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Abstract 

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive T-cell malignancy characterized by genotypically-defined 
and phenotypically divergent cell populations, governed by adaptive landscapes. Clonal expansions are associated to 
genetic and epigenetic events, and modulation of external stimuli that affect the hierarchical structure of subclones 
and support the dynamics of leukemic subsets. Recently, small extracellular vesicles (sEV) such as exosomes were also 
shown to play a role in leukemia. Here, by coupling miRNome, bulk and single cell transcriptome profiling, we found 
that T-ALL-secreted sEV contain NOTCH1-dependent microRNAs (EV-miRs), which control oncogenic pathways acting 
as autocrine stimuli and ultimately promoting the expansion/survival of highly proliferative cell subsets of human 
T-cell leukemias. Of interest, we found that NOTCH1-dependent EV-miRs mostly comprised members of miR-17-92a 
cluster and paralogues, which rescued in vitro the proliferation of T-ALL cells blocked by γ-secretase inhibitors (GSI) 
an regulated a network of genes characterizing patients with relapsed/refractory early T-cell progenitor (ETP) ALLs. All 
these findings suggest that NOTCH1 dependent EV-miRs may sustain the growth/survival of immunophenotypically 
defined cell populations, altering the cell heterogeneity and the dynamics of T-cell leukemias in response to conven-
tional therapies.
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Background
Acute lymphoblastic leukemia or ALL, is an aggressive 
malignancy of immature lymphocytes with about 15–20% 
of cases of T lineage (T-ALL). It is the most common 
type of cancer in children, but also affects adults with 
incidences of ~ 30 new cases per 1,000,000 per year [1]. 

Pediatric T-ALL is largely curable with intensive chemo-
therapy, but there are significant side effects and ~ 20% of 
patients suffer relapse. In contrast, adult T-ALL is char-
acterized by a 5-year overall survival of ~ 40% [2].

T-ALL is the result of a malignant alteration of hemat-
opoietic progenitors during T-cell development. A 
relevant oncogenic pathway involved in T-cell trans-
formation is the NOTCH1 signaling pathway with over 
50% of human T-ALL carrying activating mutations of 
NOTCH1 gene [3, 4].

Recently, small extracellular vesicles (sEV) such as 
exosomes were reported to contribute to leukemic pro-
gression [5, 6]. sEV were shown to reprogram the bone-
marrow microenvironment [7], dampen anti-leukemia 
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immune response [8] and promote drug resistance [9]. 
sEV exert such molecular and cellular functions by 
transferring molecular information from cancer cells to 
proximal and/or to distant body districts, including pro-
metastatic niche [10]. Importantly, in T-ALL a miRNA-
tumor suppressor gene network drives the malignant 
transformation of T-cell progenitors [11, 12] and coop-
erates with NOTCH1-driven T-ALL [13–17]. However, 
the precise role of sEV and miRNA cargo in NOTCH1-
driven T-ALL remains elusive. Here, we tackle this issue 
and present new evidences supporting a central role for 
EV-miRs in the progression of NOTCH1-driven T-ALL.

Results and discussion
The molecular characteristics of sEV in T-ALL were ini-
tially explored in CUTLL1 cell line, a well-characterized 
human T-cell lymphoma cell line derived from a pleu-
ral effusion in a pediatric patient with T-ALL at relapse, 
with aberrant NOTCH1 activation and strongly sensitive 
to γ-secretase inhibitors [18]. CUTLL1 cells were lenti-
virally transduced to constitutively express a dominant-
negative form of Mastermind-like protein 1 (dnMAM) 
to shutdown NOTCH1 signalling, or an empty vector as 
a control. Indeed, several NOTCH1 target genes were 
strongly reduced under dnMAM condition (Fig.  1A, B; 
Fig. S1A). Next, we analyzed size distribution, morphol-
ogy, quantities of sEV released from CUTLL1-CTRL 
and CUTLL1-dnMAM cells by nanoparticle-tracking 
(NTA), TEM, and WB analyses using sEV markers 
(Fig.  1C-D; Fig. S1B-C). Overall, the prevalent size of 
sEV matched with expected exosome size distribution 
(i.e., ~ 30-150  nm; Fig.  1C) and sEV concentration was 

significantly increased in dnMAM cells (Fig. 1C) in line 
with previous results showing that a deranged NOTCH 
signaling in T cells induces a dramatic increase in 
exosomes release [19]. We detected a total of 318 miR-
NAs (Fig. 1E; Table S1) by whole-miRNA expression pro-
filing of CUTTL1 cells of which 73 also detected in sEV 
(i.e., Common-miRs; Fig. 1E; Table S1). Yet, hierarchical 
clustering analysis showed a set of highly abundant ‘EV-
miRs’ comprising members of miR-17-92a cluster and 
paralogues (Fig. 1F), which we found to be characterized 
by overrepresented EXOmotifs (Figure S1D), i.e. sort-
ing sequences that determine miRNAs upload into sEV 
[20, 21]. In line with previous reports, miR-19b is highly 
expressed in T-ALL cells and is targeted by the t(13;14)
(q32;q11) translocation in T-ALL. Likewise, other mem-
bers of miR-17-92a clusters i.e., miR-20a and miR-92a, 
were found highly expressed in T-ALL and together with 
miR-19b were shown being capable of promoting T-ALL 
[11]. Expression profiling analysis of the Common-miRs 
in T-ALL cells and in sEV (Fig. 1E), revealed a significant 
and specific decreased expression of miR-17–92 cluster 
and paralogues upon NOTCH1 signalling inactivation 
(i.e., dnMAM vs. CTRL; Fig. 1G) both intracellularly and 
in sEV (Fig.  1G), which suggests NOTCH1 signalling 
modulates EV-miRs quantities in sEV. As matter of fact, 
previous studies showed the existence of a tight interplay 
between c-MYC and miR-17–92 cluster expression [22] 
and that c-MYC is an important direct target of Notch-1 
in T-ALL [23]. Consistently, we found that miR-17–92 
cluster expression is rescued in dnMAM condition 
upon forced expression of c-MYC (Fig. S1E-G). Next, to 
investigate the function of these NOTCH1-dependent 

(See figure on next page.)
Fig. 1 EV-miRNAs characterization and function in T-ALL model. A ddPCR analysis of validated NOTCH1 target genes mRNA expression in 
CUTLL1-dnMAM vs. CUTLL1-CTRL cells. Y-axes, mRNA levels of NOTCH1 target genes normalized to B2M expression. X-axes, gene symbols. 
Significance analysis was performed by one-sample t-test. B Immunoblot analysis of HES1, HES4 and c-MYC proteins in CUTLL1-CTRL and 
CUTLL1-dnMAM cells. C Nanoparticle-tracking-analysis of the size distribution and concentration of sEV released by CUTLL1-CTRL and 
CUTLL1-dnMAM cells. Inset plots, Transmission Electron Microscope (TEM) images showing particles in sEV samples from CUTLL1-CTRL and 
CUTLL1-dnMAM cells. Scale bar = 100 nm. On the right, box plots of differential concentration of sEV in CUTLL1-CTRL and CUTLL1-dnMAM 
cells. Significance analysis was performed by Student t-test. D Immunoblot analysis of sEV markers (CD81, Syntetin1 and CD63) in CUTLL1-CTRL 
and CUTLL1-dnMAM cells. E Venn diagram of EV-miRNAs detected in CUTLL1-CTRL and CUTLL1-dnMAM cells (CELL) or in their released small 
extracellular-vesicles (sEV). Significance analysis was performed by Fisher’s exact test. F Hierarchical clustering analysis of miRNAs detected (N = 318) 
in CUTLL1-CTRL (Ctrl) and CUTLL1-dnMAM (dnM) cells (CELL) and/or in their released small extracellular-vesicles (sEV). On the right, most abundant 
miRNAs in sEV were also indicated; in bold, members of the miR-17–92 cluster. G On top, violin plots of differential expression (dnMAM vs. CTRL) 
of the 73 commonly detected miRNAs in CUTTL1 cells and in sEV. Bottom, bar plots of differential expression (dnMAM vs. CTRL) of the miR-17–92 
cluster and paralogues. Colors are as per the legend. Significance analysis was performed by Mann–Whitney U-test. H qRT-PCR analysis of miR-17–
92 cluster overexpressing CUTLL1-dnMAM cells vs. control (Empty-V) CUTLL1-dnMAM cells. Significance analysis was performed by one-sample 
t-test. I ddPCR analysis of miR-17–92 cluster in sEV purified from miR-17–92 cluster overexpressing vs. control (Empty-V) CUTLL1-dnMAM cells. 
Bubble size represents the average expression of miRNAs (copies/20µL). Colours are as per the legend. J Flow cytometry analysis of CUTTL1 (CTRL) 
and CUTTL1-dnMAM cells (dnMAM) conditioned with PKH26-labelled miR-17–92-enriched sEV (EV_miR-17–92) or PKH26-labelled Empty-Vector 
sEV (EV_Empty-V) derived from miR-17–92 overexpressing CUTTL1 cells or from CUTLL1 cells transfected with an empty vector, respectively. 
MFI, mean fluorescence intensity. Percentages of cells which internalized exogenous PKH26-sEV (Cells EV-pos) are also shown. K Viability of 
CUTTL1 (CTRL) and CUTTL1-dnMAM cells (dnMAM). Briefly, transduced GFP positive cells were FACS sorted and in vitro grown together with 
miR-17–92-enriched sEV (EV_miR-17–92) or sEV (EV_Empty-V) cultured for two days. GFP + alive cells were measured by flow cytometry for DAPI 
(4′,6-diamidino-2-phenylindole) exclusion and counted by relating the cell numbers to internal fluorescent bead events (see also methods). The 
graph reports the result of two independent experiments. Significance analysis was performed by Student’s t-test
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EV-miRs, we produced PKH26-labelled sEV enriched 
in miR-17–92 (aka EV_miR-17–92) by overexpressing 
miR-17–92 cluster in dnMAM cells which yielded sEV 
enriched in miR-17–92 cluster (Fig.  1H-I; see meth-
ods). Internalization of EV_miR-17–92 in dnMAM cells 
(Fig.  1J) significantly increased the proliferation rate to 
a comparable level to NOTCH1-proficient CUTLL1 
CTRL cells (Fig. 1K). We then treated CUTLL1-wt cells 
with γ-secretase inhibitor (GSI; see supplemental meth-
ods) and observed, as expected, a strong impairment of 
cell viability (Fig. S2A). Contrariwise, EV_miR-17–92 
induced expansion of CUTLL1-wt cells (p < 0.01; Stu-
dent’s T-test; Fig. 2A) and, importantly, were able to res-
cue the GSI-induced phenotype in T-ALL cells (Fig. 2A). 
Similar results were obtained by using cells from two 
independent clones of T-ALL patient-derived xenografts 
(PDX) (Fig. S2B). Of note, using a known NOTCH1-
dependent miRNA i.e. the miR-223-3p (Table S1; [24, 
25]) we obtained comparable results in vitro (Fig. S2C-E). 
Finally, leukemia cells of M71 and H3255 PDX lines were 
transduced with lentiviruses encoding miR-17–92 cluster 
or empty vector (EV) as control and subsequently trans-
planted into immunocompromised (NSG) mice. In line 
with all previous results, we observed that miR-17–92 
transduced human cells indeed rescued the GSI-induced 
phenotype in T-ALL PDXs (Fig. 2A-B).

Taken together, such results showed, for the first time, 
the ability of sEV_miR-17–92 to propagate molecu-
lar information among T-ALL cells which was able to 
restore, at least in part, a defective NOTCH1 signalling 
pathway.

Lastly, we dissected the molecular function of miR-
17–92 cluster in the realm of NOTCH1-driven T-ALL. 
We reasoned that NOTCH1 signalling can be general-
ized in two main routes: Path-A) the ‘canonical’ tran-
scriptional output of NOTCH1 intracellular domain 

(NCID) (Fig.  2C); Path-B) the transcriptional output 
controlled by NOTCH1 through miR-17–92 (Fig.  2C). 
High-throughput gene expression profiling of CUTLL1 
cells ± miR-17–92, and GSI/mock treated (Fig.  2D; see 
methods) followed by quantitative trait analysis (see 
methods) identified two transcriptional gene modules, 
i.e. Mod-A (N = 966 genes) and Mod-B (N = 765 genes), 
which differ in terms of transcriptional regulation and 
are both dependent to GSI treatment yet indifferent to 
rescued miR-17–92 expression (i.e., Mod-A; Fig.  2D; 
see methods), or reverted (i.e., Mod-B Fig.  2D) (Table 
S2). Such results confirmed our hypothesis of a bipar-
tite NOTCH1 signalling transcriptional output (Fig. 2C). 
Notably, MSigDB analysis of Mod-B gene sets revealed a 
strong and significant enrichment (FDR q-value < 0.0001) 
of predicted miR-17–92-targeted transcripts (Table S3; 
see methods) further confirming the regulatory function 
of the miR-17–92 cluster in Mod-B. Furthermore, IPA 
software (see methods) revealed that Mod-A comprised 
canonical NOTCH-signalling genes (e.g., NOTCH2-
4, c-MYC, CTNNB1, GATA1-3, etc.) (Fig. S3A) while 
Mod-B was enriched in gene involved in prolifera-
tion (CDKN2A, CCNE1, E2F3, E2F6, RBL1), stemness 
(FOXM1, TCF4) and cancer (ETS1, RELA, NFE2L2) (Fig. 
S3B). Intriguingly, when we used Mod-A and Mod-B 
gene sets to stratify an external cohort of human T-ALL 
(i.e., the Liu et  al. cohort, N = 261; Table S4; [26]), we 
observed that Mod-B gene set hallmarks T-ALLs par-
ticularly enriched in the Early T-cell precursor (ETP) and 
pre-/post-cortical subtypes, with a higher post-therapeu-
tic minimal residual disease (MRD), and blast count in 
the bone marrow, that are all characteristics of an adverse 
outcome [27–29](Fig. 2E-F; Table S5).

Next, we performed single-cell RNA sequencing of pri-
mary cells, derived from T-ALL patients (N = 2), with-
out any expansion in  vivo into immunocompromised 

Fig. 2 Insights in biological and molecular functions of miR-17–92 cluster in T-ALL. A Schematic diagram of the approach used for PDX T-ALLs 
transduced with lentiviral constructs encoding miR-17–92 cluster or empty as a control (Empty V.) and cultured for 3 days on MS5-DL1 feeders. 
Transduced (GFP +) cells were then sorted with FACS and transplanted into immunodeficient NSG recipient mice, which were subsequently 
treated with DAPT γ-secretase inhibitor (1 mg/mouse) or dimethyl sulfoxide (DMSO), both delivered by intraperitoneal injection at days 4 and 8 
post-transplant. B Flow cytometry analysis of GFP + CD45 + alive cells in peripheral blood, bone marrow or spleen from transplanted recipient 
mice treated as describe in (A). Y-axes, percentage of GFP + cells. X-axes, experimental conditions. Significance analysis was performed by Mann–
Whitney U test. C Graphical representation of canonical (Mod-A) and of miR-17–92 modulated NOTCH1-signalling pathway (Mod-B). D Hierarchical 
clustering analysis of Mod-A and Mod-B gene expression profile in the various experimental conditions (i.e., ± GSI; miR-17–92 OE or empty vector). 
Main clusters of genes are also indicated as GSI-UP/GSI-DOWN (Mod-A) or miR-UP/miR-DOWN (Mod-B). Colours are as per the legend. On top, Venn 
diagram showing Mod-A/B number of genes and relative overlapping. E Percentage distribution of ‘ETP status’ and ‘Maturation stage’ of T-ALLs 
in the Liu et al. cohort (n = 261) stratified according to ssGSEA using Mod-A (n = 123) and Mod-B (n = 138) gene sets. ETP, Early T-cell Precursor. 
P-values were computed by chi-square test. F Box-plots show the levels of MRD (at 29 days) and BMA of blasts (at 8 days) in T-ALLs the Liu et al. 
cohort (n = 261) stratified as in (D). MRD, Minimal Residual Disease. BMA, Bone Marrow Aspirates. G t-SNE plot of scRNAseq data on cell subsets 
of PDX from T-ALL patients. Colours are as per the legend. H Hierarchical clustering analysis of Enrichment Scores from GSEA using the Mod-A 
(GSI-UP/DOWN) and Mod-B (miR-UP/miR-DOWN) gene sets in the T-ALL cell subsets profiled by scRNAseq as in (G). I Distributions of enrichment 
of biological functions which were identified by GSEA using scRNA-expression profiles, in clusters of T-ALL cell subsets as in (H). The higher the size 
of bubbles the more significant is the enrichment of a particular biofunction. Colors of bubbles indicate the magnitude of normalized enrichment 
scores (NES) and are as per the legend

(See figure on next page.)
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mice. Using the Phenograph algorithm [30], we identi-
fied several distinct cell subsets (n = 11) (Fig. 2G). Gene 
set enrichment analysis (GSEA) using Mod-A and -B and 
hierarchical clustering analysis revealed three main clus-
ters grouping T-ALL cell subsets which shared similar 
pattern of enrichment scores (ES) (Fig.  2H). In particu-
lar, CL2 contains cell subsets contributed by both two 
patients (Fig. S2F-G) with coherent expression trend of 
both Mod-A and -B as defined in Fig. 2D, which is a hall-
mark of activity of NOTCH1 signalling pathway. Indeed, 
GSEA using Hallmark gene sets (see methods) confirmed 
that these CL2-cell subsets were significantly character-
ized by mechanisms involved in proliferation and metab-
olism (Fig. 2I), which further show how both canonical’ 
NCID signalling (Mod-A) and NOTCH1 miR-17–92 
mediated signalling (Mod-B) can contribute to Notch1-
related phenotypes and coexist in the same T-ALL cell 
subsets.

Our findings shed new light on composite interac-
tions between sEV-miRs, Notch signalling and cellular 
plasticity that characterize the tumor heterogeneity of 
T-ALL and promote relapsed/refractory cell subsets of 
T-cell leukemias. In this scenario, further investigations 
are needed to explore such mechanisms in T-ALL with 
the final intent of offering more efficient therapies target-
ing diverse oncogenic states and microenvironments that 
support aggressive tumor cells.

Materials and methods
For extensive details on all methodologies see online 
Supplemental Material and Methods.

Human samples
The institutional ethical committees approved this study 
(registration number: N91/CE), and informed consent 
was obtained from all patients enrolled.

Profiling by TaqMan Human MicroRNA Arrays
Expression levels of 754 miRNAs were quantified using 
the TaqMan Human MicroRNA Array A + B Card Set 
v3.0 (Applied Biosystems, Foster City, CA).

Genome‑wide expression profiling
Gene expression profiling was performed using the Gene-
Chip® Human Clarion S Array (Thermo Fisher Scientific) 
including more than 210,000 distinct probes representa-
tive of > 20,000 well-annotated genes (hg19; Genome Ref-
erence Consortium Human Build 37 (GRCh37)).

Single cell RNA‑sequencing (scRNA‑Seq)
Whole transcriptome analysis at single cell level was 
performed on FACS-sorted primary T-ALL cells using 

the BD Rhapsody Single-Cell Analysis System (BD, 
Biosciences).

Data set availability
The normalized (U6) data for miRNA can be found in 
Table S1 while mRNA expression data can be accessible 
at NCBI GEO (GSE193482) and SRA (PRJNA784728 for 
scRNA-Seq data). 
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