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Abstract

Oncolytic viruses (OVs) represent a new class of multi-modal immunotherapies for cancer, with OV-elicited antitumor
immunity being key to their overall therapeutic efficacy. Currently, the clinical effectiveness of OV as monotherapy
remains limited, and thus investigators have been exploring various combinations with other anti-cancer agents

and demonstrated improved therapeutic efficacy. As cancer cells have evolved to alter key signaling pathways for
enhanced cell proliferation, cancer progression and metastasis, these cellular and molecular changes offer promising
targets for rational cancer therapy design. In this regard, key molecules in relevant signaling pathways for cancer cells
or/and immune cells, such as EGFR-KRAS (e.g., KRASC™29), PI3K-AKT-mTOR, ERK-MEK, JAK-STAT, p53, PD-1-PD-L1, and
epigenetic, or immune pathways (e.g., histone deacetylases, cGAS-STING) are currently under investigation and have
the potential to synergize with OV to modulate the immune milieu of the tumor microenvironment (TME), thereby
improving and sustaining antitumor immunity. As many small molecule modulators of these signaling pathways
have been developed and have shown strong therapeutic potential, here we review key findings related to both OV-
mediated immunotherapy and the utility of small molecule modulators of signaling pathways in immuno-oncology.
Then, we focus on discussion of the rationales and potential strategies for combining OV with selected modulators
targeting key cellular signaling pathways in cancer or/and immune cells to modulate the TME and enhance antitu-
mor immunity and therapeutic efficacy. Finally, we provide perspectives and viewpoints on the application of novel
experimental systems and technologies that can propel this exciting branch of medicine into a bright future.
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Introduction healthy “self” components of the body to eliminate path-

The mammalian immune system comprises a network of
innate and adaptive cell subsets which collectively dis-
criminate invading or arising “non-self” elements from
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ogens such as viruses, bacteria, parasites, or pathogenic
cellular changes or features, as arise in cancer. Evolving
pathogens have developed multiple sophisticated mecha-
nisms to antagonize or even exploit host immunity to
their own advantage [1, 2]. Recent developments have
improved our understanding of the molecular and cellu-
lar interplay between viruses and the immune system and
have led to the design of new strategies to turn viruses
from stealth pathogens into finely tuned therapeutic
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vehicles that can promote both direct viral-mediated and
secondary immune-mediated attack against cancer cells.
Oncolytic viruses (OVs) represent a key example of such
approaches [3].

OVs are a diverse collection of viruses being developed
as versatile therapeutic platforms for treating cancer.
OVs preferentially infect and replicate in cancer cells and
cancer-associated stromal cells and can be engineered
to express transgenes that augment their cytotoxic and
immunostimulatory activities [4-9]. Importantly, in
addition to direct lytic function, OVs modulate the tumor
microenvironment (TME) and enhance loco-regional
inflammation and immune cell-mediated tumor eradica-
tion, while also enhancing systemic cancer immunity [10,
11]. In this way, OVs have the potential to be utilized as a
comprehensive and potent therapeutic platform in com-
bination regimens [4-9, 12]. They have also undergone
through clinical trials [13—15].

Small-molecule drugs targeting key cellular signal-
ing pathways are becoming an important class of drugs
for cancer therapy [16—18]. Importantly, this approach
has uncovered a previously underappreciated crosstalk
between tumors and the immune cells present within
the TME. First, some of these modulators targeting key
signaling pathways for cancer cell survival and prolifera-
tion have been shown to induce immunogenic cell death
(ICD) of cancer cells, enhancing cancer immunogenicity
and subsequent antitumor immunity [19-22]. Second,
in addition to the expected effects of inducing death of
cancer cells, targeting tumors with kinase inhibitors has
been shown to reverse the immunosuppressive TME
[23, 24]. Third, as both cancer cells and immune cells
undergo metabolic and epigenetic reprogramming in the
TME [25, 26], modulators to key enzymes involved in
epigenetic and metabolic pathways have the potential to
inhibit tumor cell growth and proliferation, and to restore
the normal functions of immune cells [27, 28]. Based on
these tumor modulating and therapeutic properties, it is
logical to explore the potential of combining these agents
with OV as rational approaches to cancer therapy.

We have previously published three review articles
highlighting various aspects of oncolytic immunotherapy
[29-31]. In these reviews, we focused on two themes.
The first was on the mode of cell death induced by OVs,
mostly in the form of ICD, and the significance of ICD
in eliciting potent antitumor immunity and its function-
ality as in situ therapeutic cancer vaccines [29, 30]. The
second theme was on the development of vaccinia virus
for cancer vaccines and as OV [31]. In the current review,
we focus on combinatorial strategies integrating OVs
with modulators of key signaling pathways in cancer and/
or immune cells for optimized therapeutic efficacy. As
small molecule modulators have shown promising results
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in preclinical and clinical studies, with some gaining
approval for cancer therapy [17, 18, 32, 33], combining
OV with small molecule modulators as rational thera-
peutic combinations will be the focus of discussion.
Single agent cancer therapies often produce limited
efficacy [17, 34-36], and this includes immunotherapy
[35]. One of many potential causes for lack of sufficient
therapeutic response is tumor heterogeneity, which leads
to an incomplete response to a particular monotherapy
[36]. Rational combination regimens are badly needed
to overcome the heterogeneous responses currently
observed to these potentially curative therapies, as drug
candidates could work additively or synergistically to
produce enhanced therapeutic effects [34]. Surprisingly,
a recent study showed that patient-to-patient variability
and independent drug action are sufficient to explain the
superiority of many FDA-approved drug combinations in
the absence of drug synergy or additivity [37], suggesting
that it may not be necessary for drugs to have additive or
synergistic effects in order demonstrate therapeutic ben-
efit for patients. This insight represents an unusual way to
design combination therapies. In summary, combination
therapy such as OVs with modulators of cellular signaling
pathways are highly desired, although the clear rational
for combining such approaches may not be immediately
obvious and may require further mechanistic insights in
determining potentially impactful therapeutic strategies.

Oncolytic viruses and immunotherapy: overview
Basic studies of OV-mediated immunotherapy

OVs preferentially infects and kills cancer cells without
causing collateral harm to normal cells and tissues. As
the infected cancer cells and/or tumor-associated stro-
mal cells are destroyed by oncolysis, they release new
infectious virus particles or virions to infect and destroy
the remaining tumor cells/stromal cells. The tumor
selectivity of OVs have been well studied in many cases
[38—40]. Some viruses possess natural tumor cell tropism
while others gain this property through genetic engi-
neering [40]. A particular OV may work through one or
more mechanisms. First, cellular entry via virus-specific,
receptor-mediated mechanisms restricts the virus to can-
cer cells and cancer-associated cells. Second, rapid cell
division in tumor cells with high metabolic and replica-
tive activity may support increased viral replication com-
pared with quiescent normal cells. Third, tumor-driver
mutations specifically increase the selectivity of virus
replication in tumor cells (Fig. 1). Reovirus and vaccinia
virus naturally possess the ability to specially target can-
cer cells driven by the activated Ras pathway. Reovirus
preferentially replicates in Ras-activated cells [41]. Vac-
cinia virus (VV) targets cancer cells that overexpress
EGER as it requires EGFR-Ras signaling to replicate [42].
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Fig. 1 Viral proteins and small molecule compounds may inhibit signaling in synergy to promote viral replication, and improve elicited
inflammation, ICD and antitumor immune responses. We use RAS, IFN and dsRNA-dependent protein kinase (PKR) pathways as an example. Most
viruses replicate poorly in cells that produce active PKR. In response to viral infection, PKR activates the transcription factor NF-kB by inducing
degradation of IkBR. NF-kB activates transcription of proinflammatory genes that induce an immune response against viruses. RAS activation
by EGFR, v-Erb2, or platelet-derived growth-factor receptor (PDGFR) signaling inhibits PKR activity. RAS activation therefore allows viral oncolytic
activity in cancer cells. PKR activity is also activated by interferon (IFN)-a/@ signaling through the IFN receptor (IFNR). Tumor cells with defects in this
signaling pathway allow a higher degree of viral replication than normal cells. Several viral proteins and RNAs (adenoviral VA RNA128,VV's E3L and
K3L, the hepatitis CE2 protein and influenza virus NS1 protein) inhibit PKR. Interfering with the different steps of signaling pathways using different
classes of compounds have resulted in increased viral replication and subsequent efficacy. PKR shuts off protein synthesis by phosphorylating elF2a.
The protein phosphatase-1a is activated by the protein ICP34.5, which is expressed by HSV-1.1CP34.5 dephosphorylates elF2a to allow protein
synthesis to continue. An HSV1 strain that expresses a mutant form of ICP34.5 can therefore only replicate in cells with inactive PKR. Targeting
this process by means of different small molecule inhibitors increased OV spread and efficacy. Note: Viral genes are shown in red, small molecule
inhibitors are shown in green, whereas cellular proteins are shown in blue

The genetically engineered VV, Pexa-Vec (JX-594), tar-
gets cancer cells via multiple mechanisms, whereby virus
replication is activated by EGFR/KRAS pathway signal-
ing, cellular thymidine kinase (TK) levels, and resistance
to type I interferons (IFNs) in cancer cells [42]. Finally,
some OVs target cancer cells and/or tumor-associated
stromal cells. Notably, multiple distinct mechanisms
or OV features can underpin this process. For example,
some OVs can selectively infect and replicate in stromal
cells. Oncolytic vesicular stomatitis virus (VSV) infects
and destroys tumor vasculature in vivo but leaves nor-
mal vasculature intact [43]. OVs expressing certain T-cell
engagers simultaneously targets cancer and immunosup-
pressive stromal cells [44—46]. Importantly, it has been
shown that stromal destruction is required for the eradi-
cation of established solid tumors by adaptive immunity
involving T cells under certain conditions [47]. Therefore,

those OVs that effectively target both cancer cells and
stromal cells are likely to be advantageous.

OVs destroy cancer cells and/or inhibit tumor pro-
gression through four distinct mechanisms: oncolysis,
vascular collapse, antitumor immunity, and expression
of therapeutic transgene(s) [48]. Antitumor immune
responses are potentiated through immunogenic cell
death (ICD) of cancer cells and subsequent presentation
of danger signals to dendritic cells (DCs), and release/
presentation of cellular debris, viral and tumor anti-
gens (including neoantigens) to the local and systemic
immune cells [30, 49]. In fact, as early as 1999, Rabkin,
Martuza, Toda and others have observed that an onco-
lytic HSV (oHSV) could function as an in-situ cancer
vaccine and stimulate anti-tumor immunity [50]. In that
study, OV delivery and tumor cell killing resulted in
generation of CD8" CTL responses against the domi-
nant “tumor-specific” major histocompatibility complex
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(MHC) class I-restricted epitope (AH1) from the Gp70
antigen expressed by CT26 colon cancer cells [50]. The
fact that tumor antigen-specific adaptive immunity plays
a key role in OV-mediated cancer therapeutics has been
verified subsequently in numerous studies. Based on
these data, we and others believe that OVs function as
therapeutic cancer vaccines [29, 51-53], or a specific type
of immunotherapy [54].

OVs themselves can modulate the TME and turn cold
tumor hot [55, 56]. The evidence comes by examin-
ing the release of DAMPs and PAMPs [30, 49, 57], the
cytokine/chemokines produced [30, 49, 58], infiltra-
tion of immune cells [59, 60], induction of ICD [61, 62],
activities of infiltrated immune cells and elicited antitu-
mor immunity in tumor models [30, 49, 63, 64], among
other properties after treating the tumors with OV. In
order to further improve its immunostimulatory func-
tions, several strategies have been exploited. One is
simply to integrate immunostimulatory genes such as
Thl-cytokines into the viral vectors [65]. This was done
with GM-CSF and IL-2 in the early iterations of this
approach [66, 67]. IL-10, originally considered to be a
Th2 cytokine, but later shown to be a Thl cytokine in
certain environments, has been incorporated into OVs
and demonstrated improved antitumor immunity and
enhanced efficacy [68, 69]. IL-24, a member of the IL-10
family, has also been shown to be potent antitumor factor
when expressed from an OV [70, 71]. We and others have
engineered oncolytic vaccinia viruses (VVs) expressing
recombinant IL-2, IL-12, IL-15, IL-21, IL-23, and IL-36y
for improved efficacy and safety in multiple tumor mod-
els [64, 72-77]. In some cases, two cytokines may com-
plement each other and synergize to activate antitumor
immunity and lead to complete tumor regression in non-
immunogenic tumor models. This is the case for IL-7 and
IL-12 expressed by OV [78, 79]. The second approach is
to engineer co-stimulatory ligands such as ICOS ligand
(ICOS-L) into OV to enhance co-stimulation of immune
cells within the TME. As OV delivery often leads to
upregulation of T-cell co-stimulatory receptors, with the
inducible co-stimulator (ICOS) being most notable [80],
this is a rational approach to further augmenting anti-
tumor immunity using OV. Third, it is also possible to use
the reverse approach, whereby OV can be engineered to
express inhibitors or antagonists targeting co-inhibitory
molecules. For example, recent studies showed that engi-
neered OV expressing ICIs could activate anti-tumor
responses [81-83]. Fourth, there are a few “don’t eat me”
signals (CD24 and CD47) that that cancers seem to use to
evade detection and destruction by the immune system.
Thus, OVs could be engineered with an antibody against
CD47 or CD24 and improved innate immunity, in addi-
tion to its known functions of oncolysis and modulation
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of immune cells [83, 84]. A fifth strategy is to engineer an
OV with a tumor antigen, helping such armed OV elicit
robust tumor antigen-specific CD8" T cell responses,
leading to improved antitumor therapy [85]. The sixth
is to disrupt the signaling pathways that facilitate inter-
actions between cancer cells and their environment.
For example, CXCR4 is one of the key stimuli involved
in signaling interactions. Studies found that targeting
CXCL12/CXCR4 signaling by an OV expressing CXCR4
antagonist effectively disrupted the tumor vasculature,
induced ICD of cancer cells, reversed immunosuppres-
sive TME and improved antitumor immunity, including
inhibition of cancer metastasis [86, 87]. Lastly, engineer-
ing OV to express a T-cell engager can engage naive T
cells and cancer cells, which activates these T cells to kill
cancer cells, bypassing the dependence of MHC antigen
on cancer cells [88-90]. In addition, OVs armed with
bispecific engager targeting both T cells (CD3) and fibro-
blast (e.g, fibroblast activation protein) can target both
cancer proper and associated stroma [89, 90].

In summary, as novel class of antitumor agents, one
unique property of OVs is that they replicate selectively
in cancer cells, yet express other therapeutic proteins
locally to amplify its antitumor effects and modulate the
TME to turn cold tumor hot. As they elicit both innate
and adaptive antitumor immunity, they target tumor
locally yet act systemically to inhibit/eliminate not only
primary tumor, but also micro-metastases at a distance.

Clinical studies of OV immunotherapy

Three OVs have been approved for treatment of human
cancers: H101 (adenovirus, AdV), T-VEC (herpes sim-
plex virus, HSV), and Delytact (G47A; HSV) were
approved in China (in 2005), USA (in 2015), and Japan
(in 2021) [91], respectively.

As summarized in a recent review, 97 clinical trials
with OVs enrolling a total of 3233 cancer patients have
been completed, resulting in 119 published reports [15].
Among these studies, objective clinical responses were
reported in only 9% of patients and disease control was
achieved in only 21% of patients, suggesting a clear need
to enhance therapeutic responses to OVs. Three GM-
CSF-armed OVs highlighted clinical studies and pro-
gression of the field. They are genetically engineered
from HSV-1 (T-VEC), human adenovirus (CG0070), or
vaccinia virus (Pexa-Vec), respectively. For the approved
T-VEC, local and distant antitumor immunity was
induced by intralesional vaccination with the virus in
patients with stage IIIc and IV melanoma [92, 93]. This
antitumor immunity was associated with overall objec-
tive clinical response that led to approval of T-VEC by
the FDA for patients with advanced melanoma [94]. A
recent study in melanoma patients of stage IIIB-IVM1la
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with injectable, unresectable metastatic lesions demon-
strated that treatment of a “real-life” cohort of patients
with T-VEC resulted in high overall response rate (64%)
and a large fraction of durable complete responses
(43%) [95]. However, as observed in the randomized,
double-blind phase III trial (NCT02263508), combin-
ing T-VEC with pembrolizumab did not lead to a sur-
vival benefit compared to pembrolizumab alone for
patients with advanced melanoma [96]. The second OV,
C@G0070, has undergone phase II testing in patients with
BCG-unresponsive non-muscle-invasive bladder can-
cer. In this patient cohort, intravesical CG0070 yielded
an overall 47% complete response (CR) rate at 6 months
for all patients and 50% for patients with carcinoma-in-
situ, with an acceptable level of toxicity [97]. This OV is
currently being evaluated in the phase III BOND-003
trial (NCT04452591), and in phase II trial in combi-
nation with pembrolizumab. The preliminary report
of the phase II trial showed a CR rate of 88% (14/16) at
the 3month assessment interim timepoint [98]. Finally,
Pexa-Vec demonstrated oncolytic and immune-mediated
mechanisms of action, tumor responses and dose-related
survival in individuals with hepatocellular carcinoma
(HCCQ) in a phase 2 trial [99]. In the phase III PHOCUS
trial (NCT02562755), unfortunately Pexa-Vec/Nexavar
combination therapy failed to meet the intended crite-
ria (mainly improved clinical benefit when compared to
Nexavar alone). However, 10 additional clinical studies in
phase I/II are evaluating Pexa-Vec in other solid cancer
indications and may reveal additional therapeutic oppor-
tunities for this OV. For example, a phase I/II study of
Pexa-Vec in combination with immune checkpoint inhib-
itor (ICI) in refractory colorectal cancer (NCT03206073)
may demonstrate that this combination is efficacious
[100]. In summary, OV-elicited antitumor immunity
contributes significantly to, or is essential for the overall
therapeutic efficacy mediated by an OV. However, other
mechanisms of action, such as cytotoxicity and anti-angi-
ogenesis, also contribute to the overall therapeutic effects
and represented additional opportunities to enhance the
effectiveness of OVs. As monotherapy, OVs exert limited
efficacy and thus rational combination strategies are des-
perately needed to further improve the efficacy of this
novel class of immunotherapy.

In regard to OV toxicity, multiple studies have inves-
tigated this potential therapeutic challenge using animal
models. For example, Lun et al. have studied the toxicity
of Pexa-Vec (JX-594) [101]. A supratherapeutic dose of
JX-594 demonstrated GM-CSF-dependent inflammation
and necrosis in non-tumor-bearing rodents. In another
study, Tang et al. found that some brain tumor-bearing
mice died soon after treatment with vvDD-IL15-Ra,
and close examination revealed that viral infection of
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ependymal cells, subventricular cells, and meninges was
widespread, leading to death [102]. VSV exhibits natural
neurotropism, but genetic engineering can abrogate neu-
rotoxicity [103]. So far clinical trials with OVs have not
shown significant toxicity or safety issues. Influenza-like
symptoms (such as chills and fever) have been noted for
both local and systemic administration of OVs but are
mild [104, 105].

Biomarkers for OV immunotherapy

As only a fraction of patients treated with OV go on to
derive treatment benefit, it stands to reason that identi-
fying clinical biomarkers that can successfully predict
patients who will respond favorably will improve out-
comes to OV therapy [106]. These may include both pre-
dictive and response biomarkers, and they may guide OV
therapy [106].

Cancer cells possess multiple signaling or cellular hall-
marks [107] that can be exploited for OV infection, rep-
lication and oncolysis (Fig. 1). It has been shown that
defects in interferon pathways potentiate the sensitiv-
ity of cancer cells to various OVs, including VSV [108].
Many OVs depend on oncogenic signaling pathway
that are constitutively activated in cancer cells for their
selective viral replication and oncolysis. For example, a
number OVs depend on activated Ras pathway for their
replication, including reovirus [109], influenza A virus
delINS1 [110], poxvirus Pexa-Vec [42], coxsackievirus
Type B3 [111], and alphavirus M1 [112]. For alphavirus
M1, there have been four biomarkers identified thus far
that correspond to increased OV activity: zinc-finger
antiviral protein (ZAP), inositol-requiring kinase 1a, Ras
homolog family member Q, and mutated and activated
KRAS [113].

Until now, a limited number of response biomarkers
for OV-mediated therapy have been identified [6]. The
first one may be immunoglobulin-like transcript 2 (ILT2)
for oncolytic VV [114]. The Kaufman lab observed an
inverse association between ILT2 expression in the tumor
and clinical response. They further identified ILT2 as a
marker of regulatory CD4* and suppressor CD8" T cell
responses, and ILT2 down-regulation was predictive of
therapeutic responses in patients treated with oncolytic
VV-mediated immunotherapy. Serum HMGB1 may be a
predictive and prognostic biomarker for immunotherapy
with oncolytic adenovirus [115]. Additionally, Nguyen
and colleagues showed that defects in IFN-JAK-STAT
pathway as response biomarkers to virotherapy mediated
by oncolytic VSV and HSV-1 [116]. Another recent study
identified the receptor of oncolytic alphavirus M1 as a
therapeutic predictor for multiple solid tumors [117]. In
summary, we believe that some of these biomarkers are
tumor type-specific and/or OV-specific. As summarized
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correctly by Kaufman [106], each OV is unique and con-
tains a different set of viral genes, other genetic compo-
nents, and arming transgenes. These genetic factors and/
or strategies to modify the OV may influence their bio-
logic interactions in different tumors, and impact differ-
ent gene expression status within infected cells, including
cell death pathways. As such, we need to define how
changes in specific innate sensing and antiviral machin-
ery elements influence the ability of specific OVs to
infect and replicate in individual tumor cells and how
these changes impact antiviral and antitumor immune
responses by the host. In addition to validating these
identified biomarkers, uncovering additional biomarkers
that can reliably predict therapeutic response will be of
tremendous value.

In the following section, we will discuss biologically
relevant and targetable signaling pathways and the devel-
opment status of the current and emerging inhibitors/
modulators. We then focus on rational combinations,
including those that produce mixed responses when
combined with OV, where OVs combined with inhibi-
tors/activators of signal transduction pathways have been
evaluated in preclinical studies or advanced to clinical
testing.

Signaling pathways, modulators and combinations
with OVs for improved therapy

Cancer development is driven by genetic and epigenetic
alterations that allow cells to proliferate abnormally and
escape mechanisms that normally control their survival
and migration. Many of these alterations can be attrib-
uted to signaling pathways that control cell growth and
signaling networks that fuel cancer progression [107,
118]. In addition to the well-known original hallmarks of
cancer [107], it is intriguing to note that cancer cells dis-
play cancer-associated metabolic changes, or hallmarks
of cancer metabolism [119, 120]. Importantly, it is not
only cancer cells, but also immune cells in the TME that
undergo metabolic reprogramming some of which may
lead to immune tolerance [121]. Thus, these key-signal-
ing molecules including metabolic enzymes in cancer
cells, immune cells, and likely stromal cells are all poten-
tial therapeutic targets.

Many investigators have focused on the discovery and
exploration of small molecules to modulate key signaling
pathways as cancer treatments. Many small molecules
can effectively modulate immune responses and the
immunosuppressive TME [122]. Overall, data thus far
has demonstrated a series of successful targeting, future
therapeutic opportunities, as well as potential challenges
[32, 33]. Some investigators consider the development of
these small molecule drugs to be the next generation of
immunotherapy for cancer [123]. Readers are referred to
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recent reviews related to small molecule modulators of
signaling pathways and their expanding role in immuno-
oncology [18, 28, 122, 123].

In this section, we will explore key signaling pathways
as well as how these pathways could be explored as tar-
gets for cancer therapy (Fig. 2). As the body of work in
this area is extensive and includes a large list of both targ-
etable pathways and candidate therapeutics, it is not pos-
sible to comprehensively review all potential approaches
currently under development. As such, we focus specifi-
cally on those small molecules targeting signaling path-
ways that may involve antitumor immunity. Then in the
second part of each sub-section, we discuss the combi-
nation strategies and studies of OV with modulators of
that signaling pathway and relevant findings in preclini-
cal studies.

The rationale for combining OVs with small molecule
modulators

Many cell types and molecules play roles in shaping the
immunosuppressive TME [124]. Those cell types and
molecules discussed earlier may have fundamental roles
in the TME. As stated earlier, OVs themselves can modu-
late the TME and turn cold tumor hot [55, 56]. However,
the strength of immunogenic ‘hot’ property and antitu-
mor immunity elicited by OVs may not be strong enough
to eliminate the primary tumor and secondary metasta-
sis, and thus combination with other antitumor agents
deem necessary in most cases, especially for reversing
the immunosuppressive nature of the TME. Many small
molecules can effectively modulate immune responses
and the immunosuppressive nature of the TME [122,
125, 126]. Some investigators consider the development
of these small molecules to be the next generation of
immunotherapy for cancer [18, 123]. Due to their unique
mechanisms of action and anti-tumor properties, these
agents may act in synergy with OVs, leading to enhanced
antitumor immunity and therapeutic efficacy (Figs. 2 and
3).

EGFR/KRAS/MAPK signaling pathway

The epidermal growth factor receptor (EGFR) family is
among the most investigated receptor tyrosine kinase
(RTK) groups owing to its general role in signal trans-
duction and oncogenesis. A large fraction of human can-
cers displays elevated EGFR and kinase activity through
overexpression and/or mutations [127]. EGFR is one of
the most frequently altered oncogenes in solid cancers.
Therefore, efforts have been taken to develop small-mol-
ecule inhibitors as well as large molecules or biologics
(such as antibodies) to inhibit this survival and activation
signaling pathway for cancer cells. For a comprehensive
review of small molecule inhibitors targeting the EGFR/
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ErbB family of RTKs, please refer to a recently pub-
lished review article [128]. Regarding toxicities related to
treatment with TKIs, it is important to note that treat-
ment was almost uniformly associated with considerable
toxicities [129], with the most frequent AEs including
hand—foot syndrome, diarrhea, and nausea/vomiting.
Therefore, careful consideration needs to be taken when
considering combination therapy using these TKIs and
other inhibitors.

Since 2004, several small molecules functioning as
EGFR tyrosine kinase inhibitors (TKIs) have been
approved by the FDA and other authorities as cancer
therapies, particularly for the treatment of non-small
cell lung cancer (NSCLC) (Table 1). For example, Erlo-
tinib was initially approved to treat NSCLC in 2004, then
approved to treat pancreatic cancer in 2005.

Two small molecule drugs, sunitinib and sorafenib,
inhibits cellular signaling by targeting multiple RTKs
(Table 1). Sorafenib is an inhibitor with activity against
many protein kinases, including VEGFR, PDGFR and
RAF kinases [130]. Both sunitinib and sorafenib were
approved for treating patients with advanced renal cell
carcinoma (RCC). Sorafenib has also been approved

for advanced primary liver cancer, FLT3-ITD positive
AML and radioactive iodine resistant advanced thyroid
carcinoma.

KRAS was considered to be undruggable until recently.
Rigosertib (RGS) is a non-ATP-competitive small
molecule RAS mimetic. It has the potential to block
RAS-RAF-MEK-ERK and PI3K-AKT-mTOR signaling
pathways and to interfere with CRAF interaction with
polo-like kinase 1 (PLK1). Mechanistically, the RAS-
mimetic disrupts RAS association with effector proteins
to block signaling. In one study, the authors showed that
RGS inhibits tumor growth in models of implanted colo-
rectal and lung cancer, and it blocks tumor growth of a
transgenic model of KRAS®!*P-induced pancreatic can-
cer in mice [131]. Yan et al. have recently shown that RGS
treatment led to induction of CD40 as a result of RAS/
RAF/PI3K pathway disruption, followed with cancer cell
death through ICD, and augmented cancer response to
checkpoint blockade [132].

The progress towards developing small molecule
inhibitors for mutant KRAS, particularly KRASS!C,
has been even more striking [133]. Sotorasib (AMG510;
Lumakras™) and  Adagrasib (MRTX849) have
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Fig. 3 Rationale for the combination of OV with immuno-and targeted therapies in the TME for cancer. The TME is composed of diverse cell

types, secreted factors, and extracellular matrix that provide targets for combination of OV therapies. We could arbitrarily divide these targets and
mechanisms of action into steps A-G. A. OV replicate selectively in tumor and have the capacity for direct oncolysis. B. OV-mediated increases in
the release of DAMPs, PAMPs and cytokines promote the accumulation of CTLs at tumor beds and retention of their killing capability. C. OV induce
IFN pathways followed by elicitation of immune responses, thus mediating a broader range of long-lasting antitumor effects. D. OV infection leads
to increased expression of immune checkpoint molecules such as PD-L1 and CTLA-4 from cancer and stromal cells, that sensitizes infected tumors
to ICl. E. Cytotoxic chemotherapy destroys tumor cells by induction of cell death, often via ICD, or targeted therapies interrupt aberrant signaling
pathways and potentially death of cancer cells. This may induce weak or moderate immune responses against tumor. F. Relevant cells such as TAMs,
DCs, CAFs, and MDSCs secrete ECM components, growth factors, and cytokines, which can contribute to the regulation of tumor progression and
therapeutic response in unique ways, such as CAFs suppress T and NK cells via cytokines and growth factors including PGE2 and TGF-f3. Some OVs
are designed to target not only cancer cells, but also stromal cells (e.g., CAFs). G. OV shape the TME for immunotherapy by shifting the tumor status
from ‘cold’to 'hot; thus, improving immune cell recruitment and effector function

demonstrated potent clinical efficacy and high selectiv-  Sotorasib treatment led to the regression of KRASS1%¢
ity in human patients with KRASS'?“-driven cancers. tumors and improved the efficacy of chemotherapy and
This has been an unprecedented breakthrough. Sotora-  targeted agents in mice [135]. A phase 1 trial of sotorasib
sib has been rapidly progressed from preclinical to clini- in 129 human patients with advanced solid tumors har-
cal studies, to accelerated approval by FDA. Scientists at ~ boring the KRASS!*® mutation was published in 2020
Amgen Inc. discovered and assessed the activity of this  [136]. The study showed 32% objective response and 88%
covalent inhibitor of KRAS®!?C [134]. In immune-com- disease control in the subgroup of patients with NSCLC.
petent mice, Sotorasib treatment initiated the conversion  In a phase II trial, sotorasib therapy resulted in durable
to a pro-inflammatory TME and generated durable cures  clinical benefit without new safety signals in patients with
alone or in combination with ICIs. In a preclinical study, previously treated KRASS'?“-mutated NSCLC [137].
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Table 1 The FDA-approved inhibitors for EGFR, other RTKs and KRAS for cancer treatments

Name Target Disease setting Approval date

Erlotinib EGFR-TK Locally advanced or metastatic NSCLC; Pancreatic cancer 2004 (NSCLC)

(Tarceva) 2005 (Pan)

Gefetinib EGFR-TK NSCLC with EGFR exon 19 deletions or exon 21 L858R mutation 2015

(Iressa)

Afatinib EGFR-TK NSCLC with non-resistant EGFR 2018

(Gilotrif®)

Osimertinib EGFR-TK Metastatic NSCLC with EGFR exon 19 deletions or exon 21 L858R mutation 2018

(Tagrissob®)

Mobocertinib EGFR-TK NSCLC with EGFR exon 20 insertions 2021

(Exkivity™) (orally)

Sunitinib RTK Gastrointestinal stromal tumor (GST), renal cell carcinoma (RCC), pancreatic cancer 2006 (GST; RCC)

(Sutent) (Panc) 2011 (Pan)
2017 (Recurrent RCC)

Sorafenib RTK Kidney, liver, and thyroid cancers 2005 (RCO)

(Nexavar) 2007 (HCQO)
2013 (Thyroid)

Sotorasib KRASC!2¢ NSCLC with KRAS®'?¢ mutation 2021

(Lumakras™)

In 2021, the FDA approved Sotorasib for use in patients
with KRASS?*-mutated NSCLC (Table 1). Adagra-
sib has also proceeded through phase I-II clinical trials
and showed clinical efficacy without new safety signals
in patients with advanced KRASS'*C solid tumors [138,
139]. Based on these promising clinical outcomes, two
phase III trials have been planned [138].

Combination of OVs with inhibitor of EGFR/KRAS/MAPK
signaling pathway

Investigators have tested OV combined with a small mol-
ecule inhibitor of one of the RTKs as rational combina-
tion therapy. Malignant peripheral nerve sheath tumors
(MPNSTs), driven in part by hyperactive Ras and EGFR
signaling, are often incurable. Cripe and his team devel-
oped a xenograft model of human MPNST and evaluated
the combined antitumor effects of oHSV and the EGFR
inhibitor, erlotinib. oHSV injection exhibited more dra-
matic antitumor activity than erlotinib. Combination
therapies showed a trend toward an increased antipro-
liferative effect [140]. In another study with a peritone-
ally disseminated model of human xenograft pancreatic
cancer, Canerpaturev (C-REV) combined with erlotinib
had no beneficial effect on survival. However, in the sub-
cutaneous tumor model, this combination resulted in the
inhibition of tumor growth to a greater extent than using
either agent on its own [141]. At present, the combina-
tion of an OV with mAb against EGFR have generated
greatly improved therapeutic results in multiple studies
[142, 143]. In our opinion, more definitive studies will be

needed using the currently greatly improved small mole-
cule inhibitors [128], to determine the future potential of
this approach in the context of small molecule inhibitors.

Combining inhibitors of other TKRs with OVs has also
been explored. For example, VEGFR TKI axitinib and
oHSV have been evaluated in vitro and then assessed in
two orthotopic glioblastoma (GBM) models derived from
GBM stem-like cells [144]. The results showed that sys-
temic TKI (Axitinib) beneficially combined with G47A-
mlIL12 to enhance antitumor efficacy. In another study,
the authors showed that OV and SCF-1R inhibition (with
PLX3397) reprogrammed the TME, enhancing the infil-
tration of CD8™ T cells and improving the impact of anti-
PD-1 immunotherapy [145].

As mentioned, sunitinib is an inhibitor for multi-
ple RTKs and its potential for use in combination with
OVs has been explored by two groups. In the first study,
sunitinib improved VSV-mediated virotherapy through
inhibition of antiviral innate immunity [146]. In the sec-
ond study, the authors explored its use together with an
oncolytic VV [147]. The oncolytic VV mpJX-594 targets
tumor blood vessels, spreads secondarily to tumor cells,
and produces widespread CD8" T-cell-dependent tumor
cell killing in primary tumors and metastases. Impor-
tantly, these effects can be amplified by coadministration
of sunitinib. Importantly, this study revealed multiple
unrecognized features of the antitumor properties of
oncolytic VV, all of which can be amplified by the multi-
targeted kinase inhibitor sunitinib [147].

Many cancers are driven by oncoproteins and some
OVs selectively replicate in and destroy cancer cells
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overexpressing oncoproteins, suggesting a potentially
exploitable therapeutic opportunity. It has been known
for over 2 decades that human reovirus requires an
activated Ras signaling pathway for infection of cul-
tured cells, creating a clear opportunity to treat Ras
activated cancers with this OV [148]. Further stud-
ies indicated that Ras-transformation affects multiple
steps of the virus life cycle, including viral uncoating
and disassembly, releasing PKR-induced translational
inhibition, production of viral progeny, release of prog-
eny, and viral spread following reovirus-induced cancer
cell death occurring through necrotic, apoptotic, and
autophagic pathways [149]. Another study suggested
that reovirus induced cell death is immunogenic [150].
In this context, it is exciting to note that tumors driven
by RAS signaling display a natural vulnerability to onc-
olytic alphavirus M1 [112]. Inhibition of the RAS/RAF/
MEK signaling axis suppresses M1 infection and the
subsequent cytopathic effects [112]. As such it would
not be logical to combine these OVs with RAS inhibi-
tors, highlighting that a clear understanding of the
mechanistic interplay between OV and small molecule
inhibitors is necessary in designing effective and poten-
tially synergistic combination therapies.

Melanomas often have mutations in BRAF and RAS,
and investigators have explored the use of BRAF/MEK
inhibitors to treat melanoma in preclinical and clini-
cal studies [151]. In one study, Roulstone et al. explored
the combination of an oncolytic reovirus (TR3D) with
BRAF- and MEK-targeted inhibitors in vitro and in
tumor models [152]. Combined this OV with a BRAF
inhibitor (PLX4720) led to significantly increased anti-
tumor activity in BRAF mutant tumors in both immune-
deficient and immune-competent models.

T-VEC has been approved for advanced melanoma,
yet therapeutic responses to this OV are limited.
Trametinib is a MEK inhibitor also approved for treat-
ment of melanoma and in a study by Bommareddy et al.,
the combination of T-VEC and trametinib resulted in
enhanced melanoma cell death in vitro [153]. The com-
bination treatment resulted in delayed tumor growth
and improved survival in tumor models. Mechanistically,
regression of treated tumors was dependent on activated
CD8" T cells and Batf3™ DCs. Interestingly, authors
also observed antigen spreading and induction of an
inflammatory gene signature, including PD-L1. Adding
anti-PD-1 antibody to T-VEC+MEK inhibition further
augmented responses through enhanced tumor antigen-
specific T cell responses. Interestingly, MEK inhibitor
(trametinib) also enhances oncolytic VV viral replica-
tion in doxorubicin-resistant ovarian cancer cells and the
combined approach attenuated A2780-R ovarian cancer
growth [154]. The preclinical studies by Bommareddy
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et al. [153] and others, strongly support clinical evalua-
tion of this triple combination as a rational approach in
melanoma and other cancers [155].

PI3K/AKT/mTOR pathway

The PI3K/Akt/mTOR pathway regulates cell prolifera-
tion, growth, cell size, metabolism, and motility [156].
In many cancers such as breast, lung ovarian and pros-
tate, this pathway is often activated aberrantly [156—158].
The enhanced activity of this crucial intracellular signal-
ing pathway is often associated with tumor progression,
and cancer’s resistance to therapies, and thus targeting
this signaling pathway is a rational approach for cancer
therapy [159]. There are 4 different isoforms of PI3K:
alpha, beta, delta, and gamma. Small molecule inhibitors
against a specific isoform of the enzyme, or as pan inhibi-
tor, have been developed and evaluated in preclinical
models with some progressing to advanced phase clinical
trials [156—158].

Macrophage PI3Ky drives progression of pancre-
atic ductal adenocarcinoma, and possibly other cancers
[160]. Importantly, while the Syk-PI3Ky axis in mac-
rophages has been reported to inhibit antitumor immu-
nity, SRX3207, a novel dual Syk-PI3K inhibitor, has been
shown to block these inhibitory effects, thereby reliev-
ing tumor immunosuppression [161]. In another study,
authors’ demonstrated that targeting PI3K-y with a selec-
tive inhibitor (IPI-549) reshapes the immune milieu of
the TME and promote CTL-mediated tumor regression
without targeting cancer cells directly [162]. IPI-549 can
inhibit PI3Ky in MDSCs, resulting in downregulation of
arginase 1 (Arg-1) and ROS to promote MDSCs apopto-
sis and reduce their immunosuppressive activity to CD8"
T cells [163]. This inhibitor is currently being evaluated
in human cancer patients in multiple clinical trials.

Three different PI3K inhibitors have been approved by
the FDA for the treatment of follicular lymphoma [164].
Following a successfully phase III clinical study [165],
the FDA approved the first PI3K inhibitor, Piqray (alpe-
lisib), for breast cancer patients with advanced disease
and where their tumors have the PIK3CA mutation and
are hormone receptor (HR) positive and HER2 negative
in 2019. However, the overall landscape and therapeutic
potential, as summarized by Mishra et al,, is that “very
few PI3K inhibitors are approved by the FDA as PI3K
inhibitors suffer from many adverse effects, and poor sol-
ubility and permeability” [158].

AKT, as a key component of the PI3K/AKT/mTOR
signaling pathway, exerts a pivotal role in cell growth,
proliferation, survival, and metabolism [166, 167]. Small
molecule inhibitors for AKT have been synthesized and
evaluated in both preclinical and clinical trials [167,
168]. Capivasertib is a potent selective oral agent and
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inhibits all three isoforms of the AKT kinase. In the phase
II FAKTION trial with postmenopausal women who have
inoperable breast cancers that are aromatase inhibitor—
resistant and estrogen receptor (ER)-positive/HER2-neg-
ative, Jones et al. found that the addition of capivasertib
to endocrine therapy with fulvestrant prolonged progres-
sion-free survival in these patients [169]. At this time,
only a few AKT inhibitors have been approved for cancer
treatment [168].

Several mTOR inhibitors have been approved to treat
human cancer [170]. The FDA-approved mTOR inhibi-
tors include Sirolimus for treating patients with lym-
phangioleiomyomatosis with gene mutations of the
tuberous sclerosis complex 2 gene in RCC, and Everoli-
mus for RCC, pancreatic, and breast cancers. Currently,
additional mTOR inhibitors are being evaluated in clini-
cal trials. In general, it appears that mTOR inhibitors
have mixed efficacy in patients across tumor indications
and among patients with the same type of cancer. While
mTOR inhibition alone has clear efficacy in some types
of cancer, preclinical studies demonstrate strong ration-
ale for combining mTOR inhibitors with other drugs,
including OVs. While therapeutic efficacy has been dem-
onstrated, small molecule inhibitors for the PI3K/AKT/
mTOR pathway can exert certain toxicities, and the
mechanisms behind these effects have been described
[171].

Combination of OVs with inhibitors of PI3K/AKT/mTOR
pathway

GBM is a lethal primary brain cancer with a median
survival of less than 2 years. Rabkin, Martuza, and their
teams showed that oHSVs could synergize with PI3K/
AKT pathway inhibitors to target glioblastoma (GBM)
stem cells [172], and prostate cancer stem-like cells [173].
Similarly, these small molecule inhibitors have also been
incorporated into therapeutic regimens using other OVs,
such as adenovirus [174], and Newcastle disease virus
(NDV) [175]. However, not all the combinations would
generate a synergy. For example, temozolomide has been
used as a standard care for GBM, however it can only
extend overall survival to a few months. Thus, investiga-
tors have tried to combine it with other antitumor agents
for improved efficacy. A recent study found that temo-
zolomide induces activation of Wnt/B-catenin signaling
in glioma cells via PI3K/Akt pathway [176]. Yet temozo-
lomide antagonize oncolytic immunotherapy in GBM
using G47A-IL12 [177).

ICI is ineffective in GBM with PTEN deficiency [178].
Xing et al. have explored the impact of PTEN deficiency
on OV therapy. They found that OV and PI3K inhibition
work synergistically on the TME and restore immune
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checkpoint therapy response in PTEN-deficient GBM
[179].

Wang and his team demonstrated improved systemic
delivery of an oncolytic VV by using an inhibitor of PI3K§
[180]. Transient inhibition of PI3K3§ with PI3K&-selective
inhibitor 1C87114 or the clinically approved idelalisib,
enhanced the delivery and therapeutic effects of intrave-
nously delivered oncolytic VV. This occurred by inhibit-
ing attachment of the virus to, but not internalization by,
systemic macrophages through perturbation of signaling
pathways involving RhoA/ROCK, AKT, and Rac. They
also applied this approach to increase the potential for
intertumoral and intratumoral spread of oncolytic VV,
effectively treating pancreatic cancer [181].

Rapamycin, or Sirolimus, is a macrolide compound
and has immunosuppressant functions in humans and
is especially useful in preventing the rejection of kid-
ney transplants. The mammalian target of rapamycin, or
mTOR, play a central role in Akt-mediated cell prolifera-
tion, differentiation, maturation and survival [182].

In 2005, Iggo and the team found that RADO001
(Everolimus), an mTOR inhibitor, improves the efficacy
of oncolytic adenoviruses that target colon cancer [183].
They believed that RADOO1 has three useful properties:
inhibiting tumor cell growth directly, blocking angiogen-
esis, and suppressing the immune response. However,
how RADOO1 enhanced treatment efficacy was not com-
pletely understood. In 2007, McFadden, Forsyth and col-
leagues found that rapamycin increased myxoma virus
tropism for human cancer cells and thus enhanced onco-
lytic virotherapy [184, 185]. Later, this combination was
also applied to VV [186], HSV [187, 188], vesicular sto-
matitis virus (VSVAM51) [189], and AdV [190]. As the
PI3K/AKT/mTOR signaling pathway is multifunctional,
it is not surprising that rapamycin could promote onco-
lytic virotherapy through multiple mechanisms. First, in
the case of HSV and myxoma viruses, rapamycin func-
tions to enhance the permissiveness of cancer cells to OV
by reconfiguring the internal cell signaling environment
to one that is optimal for productive virus replication
[184, 187]. Second, rapamycin increases viral replication
by impairing mTORCI1-dependent type I IFN produc-
tion and a reduction of intra-tumoral infiltration of mac-
rophages [189, 191]. Third, active-site dual mTORC1 and
mTORC?2 inhibitors (but not rapamycin) augment HSV1-
dICPO infection in cancer cells via the eIF4E/4E-BP axis
[188].

JAK-STAT3 pathway

Many cytokines function as crucial drivers of cancer as
well as autoimmune conditions. They bind to receptors
and trigger signaling cascades through Janus kinase (JAK)
and signal transducer and activator of transcription
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(STAT) pathways. IL-6/JAK/STAT3 signaling acts to
drive cancer cell proliferation, survival, invasiveness, and
metastasis, while strongly suppressing antitumor immu-
nity [192]. Thus, targeting JAKs and STATs could be an
efficacious strategy [192, 193].

Currently, only four JAK inhibitors (ruxolitinib, tofaci-
tinib, baricitinib and fedratinib) are approved for the
treatment of myeloproliferative neoplasms and other dis-
orders [194]. Many innovative studies and approaches to
developing small molecule inhibitors/activators of this
signaling pathways have been performed. In 2008, Xiong
et al. demonstrated that inhibition of JAK1/2 signaling
with AG490 (and inhibition of STAT3 as well) induced
apoptosis, cell cycle arrest, and reduced tumor cell inva-
sion in colorectal cancer cells [195]. However, despite
some promising preclinical results, to date no clinical
studies have shown efficacy in solid tumors treated with
JAK inhibitors.

Therapeutically exploiting STAT3 activity in cancer
appears to be more promising therapeutic approach [196,
197]. In 2012, Zhang et al. reported on an orally bio-
available small-molecule inhibitor of transcription factor
STAT3, BP-1-102, that led to regression of human breast
and lung cancer xenografts [198]. In a recent study, the
authors showed that a potent and selective small-mole-
cule degrader of STAT3 could produce complete tumor
regression [199]. The inhibitor pyrimethamine displays
anti-cancer activity and immune stimulatory effects in
mouse breast cancer models [200]. Additionally, some
FDA-approved compounds, such as pyrimethamine and
celecoxib, have also been identified as STAT3 inhibi-
tors [197]. Interestingly, another FDA-approved drug
atovaquone was identified as a STAT3 inhibitor and
anticancer agent using a gene expression-based discov-
ery platform [201]. Currently, there are 18 clinical trials
testing STAT3 inhibitors as cancer treatments listed in
the database (clinicaltrials.gov), with 8 of these trials now
completed, three recruiting, and one not yet recruiting.

As a note of caution when considering combina-
tion approaches, the JAK-inhibitor ruxolitinib has been
shown to impair DC cell function both in vitro and
in vivo [202]. To overcome this issue, the same team has
identified a different JAK inhibitor, pacritinib, that can
effectively conserve DC function when compared to rux-
olitinib [203].

Combination of OVs with modulators of IFNy-JAK-STAT
pathway

The effects of STAT inhibitors on OV are complex and
appear to depend on both selected OV and type of tumor.
One of the major mechanisms of resistance to VSV infec-
tion is the type I IFN response, leading to the develop-
ment of IFNB-armed VSV. This VSV-IENP virus leads to
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resistance of viral replication in normal cells with intact
IEN signaling but allows viral replication in cancer cells
with defective IFNf signaling. However, some cancer
cells have intact or partially intact IFN signaling path-
ways and can resist VSV-mediated therapy. To overcome
this issue, the authors utilized the JAK/STAT inhibitor,
ruxolitinib, in combination with VSV-IEN( to see if inhi-
bition of the signaling could enhance VSV-IEN( therapy
for lung cancer [204]. Combination of ruxolitinib and
VSV-IEN( therapy resulted in a trend toward improved
survival of mice, suggesting that further evaluation is
needed. In another study, Nguyen and colleagues found
that mutations in the IFNy-JAK-STAT pathway cause
resistance to ICI immunotherapy can increase sensitivity
to OV infection and treatment [116]. This study also sup-
ports JAK inhibitor-OV combination for treatment-naive
melanomas without IFN signaling defects.

p53 pathway and its roles in cancer, immune function,

and cancer imnmunity

p53 is one of the most well-studied tumor suppressors.
TP53 is mutated in approximately 50% of all human can-
cers. Interestingly, in the other ~50% of cancer carrying
wild type p53, the signaling pathway is often disrupted at
other interaction points [205]. The activity of p53 can be
inhibited through the function of the negative regulators
MDM2 and MDMX [206]. As the functional domains of
the p53, mutation hot spots, and loss/gain of function
mutations are out of the scope of this article, readers are
referred to two excellent reviews for these details [207,
208].

As the p53 pathway is one of the most crucial signal-
ing pathways in cells, it has been widely investigated as a
target for developing anti-cancer drugs [205, 206, 209]. A
series of small molecules targeting MDM2 and MDMX
have been developed and studied in preclinical models
and in clinical studies [209, 210]. Lane and colleagues
have found that an old antibiotic, actinomycin D (ActD),
when used at low dose, could mimic nutlin-3 and impart
highly specific activation of p53 dependent transcrip-
tion, and induce a reversible protective growth arrest in
normal cells and enhance the activity of chemotherapy-
induced killing of p53-positive human tumor cells [211].
At low cytostatic concentrations, ActD promotes riboso-
mal stress, which decreases MDM2 activity, resulting in
p53 stabilization and activation. Chen et al. showed that
ActD-induced p53 expression is mediated by AKT [212].
This property of ActD led to a series of clinical studies,
including 6 phase III clinical trials using ActD in com-
bination with other anti-cancer agents in a number of
tumor indications [209]. Most of these trials are ongoing
and final reports have not yet been published.
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p53 is also functionally important in normal immune
processes and antitumor immunity [213]. The key con-
clusion from recent studies is that wildtype p53 has fun-
damental roles in cancer immunity, however, mutations
in p53 not only cripple wildtype p53 immune functions
but also subvert the immune functions through its gain-
of-functions [213]. The mutant p53 is associated with
inflammation and immune dysfunction, indicating that it
modulates immunity associated with cancer. In one key
study, the authors identified a role for cancer-cell-intrin-
sic p53 as a key regulator of pro-metastatic neutrophils by
using a panel of 16 distinct genetically engineered murine
models of breast cancer. Mechanistic studies revealed
that loss of p53 in cancer cells induced the secretion of
WNT ligands that could stimulate tumor-associated
macrophages to produce IL-1f, thus driving neutrophil
infiltration and systemic inflammation [214]. In another
study, the authors discovered a novel mechanism of tar-
geting p53 for cancer immunotherapy. Activation of p53
in immature myeloid precursor cells was observed to dic-
tate their differentiation into Ly6c™CD103" monocytic
antigen-presenting cells in tumors [215]. Increasing p53
expression using a p53-agonist drug elicits a sustained
increase in Ly6c"CD103™" cells in tumors during immu-
notherapy, leading to markedly enhanced efficacy and
duration of response [215].

Combination of OV with small molecules targeting
p53-pathways

At this time, no combination of OV and a small mol-
ecule modulator of p53 has been assessed experimen-
tally, based on our extensive literature search. However,
Tagawa et al. studied how an MDM?2 inhibitor could
interact with an OV to produce synergistic cytotoxicity
of cancer cells. Specifically, they found that an MDM2
inhibitor achieves synergized effect with an oncolytic
AdV (Ad-delE1B) lacking E1B-55kDa gene to target mes-
othelioma with wildtype p53 through augmenting NFI
expression [216].

Epigenetic reprogramming in cancer cells and immune cells

DNA methylation, histone modifications including acety-
lation, methylation and phosphorylation, are major forms
of epigenetic modifications that play vital roles in gene
regulation, key biological processes and in cancer biology
[217]. Under the influence of the TME and during acti-
vation, immune cells undergo epigenetic reprogramming
to adapt to their environments and which directly impact
the resulting cell differentiation and functionality [218,
219]. Therefore, small molecule inhibitors of enzymes
involved in DNA methylation and histone modifications,
can be explored to potentially reverse the suppressed
functions of immune cells in the TME [28, 220, 221]. For
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example, epigenetic silencing of CXCL9/10 expression
by promoter DNA methylation and H3K27me3 in tumor
cells limits the infiltration of cytotoxic T cells, preventing
tumor attack and promoting tumor growth [222, 223].
To reverse these effects, inhibitors of epigenetic enzymes
DNMT or EZH2, alone or in combination, restore CD8"
T cell infiltration and improve sensitivity to ICI [223,
224]. We and others have showed that DNA demethyl-
ating agents can enhance cancer immunogenicity and
induce de novo expression of cancer-testis antigens
that improve responses to adoptive T cell therapy [225,
226]. These and other studies strongly suggested that
epigenetic modulation may turn cold tumors hot [227,
228], thereby increasing the responsiveness of tumors to
immunotherapy.

Another subtype of epigenetic modification is on
SUMOylation. The covalent conjugation of small ubiqui-
tin-like modifier (SUMO) proteins to protein substrates
may lead to suppress type I interferon responses. Light-
cap and colleagues recently studied the effects of TAK-
981, a small-molecule SUMOylation inhibitor, on human
and mouse immune cells. They found that the compound
promoted the activation of dendritic cells and T cells.
Further, they demonstrated that this compound activates
antitumor immune responses and potentiates immune
therapies in preclinical tumor models [229].

So far 10 small-molecule epigenetic drugs have been
approved to treat several types of cancer (Table 2). Many
other small molecule inhibitors targeting key enzymes
involved in epigenetic pathways have been discovered
and are at preclinical and clinical development as can-
cer therapies [230-232]. These emerging agents have the
potential to be also explored in the context of immuno-
therapy, as has been recently reviewed [27, 28, 233].

Combination of OVs with inhibitors of epigenetic enzymes
One major hurdle in cancer therapy is heterogeneity of
cancer, which results in variations in the ability of tumors
to support productive infection by OVs and to induce
adaptive anti-tumor immunity. Mounting evidence sug-
gests tumor epigenetics may play a key role in this heter-
ogeneity. In the last decade, therapeutic strategies aiming
to exploit the epigenetic identity of tumors have been
developed [28, 234, 235]. Some recent studies combining
OV with epigenetic drugs are shown in Table 3.

Histone deacetylases (HDACs) are a large family of
enzymes that have crucial roles in numerous biological
processes, largely through their repressive influence on
transcription [245]. HDACIi have been shown to inhibit
the IFN response [246]. HDACs may modulate epi-
genetic modifications of histones and chromatin, and
other cellular regulatory proteins (such as p53, E2F1-
3), leading to diminished cellular antiviral response. In
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Table 2 Approved small-molecule inhibitors of epigenetic enzymes for cancer treatments

Name Target® Cancer types Approval time
Azacitabine DNMT Acute myeloid leukemia (AML); Chronic myelomonocytic leukemia (CMML); 2004
Myelodysplastic syndromes (MS)
Decitabine DNMT AML; CMML; MS 2006
Vorinostat HDAC Cutaneous manifestations of cutaneous T-cell lymphoma (CTCL) 2006
Romidepsin HDAC CTcL 2009
Belinostat HDAC Relapsed or refractory peripheral T-cell lymphoma (PTCL) 2014
Panobinostat HDAC Multiple myeloma (MM) 2015
Chidamide HDAC Relapsed/refractory PTCL 2015
Enasidenib IDH2 Relapsed or refractory AML 2017
Ivosidenib IDH1 Relapsed or refractory AML 2018
Tazemetostat EZH2 Epithelioid sarcoma and relapsed or refractory follicular lymphoma 2020

2 Abbreviations are: DNMT DNA methyltransferase, HDAC histone deacetylase, IDHT and IDH2 isocitrate dehydrogenase 1 and 2, EZH2 enhancer of zeste homolog 2

one study, two HDACi markedly enhance the infection
and spread of VSV and OVV in primary human tumor
tissue explants and multiple tumor models. In another
study, two HDACI (Scriptaid and LBH589) combined
with OV Delta24-RGD led to enhanced efficacy in
patient-derived glioblastoma cells [247]. HDAC6 inhi-
bition enhances oHSV replication in glioma [248].
This was in line with previous studies demonstrating
that HDAC6 controls innate immune and autophagic
responses to TLR-mediated signaling by intracellular
bacteria [249], and thus likely viruses too.

Reduced cellular IFN responses and enhanced virus-
induced apoptosis may explain the increased viral
replication and oncolytic activity in some cases [250].
In one study, an unexpected property of HDACi on
adaptive immunity was found [251]. Entinostat (MS-
275), which is a class I-specific HDAC], induced lym-
phopenia, leading to selective depletion of bystander
lymphocytes and Treg cells but allowed expansion of
antigen-specific secondary responses. Intriguingly,
during the boosting phase, coadministration of an
oVSV with entinostat biased the immune response
towards anti-tumor immunity by suppressing the pri-
mary anti-viral immune response and enhancing the
boost response against tumor antigens. Overall, this
HDACIi enhanced OV-mediated therapeutic efficacy,
suppressed autoimmunity and thus improved the ther-
apeutic index [251].

In a recent study, Muscolini et al reported that the
NAD*-dependent histone deacetylase SIRT1 plays
a key role in the permissivity of PC-3 prostate can-
cer cells to VSVAMS51 viral replication and oncolysis.
Enhanced VSVAMS51 infection and cancer cell kill-
ing were mediated by HDACs and directly correlated

with a decrease of SIRT1 expression [239]. In addi-
tion, pharmacological inhibition sensitized prostate
cancer cells to VSVAMS51 infection, resulting in aug-
mentation of virus replication and spread. Mechanisti-
cally, HDACi upregulated the microRNA miR-34a that
down-regulated the level of SIRT1 [239].

Immune checkpoint pathways

The discovery of key immune checkpoint molecules
(CTLA-4 and PD-1) and their blockade as novel
approaches in cancer immunotherapy led to the Nobel
Prize in Medicine in 2018 [252]. Monoclonal anti-
bodies against PD-1 or PD-L1 have been approved
to treat various types of cancer with proven efficacy
[253]. However, therapeutic antibodies face functional
and practical limitations, including inadequate tissue
accessibility, pharmacokinetic challenges, impaired
interactions with the immune system, as well as high
production costs [254]. The toxicities observed follow-
ing delivery of anti-PD-1/PD-L1 antibodies are well
documented [255]. The general adverse events (AEs)
may include fatigue, pyrexia, infusion reactions; while
organ-specific AEs may include dermatologic toxicities,
diarrhea/colitis, endocrine toxicities, hepatic toxicities,
and pneumonitis.

Small molecule inhibitors targeting PD-1/PD-L1 sign-
aling pathway may provide an attractive alternative
approach. The rational design strategies of these small
molecules are based on three approaches as summa-
rized in an excellent review paper by Wu et al. [256]: 1).
Blocking direct interaction of PD-1 and PD-L1 proteins;
2). Inhibiting the expression (transcription and transla-
tion) of PD-L1 protein; 3). Promoting the degradation
of the PD-L1 protein. Bristol-Myers Squibb (BMS) and
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Table 3 Preclinical studies of OV combining with small molecule epigenetic drugs

ov Epigenetic Drug Tumor type Effects References
(1st author, year)
AdV: TSA Esophageal squamous cell carci- 1). Enhance viral replication and Ma, 2017 [236]
H101 noma spread. 2). Improved antitumor
activity
Herpes virus: VPA (In vitro) 1). VPA enhances viral replication Jennings, 2019 [237]
GM-CSF-HSV (valproic acid) and GM-CSF production and onco-

BHV-1 Trichostatin A (TSA) Lung cancer

Rhabdoviridae: Vorinostat; MS275; SIRTi - Prostate cancer

VSVAM5 1

Reoviridae (RV): Entinostat 1). Squamous cell carcinoma.
Reolysin Vorinostat 2). Multiple myeloma
Reolysin belinostat Lymphoma

Paramyxoviridae: MeV  Resminostat Pancreatic cancer

Parvoviridae:
P/V-CP

Scripaid
geal carcinoma cells

Small cell lung cancer cells/laryn-

lysis; 2). VPA improves antitumor
immunity.

1). TSA promotes viral replication; Qiu, 2021 [238]
2). TSA exacerbates DNA damage
and cytopathology, suggesting a

synergy between BHV-1 and TSA

1). SIRT1 inhibition promotes the
permissivity of prostate cancer
PC-3 cells to VSVAMS51 replication
and oncolysis; 2). HDACi upregu-
lated the microRNA miR-34a that
regulated the level of SIRT1.

1). HDAC inhibition increased
JAM-1 and reovirus entry, and viral
replication; 2). The combination
results in synergistic killing via
apoptosis; 3). The combination
improved immune cell infiltration
and higher therapeutic efficacy.

Muscolini, 2019 [239]

Jaime-Ramirez, 2017 [240]
Stiff, 2016 [241]

1). Belinostat-resistant lymphoma Islam, 2020 [242]
cell exhibit downregulated IRF1
and STAT1 expression; 2). These
cells are hypersensitive to RV rep-
lication and induced cell death; 3).
The combination therapy displays
synergy.

1). Synergistic mode of cytotoxicity.
2). The HDACi neither impaired
MeV growth kinetics nor prevented
the activation of the interferon
signaling pathway.

Ellerhoff, 2016 [243]

1). enhanced spread of the virus
and cell apoptosis; 2). suppressed
interferon-beta induction through
blocking phosphorylation and
nuclear translocation of IRF-3.

Fox, 2019 [244]

The table lists studies published in or after 2016 only

Aurigene Discovery Technologies each disclosed several
promising PD-1/PD-L1 inhibitors, including small mol-
ecules and peptides, although only a fraction of experi-
mental data have been disclosed to the public [257, 258].
Following on this approach, other inhibitors have been
discovered by both industry and academic groups. One
recent study detailed a series of novel inhibitors for PD-1/
PD-L1 interactions, with A9 as a standout [259]. We have
listed some representative inhibitors in Table 4.

Basic and preclinical studies have been performed to
assess the functional properties and potency of small
molecules or peptides that interact with the PD-1/

PD-L1 axis and how these agents impact antitumor
immunity. In one study, the authors conducted sys-
tematic in vitro characterization on BMS-103, BMS-
142 and others [272]. These compounds are strongly
active in biochemical assays, yet their acute cytotoxicity
greatly compromised their immunological activity. In
contrast, Wang et al. have found that a new small mol-
ecule inhibitor, called APBC, could effectively inter-
rupt the PD-1/PD-L1 by directly binding to PD-L1,
presenting the Ky and ICy, values at low-micromolar
levels. Better yet, it could elevate cytokine secretions
of the primary T-lymphocytes that are cocultured with
cancer cells in a dose-dependent manner. It displayed
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Table 4 Examples of small molecule modulators for immune checkpoints
Name Target Research stage Cancer types References

(First author, year)
APBC PD-1 binding to PD-L1 Preclinical Melanoma Wang 2021 [260]
A9 (in vitro) Zhang 2021 [259]
1-14 Colon cancer Fang 2021 [261]
(d)PPA-1 Colon cancer Chang 2015 [262]
JQ-1 (BRD4i) The expression of PD-L1 Phase | Lymphoma Zhu 2016 [263]
eFT508 Phase | Liver cancer Xu 2019 [264]
PD-LYSO The degradation of PD-L1 Preclinical (in vitro) Wang 2019 [265]
Curcumin Preclinical Breast cancer Lim 2016 [266]
Metformin Preclinical Breast cancer Cha 2018 [267]
CA-170 VISTA and PD-1/PD-L1 inhibitor Phase | Advanced tumors and lymphomas Sasikumar 2021 [268]
NDI-101150 MAP4K1 (HPK1) inhibitor Phase I/1l Solid Tumors You 2021 [269]
NX-1607 CBL-B inhibitor Phase | Advanced malignancies Loeser 2007 [270]
TNO155 SHP2 inhibitor Phase I/1I Advanced Solid Tumors LaMarche 2020 [271]

superior antitumor efficacy in B16F10 melanoma in
hPD-L1 knock-in mouse model without the induction
of observable liver toxicity [260]. Koniecny and the
team have developed di-bromo-based small molecule
inhibitors for PD-1/PD-L1 interaction and showed its
activity in vitro [273]. Fang et al. discovered 1,3,4-oxa-
diazole derivatives as inhibitors for PD-1/PD-L1 inter-
action and found compound II-14 as the most potent
one in biochemical activity and antitumor activity
[261].

It is important to note that small molecules have been
developed for targeting additional immune checkpoints.
Cbl-b is expressed in all leukocyte subsets and regulates
multiple signaling pathways in T cells, NK cells, B cells,
and some types of myeloid cells. Cbl-b negatively regu-
lates activation signals through antigen or pattern recog-
nition receptors and co-stimulatory molecules. Several
studies showed that Cbl-b-gene knockout mice reject
tumors. Thus, targeting Cbl-b may be an promising strat-
egy to enhance antitumor immunity [274]. Src homol-
ogy-2-containing protein tyrosine phosphatase 2 (SHP2)
is a major phosphatase involved in several cellular pro-
cesses. Recent studies showed that this enzyme plays
vital roles not only in T lymphocytes and macrophages,
but also cancer cells. Thus, exploring the use of SHP2
inhibitors has potential promise for cancer immunother-
apy [275]. Hematopoietic progenitor kinase 1 (HPK1/
MAP4K1) is a hematopoietic cell-restricted member of
the serine/threonine Ste20-related protein kinases. It is a
negative regulator of the T cell receptor, B cell receptor,
and DCs. It is probable that blocking the HPK1 kinase
activity with a small molecule inhibitor may elicit supe-
rior anti-tumor activity of both T and B cells, resulting in
a synergistic amplification of anti-tumor potential [269,
276]. Small molecule inhibitors for these enzymes have

been developed and some of them are in clinical studies
for cancer immunotherapy (Table 4).

Combination of OV with immune checkpoint blockade

As we have noticed, the discovery of small molecule
modulators for PD-1/PD-L1 (Table 3) are relatively
recent events, thus no studies combining them with OVs
have been published. However, many studies with OVs
in combination with immune checkpoint blockade using
PD-1, PD-L1, CTLA-4 antibodies have studied. Many
reviews on this topic have been published and we refer
to two recent great reviews [7, 277]. Worth specific men-
tioning are two clinical studies of T-VEC with either anti-
PD-1 or anti-CTLA-4 antibodies, achieving dramatically
improved clinical responses with up to ~67% objective
response rate in patients with advanced melanoma [55,
105].

Other pathways of particular importance to innate immunity
The cGAS-STING signaling pathway is a key media-
tor of inflammation and innate immunity in settings of
infection, cellular stress, and cancer [278]. A network of
pattern recognition receptors (PRRs) can detect invad-
ing viruses and trigger the host antiviral response. Stim-
ulator of interferon genes (STING) functions as a node
and integrator of the signal network—now called cGAS-
STING-TBK1 pathway [279]. At this time, the cGAS-
STING-TBK1 axis is considered the major signaling
pathway in innate immune response across different spe-
cies. Indeed, cGAS-STING is an important pathway in
cancer immunotherapy [280]. In addition to their role in
antitumor immunity, STING agonists have recently been
shown to be effective in promoting tumor vascular nor-
malization and formation of tertiary lymphoid structures
within the therapeutic TME [281].
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Small molecules targeting this innate immune sign-
aling pathway have been developed and some are now
undergoing clinical testing [282]. It is noteworthy that
high potency STING agonists can engage unique mye-
loid pathways to reverse pancreatic cancer immune
privilege [283]. In this study, potent synthetic STING
agonists (e.g., IACS-8803) reprogrammed suppressive
myeloid populations, both human and murine origins,
in part through inhibition of Myc signaling, metabolic
modulation, and antagonism of the cell cycle. Inhibitors
of upstream molecules may also lead to the activation of
STING pathway. CX-5461 is one of the most promising
inhibitors for RNA polymerase I, and previous reports
have shown that CX-5461 treatment induces DNA dam-
age response through ATM/ATR kinase. In a recent
study, the authors reported that CX-5461 could induce
a rapid accumulation of cytosolic DNA. This accumu-
lation led to transcriptional upregulation of STING,
phosphorylation of IRF3, and activation of type I inter-
feron response. Thus, CX-5461 therapy-induced immune
activation may be exploited as novel drug combinations
with the potential to increase immunotherapy efficacy
[284]. In another study, inhibition of Ataxia telangiec-
tasia mutated (ATM) enhanced cancer immunotherapy
by promoting mitochondrial DNA leakage and cGAS/
STING activation [285]. The authors suggested that that
ATM may serve as both a therapeutic target and a bio-
marker to enable ICI therapy.

Combination of OVs with small molecule modulators of other
pathways

The STING axis may be silenced during malignant trans-
formation, allowing cancers to escape immune surveil-
lance, which may in turn allow OV to efficiently replicate
and exert therapeutic benefit in these cancers [286]. A
recent study demonstrated that STING restricts oHSV
replication and spread in resistant malignant periph-
eral nerve sheath tumors [287]. However, while STING
knockout tumors could support increased lytic potential
by HER2-retargeted oHSV-1, these tumors also showed
molecular signatures of an immunosuppressive TME.
These signatures were correspondingly associated with
ineffectiveness of the combination therapy in a tumor
model. Accordingly, these authors proposed that anti-
viral, tumor-resident Sting provides a fundamental con-
tribution to immunotherapeutic efficacy of OV [288].
Kaufman, Rabkin and associates conducted a study that
suggests T-VEC induces ICD and promotes tumor immu-
nity, and it can induce therapeutic responses in anti-PD-
1-refractory, low STING-expressing melanoma [155]. To
summarize, these data that OV immunotherapy induces
ICD and overcomes STING deficiency in melanoma.
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Some studies have explored inhibitors targeting the
transforming growth factor beta receptor 1 (TGF-BR1).
Cripe and associates combined OV HSV1716 with an
TGEF-BR1 inhibitor (A8301) to treat syngeneic mod-
els of murine rhabdomyosarcoma [289]. They observed
enhanced efficacy appears to depend on an improved
anti-tumor T cell response. In another study with patient-
derived recurrent GBM models, dual therapy with an
oHSV and inhibitors of TGF-B receptor kinase also led
to enhanced efficacy [290]. These studies revealed a novel
synergy of virotherapy and blockade of TGF-P signaling
and warrant further preclinical investigation to support
clinical translation of this combination strategy. In addi-
tion, these two agents, either alone or in combination,
can increase the susceptibility of immune-silent tumors
to immune checkpoint therapy [291].

Aurora-A kinase is also a promising therapeutic tar-
get in cancer [292]. Two studies showed that, the kinase
inhibitors alone or in combination with OVs, can possess
additive/synergistic killing effects on cancer cells [293—
295]. Interestingly, in one study, the authors found that
aurora A kinase inhibition enhances oHSV virotherapy
through cytotoxic synergy and innate cellular immune
modulation, noting that alisertib inhibited virus-induced
accumulation of intra-tumoral MDSCs [295].

Small molecule experimental drugs can target cancers
with intrinsic or acquired resistance to the infection of
various OVs. Xiao et al. have recently demonstrated that
DNA-dependent protein kinase (DNA-PK) inhibition
sensitizes cancer cells to alphavirus M1 and improves
therapeutic effects in refractory cancer models and in
patient tumor samples. It turned out that DNA-PK inhi-
bition synergizes with OV M1 by inhibiting antiviral
response and potentiating DNA damage [296].

One mechanism of OV therapeutic failure is tumor
cell resistance to OV infection [297]. Dimethyl fumarate
(DMEF) is a common treatment for psoriasis and multi-
ple sclerosis, and it also exhibits anticancer properties.
Selman et al. observed that DMF and various fuma-
ric and maleic acid esters (FMAEs) could enhance viral
infection of cancer cells as well as human tumor biopsies
by OVs, including VSV, AdV and HSV. Together, these
combination therapies improved therapeutic outcome
in OV-resistant syngeneic tumors and xenograft models
in mice [298]. This study demonstrates that unconven-
tional application of FDA—approved drugs and biological
agents can result in improved anticancer therapy.

ICD inducers are useful in induction of cancer cell
death and eliciting antitumor immunity [299]. Most
OVs themselves are ICD inducers [30]. However, small
molecules can also function as ICD inducers, further
potentiating the induction of antitumor immunity when
combined with OVs. For example, CDK4/6 inhibitor and
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VSVAS1 synergistically induced ICD and boosted antitu-
mor immunity, leading to enhanced efficacy in refractory
glioblastoma [300]. Mechanistically, CDK4/6 inhibi-
tion led to autophagic degradation of MAV, resulting in
dampened antiviral responses and thus enhanced tumor-
selective replication of the OV. This CDK4/6 inhibition
cooperated with OV infection to induce severe DNA
damage stress and amplify ICD, leading to increased
numbers of activated CD8™ cells [300]. Another study
tested the combination of a ferroptosis enhancer with
an OV. Erastin itself is a typical activator of ferroptosis,
considered to be one type of ICD. We showed that Eras-
tin alone had a limited effect on systemic immunity or
localized intratumoral immunity in tumor-bearing mice.
When combined with an OV, however, erastin enhanced
the number of activated DCs and the activity of tumor-
infiltrating T lymphocytes (based on increased IFN-
yTCD8' and PD-17CD8" T cells), leading to improved
therapy in tumor models in mice [301].

Efforts have been undertaken to identify novel small
molecules that can work with OVs for improved antitu-
mor effects. Diallo et al. uncovered a novel small mole-
cule to target the complex cellular defense mechanisms
that permit effective viral infection and replication.
They have designed a high-throughput pharmacoviral
approach and this identified novel chemical sensitiz-
ers (e.g., VSel) to allow effective infection and replica-
tion of OVs such as VSVA51 [302]. Through this screen,
they identified compound #1 that can sensitize resist-
ant cancer cells to infection with VSVA51 by damp-
ing the activation of antiviral responses in cancer cells.
However, compound 1 is rapidly degraded and thus
derivatives with improved stability and activity would be
desirable. To achieve this aim, Dornan et al endeavored
to develop lead compounds (pyrrole-derivatives) that
increased OV growth up to 2000-fold in vitro and dem-
onstrated remarkable tumor selectivity both ex vivo and
in vivo [303]. This expands the scope of OVs to include
the originally resistant tumors, further potentiating this
promising therapy. In another study, investigators found
that vanadium compounds can potentiate oncolytic
immunotherapy though multiple mechanisms [304]. The
compounds work by subverting the antiviral type I IFN
response toward a death-inducing and pro-inflammatory
type II IEN response, leading to improved OV spread,
increased bystander killing of cancer cells, and enhanced
antitumor immunity [304].

Combinations of OV with small-molecule modula-
tor-containing cocktails is a highly effective strategy in
modulating the TME and enhancing therapeutic effi-
cacy. For example, Kalinski and colleagues demonstrated
that IFN-a and polyinosinic: polycytidylic acid (p-I1:C)
synergize with the ‘classical’ type-1-polarizing cytokine
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cocktail (TNFa/IL-1pB), allowing for serum-free genera-
tion of fully mature type-1-polarized DCs [305]. Further
studies indicated that such polarized DCs produce much
higher levels of IL-12p70 and induces up to a 40-fold
increase in long-lived CTLs specific for melanoma-asso-
ciated antigens. Later, the slightly modified triple cock-
tail (IFN-a, poly I:C, and a COX-2 inhibitor), termed
chemokine modulating cocktail (CKM), was used for a
series of preclinical and clinical studies [306]. The sequen-
tial treatment with an OV followed by CKM resulted in
the upregulation of Thl-attracting cytokines (CKs) and
reduction of Treg-attracting CKs (CCL22 and CXCL12),
concurrent with enhanced trafficking of tumor-specific
CD8* T cells and NK cells into the TME. As a result, we
observed highly significant antitumor activity and long-
term survival of tumor-bearing mice [58]. Additionally,
rapamycin and celecoxib have been evaluated in combi-
nation with OV and adoptive T cell transfer (ACT) [307].
The authors hypothesized that the combination of local
tumor-specific T cells activation delivered alongside an
anti-immunosuppressant would improve therapy for gli-
omas. They utilized an IL15Ra-IL15-encoding OV as the
T-cell activating stimulus and a prostaglandin synthesis
inhibitor as the anti-immunosuppressant, together with
ACT of tumor-specific T cells. IL15Ra-IL15-armed OVs,
in conjunction with ACT, rapamycin, and celecoxib pro-
vide potent antitumor effects against brain tumors, sug-
gesting that complex but rationally designed therapeutic
combinations can produce robust anti-tumor effects.

OV in combination with other regimens

Conventional approaches to cancer therapy, such as
chemotherapy, radiotherapy, and other types of immuno-
therapy have been well studied and combining OV with
these classes of antitumor agents have been widely inves-
tigated. As these are outside the scope of this review,
we will only briefly discuss these strategies. Readers are
referred to recent reviews that have included more inten-
sive discussion [6, 7, 9, 308].

Some traditional chemotherapeutic and targeted
agents are now known to function, at least in part,
through immunologic mechanisms [309]. If a particular
chemo- agent and a particular OV work to target differ-
ent immune cells and/or mechanisms that are favorable
for antitumor immunity, it is likely that they may act syn-
ergistically to potentiate antitumor immunity and thera-
peutic efficacy.

In addition to surgery, radiotherapy remains the pre-
ferred treatment for locoregional tumors. Radiation
therapy and chemotherapy are designed to target can-
cer cells by compromising cellular integrity during cell
division. However, these agents can also induce immune
modulation that can either impede or augment overall
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therapeutic efficacy. The impact of radiotherapy, as well
as chemotherapy, on the immune system depends highly
on context, making it challenging but imperative to
understand how each cytotoxic therapy may compromise
immune function [310].

It is interesting to note that radiotherapy has been used
as a tool to elicit changes in clinically actionable signaling
pathways in cancer [311] which can serve as targets for
small molecule inhibitors in combination therapy. In this
regard, radiotherapy and OV combinations have been
evaluated, with some important preclinical observations
that may support further study. Importantly, some armed
OVs can replicate and express genes of interest selectively
in tumor cells, thus improving noninvasive precision
molecular imaging and radiotherapy [312]. Oncolytic
VVs in combination with radiation have been extensively
studied in tumor models [313-316]. Stereotactic body
radiation combined with oncolytic VV induces potent
anti-tumor effects by triggering tumor cell necroptosis
and DAMPs, markers of ICD [317].

In another study, Delta-24-RGD has been combined
with radiotherapy in diffuse intrinsic pontine glioma and
pediatric high grade glioma models [318]. The combina-
tion led to synergistic anti-glioma effects. Interestingly,
OV treatment led to the downregulation of relevant
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DNA damage repair proteins, further sensitizing tumors
cells to radiotherapy. This is a rational combination and
serves as a guide for clinical studies. Considering the
clinical context and potential optimism for this combina-
tion approach, a recent clinical trial with oncolytic DNX-
2401 followed by radiotherapy in pediatric patients with
diffuse intrinsic pontine glioma [319] produced early
promising outcomes. A total of 12 patients received up
to 1x 10" or 5x 10'® VP of DNX-2401 and 11 received
subsequent radiotherapy. Intra-tumoral infusion of OV
followed by radiotherapy resulted in changes in T-cell
activity and a reduction in or stabilization of tumor size
in some patients but was associated with adverse events.

Clinical studies of combination strategy

We have conducted an extensive survey of the litera-
ture and ongoing clinical trials (clinicaltrials.gov). Only
a few current clinical trials meet the specified criteria
and involve delivery of OV with small molecules tar-
geting key signaling pathways. These trials are listed in
Table 5. From these analyses, five types of combinations
were identified: OV combined with RTKi (sorafenib or
apatinib), non-receptor TKI (Ruxolitinib, an inhibitor to
Janus kinase, or JAK), irinotecan (topoisomerase inhibi-
tor), or cyclophosphamide (immunomodulatory agent),

Table 5 Clinical trials for combination of OV with small-molecule modulators®

Identifier

ov

Modulator

Disease setting

Status

NCT02705196

LOAd703 (AdV)

Gemcitabine
Nab-paclitaxel

NCT05113290 AdV Sorafenib
NCT05070221  rHSV2hGM-CSF Axitinib (RTKi)

(HSV) + anti-PD-1 mAb
NCT03152318 rQNestin34.5v.2 Cyclophosphamide

(HSV)
NCT03866525 OH2 (HSV) +/— irinotecan
NCT02562755 Pexa-Vec Sorafenib (RTKi)

(W)
NCT03605719 Pelareorep Carfilzomib

(Reovirus)
NCT03017820  VSV-hIFN-NIS Ruxolitinib (JTKi)®

(VSV) (+/— Cyclophosphamide)
NCT03120624 VSV-hIFN-NIS Ruxolitinib (JTKi)

(VSV)
NCT04665362 M1-cév1 Apatinib (RTKi)

(M1) Anti-PD-1 mAb
NCT01394939 Pexa-Vec +/— Irinotecan

(VW) (Topoisomerase | inhibitor)
NCT00450814 MV-NIS Cyclophosphamide

(MV)

Pancreatic cancer

HCC
Melanoma stage IV

Recurrent malignant glioma

Solid tumor/Gl cancer
HCC

Recurrent plasma cell myeloma

Multiple myeloma, Acute myeloid leukimia,

T-cell lymphoma
Endometrial cancer

Advanced/metastatic HCC
Metastatic, refractory colorectal carcinoma

Recurrent or refractory multiple myeloma

Phase I/ll/Recruiting

Phase IV/Active, not recruiting
Phase I/Not yet recruiting

Phase I/Recruiting

Phase I/ll/Recruiting
Phase lll/Completed

Phase I/Active, not recruiting
Phase I/Recruiting

Phase I/Recruiting

Phase I/Not yet recruiting
Phase I/l /Completed

Phase I/l /Completed

? The clinicaltrials.gov database was searched using key words of ‘oncolytic virus'and ‘inhibitor’ and a total of 28 studies were found (updated 8/29/2022). Some
alternative key words were also used to find other clinical studies. Upon screening, only those meeting the criteria of “combination of OV with small molecule

modulator”are listed

b JTKi Janus (tyrosine) kinase inhibitor


http://clinicaltrials.gov
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or traditional chemotherapeutic agents (Carfilzomib;
Gemcitabine; Nab-paclitaxel).

It is worth emphasizing that ICI has now become
standard of care for a variety of cancers. Many preclini-
cal studies evaluating the combination of OVs with anti-
PD-1/PD-L1 or anti-CTLA4 monoclonal antibodies have
been performed with impressive therapeutic efficacy.
Two clinical studies on melanoma patients, using T-VEC
and either anti-PD-1 or anti-CTLA-4 antibody, have
demonstrated striking efficacy for this combinatorial
approach [55, 105]. However, as previously noted a phase
III trial with anti-PD-1 and T-VEC failed to achieve bet-
ter clinical response than anti-PD-1 alone in melanoma
[96]. So far, small molecule inhibitors for checkpoint
molecules PD-L1, MAP4K1, CBL-B and SHP2 are being
investigated in clinical studies (Table 3). As such, the
combination of an OV with small molecule ICI should be
initiated within next few years.

While clinical trials combining OV with small molecule
inhibitors are currently ongoing, the definitive data on
their toxicity still await publication. Previous trials using
OV or small molecule inhibitors as single agents gener-
ally indicate limited OV toxicity while small molecule
inhibitors tend to induce more toxicities. For this rea-
son, we expect toxicities resulting from these combina-
tion regimens to be mostly driven by the small molecule
component, although some toxicities may expect to be
potentiated by OV-driven effects. Therefore, successful
combination therapies may require careful consideration
and selection of small molecule inhibitor(s) with known
activity/efficacy and limited toxicity as important criteria.

Conclusions and perspectives

The clinical success of anti-CTLA4 and anti-PD-1/
PD-L1 ICIs has led to vast expansion of the immuno-
oncology field and the combination approaches to can-
cer therapy currently under investigation. Among them,
the use of OV is an exciting and emerging branch, with
three OVs showing clear efficacy in three cancer indica-
tions that led to subsequent approval in three countries.
OVs work through multiple mechanisms, and act locally
but function systemically via adaptive antitumor immu-
nity. On the other hand, the development of small mol-
ecules targeting key signaling pathways continues to
play an expanding role in immuno-oncology, however
in most cases their efficacy as monotherapies has been
limited. Logically, these two classes of antitumor agents
can be combined, likely by using mechanistic insights
to guide rational approaches to further improve treat-
ment efficacy. Preclinical studies have demonstrated
that combining OVs with small molecule modulators of
key signaling pathways in cancer- and/or immune cells
can have enhanced therapeutic efficacy (Figs. 2 and 3).
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Ongoing and upcoming clinical studies of these rational
combinations will ultimately determine their relevance
for treating human cancer.

Multiple factors are likely to determine the efficacy of
these combinations. First, oncogenic signaling pathway
have emerged as key targets for small molecules. These
signaling pathways (such as AKT-PI3K-mTOR, KRAS-
ERK/MAPK) play important functional roles not only
in tumor development and progression, but also essen-
tial roles in non-transformed healthy cells, including
immune cells. In this regard, the potential interactions
between small molecule inhibitors, cancer cells, and
immune cells may be complex and, in some cases, result
in opposing effects. Importantly, the inhibitor may not
only inhibit or kill cancer cells, but also suppress func-
tions of immune cells, resulting in antagonistic, rather
than synergistic or additive action. For example, mTOR,
a vital sensor of signals within the immune microenvi-
ronment, is a central regulator of T cell biology [320].
Thus, mTOR inhibition may lead to disastrous effects and
abrogate antitumor immunity. Extreme caution needs
to be exercised when employing such inhibitors as part
of a combination regimen, with careful understand-
ing of the mechanistic impacts considered. Second, as
many of the targetable signaling pathways are essential
in normal cells, the potential toxicity induced by these
signaling inhibitors will need to be carefully evaluated,
monitored, and/or mitigated. Third, how the activity of
small molecules intersect with the biological effects of
OV need to be carefully evaluated. Specifically, if a small
molecule induces cancer cell death prior to productive
infection/replication by OV that is sufficient to produce
robust oncolysis, then these agents may again function-
ally antagonize and limit overall therapeutic efficacy.
Fourth, inhibitors specific for a mutated signaling mol-
ecule in cancer cells, such as KRASS'%C, are ideal ones
to be explored in combination regimens, as they may
provide much higher specificity for tumor targeting and
thus would be anticipated to limit toxicity. The recently
approved small molecule drug, Sotorasib, a highly spe-
cific inhibitor for KRASS!%C protein, is such an example
[137]. Our unpublished study showed that the combi-
nation of a small molecule inhibitor of KRASS'?C with
an OV elicited potent antitumor immunity and led to
regression of tumors with KRASS?“-mutant protein
(Zhu Z et al., submitted for publication). Lastly, depend-
ing on the mechanism of action driving potential synergy
between agents, the timing and order of the treatments
could have significant effects on treatment outcome
[4] and may directly determine whether the combined
effects are synergistic/additive, or potentially reverse any
beneficial effects. For example, it has been shown that
sequential administration with OV Pexa-Vec (JX-594),
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followed by Sorafenib, results in better efficacy in HCC
[321]. In that study, a potential problem with this combi-
nation emerged where if given simultaneously, sorafenib
could block Pexa-Vec replication through RAF inhibi-
tion. The study’s authors explored simultaneous and
sequential combinations in vitro and in animal tumor
models, finding that the regimen of Pexa-Vec followed by
sorafenib was statistically superior to reverse approach.
Importantly, additional well designed mechanistic studies
are needed to identify optimal combinations, as the com-
bination of two classes of agents may produce novel and/
or unexpected mechanisms of action at the molecular,
cellular, and/or host level.

Novel experimental systems and cutting-edge technol-
ogies that can be used to dissect complex mechanism(s)
of action help to facilitate the development of novel com-
bination regimens, inform clinical studies and, eventually,
can help establish new standards of treatment or thera-
peutic paradigms These developments include but are
not limited to: 1) Three-dimensional organoids that rep-
resent a promising, near-physiological model for human
cancers and tremendously support diverse potential
applications in cancer research including immunotherapy
and OV combinations [322], and 2) human tumor tissue
explant cultures provide patient-derived models for short
term studies (data available within days, rather months)
and involve all components of the TME, including cancer,
stroma, inflammatory lymphoid and myeloid infiltrate, as
well as vasculature (although without active blood flow)
[306]. The results from these simplified in vitro systems
may guide in-depth in vivo studies, saving time and costs.
In addition, novel tools to analyze the immune landscape
of tumor tissues before and after combination therapy
may provide useful data to further inform combination
strategies, with single cell RNA sequencing (scRNA Seq)
and proteomics providing two powerful examples. In
fact, scRNA Seq has been used to analyze the immune
profile in OV-immunotherapy [323]. Finally, CRISPR/
Cas9 knockout of selected candidate genes provides
a breakthrough technology to study gene functions in
cancer in vivo [324]. More importantly, in vivo CRISPR
screens have identified important regulators of antitumor
immunity and candidate targets for cancer immunother-
apy [325, 326]. We envision that these powerful technolo-
gies and experimental systems will strongly accelerate the
identification and translation of novel combination regi-
mens into highly effective immunotherapies for cancer
patients.

At this time, while clinical trials evaluating these
approaches have been limited and have generally focused
on OV in combination with RTKi and other TKij, topoi-
somerase inhibitor, or cyclophosphamide, new opportu-
nities are rapidly emerging. As preclinical studies have
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shown that inhibitors of EGFR/KRAS/MAPK, HDACi
and certain metabolic enzymes effectively synergize
with OVs, these approaches are likely to translate into
new therapies for clinical testing. In worst cases, even if
some combinations may not deem to be rational, they
may still work better than either monotherapy as one
study explained the superiority of many combinations of
approved drugs in the absence of drug synergy or additiv-

ity [37).

With increased understanding of cancer biology,
and improved small molecule inhibitor/modulators
available, it will be necessary to explore additional
combinations of OV with modulators of signaling
pathways in future preclinical studies to identify opti-
mal approaches. As a branch of precision personalized
medicine, one of the biggest challenges is to manage
the most efficient ways to identify which combination
to use, when to use them, and which patients are most
likely to benefit from these approaches.
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