approximately half of all RNA methylation modifica-
tions [5, 12–14]. m6A modification exists in nearly all 
eukaryotes and in a part of viruses, yeasts, bacteria, and 
plants [12]. m6A binding sites are found in the RRACH 
sequence (R = A/G, H = A/C/U) and are mainly enriched 
in the 3’ untranslated regions (UTRs) near the stop 
codon of mRNA exon [12, 15]. Remarkably, m6A medi-
ated-RNA epigenetics modification plays an important 
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role in controlling physiological activities, such as embry-
onic stem cell differentiation, DNA repair, meiosis, tis-
sue remodeling, and circadian rhythm, etc. [11, 16]. 
Dysregulation of m6A modification gives rise to multi-
ple pathological processes, including tumorigenesis and 
development [14, 17, 18].

Composition of m6A
As a dynamic and reversible process, m6A modification 
can be catalyzed by m6A methyltransferases (“writer”) 
and eliminated by demethylases (“eraser”) [19–21]. 
Moreover, RNA-binding proteins (“reader”) specifically 
recognize and bind to m6A sites to regulate fate of RNAs 
(Fig. 1) [16, 19, 22].

Writer
“Writer” regulators traditionally consist of methyltrans-
ferase-like 3/14/16 (METTL3/14/16), WT1-associated 
protein (WTAP), zinc finger CCCH-type containing 
13 (ZC3H13), virlike m6A methyltransferase-associ-
ated (VIRMA/KIAA1429), RNA-binding motif protein 

15/15B (RBM15/15B), and Fl(2)d-associated complex 
component (Flacc) [15, 22–29]. Among them, METTL3 
is the first identified m6A methyltransferase and exerts 
catalytic function with the assistance of METTL14, 
which stabilizes METTL3 and recognizes target RNAs 
[30–33]. METTL3 and METTL14 form a stable meth-
yltransferase complex, while WTAP interacts with the 
heterodimer complex and ensures it to be localized in 
the nuclear spots and triggers catalytic activity [34–36]. 
METTL16 can function alone and control m6A modifi-
cation in mRNAs, U6-snRNA and long noncoding RNAs 
[27, 29, 37–39]. RBM15, VIRMA and ZC3H13 modulate 
region-selective m6A methylation modification by bind-
ing to methyltransferase complex and localizing it to spe-
cial RNA sites [40–42].

Eraser
m6A methylation can be eliminated via demethylation, 
which is mediated by demethylases, also called “eraser”, 
including Fat mass and obesity-associated protein (FTO) 
and AlkB homolog 3/5 RNA demethylase (ALKBH3/5) 

Fig. 1 The composition and function of m6A modification. The m6A modification is installed by writers, including METTL3, METTL14, WTAP, 
RBM15, VIRMA and METTL16. FTO and ALKBH5 are m6A erasers that remove m6A modifications. Readers are required to recognize m6A and exert 
post‑transcriptional regulation. Writers, erasers, and readers synergistically regulate RNA splicing, export, translation, decay, and stability
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[17, 43]. FTO is identified as the first “eraser” and mainly 
influence mRNA stability, translation and splicing by reg-
ulating m6A demethylation [44, 45]. As the homologue 
of FTO, ALKBH3 and ALKBH5 principally mediate the 
transport, metabolism, and assembly of mRNA [46–48]. 
These erasers promote the transformation of m6A into 
N6-hydroxymethyladeosine and N6-formyladenosine 
successively, which is finally hydrolyzed into adenosine 
[12, 17].

Reader
In addition, another essential group of regulators of m6A 
modification is “reader”, which can recognize and bind to 
m6A methylated targets to induce various biological phe-
notypes. The “reader” mainly consists of YTH domain 
family of proteins (YTHDC1/2, YTHDF1/2/3) [49–55], 
IGF2 mRNA binding protein (IGF2BP1/2/3) [56–59], the 
heterokaryotic nuclear RNA protein family (HNRNPC, 
HNRNPG) [60–62], and eukaryotic initiation factor 3 
(eIF3) [63, 64], which affect m6A methylation by modu-
lating RNA metabolism [16].

Function of m6A
"Writers", "erasers" and “readers” work together to effec-
tively catalyze, remove and recognize m6A methylation 
and establish a reversible and dynamic balance of m6A 
modification. mRNA, miRNAs, and long noncoding 
RNAs can all be regulated by m6A methylation, which 
controls RNA stability, decay, translation, splicing, trans-
port, localization, and RNA–protein interactions (Fig. 1) 
[20, 65–67].

Splicing
m6A modification can modulate pre-mRNA splicing 
by interacting with different splicing factors. FTO pref-
erentially binds adjacent to the alternative splicing exon 
and polyA sites, thus depresses recruitment of serine/
arginine-rich splicing factor 2 (SRSF2) and induces exon 
6 skipping [44, 68]. ALKBH5 can promote the phospho-
rylation of ASF/SF2, and the hyper-phosphorylated ASF/
SF2 participates in splicing [46]. It has been reported that 
downregulation of m6A writers interfered splicing and 
gene expression [69, 70]. Also, loss of hnRNPC/hnRNPG 
can change the splicing pattern in an m6A-dependent 
way [62].

Nuclear export
Previous studies confirmed that ALKBH5 could restrain 
nuclear export, determining the subcellular location 
of mRNAs. Mechanistically, ALKBH5 can reduced the 
hypo-phosphorylated form of ASF/SF2, which promotes 
mRNA export mediated by TAP-p15 complex [71]. 
YTHDC1 facilitates nuclear export by promoting the 

binding of RNA to nuclear RNA export factor 1 (NXF1) 
and export adaptor protein SRSF3 [72]. Fragile X mental 
retardation protein (FMRP), another reader, was iden-
tified to be indispensable in CRM1-mediated nuclear 
export [73].

Translation
METTL3 can regulate translation via different readers 
specifically recognizing m6A sites. It can also exert regu-
latory role independent on methyltransferase activity, by 
interacting with eIF3h to promote translation [74, 75]. 
Recently, METTL16 has also been confirmed to regulate 
translation in both methyltransferase activity-dependent 
and -independent manner [27]. Notably, YTHDF pro-
teins play important roles in modulating translation. 
YTHDF1 can promote the cap-dependent translation 
initiation by participating in the formation of loop struc-
ture with eIF4G and eIF3 and recruitment of ribosomes 
[49]. Besides, YTHDF1 can facilitate the expression of 
eIF3C in an m6A-dependent way [76]. In synergism with 
YTHDF1, YTHDF3 promotes translation via interact-
ing with 40S and 60S ribosome subunits [77]. YTHDF3 
also improves the translation efficiency of ITGA6 and 
promotes malignant progression of bladder cancer [78]. 
YTHDC2 can boost translation with its helicase activity, 
independent on m6A modification, which is enhanced by 
5’ → 3’ exoribonuclease XRN1 [79].

Stability
m6A modification serves as a double-edged sword in 
regulating mRNA stability. YTHDF2 plays a vital role in 
RNA degradation by recruiting the deadenylase com-
plex CCR4-NOT [80]. And YTHDF3 cooperates with 
YTHDF2 to facilitate mRNA degradation [81]. For 
instance, YTHDF2 recognizes the methylation of sup-
pressor of cytokine signaling 2 (SOCS2) and arrestin 
domain-containing protein 4 (ARRDC4) and induces 
their mRNA degradation thus enhances metastasis and 
dissemination of cancer cells [82, 83]. YTHDF1 can 
induce the degradation of MAT2A mRNA by binding 
to m6A sites in the 3’-UTR [84]. Another group of read-
ers, IGF2BP1/2/3 can enhance mRNAs stability via KH 
domain binding to target m6A sites [56]. Moreover, FTO 
is reported to increase the stability of MYC mRNA by 
depressing the YTHDF2-mediated decay [85].

METTL14
As a key allosteric activator of METTL3, METTL14 
functions as the major m6A methyltransferase to regu-
late m6A modification on mRNA and non-coding RNA. 
Advances have been achieved in exploring the crucial 
roles and molecular mechanisms of METTL14 in multi-
ple types of cancer, especially in gastrointestinal cancer, 
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including liver cancer, colorectal cancer, gastric cancer, 
and pancreatic cancer. In this review, we will summa-
rize the biological functions and underlying mechanisms 
of METTL14 in gastrointestinal cancer determined by 
the latest research progresses of our and other research 
teams, discuss the potential clinical applications and pro-
pose future research directions of METTL14 in gastroin-
testinal cancer.

The structural basis of METTL14
METTL3 and METTL14 form a stable heterodimer in 
1:1 ratio, the N-terminal extension of METTL14 inter-
acts with METTL3 via loops and helixes (Fig.  1) [32, 
33]. METTL14 has the homologous methyltransferases 
domain (MTD) as METTL3, but it owns a closed confor-
mation of catalytic chamber without SAM binding sites. 
And METTL14 lacks the two CYS-CYS-HIS (CCCH)-
type zinc binding motifs of METTL3, which also deprives 
its catalytic activity [33]. However, it exerts an essential 
structural role to support METTL3’s catalytic function 
and METTL3 alone merely exhibits weak activity. Sig-
nificantly, METTL14 provides an RNA-binding scaf-
fold that plays a crucial role in recognizing and binding 
substrate RNAs [86]. The RGG repeats of the METTL14 
C-terminus are supposed to contribute to the recognition 

of RNAs [87]. Similar to METTL3, METTL14 prefer-
entially recognizes RNA with the “RRACH” (R = A/G, 
H = A/U/C) sequences [30], but the priority mechanism 
remains unclear.

The function role of METTL14 in gastrointestinal cancer
Recent researches have demonstrated that dysregula-
tion of METTL14 is tightly relative to the phenotypes 
involved in the malignant development of various can-
cer, including proliferation [88–90], metastasis [91–96], 
apoptosis [97–101], drug resistance [102–105], cancer 
stem cell like characteristic [106, 107], immunotherapy 
[21, 108, 109], chronic inflammation [110] and glycolipid 
metabolism (Fig. 2) [95]. Herein, we systematically sum-
marize the recent advances of METTL14 in gastrointesti-
nal cancer (Table 1).

Liver cancer
Liver cancer (LC) is a common malignancy with the 
fourth lethality in cancers worldwide. The predomi-
nant form of LC is hepatocellular carcinoma (HCC), 
which accounts for ~ 80% of primary LC and present an 
increasing incidence globally [124]. Emerging reports 
have confirmed the significance of m6A modification in 
LC, and continuous efforts have been put to investigate 

Fig. 2 The biological function of METTL14 in cancer. METTL14 is involved in various processes of tumor development, including proliferation, 
metastasis, apoptosis, drug resistance, cancer stem cell like characteristic, immunotherapy, chronic inflammation, and glycolipid metabolism
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the complicated molecular mechanism of abnormal 
m6A modification and dysregulation of m6A regulators 
in HCC. First of all, the expression level of METTL14 
was identified to be obviously decreased in HCC, which 
closely correlated with clinicopathological factors, 
including tumor stage and prognosis (Fig. 3) [125–128]. 
Based on the analysis of data from The Cancer Genome 
Atlas (TCGA) and Gene Expression Omnibus (GEO), 
Liu et al. showed the opposite expression level and prog-
nostic value of METTL14 and METTL3 in HCC [127]. 
Similarly, METTL14 was predicted to participate in HCC 
malignant progression by modulating the m6A-modified 
transcripts, such as cysteine sulfonate decarboxylase 
(CSAD), glutamic oxalacetic transaminase (GOT2), and 

SOCS2 [126]. Through overlapping RNA-sequencing 
and m6A-sequencing data, epidermal growth factor 
receptor (EGFR) was identified as the direct target of 
METTL14. Knockdown of METTL14 activates EGFR/
PI3K/AKT signaling and thus promotes epithelial-
mesenchymal transition (EMT), migration and inva-
sion of HCC cells [111]. In metastatic HCC, METTL14 
interacts with the microprocessor protein DiGeorge 
syndrome critical region 8 (DGCR8) to suppress tumor 
metastasis. Mechanistically, METTL14 enhances the 
engagement of pri-miR126 by DGCR8 and promotes 
the subsequent processing into miRNA126, which was 
recognized as a metastasis suppressor. What’s more, the 
researchers verified the suppressive role of miR126 in 

Table 1 Role of METTL14 in gastrointestinal cancer

Cancer type Role Target Upstream Reader Functions

HCC Tumor suppressor EGFR
PI3K/AKT

Suppresses migration and invasion [111]

Tumor suppressor miR‑126 Suppresses metastasis [92]

Tumor suppressor SLC7A11 HIF‑1α YTHDF2 Suppresses hypoxia blocked‑ferroptosis [112]

Tumor suppressor USP48
SIRT6

Attenuate glycolysis and malignancy [113]

Tumor suppressor HNF3γ Suppresses proliferation and sorafenib resistance [103]

Oncogene ACLY
SCD1

Promotes FA synthesis and lipid accumulation [114]

CRC Tumor suppressor miR‑375
YAP1/SP1

Suppresses migration, invasion, proliferation [94]

Tumor suppressor KLF4 IGF2BP2 Suppresses migration and invasion [115]

Tumor suppressor ARRDC4 HuR
TCF4

YTHDF2 Suppresses metastasis [83]

Tumor suppressor SOX4 KDM5C
H3K4me3

YTHDF2 Suppresses metastasis [116]

Tumor suppressor LincR XIST YTHDF2 Suppresses proliferation and metastasis [93]

Tumor suppressor miR‑149‑3p Suppresses inflammation and malignancy [110]

Tumor suppressor IFN‑c/
STAT1/IRF1

YTHDF2 Promotes immune responses to anti‑PD‑1 therapy [108]

Tumor suppressor EBI3 Promotes antitumor response and CD8 + T cell infiltration [109]

Tumor suppressor ANKLE1 YTHDF1 Suppresses proliferation, and colony formation [117]

Oncogene PHLDB2 Promotes Cetuximab Resistance [105]

GC Tumor suppressor circORC5 Suppresses proliferation and invasion [118]

Tumor suppressor Wnt/
PI3K‐Akt

Suppresses proliferation and invasion [119]

Tumor suppressor PI3K/AKT/
mTOR

Suppresses proliferation and invasion [120]

Oncogene LINC01320 Promotes migration, invasion, proliferation [121]

PC Oncogene PERP Suppresses growth and metastasis [91]

Oncogene CDA P65 Promotes gemcitabine resistance [122]

Oncogene AMPKα/
ERK/mTOR

Suppresses apoptosis and autophagy [101]

Tumor suppressor PIK3CB YTHDF2 Suppresses proliferation and invasion [123]

Tumor suppressor CLK1
SRSF5

Suppresses proliferation and metastasis [96]
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HCC cell metastasis using miR126 mimic and inhibitor 
[92]. Beyond inhibiting metastasis, METTL14 serves as 
a tumor suppressor involved in various biological pro-
cesses. METTL14 facilitates hypoxia-blocked ferrop-
tosis of HCC cells by catalyzing m6A modification at 
the mRNA 5’UTR of solute carrier family 7 member 11 
(SLC7A11), then promotes YTHDF2-dependent degrada-
tion of SCL7A11 transcripts [112]. METTL14-triggered 

m6A methylation also inhibits the degradation of ubiqui-
tin specific peptidase 48 (USP48) mRNA, which can deu-
biquitylate and stabilize sirtuin 6 (SIRT6) to suppresses 
glycolysis and HCC tumorigenesis. The METTL14-
USP48-SIRT6 signaling may be a potential therapeutic 
strategy for HCC in the future [113]. In addition, reduced 
METTL14 level in HCCs decreases the stability of m6A-
modified hepatocyte nuclear factor-3γ (HNF-3γ) mRNA, 

Fig. 3 The targets and functions of METTL14 in gastrointestinal cancer. In liver cancer, METTL14 suppresses cancer development via 
downregulating EGFR, miR‑126, SLC7A11 and upregulating USP48, HNF3γ, while promotes tumor progression via increasing SCD1 and ACLY 
expression. In GC, METTL14 suppresses cancer development via inhibiting circORC5, Wnt and PI3K/AKT/mTOR, while promotes tumor progression 
via upregulating Linc01320. In CRC, METTL14 suppresses cancer development via downregulating ARRDC4, SOX4, EBI3, STAT1/IRF1, LncRXIST and 
upregulating KLF4, miR‑375, miR‑149‑3p, while promotes tumor progression via increasing PHLDB2 expression. In PC, METTL14 suppresses cancer 
development via downregulating PIK3CB, while promotes tumor progression via increasing CDA, AMPKα/ERK/mTOR, and downregulating PERP
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since decreased m6A level impairs IGF2BPs-mediated 
stabilization of mRNA. Reduced HNF3γ expression not 
only leads to HCC proliferation by inhibiting the differ-
entiation of HCC cells and liver cancer stem cells, but 
also downregulates organic anion-transporting polypep-
tide 1B1 (OATP1B1) and 1B3 (OATP1B3) expression and 
thus impedes sorafenib uptake, resulting in the decreased 
sensitivity of HCC cells to sorafenib [103]. However, Yang 
et  al. proposed the opposite role of METTL14 in HCC, 
they detected upregulated level of METTL14 in both 
HCC cells and patient samples. It was demonstrated 
that overexpressed METTL14 stabilized m6A-modified 
ATP citrate lyase (ACLY) and stearoyl-CoA desaturase 
1 (SCD1) mRNA to increase their expression, thereafter 
aggravated FA synthesis and lipid accumulation, which 
contributed to DNA damage, chronic inflammation, cell 
apoptosis, excessive compensatory cell proliferation in 
livers, further developing non-alcohol Fatty Liver Disease 
(NAFLD) and HCC [114]. In conclusion, these findings 
suggested the important impact of METTL14 on LC.

Colorectal cancer
Colorectal cancer (CRC) is a malignant tumor world-
wide with an increasingly high incidence and mortality. 
Recurrence and metastasis are stubbornly major barri-
ers to the treatment of CRC patients. According to the 
statistics, there are approximately 945,000 new cases 
and about 700,000 deaths of CRC every year [129–131]. 
Despite the great research advances in CRC over the 
years, the molecular mechanisms underlying tumorigen-
esis and development are still elusive. Recently, grow-
ing evidences revealed that METTL14-mediated m6A 
modification plays a vital role in controlling the progres-
sion of CRC (Fig. 3). Experimental studies and bioinfor-
matics confirmed that METTL14 is highly expressed in 
CRC compared with normal tissues, and high expres-
sion level of METTL14 is closely associated with the bet-
ter prognosis of CRC patients [83, 132, 133]. METTL14 
can inhibit CRC metastasis and proliferation through 
multiple pathways and mechanisms. For example, Chen 
et  al. discovered that the overexpressed METTL14 dra-
matically enhanced m6A level of CRC cells and sup-
pressed CRC proliferation and metastasis in vitro, while 
METTL14 loss exerts opposite roles. Mechanistically, 
METTL14 modulates the processing of pre-miR-375 by 
DGCR8 and increases miR-375 level via a m6A depend-
ent manner, which subsequently inhibits CRC growth 
and metastatic capability through downregulating Yes-
associated protein 1 (YAP1) and SP1 respectively [94]. 
Wang et  al. found that METTL14 can upregulate the 
expression of tumor suppressor protein Kruppel-like 
factor 4 (KLF4) to inhibit the invasion and metastasis of 
CRC cells. During this process, IGF2BP2 was involved in 

identifying m6A methylation sites of KLF4 to stabilize its 
mRNA [115]. In addition, our recent study demonstrated 
that METTL14 served as an independent predictor of 
CRC survival and suppressed CRC metastasis in vivo and 
in  vitro. Through transcriptomic sequencing (RNA-seq) 
and methylated RNA immunoprecipitation sequenc-
ing (MeRIP-seq), METTL14 was identified to down-
regulate ARRDC4 by promoting its mRNA degradation 
depending on YTHDF2 recognition. Furthermore, the 
EMT related transcriptional factor ZEB1 was elevated 
by increased ARRDC4 in METTL14 deficient CRC cells, 
promoting metastasis of CRC [83]. Chen et al. also indi-
cated METTL14 as a prognostic factor in CRC. They 
proved that METTL14 and YTHDF2 synergistically 
regulated m6A methylation modification and decreased 
the expression of SRY-box transcription factor 4 (SOX4), 
thereby abrogated EMT and PI3K/AKT signaling path-
way, ultimately inhibited migration, invasion, and metas-
tasis of CRC both in  vivo and on vitro [116]. Another 
research confirmed that METTL14 blocked the metas-
tasis and proliferation of CRC by decreasing oncogenic 
lncRNA XIST expression relying on YTHDF2-mediated 
degradation [93]. Recently, Tian et  al. showed that the 
variant rs8100241[A] of tumor suppressor ankyrin repeat 
and LEM domain-containing protein 1 (Ankle1) could 
be more efficiently catalyzed by METTL14 and recog-
nized by YTHDF1, thus upregulating m6A methylation 
level and protein expression of ANKLE1, which corre-
lates with a reduced risk of CRC by suppressing tumor 
malignant proliferation and maintaining the genomic 
stability [117]. Moreover, besides metastasis and prolif-
eration, METTL14 can modulate other malignant phe-
notypes. Dong et al. proved that METTL14 depletion in 
CRC-associated macrophages can induce epstein-Barr 
virus induced 3 (EBI3) upregulation in an m6A depend-
ent manner mediated by YTHDF2, contributing to  CD8+ 
T cells dysfunction, thereafter accelerating malignant 
progression of CRC, which was verified by mouse mod-
els and clinical samples [109]. Nevertheless, Wang et al. 
observed that loss of METTL14 elevated the response 
of CRC to programmed cell death-1 (PD-1) therapy. 
Reduced METTL14 can promote the amount of CD8 + T 
cells to secrete interferon-γ (IFN-γ), Chemokine (C-X-C 
motif ) ligand 19 (CXCL19) and CXCL10, via enhancing 
the stability of Signal transducer and activator of tran-
scription 1(STAT1) and interferon regulatory factor 1 
(IRF1) mRNA dependent on YTHDF2, both of which are 
involved in IFN-γ signaling and anti-PD1 response. This 
enlightened that METTL14 could be a potential thera-
peutic target in mismatch-repair-proficient or micro-
satellite instability-low (pMMR-MSI-L) CRC [108]. 
Furthermore, Cao et  al. revealed that Enterotoxigenic 
Bacteroides fragilis (ETBF) inhibited METTL14 to reduce 
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m6A modified splicing of pri-miR-149, leading to down-
regulation of miR-149-3p. Subsequently, the decreased 
miR-149-3p not only induced PHF5A-mediated KAT2A 
RNA alternative splicing to promote tumorigenesis 
of CRC, but also contributed to the differentiation of 
Th17 cells resulting in intestinal inflammation [110]. 
However, Luo et  al. showed the proto-oncogene role 
of METTL14 in CRC. They found that oxidative stress 
induced by chemotherapeutic drug could upregulate 
METTL14, which elevated the expression of Pleckstrin 
homology-like dom ain family B member 2 (PHLDB2). 
Increased PHLDB2 enhanced EGFR stability, contrib-
uting to chemo-resistance of CRC to cetuximab [105]. 
In summary, these studies proved the close connection 
between METTL14 and CRC progression, suggesting 
that METTL14 may be a potential therapeutic target for 
CRC treatment.

Gastric cancer
Gastric cancer (GC) is a common malignant tumor 
worldwide. Although the incidence and mortality of 
GC display a downward trend in recent years, there are 
a mass of GC patients in China with the third mortality 
rate in cancer death, remarkably higher than other coun-
tries and regions [134–137]. The fact that epigenetics 
plays a significant role in GC progression has been widely 
confirmed. However, the clinicopathological functions 
and molecular mechanisms of m6A modification in GC 
remain largely unclear. To date, there has been no con-
sensus on the role of METTL14 in GC (Fig. 3). Fan et al. 
showed that METTL14 was downregulated in GC tissues 
and associated with the poor survival in GC patients. 
METTL14 deficiency induced proliferation and metasta-
sis of GC cells both in vivo and in vitro, while METTL14 
overexpression harbored the opposite roles. Mechanisti-
cally, METTL14 triggered circORC5 m6A methylation 
modification to repress its expression, thus increased 
miR-30c-2-3p expression and whereafter downregulated 
AKT1 substrate 1 (AKT1S1) and eukaryotic transla-
tion initiation factor 4B (eIF4B), resulting in inhibition 
of GC tumorigenesis [118]. Liu et al. demonstrated that 
METTL14 was a tumor suppressor and potential bio-
marker of GC via bioinformatics analysis and clini-
cal samples. METTL14 was downregulated in GC and 
exogenous expressed METTL14 repressed aggressive 
phenotype of GC by deactivating the PI3K/AKT/mTOR 
signaling axis [120]. In addition, Zhang et al. revealed that 
deficiency of METTL14 induced proliferation and inva-
sion of GC cells by activating Wnt and PI3K‐Akt signal 
pathway in vitro. And they also found the potential cor-
relation between m6A level and immunotherapy features 
and interferon signaling in METTL14-knockdown cells 
[119]. Nevertheless, Hu et al. expressed the opposite view 

that METTL14-mediated upregulation of long noncoding 
RNA Linc01320 can facilitate GC tumorigenesis in vitro. 
Linc01320 was found to downregulate miR-495-5p, lead-
ing to upregulated RAB19 in GC cells, which promotes 
GC cells proliferation, migration, and invasion in an 
unclear mechanism [121]. Conclusively, the biofunctions 
and regulation mechanisms of METTL14 in GC is rarely 
investigated and the research advances are limited. It is 
worth to extensively explore the value of METTL14 in 
GC in the future research.

Pancreatic cancer
Pancreatic cancer (PC) is one of the most malignant 
tumors with a five-year survival rate of only 8% and 
largely PC patients die within seven years after surgery 
treatment [138, 139]. Since the mortality rates are on the 
rise, PC is predicted to become the second most com-
mon cause of cancer death by 2030 [140]. However, the 
underlying mechanisms of PC’s high lethality are still not 
well determined. Therefore, screening and identifying the 
critical molecules that regulate PC progression is mean-
ingful for performing possible therapeutic strategies. 
Recently, emerging studies have reported the important 
role of m6A modification in PC (Fig.  3). Bioinformat-
ics projections showed that the expression of METTL14 
was closely related to overall survival of pancreatic ductal 
adenocarcinoma (PDAC) [141]. Based on TCGA data-
base, Xu et al. established an independent risk prognos-
tic signature of PC consisted of 5 m6A regulating genes, 
including METTL14, METTL3, KIAA1429, ALKBH5 and 
YTHDF1 [142]. Wang et  al. determined that METTL14 
served as an oncogene in PC. METTL14 was highly 
expressed in PC tissue and associated with the poor 
survival of PC patients. Increased METTL14 expres-
sion induced the degradation of p53 effector related 
to PMP-22 (PERP) via m6A dependent manner, con-
tributing to the proliferation and metastasis of PC [91]. 
Interestingly, Chen et al. found that Cdc2-like kinases 1 
(CLK1)/SR-like splicing factors5 (SRSF5) axis mediated 
aberrant exon skipping of METTL14, which leads to dys-
regulated m6A methylation modification and promotes 
the proliferation and metastasis of PDAC [96]. Moreo-
ver, Tian et  al. showed that the variant rs142933486[G] 
allele of oncogene phosphatidylinositol-4,5-bisphosphate 
3-kinase catalytic subunit beta (PIK3CB) was correlated 
with high level of m6A modification, which was catalyzed 
by METTL14 and recognized by YTHDF2. This could 
promote mRNA decay and decrease PIK3CB expres-
sion, leading to a reduced risk of PC [123]. A recent study 
showed that the expression of METTL14 was increased 
in gemcitabine resistant PC cells, while inhibition of 
METTL14 significantly enhanced the gemcitabine sen-
sitivity of resistant PC cells by downregulating cytidine 
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deaminase (CDA), an enzyme which can inactivate gem-
citabine. And the downregulation of CDA is supposed 
to be mediated by regulation on the mRNA stability in 
an m6A-dependent manner [122]. Similarly, METTL14 
knockdown promoted apoptosis and autophagy and 
enhanced sensibility of PC cells to cisplatin by repress-
ing AMPKα, ERK1/2 and mTOR signal pathways, but 
the regulatory mechanisms of METTL14 and the exact 
roles of AMPKα and ERK1/2 in this process need fur-
ther explorations [101]. In general, the role of METTL14 
in PC is distinct from that in HCC, CRC, and GC. Since 
METTL14 acts as an oncogene in PC, it may be an effec-
tive therapeutic target for PC.

Upstream regulators of METTL14
Considering the important role of METTL14 in cancer 
progression, emerging studies have pay emphasis on the 
upstream regulatory mechanisms involved in the aber-
rant expression of METTL14 in cancer (Fig. 4).

Transcriptional regulation
It was universally recognized that transcriptional fac-
tors and histone modification play the key role in regu-
lating METTL14. In bladder cancer cells, knockdown 
of transcriptional factor forkhead box O3a  (FOXO3a) 
conspicuously decreased METTL14 expression [143]. A 
recent study revealed that the transcriptional factor p65 
was involved in upregulating METTL14 by targeting its 
promoter site in PC cells [122]. Moreover, Weng et.al 
showed that transcription factor PU.1 (Putative oncogene 
Spi-1, SPI1) functioned as a direct transcriptional sup-
pressor of METTL14. SPI1 knockdown led to upregula-
tion of METTL14 mRNA and protein in both normal and 
malignant hematopoietic cells, while SPI1 overexpres-
sion harbored the opposite effect in these cells [107]. In 
CRC, our latest findings proved that RNA-binding pro-
tein human antigen R (HuR) directly bound to METTL14 
promoter and thus suppressed its expression [83]. In 
addition, Chen et al. indicated that (K)-specific demethy-
lase 5C (KDM5C)-mediated demethylation of H3K4me3 
could repress the transcription of METTL14 [116].

Posttranscriptional regulation
Chen et  al. found that CLK1/SRSF5 axis could regulate 
aberrant exon skipping of METTL14 [96]. Through tran-
scriptome sequencing, METTL14 exon10 skipping regu-
lated by the CLK1-SRSF5 axis was identified as the key 
alternative splicing event, promoting the m6A modifica-
tion level and metastasis of PDAC cells.

Posttranslational regulation
Recently, we demonstrated that transcriptional factor 4 
(TCF4) depletion downregulated METTL14 expression 
via promoting its ubiquitination-mediated degradation in 
CRC. Furthermore, Wei et al. revealed that endoplasmic 
reticulum (ER) proteotoxic stress selectively promoted 
METTL14 expression through inhibiting its ubiquitina-
tion-mediated degradation by repressing HMG-CoA 
reductase degradation protein 1 (HRD1), an important 
E3 ubiquitin ligase of METTL14 [100].

Taken together, these findings illustrate that METTL14 
abnormal expression can be affected by a series of tran-
scription factors, histone modification and ubiquit-
ination-mediated degradation. Investigation on the 
upstream regulatory mechanisms of METTL14 dysregu-
lation helps us to better comprehend the biological role 
of METTL14 in cancers and provides possible therapeu-
tic targets for anti-tumor therapy.

Potential clinical application of METTL14
The above evidences emphasize that METTL14 is essen-
tial for tumorigenesis and development of gastrointesti-
nal cancer, suggesting that METTL14 may be a promising 
biomarker for clinical diagnosis and potential therapeu-
tic target of gastrointestinal cancer. The results from our 
and other laboratories showed that METTL14 was down-
regulated in CRC, HCC and GC, repressed tumor pro-
liferation and metastasis and correlated negatively with 
tumor prognosis [83, 92, 93, 116, 118]. And we found that 
decreased METTL14 level was tightly associated with 
tumor stages of CRC. By the multivariate Cox regres-
sion analysis, METTL14 was identified as an independ-
ent prognostic factor for CRC patients [83]. Therefore. 
METTL14 may be a promising biomarker of aggressive 
CRC, HCC, and GC. However, it is obvious that more 
attention has been paid on exploring the functions and 
mechanisms of METTL14 in gastrointestinal cancer, 
while the expression of METTL14 in early stage of tumo-
rigenesis need to be further investigated and confirmed. 
It is worthwhile to evaluate METTL14 as a biomarker for 
early diagnosis and prevention of gastrointestinal cancer 
in the future studies.

Immunotherapy has become one of the unprecedented 
therapeutic strategies for multiple malignant tumors by 
modulating the immune system of cancer patients. By 
targeting m6A modification, immune responses can be 
further significantly activated during antitumor immu-
notherapy. A recent study indicated that suppression of 
METTL14 mediated-m6A mRNA modification elevated 
the therapeutic effect of anti-PD-1 therapy in CRC. 
Inhibition of METTL14 not only promoted the prolif-
eration and accumulation of cytotoxic tumor-infiltrating 
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CD8 + T cells, but also induced the secretion of IFN-
C, CXCL9, and CXCL10, thus enhanced immuno-
therapy efficacy and suppressed cancer proliferation 
[108]. In addition, METTL14 plays an important role in 

regulating chemoresistance, which seriously limited the 
efficacy of chemotherapy, the main clinical treatment 
for gastrointestinal cancer. In PC, METTL14 knock-
down enhanced sensibility of cancer cells to cisplatin, 

Fig. 4 The upstream region of METTL14. KDM5C inhibits histone H3K4me3 and decrease METTL14 mRNA expression. The transcription factor SPI1 
and HIF1α and RNA binding protein HuR inhibit METTL14 mRNA expression, while p65 and FOXO3a promote METTL14 mRNA expression. The SPI1, 
HuR and p65 can directly bind to the promoter of METTL14, however, the regulation mechanism of FOXO3a and HIF1α on METTL14 need to be 
further explored. In addition, CLK1 and SRSF5 can control METTL14 exon10 skipping. Moreover, TCF4 can inhibits ubiquitination of METTL14 and 
increases its expression. HRD1 is an E3 ubiquitin ligase of METTL14 and can promote ubiquitination of METTL14 and decreases its expression
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promoting apoptosis and autophagy by repressing 
AMPKα, ERK1/2 and mTOR signal pathways [101]. Simi-
larly, inhibition of METTL14 enhanced the gemcitabine 
sensitivity of PC cells by downregulating CDA [122]. 
METTL14 also mediated chemoresistance of CRC cells 
to cetuximab and HCC cell to sorafenib [103]. Given the 
crucial role of METTL14 in gastrointestinal cancer, it is 
urgently expected to screen, design, and develop effective 
METTL14 inhibitors and activators. Additionally, explor-
ing drugs targeting upstream or downstream molecules 
of METTL14 may be also an effective measure for gas-
trointestinal cancer therapy. The combined applications 
of METTL14 inhibitor or activators with chemotherapy 
or immunotherapy show great potential as a promising 
treatment strategy and are anticipated to be investigated 
in the future.

Discussion
m6A methylation is the most abundant RNA modifica-
tion and has become research hotspot in recent years. 
m6A methylation affects the processing of mRNA and 
non-coding RNA and is of great significance for gene 
expression regulation. Mounting evidence indicated 
that m6A modification plays a critical role in tumori-
genesis and progression. The present review showed the 
expression, function, and the regulatory mechanism 
of the methyltransferase METTL14 in gastrointestinal 
cancer, suggesting that METTL14 might be a promis-
ing biomarker for clinical diagnosis and therapeutic 
target of gastrointestinal cancer. However, with break-
throughs made in various aspects, contradictions and 
uncertainties have also been exposed, which is mainly 
consist of the following situations. (1) In different can-
cers, METTL14 has a dual regulatory effect on tumors. 
It serves as an oncogene in PC, while plays a suppres-
sive role in HCC, CRC, and GC. Such complexity high-
lights that attention should be given to the application 
of METTL14 activators or inhibitors in case of inducing 
other tumors. (2) In different cancers, the expression 
level of METTL14 varies a lot. Some upstream regula-
tions have been identified in specific cellular context, at 
transcriptional, posttranscriptional, and posttranslational 
level. However, the underlying rationales of whether it 
is upregulated or downregulated remain elusive. (3) For 
the same cancer, different researchers hold the opposite 
conclusions of METTL14. For example, Fan et al. found 
that overexpressed METTL14 inhibited proliferation and 
metastasis of GC [118], but Hu and his colleagues proved 
that METTL14-mediated upregulation of Linc01320 
promotes GC cells proliferation, metastasis [121]. (4) 
For the same cancer, different studies showed the incon-
sistent results of METTL14. For instance, Dong et  al. 
showed that inhibition of METTL14 resulted in  CD8+ T 

cells dysfunction and promoted malignant progression 
of CRC [109]. Nevertheless, Wang et  al. indicated that 
METTL14 deletion enhanced the efficiency of CD8 + T 
cells and elevated the immune response of CRC [108]. 
To sum up, multi-center large-scale studies are extremely 
required to further determine the role of METTL14 in 
gastrointestinal cancer, which could lay a foundation for 
precise individualized treatment.

Although great advances have been achieved in 
revealing the functions and regulatory mechanisms of 
METTL14, some problems need to be further explored. 
(1) As an integrity of m6A methyltransferase complex, 
METTL14 and METTL3 are supposed to have synergistic 
effects. However, many findings have demonstrated the 
opposite expression and functions between them in vari-
ous cancers. Also, different targets and regulatory mech-
anisms of METTL3 and METTL14 have been proved. We 
hypothesized that they have biological functions inde-
pendent of the methyltransferase complex, with their 
own bias towards targets. Therefore, the structural basis 
and regulatory roles of the METTL3/14 complex, and 
their respective functional mechanisms require further 
experimental verification. (2) As a promising biomarker 
for tumor clinical diagnosis, the sensitivity and specific-
ity of METTL14 need to be further clarified. (3) Previ-
ous studies suggested that METTL14 may be a potential 
therapeutic target for gastrointestinal cancer, but insuf-
ficient attention was paid to drug development and no 
specific chemotherapeutic agent targeting METTL14 has 
been reported in both experimental researches and clini-
cal practice so far. It is worth to determine the validity 
and feasibility of METTL14-targeted agents alone or in 
combination with existing therapies for treating tumors 
in the future. Importantly, special emphasis shall be given 
on the development of METTL14 inhibitors or activators 
in cancer treatment due to the double-edged sword roles 
of METT14 in gastrointestinal cancer.

Conclusion
In summary, METTL14 plays an important role in gas-
trointestinal cancer and it may serve as a promising diag-
nostic/prognostic biomarker and a potential therapeutic 
target. We anticipate more future researches to further 
explore the therapeutic potential of METTL14 for feasi-
ble application in clinical practice.
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