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Abstract 

Given that hypoxia is a persistent physiological feature of many different solid tumors and a key driver for cancer 
malignancy, it is thought to be a major target in cancer treatment recently. Tumor-associated macrophages (TAMs) are 
the most abundant immune cells in the tumor microenvironment (TME), which have a large impact on tumor devel-
opment and immunotherapy. TAMs massively accumulate within hypoxic tumor regions. TAMs and hypoxia represent 
a deadly combination because hypoxia has been suggested to induce a pro-tumorigenic macrophage phenotype. 
Hypoxia not only directly affects macrophage polarization, but it also has an indirect effect by altering the communi-
cation between tumor cells and macrophages. For example, hypoxia can influence the expression of chemokines and 
exosomes, both of which have profound impacts on the recipient cells. Recently, it has been demonstrated that the 
intricate interaction between cancer cells and TAMs in the hypoxic TME is relevant to poor prognosis and increased 
tumor malignancy. However, there are no comprehensive literature reviews on the molecular mechanisms underlying 
the hypoxia-mediated communication between tumor cells and TAMs. Therefore, this review has the aim to collect all 
recently available data on this topic and provide insights for developing novel therapeutic strategies for reducing the 
effects of hypoxia.
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Introduction
As a prominent feature of solid tumors, hypoxia is 
thought to be a common cause of poor patient progno-
sis and therapeutic outcomes [1–3]. There is an increas-
ing number of hypoxia-related publications highlighting 
its importance in tumors [4]. Studies have shown that 
long-term hypoxia is the main driving force of cancer 
development [5, 6]. According to the in vitro and tumor 
xenograft studies [7], even minutes of exposure of tumor 

cells to ambient air is enough to induce signaling altera-
tions that affect their biology. Most preclinical studies 
collect and process tumor tissues in normoxia rather 
than physioxia, which contributes to therapy failure in 
clinic despite promising preclinical results [7]. Hypoxia 
contributes to various critical aspects of cancer, including 
genome instability [8], autophagy [9], metabolic repro-
gramming [10, 11], angiogenesis [12], migration, inva-
sion [13], extracellular matrix remodeling [14], epithelial 
mesenchymal transition (EMT) [15], stem cell mainte-
nance [16], immune evasion [17] and therapy resistance 
[18] (Fig. 1). Furthermore, in response to hypoxic stress, 
intercellular communication becomes more frequent and 
complex [19]. Therefore, hypoxia is thought to be a big 
obstacle to overcome in the treatment of malignancies 
[20].
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Increasing evidence supports the vital role of TME dur-
ing cancer development [21]. Complex TME is composed 
of various cells, including stromal cells and immune cells. 
Macrophages are centered in the innate immune system 
[22] and can acquire distinct functional properties in 
response to environmental stimuli [23]. A macrophage 
spectrum is a popular model for describing the properties 
of macrophage activation, with M1 and M2 macrophages 
at opposite ends and other types of macrophages in 
between [23, 24]. Within the cancerous tissue, mac-
rophages can be referred as TAMs, that involve in every 
part of the tumorigenesis [22, 25, 26]. M1-like mac-
rophages have tumor-suppressing properties, whereas 
M2-like macrophages have tumor-promoting proper-
ties [27]. Thus, TAMs are important regulators of tumor 
immunity and immunotherapy [28]. Recent literature 
suggested that higher proximity of tumor cells to M2-like 
TAMs correlates to lower overall survival rates [29]. 
Notably, hypoxia can drive macrophages to polarize into 
immune-suppressive [28] or angiogenic phenotypes [30]. 
For example, hypoxia directly drives macrophage polari-
zation through the unfolded protein response pathways 

[31]. TAMs are preferentially presented in the hypoxic 
region [29, 32, 33]. The attraction of macrophages by 
various chemoattractants and the hampered mobility of 
macrophages in the hypoxic region are plausible mecha-
nisms accounting for the accumulation of TAMs within 
the hypoxic niche [34, 35]. Once entrapped, macrophages 
will gradually polarize into M2 subtypes and serve protu-
moral functions [22]. Together with intra-tumor hypoxia, 
M2 phenotype TAMs can drive tumor aggressiveness 
[36] and severely restrict to the efficacy of immunother-
apy [37]. Thus, in order to better understand the func-
tional roles of TAMs in tumor progression, the effects of 
hypoxia should be taken into account.

It is well known that the crosstalk between TAMs and 
tumor cells plays a fundamental role in driving cancer 
progression [38]. The interaction of cancer cells with 
TAMs in the hypoxic TME, in particular, plays a sig-
nificant role in tumorigenesis and may be a novel ther-
apeutic target in cancer [34]. According to the most 
recent single-cell RNA-Seq data, hypoxia is the most 
important factor influencing cell communication [39]. 
Chemokines and exosomes are both crucial mediators 

Fig. 1  Overview of the effects of hypoxia on tumor cells. Hypoxia contributes to many critical aspects of cancer, including genome instability, 
autophagy, metabolic reprogramming, angiogenesis, migration, invasion, extracellular matrix remodeling, epithelial mesenchymal transition (EMT), 
stem cell maintenance, immune evasion and therapy resistance
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of the crosstalk between TAMs and tumor cells. Recent 
in vivo and in vitro studies have shown that hypoxia can 
alter the secretion of chemokines and exosomes [40, 
41]. The attraction of macrophages to tumor cells can 
be increased by exposing tumor cells to hypoxia [42]. In 
addition to the direct effects of hypoxia on macrophage 
polarization, hypoxia can also indirectly affect this pro-
cess by altering the communication of tumor cells with 
macrophages [43]. Interestingly, some studies showed 
that blocking the CD47-SIRPα “don’t eat me signal” to 
promote macrophage phagocytosis of cancer cells may 
be ineffective in hypoxic colorectal cancer [44]. Despite 
the fact that the importance of hypoxia in oncology is 
now widely recognized, understanding the many com-
plex interactions of hypoxia and related TME stresses 
with cancer biology and therapy remains a work in pro-
gress [45]. Additionally, there are some excellent com-
prehensive reviews on the interplay between tumor cells 
and macrophages [46–49], but there are few reviews on 
the crosstalk mediated by hypoxia. Therefore, in order 
to identify new therapeutic targets, it is urgently neces-
sary to have a thorough understanding of the intricate 
mechanisms underlying the hypoxia-mediated interac-
tion between TAMs and tumor cells.

In this review, we provided a piece of detailed informa-
tion on pathophysiological features of tumor hypoxia and 
its mechanism in terms of sensing oxygen. Besides, we 
also summarized recent results in the experiments that 
focused on hypoxia-driven interaction between TAMs 
and tumor cells. Lastly, we analyzed current clinical strat-
egies for limiting hypoxia-induced responses.

Hypoxic tumor microenvironment
Pathophysiologic features of tumor hypoxia
The majority of solid tumors, like normal tissues, require 
effective clearance of produced cellular metabolic wastes 
in addition to regular oxygen and nutrient supplies. The 
host blood vessels surrounding tumors are unable to 
meet the above demands of tumors due to the rapid pro-
liferation of tumor cells. To compensate, tumors generate 
their own vasculature. Unfortunately, the tumor neo-
vasculature is abnormal in structure and function. This 
situation makes the hostile tumor microenvironment to 
be characterized by poor perfusion, insufficient oxygen, 
nutritional deprivation, low pH, and elevated intersti-
tial fluid pressure [50]. The oxygen level of tumor tissue 
lower than 10 mmHg (1.3 kPa) is defined as hypoxia [51].

Generally, tumor tissues harbor three regions in 
terms of different oxygen levels: normoxic region 
(with functional blood vessels nearby), hypoxic region 
(100  μm away from functional blood vessels), and 
necrotic region (150  μm away from functional blood 
vessels) [19]. Due to different mechanisms and duration 

of hypoxia, tumor hypoxia can be roughly divided into 
chronic hypoxia and acute hypoxia. Within each class, 
it can be further categorized into different subtypes 
according to the involved pathogenetic processes [50, 
52–55]. Chronic hypoxia is caused primarily by diffu-
sion limitations due to increased diffusion distances 
and adverse diffusion geometries. Uncontrolled devel-
opment of tumors can cause some tumor cells located 
far away from blood vessels and thus be deprived 
from sufficient oxygen. A small proportion of chronic 
hypoxia is attributed to hypoxemia (e.g. the forma-
tion of HbCO in anemic patients and heavy smokers) 
and compromised perfusion of microvessels (e.g. dis-
turbed starling force or solid-phase stress in tumor). 
On the other hand, acute hypoxia, also known as 
cyclic, intermittent, transient, repetitive, or fluctuating 
hypoxia, is primarily caused by temporal flow blocking 
in microvessels (e.g. blockage of blood vessels by cell 
aggregates and fibrin plugs) and transient hypoxemia 
(e.g. fluctuating red blood cell fluxes).

Of note, other studies have described three types of 
hypoxia: chronic hypoxia, acute hypoxia, and cyclic 
hypoxia [56]. The first type of hypoxia—chronic hypoxia 
is caused by over-proliferation of cancer cells with a key 
character of prolonged timescales (> 24  h). The second 
type of hypoxia—acute hypoxia arises is resulting from 
sudden blockages of small blood vessels, and it may last 
from few minutes to few hours (< 24  h). The third type 
of hypoxia—cyclic hypoxia (also referred as intermit-
tent hypoxia or IH) is due to the short-term shutdown 
of immature tumor vasculature ranging from several 
minutes to days, which can be reversed by restoring 
blood flow [56, 57]. In this classification, cyclic hypoxia 
is characterized by the presence of cycles of hypoxia and 
reoxygenation (H-R cycles), whereas acute hypoxia is not 
followed by reoxygenation.

The total duration of hypoxia, oxygen concentration, 
and frequency of H-R cycles are three indicators that 
have a significant impact on the regulation of molecular 
mechanisms. Oxygen levels are believed to be correlated 
with tumor types [4, 58, 59]. There is no unambiguous 
and uniform classification system. One of the possi-
ble explanations is that there is currently no agreement 
on the methods for studying tumor hypoxia in  vitro or 
in  vivo [56, 60]. Therefore, there is an urgent need to 
standardize methods to recreate intratumoral hypoxia 
in the laboratory and detect intratumoral hypoxia in the 
clinic. A variety of hypoxia-mimicking model systems 
and technologies for quantification of hypoxia levels 
emerge as time requires [1, 61–63], which is expected to 
help us gain deeper insights in pathophysiological hall-
marks of tumors and the mechanisms for adaptation to 
hypoxia.
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Oxygen sensing mechanisms
The oxygen level in hypoxic tumor region dynamically 
changes as tumor progression [64], thus understand-
ing the molecular mechanism by which cells dominate 
the oxygen regulation is of great significance for cancer 
treatment. Drs. William G. Kaelin, Jr., Peter Ratcliffe,and 
Gregg Semenza won the 2019 Nobel Prize in Physiology 
or Medicine for their outstanding discoveries of cellular 
oxygen-sensing mechanisms.

Studies have revealed that cellular responses to hypoxia 
are mediated by hypoxia-inducible factor (HIF)-depend-
ent pathways and histone lysine demethylases (KDMs), as 
shown in Fig.  2. KDMs are oxygen-dependent enzymes 
that regulate histone methylation [65], which are novel 
oxygen sensors beyond HIF [66]. Certain histone dem-
ethylases, such as KDM6A and KDM5A, directly sense 
oxygen to regulate gene expression by controlling 

chromatin structure [66]. For example, hypoxia-induced 
KDM6A inactivation leads to the persistence of histone-3 
lysine-27 trimethylation (H3K27me3), eventually block-
ing cellular differentiation [65].

With the ability to regulate the expression of hundreds 
of target genes, the HIF pathway plays a central role in 
coordinating cellular responses to oxygen deprivation. 
HIF consists of two distinct subunits: HIF-α (HIF-1α, 
HIF-2α, HIF-3α) and HIF-1β (also called ARNT, aryl 
hydrocarbon receptor nuclear translocator). Under 
hypoxic conditions, HIF-α proteins are stable and can be 
translocated into the nucleus, where they heterodimerize 
with HIF-1β proteins to form the functional HIF tran-
scription factor complex. Following the recruitment of 
transcriptional coactivators, the HIF-α/HIF-1β complex 
regulates the expression of responsive genes by binding 
to the HRE located on the promoter regions of a large 

Fig. 2  Oxygen sensing mechanisms. In presence of oxygen, HIF α is hydroxylated by prolyl hydroxylase (PHD) and FIH (factor inhibiting HIF), 
leading to rapid proteosomal degradation mediated by von Hippel–Lindau (VHL) protein and failure of recruiting transcriptional coactivators. The 
absence of oxygen leads to the stabilization and translocation of HIF-α to the nucleus where it heterodimerizes with HIF-1β to form the HIF–α/1β 
complex. Then, this complex recruits transcriptional coactivator and regulates target gene expression. Histone lysine demethylases (KDMs) can 
directly sense oxygen to control cell fate by regulating the chromatin structure in a HIF-independent manner. For example, KDM6A and KDM5A are 
inactivated during hypoxia, causing hypermethylation of H3K27 (KDM6A target) and H3K4 (KDM5A target)
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number of target genes [67]. In contrast, under normoxic 
conditions, HIF-α proteins are quickly degraded, failing 
to exert its functions [68].

Under normoxia, HIF-α is hydroxylated by prolyl 
hydroxylases (PHDs) and then recognized by E3-ubiq-
uitin ligase von Hippel-Lindau (VHL), resulting in the 
rapid degradation of HIF-α protein [69, 70]. The activity 
of PHDs is related to Fe(II), 2-oxoglutarate (2OG), and 
oxygen. Under normoxia, dioxygen is delivered to the 
active site in the PHD2.Fe(II)0.2OG.HIF substrate com-
plex through a single hydrophobic tunnel. This revers-
ible binding of dioxygen is central to the hypoxia-sensing 
capacity of the PHDs, influencing the extent of HIF-α 
substrate prolyl hydroxylation [71]. The PHDs family 
has three canonical members: PHD1, PHD2, and PHD3. 
Each isoform has a differential function in regulating 
HIF-α activity [72]. In addition, studies in  vitro have 
shown that the negative regulation of HIF-1α and HIF-2α 
by VHL is functionally distinct. Compared to HIF-2α, 
HIF-1α has a stronger affinity for VHL [73]. Additionally, 
different sites of proline hydroxylation play different roles 
in HIF-1α-pVHL interactions [74]. An additional oxygen-
dependent hydroxylase involved in the regulation of the 
HIF pathway is the factor-inhibiting HIF (FIH). FIH is 
an asparagine hydroxylase that suppresses the transcrip-
tional activity of HIF-α by preventing the recruitment of 
transcriptional coactivators without affecting the stability 
of HIF-α protein [75].

Notably, recent studies have revealed that the activa-
tion of HIF-α is not always correlated with hypoxia. In 
the study by Xiaotong Diao et  al. [76], oleoylethanola-
mide (OEA) could selectively bind to the Per-ARNT-Sim-
B (PAS-B) pocket of HIF-3α, resulting in the enhanced 
activity of HIF-3α. OEA is an oleic acid derivative that 
regulates food intake and metabolism. The identification 
of OEA provides evidence that endogenous small-mol-
ecule ligands can control the HIF pathways directly. It’s 
interesting to note that some small-molecule compounds 
(described in detail below) can similarly bind to the 
PAS-B pocket, but they function as antagonists to sup-
press HIF-α activity, which may be related to their par-
ticular allosteric effects. In the study by Andrea L Casillas 
et  al. [77], PIM1 kinase directly phosphorylated HIF-1α 
regardless of oxygen tension to prevent PHDs from bind-
ing to and hydroxylating HIF-1α, hence interrupting its 
degradation pathway. Dong Zhao et  al. [78] discovered 
that the oncogene iASPP (inhibitor of apoptosis-simulat-
ing protein of p53) bound directly to VHL and prevented 
HIF-1α from degrading without affecting the PHD-
mediated HIF-1α hydroxylation. In conclusion, the fact 
that the HIF pathway is regulated by a variety of cellular 
conditions highlights the importance of this pathway in 
numerous biological processes.

Hypoxia‑driven crosstalk between tumor cells 
and TAMs
Extracellular vesicles, cytokines, growth factors, and 
proteins mediate reciprocal interactions between cells 
within TME to fulfill the growing demands of tumor 
cells [79]. The expression and release of these mediators 
are greatly affected by hypoxia. Thus, a comprehensive 
understanding of the mediators and pathways involved 
in the hypoxia-induced macrophage-cancer cell cross-
talk should be helpful in finding accurate biomarkers and 
therapeutic targets. This section will summary the media-
tors and signaling pathways participating in macrophage-
cancer cell crosstalk under hypoxia (Fig. 3) (Table 1).

Exosomes
Exosomes are extracellular particles with diameters rang-
ing from 40 to 160 nm that can be released into the cell’s 
surrounding environment. Exosomes contain a variety of 
constituents, depending on their cellular origins, such as 
nucleic acids, proteins, lipids, amino acids, metabolites, 
and cytosolic [110–112]. Exosomes have an impact on 
tumor growth, metastasis, paraneoplastic syndromes and 
provide resistance to therapy, making them a research 
focus in the field of oncology [110]. Plenty of evidence 
suggests that hypoxic effects in the TME are mediated by 
exosomes that carry information in cell-to-cell commu-
nication [19]. Hypoxia exerts its effects on cancer-derived 
exosomes in many ways, including increasing exo-
some release [91], elevating exosomal heterogeneity (for 
example, size and cargo), and enhancing exosome target 
cell recognition and internalization [19]. The results of 
comprehensive proteomics [91] showed that exosomes 
secreted from hypoxic tumors contain elevated protein 
levels of: (1)  chemokines, such as colony-stimulating 
factor 1 (CSF1), C–C motif chemokine 2 (CCL2), and 
endothelial monocyte-activating polypeptide 2 (EMAP2); 
(2) pro-tumorigenic molecules, including matrix metal-
loproteinases 2 (MMP2), procollagen-lysine, 2-oxoglu-
tarate 5-dioxygenase 1 gene (PLOD1) and annexin A4 
(ANXA4); (3) soluble inhibitory factors, like transform-
ing growth factor beta (TGFβ), macrophage migration 
inhibitory factor (MIF) and ferritin heavy/light chain 
(FTH, FTL); (4) microRNAs processing proteins and 
growth factors, for example, argonaute 1 (AGO1), AGO3, 
hepatoma‑derived growth factor (HDGF). Some of these 
proteins, such as CSF1, CCL2, and EMAP2, can mediate 
macrophage recruitment and M2 polarization. The con-
tent of this section demonstrates that the key cargos in 
exosomes mediated the interaction between tumor cells 
and TAMs under hypoxia are microRNAs (miRNAs), fol-
lowed by long noncoding RNAs (lncRNAs), circular RNA 
(circRNAs), and interleukins (ILs).
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Exosomal MiRNAs and ILs
MiRNAs, a class of regulatory non-coding RNAs (ncR-
NAs), are frequently found in different exosomes and are 
involved in tumor proliferation, angiogenesis, metastasis 
and chemoresistance [113]. Tumor-derived exosomes 
generally contain one or more miRNAs, which are 
involved in different signaling pathways. The production 
of miRNAs in tumor-derived exosomes can be regulated 
by HIF-1α or HIF-2α [86].

MiR-1246 targets telomeric repeat binding factor 2 
interacting protein (TERF2IP) and markedly promotes 
M2 macrophage polarization by activating the STAT3 
pathway and inhibiting the NF-κB pathway, and ulti-
mately leading to tumor proliferation, migration and 
invasion [81]. Moreover, miR-1246-rich exosomes 
derived from hypoxic tumor cells are delivered to nor-
moxic tumor cells for inducing tumor migration and 
invasion [114]. TERF2IP (also known as RAP1), a mem-
ber of the shelterin complex, plays a crucial part in 

protecting telomeric function and maintaining chromo-
some stability. It also acts as an essential modulator to 
enhance NF-kB signaling and attenuate STAT3 signaling 
[81, 115]. Of note, activating the NF-κB pathway and the 
STAT3 pathway can induce M1 and M2 gene expression, 
respectively [22, 116, 117]. In addition, NF-κB is be a cru-
cial transcription factor that regulates the release of ILs 
from TAMs. For example, an in  vitro study illustrated 
that macrophages transfected with NF-κB (p50) siRNA 
exhibited decreased expression levels of IL-10, VEGF, and 
matrix metalloproteinase-9 (MMP-9), whereas increased 
expression levels of IL-12, tumor necrosis factor-α (TNF-
α), and IL-6 [118].

Exosomes released from hypoxic epithelial ovarian 
cancer cells deliver miR-21–3p, miR-125 b-5p and miR-
181 d-5p to macrophages and induce M2 macrophage 
polarization, ultimately leading to tumor proliferation 
and migration [83]. Among these three miRNAs, miR-
21–3p and miR-125 b-5p bind to SOCS4, whereas 

Fig. 3  Hypoxia-driven crosstalk between tumor cells and tumor-associated macrophages (TAMs). The complex interplay between tumor cells and 
TAMs under hypoxia conditions may have tumor-promoting and tumor-suppressive consequences. The mediators that are responsible for tumor 
cell-to-TAM communication under hypoxia include exosomes, cytokines, growth factors, cellular debris, and oncometabolites. In addition, hypoxia 
can regulate the expression of cell surface ligands and receptors mediating cell signaling transduction
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miR-21-3p and miR-181 d-5p bind to SOCS5, resulting 
in the decrease of SOCS4/5 expression and the increase 
of phosphorylated STAT3 [83]. To be clear, SOCS4 and 
SOCS5, members of suppressor of cytokine signaling 
(SOCS) families, are critical negative regulators of the 
JAK-STAT pathway.

Under hypoxia, total expression of let-7a miRNA (a 
well-known epigenetic tumor suppressor) in tumor cells 
is only about 30% of that in normoxia, whereas exoso-
mal let-7a miRNA is increased by almost 25 times. These 
observations indicate that let-7a miRNA is extruded from 
tumor cells via exosomes [91]. Exosomal let-7a miRNA is 
transferred to TAMs and downregulates the expression 
of insulin-like growth factor 1 receptor (IGF1R), insulin 
receptor (INSR), insulin receptor substrate-1 (IRS-1) and 
IRS-2. The inhibition of insulin signaling-related genes 
can negatively regulate the insulin AKT-mTOR signal-
ing pathway, leading to a metabolic shift from glycolysis 
to oxidative phosphorylation (OXPHOS) and eventually 
M2-like polarization in macrophages [91].

In addition, tumor-derived exosomal miRNAs can reg-
ulate inflammatory cytokine secretion in macrophages. 
Hypoxia has no influences in regulating IL1A or IL6 
expression in macrophages, but instead dramatically 
promotes their expression in the co-culture with tumor 
cells. The reason for this could be that the tumor inhibi-
tor miR101 is disturbed in tumor-derived exosomes 
under hypoxic stress, leading to the upregulation of 
cyclin-dependent kinase 8 (CDK8) in macrophages 
and the stimulation of IL1A and IL6 secretion in mac-
rophages [80]. As a tumor inhibitor miRNA, miR101 is 
participating in various cancer-related biological pro-
cesses by targeting multiple oncogenes. Thus, miR101 is 
considered to be a potentially novel approach for cancer 
therapy [119, 120]. CDK8 is an oncogene that functions 
as a transcriptional coactivator for several oncogenic 
transcription factors. [121]. IL1A and IL6 are two crucial 
inflammatory cytokines in macrophages, playing impor-
tant roles in tumor development. IL-6 has multiple func-
tions the activation of pro-oncogenic STAT3 signaling, 
the enhancement of cell motility, the reduction of cell–
cell adhesion, the promotion of EMT, and the stimulation 
of cell proliferation [122]. Given that IL-1A has both pro- 
and anti-tumor effects, its role in cancer development is 
controversial. Results of in vivo experiments revealed that 
IL-1A overexpression in mice suppressed liver metastasis 
of lymphoma, which was related to an increase in CD8+ 
T-cells [123]. An in  vivo and in  vitro investigation on 
hepatocellular carcinoma (HCC) illustrated that tumor-
derived IL-1A promoted tumor growth by increasing 
tumoral infiltration of myeloid-derived suppressor cells 
(MDSCs), which suppressed T and NK cell activation. In 
contrast, systemic administration of recombinant IL-1A 

protein exerted an anti-tumor effect by directly activating 
T cells. The location of released IL-1A is therefore cru-
cial to understanding how it contributes to tumor growth 
[124]. Furthermore, the detailed function of IL-1A may 
be related to the type of cancer [125].

Hypoxic glioma-derived exosomes can induce mac-
rophage autophagy and M2 polarization through their 
highly expressed IL-6 and miR-155-3p. IL-6 facilitates 
M2-like macrophage polarization either directly or 
indirectly through the IL-6-pSTAT3 pathway and the 
IL-6-autophagy-pSTAT3 pathway, respectively. Over-
expression of miR-155-3p downregulates CREBRF gene 
expression and promotes autophagy in macrophages 
[87]. CREB3 regulatory factor (CREBRF), a negative reg-
ulator of CREB3 (cAMP responsive element binding pro-
tein 3), contributes an important part in hypoxia-induced 
autophagy in glioma cells [126]. Additionally, IL-6 can 
upregulate miR-155-3p expression by activating STAT3 
in TAMs [87]. Autophagy plays a pivotal role in promot-
ing M2-like macrophage polarization by activating the 
STAT3 pathway [127–129].

Tumor–derived exosomal miR-301a-3p, which is regu-
lated by HIF-1α and HIF-2α, can be transferred to TAMs, 
promoting tumor cell EMT, migration, invasion, and 
metastatic potential. Exosomal miR-301a-3p mediates 
macrophages M2 polarization via downregulating PTEN 
(phosphatase and tensin homolog deleted on chromo-
some ten) expression and activating the PI3Kγ signaling 
pathway [86]. PTEN is a widely known tumor suppressor 
gene with phosphatase activity and regulates cell growth, 
proliferation, apoptosis, adhesion, migration, invasion, 
and genomic integrity [130]. PTEN can inhibit the PI3K/
AKT pathway by dephosphorylation of phosphatidylino-
sitol 3,4,5-trisphosphate (PIP3) [130]. It is worth noting 
that even a tiny decrease in PTEN levels can contribute 
to obvious cancer susceptibility and tumor progression 
[131]. Furthermore, miR-1305 [82], miR-21 [84], and 
miR-940 [88] in tumor-derived exosomes can promote 
M2 macrophage phenotype, but mechanisms of these 
miRNAs have not been thoroughly studied.

Under hypoxic conditions, macrophages can also 
secrete miRNAs via exosomes to regulate tumor biologi-
cal functions. Exosomal miR223 derived from hypoxic 
TAMs is internalized into co-cultured tumor cells, 
resulting in the decreased apoptosis rate, increased 
cell viability, and enhanced drug resistance. Specifi-
cally, miR-223 down-regulates expression of PTEN and 
gradually increases PI3K/AKT signal activation [85]. 
However, inhibition of miR-223 expression cannot com-
pletely eliminate the promotion of chemoresistance by 
hypoxic macrophage-derived exosomes [85], indicating 
that the communication between tumor cells and mac-
rophages under hypoxia is quite complex. Taken together, 
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exosomal miRNA is a well-investigated mediator of 
tumor-macrophage communication under hypoxia.

Exosomal CircRNAs
CircRNAs are a novel class of nc-RNAs that have 
stronger stability than linear RNAs due to their cova-
lently closed loops and have become a hotspot in recent 
years [132]. As a competitive endogenous RNA (ceRNA), 
circRNAs regulate gene expression through sponging 
miRNAs. For example, Hsa-circ-0048117 can be used as a 
ceRNA to inhibit the activity of miR-140. Tumor-derived 
exosomal Has-circ-0048117 inhibits miR-140 expres-
sion, upregulates the TLR4 expression, and promotes 
M2 polarization. Subsequently, Arg1, IL-10 and TGF-β 
secreted by M2 macrophages facilitate tumor cell inva-
sion and migration [89]. TLR4 is a typical receptor from 
the Toll-like receptors (TLRs) family that is expressed on 
both immune cells and tumor cells, and its overexpres-
sion may lead to cancer progression [133, 134]. Paradoxi-
cally, TLR4 can cause macrophage polarization towards 
M1 [135]or M2 [136, 137].

Exosomal LncRNAs
LncRNAs are nc-RNAs that have more than 200 nucleo-
tides and perform a variety of functions in the nucleus 
and cytoplasm. In the nucleus, they are involved in regu-
lating chromosome architecture, modulating inter- and 
intrachromosomal interactions, remodeling chroma-
tin, and directly regulating transcription. In cytoplasm, 
they can modulate mRNA stability, translation, and 
post-translation [138]. The newly discovered lncRNA 
hyaluronan-mediated motility receptor antisense RNA 
1 (HMMR-AS1) [139] is found in tumor cytoplasm and 
is involved in cell proliferation, cell migration, and EMT 
[90]. Hypoxic condition can enhance the transcrip-
tion of HMMR-AS1 by introducing the binding of pro-
moter regions and HIF-1α. Tumor-derived exosomal 
HMMR-AS1 regulates M2-shifted polarization by miR-
147a/A-T rich interacting domain 3a (ARID3A) axis 
[90]. Concretely, HMMR-AS1 functions as a ceRNA of 
miR-147a, limiting ARID3A degradation while increas-
ing inhibition of M1 type polarization and promoting M2 
type polarization [90].

Other exosomes
Exosomes released from intermittently hypoxic tumor 
cells also promote PD-L1 expression in macrophages, 
providing biological plausibility for explaining the 
underlying mechanisms of poor prognosis observed in 
patients with cancer and obstructive sleep apnea (OSA) 
[92]. Unfortunately, this study did not fully elucidate the 
specific exosome components that dominate this effect 
[92]. PD-L1 commonly expresses on TAMs in high grade 

serous ovarian cancers (HGSOC) at both the original 
and metastatic locations [140]. The binding of PD-L1 
expressed on macrophages to PD-1 expressed on T-cells 
inhibits T cell cytotoxicity [141].

Cytokines and growth factors
Cytokines, a class of diverse low-molecular weight pro-
teins, include IL, colony-stimulating factors, chemokines, 
and tumor necrosis factors [142]. Chemokines can be 
categorized into four subclasses regarding to their amino 
acid motif at N-termini: CXC, CC, C, or CX3C, where 
C and X stand for cysteine and non-cysteine residues, 
respectively [143].

The inflammatory cytokine oncostatin M (OSM), 
which belongs to the IL-6 superfamily, is an essential 
part of the secretome of hypoxic cancer cells. OSM can 
enhance the expression of M2 macrophage surface mark-
ers (viz. CD206 and CD163) as well as functional markers 
(viz. arginase-1, and cyclooxygenase-2) in macrophages, 
which are involved in activation of mTOR signaling com-
plex 2 (mTORC2) pathway [93]. Additional research 
showed that activated mTORC2 leads to M2 polarization 
by relaying signals through its effector kinases Akt, par-
ticularly Akt1, rather than PKCα. IL-4 is another classic 
mediator of M2 polarization by activating the mTORC2 
pathway [93].

IL-8 (also known as CXCL8) is mainly produced by 
macrophages and plays a controversial role in regulating 
cancer progression [144]. Hypoxia increases IL-8 secre-
tion significantly in macrophages but only slightly in gas-
tric cancer (GC) cells [94]. Macrophage-derived CXCL8 
induced by hypoxia can activate the JAK/STAT1 signal-
ing pathway through binding to CXCR1/2 expressed on 
GC cells, leading to GC invasion and proliferation. The 
activation of STAT1 directly upregulates the expression 
of IL-10, stimulating M2 polarization of macrophages 
through the NF-κB signaling pathway. CXCL8 produc-
tion is further encouraged by NF-κB activation [94].

The expression level of C–C chemokine ligand 8 
(CCL8) is increased by zinc finger E-box binding home-
obox  1 (Zeb1) via directly interacting with the CCL8 
promoter in the hypoxic TME. Subsequently, CCL8 pro-
motes TAMs infiltration via CCR2–NF-κB pathway, and 
this result is typically associated with a poor prognosis in 
cervical cancer [95]. Zeb1 is a typical transcription fac-
tor that is widely expressed in carcinomas and has a sig-
nificant role in the development of cancer by promoting 
EMT and chemoresistance in cancer cells [145]. Mono-
cyte chemoattractant protein-1 (MCP-1), also known 
as CCL2, is a key chemokine controlling macrophage 
migration and invasion [146]. Under hypoxic stress, 
NF-κB/HIF-1α activation encourages lung cancer cells to 
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secrete MCP-1, which furthers the accumulation of mac-
rophages [96].

Under a hypoxic microenvironment, vascular endothe-
lial growth factor (VEGF) and IL-6, generated by head 
and neck squamous cell carcinoma (HNSCC) attract 
macrophages and polarize them to the M2 type. Later, 
M2-type TAMs release CCL15 through the HIF-2α path-
way, which leads to gefitinib resistance in HNSCC via 
CCL15-CCR1-NF-κB pathway [97]. Moreover, VEGF can 
also be secreted from macrophages, and both its mRNA 
and protein levels rise in response to hypoxia in a time-
dependent manner. The upregulation of VEGF increases 
the phosphorylation of Akt and p38, contributing to the 
proliferation and invasion of tumor cells [98]. Under 
hypoxic conditions, TAMs-derived VEGF binds to its 
receptor VEGFR on tumor cells, activating the PI3K-Akt 
and p38 MAP kinase pathways to promote tumor cell 
proliferation and invasion [98].

Semaphorin3A (Sema3A) is a membrane-bound pro-
tein that has been shown to be a prognostic marker for 
patients with metastatic colorectal cancer (mCRC) [147]. 
In vivo studies have revealed that Sema3A is an endog-
enous inhibitor of angiogenesis that counteracts angio-
genic factors like VEGF-A. Sema3A has the ability to 
regulate tumor blood vessels, alleviate tumor hypoxia, 
and inhibit tumor growth [148]. Sema3A expression is 
higher in hypoxic tumor single cell suspensions than 
in normoxic conditions [99]. In  vivo and in  vitro stud-
ies have documented that Sema3A drives TAMs toward 
hypoxic niches via the Sema3A–neuropilin-1 (Nrp1) 
pathway. Following macrophage localization in the 
hypoxic environment, Nrp1 is downregulated, and 
Sema3A captures TAMs locally via Nrp1-independent 
plexinA1-plexinA4-mediated stop signals [99]. Finally, 
hypoxic TAMs acquire protumoral phenotypes. The 
absence of Sema3A leads to a more M1-like phenotype 
and a reduced tumor growth [99]. Nrp-1 is a pleiotropic 
single-pass transmembrane protein that functions as a 
co-receptor to many extracellular ligands [149]. In  vitro 
study showed that the expression of Nrp-1 in tumor cells 
was upregulated under hypoxic situation, which resulted 
in recruiting more macrophages and educating them into 
M2-phenotype [105]. However, more research is required 
to fully understand how Nrp-1, which is produced by 
cancer cells, promotes M2 macrophage polarization 
under hypoxic conditions.

Myeloid-derived growth factor (MYDGF), which 
is generated when tissue is damaged, exerts a crucial 
role in regulating neutrophil interstitial motility and 
inflammation in a way that is HIF-1α dependent [150]. 
Hepatocellular carcinoma contains hypoxia-induced 
MYDGF in its cytoplasm and cell membrane, which can 
stimulate tumor angiogenesis and boost the potential 

of cancer stem cells to self-renew. Additionally, tumor-
derived MYDGF promotes the release of inflamma-
tory cytokines including TNF-α and IL-6 and increases 
macrophage infiltration, all of which ultimately aid in 
the growth of tumors [100]. However, the molecular 
mechanism of MYDGF action in tumor progression is 
still unclear, and it merits further research.

Binding proteins and protease inhibitors
Galectin-3 (Gal‐3), a member of the β-galactoside bind-
ing protein family [151], is both a prognostic indicator 
and a potential target for cancer treatment [152–154]. 
Gal‐3 is also expressed in tumor tissues in a HIF-1α-
dependent manner [155], causing an increase in PD‐L1 
level via STAT3 phosphorylation in carcinomas [156]. 
Gal‐3 secreted by TAMs during hypoxia promotes 
tumor metastasis and angiogenesis, which is highly 
dependent on the degree and duration of hypoxia [101]. 
Although the expression level of HIF-1α is elevated in 
hypoxic TAMs, HIF-1α inhibitors have no effect on the 
expression of Gal-3 there, suggesting that HIF-1α may 
not be involved in Gal-3 expression in hypoxic TAMs. 
Interestingly, HIF-1α inhibitor 2ME2 can upregulate 
Gal-3 expression in normoxia but not in hypoxia. Fur-
ther research revealed that the upregulation of Gal‐3 
expression in hypoxic TAMs is associated with an 
increase in intracellular reactive oxygen species (ROS) 
level via activation of NF-κB nucleation. In addition, 
Gal-3 overexpression enhances VEGFA secretion and 
glucose consumption in TAMs [101].

As a nuclear DNA-binding protein, high-mobility 
group box 1 (HMGB1) can be robustly upregulated via 
HIF-1α signaling after prolonged exposure to hypoxia 
in tumors. Increased HMGB1 levels encourage mac-
rophage infiltration and cytokine expression(i.e. IL-6). 
Subsequently, macrophage-derived IL-6 activates 
STAT3 signaling and promotes EMT in tumor cells 
[102].

However, other studies noticed that tumor-infiltrat-
ing macrophages in the hypoxic microenvironment 
may have tumor suppressing effects. Under hypoxic 
conditions, HIF-2α highly expressed in TAMs induces 
the secretion of the serine protease inhibitor Spint1. 
Spint1 is then released into TME to block the serine 
protease HGF activator (HGFA), preventing the cleav-
age of pro-HGF into active hepatocyte growth factor 
(HGF) [103]. When activated HGF binds to the c-Met 
receptor on tumor cells, it activates several signaling 
pathways, including MAPK, PI3K/AKT, and STAT3, 
which promotes tumor growth and therapeutic resist-
ance [157]. Thus, TAM-secreted Spint1 can reduce 
tumor cell proliferation.



Page 12 of 22Bai et al. Molecular Cancer          (2022) 21:177 

Ligand‑receptor interaction between tumor cells and TAMs
The binding of CD47 (cluster of differentiation 47) on 
tumor cells to SIRPα (signal-regulatory protein α) ligand 
on macrophages is a typical tumor escape mechanism. 
The "don’t eat me" signal is released by the CD47 recep-
tor when it binds to SIRPα, which impairs the phagocytic 
activity of macrophages [158]. HIF has been shown to 
activate highly expressed CD47 in various cancer types 
[158]. However, hypoxia may have beneficial effects on 
cancer therapy via SIRPα-CD47 axis. Colon cancer has 
a better prognosis than other cancer types because it 
has higher levels of macrophage infiltration and HIF-1α 
expression [104]. Hypoxia can decrease SIRPα expression 
in macrophages while simultaneously increasing CD47 
expression in colon cancer cells. The heightened signal of 
"don’t eat me" is countered by the reduced SIRP expres-
sion level, increasing the phagocytic capacity of mac-
rophages [104]. Therefore, HIF-1α does have the ability 
to enhance phagocytosis of macrophages, which may be 
dependent on cancer types [158].

Tumor cell debris
Tumor necrotic debris caused by hypoxia can release 
different signals leading to cancer progression [159]. 
Macrophages can accumulate in perivascular and perine-
crotic niches in tumors [160] where they can operate as 
immune scavengers to sweep away cellular debris [161]. 
An interesting study demonstrated that the necrotic 
debris from severely hypoxic cancer cells modulates 
the communication between tumors and TAMs [106]. 
Under conditions of moderate hypoxia, HIF-1α facili-
tates IL-1β secretion in macrophages. When exposed to 
severe hypoxia, necrotic cancer cell debris can stimu-
late IL-1β secretion in macrophages via TLR4/TRIF/
NF-κB signaling. Specifically, necrotic debris enhances 
TLR4 signaling by attracting more TLR4 receptors to the 
macrophage membrane and activating TIR domain-con-
taining adapter-inducing interferon-β (TRIF). Following 
then, phosphorylated NF-κB is up-regulated, resulting in 
macrophage M2 polarization and IL-1β secretion. Mac-
rophage-derived IL-1β activates the IL-1β/HIF-1α/
COX-2 axis, enhancing tumor cell EMT and promoting 
tumor invasion and metastasis [106].

It is worth noting that IL-1β in the TME can be an 
important driver of immune suppression. For instance, in 
mouse models of spontaneous breast cancer metastasis, 
IL1β stimulates IL17 expression from γδ T cells, lead-
ing to neutrophil accumulation via systemic induction of 
G-CSF. Neutrophils inhibit CD8+ T cell activation, allow-
ing cancer cells to spread [162]. Interestingly, the results 
of IL1β mRNA expression in diverse cell populations sep-
arated from the transplanted tumors indicate that mac-
rophages are the most abundant IL1β-expressing cell type 

[162]. These findings also highlight the importance of 
cross-talk between immune cells in influencing immune 
responses in tumors. Similarly, Máté Kiss et al. [163] also 
observed that IL1β exerted an immune-suppressive func-
tion in TME in two distinct mouse models. The research-
ers found that increased IL1β production within tumors 
was released mainly by neutrophils, monocytes, and 
macrophages. A noteworthy finding in that study was 
that the immunostimulatory major histocompatibility 
complex (MHC)-IIhigh TAMs produced large amounts of 
IL1β.

The NF-κB pathway has been identified as a critical 
regulator of macrophage behavior in the TME. Interest-
ingly, NF-κB pathway exerts dual effects on macrophage 
polarization—both promotion and inhibition of M1 
polarization. Studies in  vitro showed that transfection 
of NF-κB (p50) siRNA into M2-like macrophages leaded 
to the anti-tumorigenic M1 phenotype [118]. Similarly, 
an in vivo study suggested that specific blockade of NF‐
κB signaling in macrophages could switch macrophages 
from a M2 to a M1 phenotype [164]. However, some 
studies in vivo showed that the increased NF-κB activity 
in macrophages resulted in reduced tumor burden and 
persistent macrophage M1 polarization [165]. There are 
five members of the NF-κB family of transcription fac-
tors: p65 (RELA), p50 (NFKB1), p52 (NFKB2), c-REL, 
and RELB [166]. These members can couple to form 
different homo- or heterodimers, which have oppos-
ing effects on macrophage polarization, depending on 
the source of macrophage populations and the way that 
macrophages are activated [167]. Lipopolysaccharide, 
for example, promotes the overexpression of p50-p50 
homodimers, allowing M1 to M2 macrophage repro-
gramming [168–170]. In contrast, Bufalin promotes the 
overexpression of p65-p50 heterodimers, leading to the 
transition of macrophage from M2 to M1 [171]. There-
fore, in order to better understand the multifaceted role 
that NF-κB plays in regulating TAMs function, it may be 
useful to investigate the exact functions of various NF-κB 
dimers.

Oncometabolites
Under hypoxic conditions, tumor cells may undergo met-
abolic reprogramming allowing them to shift from oxida-
tive phosphorylation to anaerobic glycolysis. Succinate, 
an intermediate of the tricarboxylic acid (TCA) cycle, and 
lactate, an end product of glycolysis, are two examples of 
tumor metabolites produced by hypoxic tumor cells that 
can influence macrophage activity [172].

Lactic acid shuttles among different cells within the 
TME, acting not only as a stromal cell energy supplier, 
but also as a signaling molecule to intensify crosstalk 
between tumor cells and adjacent cells [173]. In vivo and 
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in vitro study showed that lactate induces VEGF expres-
sion and M2-like polarization of TAMs, both of which are 
mediated by HIF-1α [107]. Lactate targets the protein-
coupled receptors on the surface of the TAMs membrane 
and induces M2-type polarization via the PKA/CREB 
pathway [174]. Additionally lactic acid produced under 
hypoxia is believed to be a weapon for activating pro-
angiogenic TAMs and increasing PD-L1 protein expres-
sion in TAMs [172, 175, 176]. It’s important to note that 
in vitro research indicated that lactate differentially influ-
enced TAM subgroup metabolism [108]. These subsets 
are known to reside in different intratumoral locations, 
with MHC-IIlo TAMs being enriched in hypoxic tumor 
areas. Lactate promotes oxidative metabolism in MHC-
IIlo TAMs while inhibiting it in MHC-IIhi TAMs. Further-
more, in the presence of lactate, MHC-IIlo TAMs showed 
an improved ability to inhibit T cells.

Extensive evidences showed a positive synergistic 
relationship between hypoxia and lactate [177]. When 
normoxic and hypoxic macrophages are treated with dif-
ferent lactate doses, the protein levels of ARG1 increase 
concomitantly in hypoxic macrophages but not in nor-
moxic ones, indicating that the combination of low oxy-
gen and lactate is already sufficient enough to trigger 
Arg-1 expression [177]. Moreover, a high concentra-
tion of lactic acid causes medium acidification, which 
kills macrophages rather than causing Arg-1 expression. 
Macrophages have the ability to detect the presence of 
hypoxia and lactate. These signals can then be integrated 
with phenotypic responses by MAPK signaling, which 
results in the release of pro-angiogenic cytokines like 
VEGFA [177]. In-depth bioinformatics analysis of mac-
rophages transcriptome data indicated that lactate has 
only mild impacts on macrophages under normoxic con-
ditions. When lactate is combined with hypoxia, mac-
rophages become significantly more M2-polarized via 
the HIF-1, Hedgehog and mTOR pathways is observed 
[178]. However, it is important to note that most of the 
studies on the effect of lactate on macrophages were con-
ducted under normoxic conditions, rather than hypoxic 
conditions. The information in this section may serve 
as a reminder of the importance of conducting research 
under hypoxic conditions.

Succinate is a typical TCA cycle intermediate that pro-
motes inflammation and can accumulate in macrophages 
in response to lipopolysaccharide (LPS). Succinate accu-
mulation robustly boosts HIF-1α protein levels, leading 
to increased secretion of IL-1β from macrophages [179]. 
Specifically, succinate produced by tumors is released 
into extracellular milieu and interacts to succinate recep-
tor (SUCNR1) on the membrane of macrophages. As a 
result of this binding, the PI3K-HIF-1 axis is activated, 
which causes macrophage recruitment, migration, and 

an M2-skewed phenotype. M2 polarized macrophages 
secret IL-6 to enhance cancer cell migration. Meanwhile, 
tumor-derived succinate also activates SUCNR1 on the 
membrane of tumor cells to induce cancer cell migration 
and EMT through the PI3K/HIF-1α pathway [109]. These 
findings demonstrated that the tumor-derived succinate 
has great potential to be a novel target for anti-tumor 
therapy because of its ability to control TAM polarization 
and tumorigenic pathway.

HIF‑1α/2α inhibitors for cancer treatment in clinical 
studies
As previously mentioned, hypoxia not only affects the 
biological function of tumor cells and macrophages but 
also the communication between them, triggering a 
series of signal pathways to support tumor survival. The 
activation of HIF-1α/2α is one of the main initiators of 
macrophage-cancer cell interaction. Inhibiting the activ-
ity of HIF-1α/2α can therefore open up new possibilities 
for tumor treatment approaches. This section will pro-
vide insights for therapeutic development by summa-
rizing those pharmaceuticals that successfully entered 
clinical trials or the market for inhibiting HIF (Fig.  4) 
(Table 2).

Small‑molecule inhibitors
The PAS-B binding pocket on the HIF-2α contains a 
unique hydrophilic cavity that can accommodate a small 
molecule, which may result in a conformation change in 
HIF-2α and disruption of its interaction with ARNT [180, 
181]. Accordingly, HIF-2α small-molecule inhibitors 
are discovered, such as Belzutifan (Welireg™, MK-6482) 
[182] and PT2385 [183]. Despite the high sequence iden-
tity between HIF-2α and HIF-1α, these small-molecule 
inhibitors are highly selective in dissociating the HIF-2α/
ARNT heterodimer while having no effect on HIF-1 
function [181, 184].

Belzutifan is the first FDA-approved treatment for 
Von Hippel-Lindau (VHL) disease in patients with renal 
cell carcinoma (RCC), central nervous system (CNS) 
hemangioblastomas, or pancreatic neuroendocrine 
tumors (pNET) without the request of immediate sur-
gery [185–187]. VHL disease is a rare autosomal domi-
nantly inherited tumor syndrome caused by germline 
mutation or deletion of VHL gene [188, 189]. The inci-
dence of RCC patients with VHL disease is high due to 
VHL gene inactivation and constitutive activation of 
the transcription factor HIF-2α [190]. Belzutifan is also 
expected to be used in the treatment of polycythemia and 
multiple paragangliomas (the Pacak–Zhuang syndrome), 
which are caused by somatic mosaicism for an activating 
mutation in EPAS1 [191]. Several ongoing clinical trials 
are currently focusing on the evaluation of the efficacy 
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of belzutifan in combination with other medicines, such 
as pembrolizumab, Lenvatinib, and cabozantinib (Clini-
calTrials.gov Identifier: NCT04976634, NCT05239728, 
NCT03634540, NCT04736706, NCT05030506, 
NCT04626518, NCT04586231, NCT04626479). There 
are also some clinical trials of belzutifan used alone for 
other tumors (Table 2). It is hoped that these studies will 
yield excellent patient survival data.

PT2385, a small molecule drug, is the first HIF-2α 
antagonist progressed into clinical trials [192]. PT2385 
can inhibit HIF-2 dimerization in healthy tissue and 
ccRCC metastases [193, 194]. PT2385 can significantly 
alleviate the undesirable adverse effects of sorafenib 
through inhibiting HIF-2α, increasing androgen receptor 
(AR) and suppressing downstream pSTAT3/pAKT/pERK 
pathways [195].

PX-478 is an active HIF-1α small-molecule inhibitor 
with potent antitumor activities [196, 197]. PX-478 can 
inhibit HIF-1α protein levels, transactivating activity, 
and deubiquitination. In addition, PX-478 prevents the 
synthesis of VEGF that is generated by hypoxia in vari-
ous cancer cell lines [198]. By inhibiting the HIF-1α/

lysyl oxidase-like 2 (LOXL2) signaling pathway, PX-478 
can enhance immunotherapeutic effectiveness and 
reduce the EMT phenotypes induced by hypoxia [199]. 
PX-478 can drastically reduce the expression level of 
granulocyte–macrophage-colony-stimulating factors 
(GM-CSF) and the incidence of perineural invasion 
(PNI) in pancreatic ductal adenocarcinoma (PDAC) 
[200].

Cycling hypoxia increases the production of ROS, 
which promotes HIF-1α and NF-κB activation in tumor 
cells [201]. ROS is an important mediator of HIF-sta-
bility by inhibiting the activity of PHD and FIH in the 
cytoplasm [201]. MBM-02, also known as Tempol, is a 
dual-specific HIF-1 and HIF-2 inhibitor (ClinicalTri-
als.gov Identifier: NCT04876755). As a well-known 
antioxidant, MBM-02 promotes the clearance of ROS 
and inhibits cycling hypoxia-induced chemoresistance 
[202]. In addition, DFF332 (ClinicalTrials.gov Identi-
fier: NCT04895748) and NKT2152 (ClinicalTrials.gov 
Identifier: NCT05119335) are also small molecules that 
inhibit HIF2α.

Fig. 4  Mechanisms of action of the HIF inhibitors currently on the market or under clinical trials. HIF inhibitors target HIF on different levels, ranking 
from transcription, translation, protein stabilization, transcriptional coactivators recruitment, and dimerization. The clearance of ROS leads to 
decreased HIF-α stabilization and accumulation
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Nucleic acid therapeutics
Due to their high target-specificity, nucleic acid thera-
peutics, such as miRNA-based molecules, lncRNAs, 
small interfering RNAs (siRNAs), antisense oligonu-
cleotides (ASOs), mRNA therapeutics, and nucleic acid 
aptamers, have recently been successful in emerging into 
a highly attractive class of medicines [203].

RO7070179 (EZN-2968) is an ASO specifically target-
ing HIF-1α in a synthetic locked nucleic acid (LNA) form, 
which can reduce HIF-1α mRNA levels [204]. ASOs typi-
cally contain < 20 mER DNA or RNA nucleotides and can 
target mRNAs that are largely degraded through RNAse 
H-mediated cleavage. ASOs also inhibit the interaction 
between its targeted mRNAs and their paired enzymes, 
which blocks the transcription or translation of target 
genes [205, 206]. LNA-based oligonucleotides offer the 
advantages of remarkable stability, low off-target events, 
and high target-mRNA binding affinity [207, 208].

ARO-HIF2 is a synthetic double-stranded RNA inter-
ference (RNAi) trigger with an αvβ3 targeting ligand 
designed to silence HIF-2α expression. RNAi is a natural 
protective mechanism induced by double stranded RNAs 

(dsRNAs), leading to efficient and specific degradation 
of homologous mRNA [209]. Integrins αvβ3, which is 
related to tumor progression and metastasis, is frequently 
overexpressed in ccRCC and can be selectively bound by 
ARO-HIF2 [210]. The results of the phase I clinical trial 
provides preliminary evidence for the safety and efficacy 
of ARO-HIF2 in patients with advanced ccRCC [211].

Drug repurposing
Compared with traditional de novo drug application, 
drug repurposing has become an effective alternative 
drug therapeutic strategy due to its lower risk of failure, 
reduce costs, and higher efficiency [212]. As shown in 
Table 2, there are some examples of drug repurposing to 
target hypoxia signaling in cancer.

Camptothecin (CPT) and its analogs (including SN-38, 
topotecan, and irinotecan) are important Topoisomerase 
I inhibitors that can block HIF-1α expression [213]. CPT 
has been approved for its ability to decrease the number 
of cancer stem cells (CSCs) and inhibit the accumula-
tion of HIF-1α [214]. CPT can initiate the transcription 
of long noncoding antisense RNAs at the 5′ and 3′ ends 

Table 2  Clinical trials of HIF Inhibitors in cancers (https://​clini​caltr​ials.​gov)

Drug name Drug type Target Condition or disease Trial identifier Phase

RO7070179 (EZN-2968) Nucleic acid drug HIF-1α Hepatocellular Carcinoma NCT02564614 I

Advanced Solid Tumors With Liver Metastases NCT01120288 I

Advanced Solid Tumors or Lymphoma NCT00466583 I

EZN-2208 (Pegylated SN-38) Drug repurposing HIF-1α Neoplasms NCT01251926 I

Advanced Solid Tumors
Lymphoma

NCT00520637
NCT00520390

I

PX-478 Small-molecule drug HIF-1α Advanced Solid Tumors or Lymphoma NCT00522652 I

Melatonin Drug repurposing HIF-1α Locally Advanced Oral Squamous Cell Carcinoma NCT04137627 III

CRLX101 Drug repurposing HIF-1α Ovarian Cancer
Fallopian Tube Cancer
Primary Peritoneal Cancer

NCT01652079 II

Topotecan Drug repurposing HIF-1α Neoplasms NCT00117013 I

Irinotecan Drug repurposing HIF-1α Refractory Solid Tumors in Children NCT01282697 I

Digoxin Drug repurposing HIF-1α Breast Cancer NCT01763931 II

ARO-HIF2 Nucleic acid drug HIF-2α Advanced Clear Cell Renal Cell Carcinoma NCT04169711 I

NKT2152 Small-molecule drug HIF-2α Advanced Clear Cell Renal Cell Carcinoma NCT05119335 I/II

PT2385 Small-molecule drug HIF-2α Recurrent Glioblastoma NCT03216499 II

VHL Disease-Associated Clear Cell Renal Cell Carcinoma NCT03108066 II

Advanced Clear Cell Renal Cell Carcinoma NCT02293980 I

Renal Cell Carcinoma NCT04989959 I

DFF332 Small-molecule drug HIF-2α Advanced/Relapsed Renal Cancer & Other Malignancies NCT04895748 I

Belzutifan Small-molecule drug HIF-2α Pheochromocytoma/Paraganglioma
Pancreatic Neuroendocrine Tumor

NCT04924075 II

Carcinoma, Renal Cell NCT04846920 I

MBM-02 Small-molecule drug HIF Glioblastoma Multiforme NCT04874506 II

Prostate Cancer Recurrent
Biochemical Recurrent Prostate Cancer

NCT04876755 II

https://clinicaltrials.gov
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of the HIF-1α, leading to posttranscriptional regulation 
of gene expression. Interestingly, low camptothecin con-
centrations have an effect on miR expression profiles, 
particularly increasing miR-17-5p and miR-155, which 
are two important players in reducing of HIF-1α protein 
accumulation and activity [215]. CRLX101 (NLG207) is a 
nanoparticle-drug conjugate (NDC) of CPT designed to 
overcome the poor physicochemical properties of CPT 
and allow more of CPT to accumulate at tumor sites. 
CRLX101 plus enzalutamide has been shown to be effec-
tive in preclinical prostate cancer models with enzaluta-
mide resistance, and clinical trials are currently underway 
(NCT03531827) [216]. SN-38, the active metabolite of 
Irinotecan (CPT-11), can overcome hypoxia-induced 
chemoresistance [217] and inhibit the radiation-induced 
up-regulation of HIF-1α [218].

Additional data suggested that melatonin may also be 
a potent anti-tumor agent, inhibiting hypoxia-mediated 
tumor survival, angiogenesis, invasion, and migration 
[219]. Melatonin can block tumor angiogenesis by reduc-
ing HIF-1α protein expression in tumors [220]. Spe-
cifically, melatonin can inhibit the sphingosine kinase 1 
(SPHK1) signaling pathway and impairs ROS generation 
in hypoxic cancer cells [221]. Under hypoxia, SPHK1 is 
activated by ROS to promote the accumulation of HIF-1α 
and initiate its transcriptional activity [221, 222]. Digoxin 
is also able to inhibit HIF-1α protein translation and 
HIF-2α mRNA expression, leading to anti- tumor effects 
[223].

Conclusion and future perspective
Hypoxia is a critical factor that affects the communica-
tion between tumor cells and TMAs. Hypoxia influences 
the crosstalk between TAMs and tumor cells via vast 
multifunctional exosomes, cytokines, growth factors, 
cellular debris, oncometabolites, and a variety of ligands 
and receptors on the cell surface. Hypoxia-induced inter-
action between tumor cells and TAMs promotes tumor 
proliferation, migration, invasion, angiogenesis, drug 
resistance, EMT, and cancer stem cell self-renewal. In 
addition, hypoxia also promotes macrophage phagocy-
tosis, which inhibits tumor cell proliferation. Therefore, 
hypoxia is a double-edged sword and a non-negligible 
factor in anti-tumor treatment, which needs further 
research to evaluate the evidences.

As Semenza stated in 2017, "It is ironic that hypoxic 
cancer cells… would be the last to capture the attention 
of oncologists." [224]. The majority of studies are still per-
formed under normoxia, frequently ignoring the impor-
tance of hypoxia. As a result, more emphasis should be 
placed on hypoxic exploration. Oxygen level and dura-
tion have an impact on the stabilization of HIF-1α and 
HIF-2α [225], which in turn activates different signal 

pathways. Thus, more attention need to be paid on the 
detailed hypoxia level [61]. Plenty of studies have proved 
that HIF pathway is the core mechanism of cell hypoxic 
adaptation. However, the observation of oxygen sens-
ing by KDMs suggested that additional oxygen sensors 
independent of HIF may be presented. The mechanisms 
of tumor hypoxic adaptation are more complex than cur-
rently envisaged. In clinical studies, HIF inhibitors are 
currently divided into three categories: small molecule 
drugs, nucleic acid drugs and drug repurposing. Apply-
ing strategies to suppress the negative effects of hypoxia 
appears to be useful to overcome malignant tumors, 
especially an already-approved HIF-2α inhibitor that has 
shown promising therapeutic activity, which has greatly 
enhanced our confidence in developing HIF inhibitors. In 
the future, we anticipate HIF pathway inhibitors being a 
cornerstone of cancer treatment.
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