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Abstract 

Background Accumulated evidence highlights the significance of the crosstalk between epigenetic and epitran-
scriptomic mechanisms, notably 5-methylcytosine (5mC) and  N6-methyladenosine  (m6A). Herein, we conducted a 
widespread analysis regarding the crosstalk between 5mC and  m6A regulators in hepatocellular carcinoma (HCC).

Methods Pan-cancer genomic analysis of the crosstalk between 5mC and  m6A regulators was presented at transcrip-
tomic, genomic, epigenetic, and other multi-omics levels. Hub 5mC and  m6A regulators were summarized to define 
an epigenetic and epitranscriptomic module eigengene (EME), which reflected both the pre- and post-transcriptional 
modifications.

Results 5mC and  m6A regulators interacted with one another at the multi-omic levels across pan-cancer, includ-
ing HCC. The EME scoring system enabled to greatly optimize risk stratification and accurately predict HCC patients’ 
clinical outcomes and progression. Additionally, the EME accurately predicted the responses to mainstream therapies 
(TACE and sorafenib) and immunotherapy as well as hyper-progression. In vitro, 5mC and  m6A regulators coopera-
tively weakened apoptosis and facilitated proliferation, DNA damage repair, G2/M arrest, migration, invasion and 
epithelial-to-mesenchymal transition (EMT) in HCC cells. The EME scoring system was remarkably linked to potential 
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extrinsic and intrinsic immune escape mechanisms, and the high EME might contribute to a reduced copy number 
gain/loss frequency. Finally, we determined potential therapeutic compounds and druggable targets (TUBB1 and 
P2RY4) for HCC patients with high EME.

Conclusions Our findings suggest that HCC may result from a unique synergistic combination of 5mC-epigenetic 
mechanism mixed with  m6A-epitranscriptomic mechanism, and their crosstalk defines therapeutic response and 
pharmacogenomic landscape.

Keywords Hepatocellular carcinoma, 5-methylcytosine, N6-methyladenosine, Therapeutic response, 
Pharmacogenomic landscape, Multi-omics

Background
Liver cancer, of which 90% are hepatocellular carci-
noma (HCC), is the seventh most frequent cancer 
globally, with 905,677 new diagnosed cases (4.7%) and 
830,180 (8.3%) new death cases globally according to 
the GLOBOCAN 2020 statistics [1]. Most HCC cases 
arise in the context of chronic liver disease or cirrho-
sis, the most common cause of which is non-alcoholic 
fatty liver disease, alcohol-related liver disease, and 
hepatitis B virus (HBV)/hepatitis C virus (HCV) infec-
tion [2]. HCC management is defined by the Barcelona 
Clinic Liver Cancer (BCLC) staging system that bases 
on tumor burden, liver function, physical status, etc. [3]. 
Hepatectomy, ablation and liver transplantation are rec-
ommended for patients at the very early stage or early 
stage, with transarterial chemoembolization (TACE) for 
those at the intermediate stage, and systemic therapy for 
those at the advanced stage with adequate liver function 
and good performance status [3]. Despite the promising 
treatment options, prognostic outcomes of HCC are still 
bleak due to the high risk of recurrence and metasta-
sis, with a 5-year survival rate of no more than 12% for 
advanced HCC [4]. Sorafenib, a tyrosine kinase inhibi-
tor with angiogenic and proliferative effects, is widely 
applied in the systemic therapy of advanced HCC. How-
ever, many HCC patients are not responsive to sorafenib 
or become resistance within 6 months. Immuno-oncol-
ogy has become a paradigm shift for the treatment of 
human cancers, including HCC. The IMbrave150 clini-
cal trial showed that PD-L1 inhibitor (atezolizumab) in 
combination with VEGF inhibitor (bevacizumab) pre-
sented the superior progression-free survival (PFS) and 
overall survival (OS) in comparison to sorafenib among 
unresectable HCC patients [5]. Although the com-
bined immunotherapy has been approved as the front-
line therapeutic option for advanced HCC patients, the 
response rate remains ~ 30%. Due to the wide hetero-
geneity of risk factors and pathogenesis of HCC, estab-
lished strategies for prediction and prognostication 
remain limited [6]. Hence, it is critical to ascertain new 
methods to improve the early diagnosis of HCC and to 

predict treatment response and survival in patients with 
established HCC.

Cellular DNA and RNA undergo various forms of 
methylation. Methylation of DNA and RNA, especially 
5-methylcytosine (5mC) and  N6-methyladenosine  (m6A) 
modifications exert key roles in a variety of biological 
processes [7]. DNA methylation is a well-known and crit-
ical epigenetic modification. Studies have revealed that 
5mC is the most common type of DNA modification in 
eukaryotes [8].  m6A is the most abundant form of mRNA 
modification in eukaryotes, which regulates several pro-
cesses of mRNA metabolism, especially mRNA transla-
tion and degradation [9]. Accordingly, several 5mC and 
 m6A machines have been well identified. Based on the 
diverse functions of 5mC and  m6A machines, 5mC and 
 m6A modifications have been shown to impact many 
fundamental biological processes, including HCC [10, 
11]. Rapidly accumulating evidence demonstrates the sig-
nificant crosstalk between RNA methylation and DNA 
epigenetic mechanisms in plants [12]. However, there 
is a lack of knowledge regarding the crosstalk between 
5mC and  m6A regulators in HCC. Thus, the present work 
aimed to determine the crosstalk of 5mC and  m6A in 
HCC, and develop an epigenetic and epitranscriptomic 
module eigengene (EME) reflecting 5mC and  m6A modi-
fication levels that enabled to define clinical outcomes, 
therapeutic response and pharmacogenomic landscape.

Materials and methods:
Patient cohort for multi‑omics profiles
The overall design of our study is illustrated in Fig.  1. 
Normalized RNA-seq data on the basis of the Illumina 
HiSeq platform were obtained for pan-cancer types 
from the Cancer Genome Atlas (TCGA) through the 
Xena browser (https:// xenab rowser. net/). Raw RNA-seq 
data were quantified with the root square error method 
(RSEM), and log2 transformed (RSEM + 1). We ret-
rospectively enrolled independent HCC cohorts from 
TCGA (https:// portal. gdc. cancer. gov/), Gene Expression 
Omnibus (GEO; https:// www. ncbi. nlm. nih. gov/ gds/) and 
ICGC (https:// dcc. icgc. org/) databases, including TCGA-
LIHC, GSE149614 [13], GSE6764 [14], GSE15654 [15], 

https://xenabrowser.net/
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Page 3 of 25Tian et al. Molecular Cancer            (2023) 22:5  

GSE104580 and LIRI-JP. Raw read counts from TCGA-
LIHC were converted to transcripts per kilobase mil-
lion (TPM) values that were more comparable between 
samples based on the GENCODE annotation (version 23; 
https:// www. genco degen es. org/). Microarray data from 
the Affymetrix® platform were pre-processed through 
robust multiarray averaging (RMA) algorithm from affy 
package [16]. Gene expression profiles of LIRI-JP cohort 
comprised 212 Japanese HCC patients primarily infected 

with HBV/HCV from the Illumina platform. Raw counts 
were also converted to TPM values. This study collected 
a total of 21 5mC and 20  m6A regulators from previously 
published literature. TCGA somatic variants in Muta-
tion Annotation Format (MAF) were also collected and 
visualized with maftools package [17]. GISTIC 2.0 soft-
ware was used to identify genes that exhibited significant 
amplification or deletion [18]. The genomic alterations 
were quantified through calculating the fractions of 

Fig. 1 The overall workflow of this study

https://www.gencodegenes.org/
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genome alteration/gained/lost (FGA/FGG/FGL), defined 
as the ratio of total CNV/amplification/deletion bases 
to all bases, respectively. Immune subtypes (C1, wound 
healing; C2, interferon gamma (IFN-γ) dominant; C3, 
inflammatory; C4, lymphocyte depleted; C5, immu-
nologically quiet; and C6, transforming growth factor 
beta (TGF-β) dominant) [19], aneuploidy score, cancer 
testis antigen (CTA), homologous recombination defi-
ciency (HRD), and intratumor heterogeneity were col-
lected from TCGA dataset or the studies based on TCGA 
dataset.

The differential expression of 5mC/m6A regulators in 
tumors versus paired normal tissues; heterozygous and 
homozygous copy number variation (CNV), Pearson 
correlation between gene expression and CNV; the dif-
ferential methylation in tumors versus paired normal 
tissues, the associations of methylation and expression, 
and prognosis influenced by methylation; spearman cor-
relation analysis of the expression of 5mC/m6A regula-
tors with pathway activity (activation or inhibition); and 
small molecule/drug sensitivity (half-maximal inhibitory 
concentration (IC50)) were analyzed via the Gene Set 
Cancer Analysis (GSCALite) web server based on the 
multi-omics data from 11160 samples across 33 TCGA 
cancer types, 746 drug sensitivity data from the Genom-
ics of Drug Sensitivity in Cancer (GDSC) and the Cancer 
Therapeutics Response Portal (CTRP), and normal tissue 
expression data of 11688 samples from the GTEx [20].

Development of an epigenetic/epitranscriptomic module 
eigengene (EME) scoring system
5mC/m6A regulators were uploaded to the STRING 
online database (https:// string- db. org/) [21], and a pro-
tein–protein interaction (PPI) network was exported. 
To select hub 5mC/m6A regulators, the 41 5mC/m6A 
regulators were used as a module utilizing weighted gene 
co-expression network analysis (WGCNA) [22]. The 
summary expression level of the module was defined as 
the module eigengene via moduleEigengenes function. 
Then, the module membership (i.e., module eigengene-
based intramodular connectivity) was computed as the 
association between the expression level of a given 5mC/
m6A regulator and the module eigengene. Hub 5mC/
m6A regulators were selected as those that had a module 

membership > 0.7. The overall expression value of the hub 
5mC/m6A regulators was computed as the EME score. 
In accordance with the optimal cutoff of EME score, the 
patients were divided into low or high EME score group.

Functional enrichment analysis
Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) of hub 5mC/m6A regulators were 
analyzed utilizing clusterProfiler package [23]. The hall-
mark gene sets were acquired from the Molecular Signa-
tures Database (http:// softw are. broad- insti tute. org/ gsea/ 
msigdb) [24]. Gene set variation analysis (GSVA) was 
adopted to ascribe signaling pathway variation scores to 
the gene sets, thus assessing the biological significance 
[25]. Gene Set Enrichment Analysis (GSEA) was also 
used to determine whether a defined gene set showed 
statistically significant between two groups [26].

Establishment of a nomogram
Independent risk factors derived from multivariate Cox 
regression analysis, were selected to establish a nomo-
gram for predicting the likelihood of OS via rms pack-
age (version 6.2–0). Calibration curves were drawn to 
assess calibrating capacity. Area under the time‐depend-
ent receiver operating characteristic (ROC) curves (time‐
dependent area under the curve (AUC)) and concordance 
index (C-index) were computed to assess discriminative 
capacity. The clinical benefits and utility of the nomo-
gram were observed at different threshold probabilities 
by implementing decision curve analysis.

Estimation of tumor‑infiltrating immune cells
To ensure the reproducibility of the findings, six algo-
rithms were utilized to estimate immune cell infiltrations, 
comprising single-sample gene set enrichment analysis 
(ssGSEA), TIMER [27], quanTIseq [28], MCP-counter 
[29], CIBERSORT [30], and CIBERSORT-ABS [30].

Therapeutic response analysis
Immunotherapy response was predicted via Immune 
Cell Abundance Identifier (ImmuCellAI) algorithm [31]. 
Jiang et al. proposed a signature of T cell dysfunction and 

(See figure on next page.)
Fig. 2 Landscape of the crosstalk between 5mC and  m6A regulators in HCC. A Heatmap showing the differential expression profiles of 5mC/m6A 
regulators in TCGA HCC and normal tissues. B, C Mutations of 5mC/m6A regulators on the basis of TCGA-LIHC cohort. Each column represents each 
sample, and each row represents each 5mC/m6A regulator. Mutation type is marked by unique color. D, E The CNV features of 5mC/m6A regulators 
in the TCGA-LIHC cohort. The frequencies of copy number gain (blue) and loss (red) are shown. F The PPI network of  m6A (upper) and 5mC (lower) 
regulators. G Correlations between 5mC and  m6A regulators at the transcriptomic levels in HCC. H, I Western blot for the expression of DNMT1 and 
METTL3 in L-02, HepG2 and Huh-7 cells. J-O Western blot for the expression of DNMT1 and METTL3 in the presence or absence of (J-L) si-DNMT1 or 
(M–O) si-METTL3 in HepG2 and Huh-7 cells. **p-value < 0.01; ***p-value < 0.001; ****p-value < 0.0001

https://string-db.org/
http://software.broad-institute.org/gsea/msigdb
http://software.broad-institute.org/gsea/msigdb
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Fig. 2 (See legend on previous page.)



Page 6 of 25Tian et al. Molecular Cancer            (2023) 22:5 

exclusion (TIDE) that may accurately estimate immuno-
therapy response [32]. The response to sorafenib (IC50) 
was predicted using pRRophetic package based on gene 
expression levels [33]. RNA-seq and clinical informa-
tion of 58 patients who received anti-CTLA4 or anti-
PD1 immunotherapy were collected from the GSE91061 
cohort [34]. The predictive efficacy of the EME was veri-
fied in the cohort.

Cell culture, and RNA interference
Human normal hepatocytes (L-02), and two human 
primary HCC cell lines (HepG2/Huh-7) were cul-
tured in Dulbecco’s modified Eagle’s medium (DMEM; 
SH30243.01B; Hyclone, USA) supplemented with 10% 
fetal bovine serum (FBS; SH30084.03; Hyclone), 100 mg/
mL streptomycin, and 100 unit/mL penicillin at 37 °C in 
5%  CO2. Cells at 80% confluence were transfected with 
siRNA oligonucleotides via Lipofectamine 3000 (Invit-
rogen, USA). After 24-h incubation, they were harvested 
for subsequent analyses.

Protein extraction and western blotting
Protein lysates of cells were extracted with RIPA lysis 
buffer (BL504A; Biosharp, China). The concentration of 
the extracted protein was examined with bicinchoninic 
acid kit (BL521A; Biosharp). Afterwards, equal volume of 
protein was separated via 8 ~ 12% sodium dodecyl sulfate 
(SDS)-PAGE gels (SW109-01; SEVEN Biotech, China) 
and transferred onto polyvinylidene fluoride membranes. 
The membranes were blocked in blocking buffer and 
incubated with primary antibody against DNMT1 (1:500; 
24206–1-AP; Proteintech, China), METTL3 (1:500; 
15073–1-AP; Proteintech), TET3 (1:500; ab139311; 
Abcam, USA), YTHDC1 (1:500; ab122340; Abcam), 
TUBB1 (1:1000; ab108342), P2RY4 (1:500; ab180718) 
or GAPDH (1:5000; 10494–1-AP; Proteintech) over-
night at 4 °C. Thereafter, the membranes were incubated 
with horseradish peroxidase (HRP)-conjugated second-
ary antibody (1:5000; SA00001-2; Proteintech) for 1 h at 
room temperature. The development of protein bands 
was implemented with enhanced chemiluminescence 
method (BMU101-CN; Abbkine, China), and grey value 

was quantified utilizing Image J (National Institutes of 
Health, USA), with GAPDH as an internal reference.

Cell proliferation detection
For colony formation assay, cells were seeded in 6-well 
plates (4 ×  103 cells / well) for two weeks. After fixation, 
colonies were dyed utilizing 0.1% crystal violet solution 
(21155722; Biosharp). 5-Ethynyl-2′-deoxyuridine (EdU) 
staining was conducted with BeyoClick™ EdU-594 cell 
proliferation assay kit (C0078S; Beyotime, China) follow-
ing the manufacturer’s instructions. The percentage of 
EdU-positive cells was calculated.

Terminal‑deoxynucleoitidyl transferase mediated nick end 
labeling (TUNEL) staining
TUNEL staining was carried out utilizing TUNEL apop-
tosis kit (KTA2011; Abbkine) following the manufac-
turer’s specifications. The percentage of TUNEL-positive 
cells was also calculated.

Flow cytometry for cell cycle analysis
Cells were seeded in six-well plates (1 ×  105 cells / well). 
After 24  h, the cells were harvested after trypsinization 
and washed with ice-cold PBS. The cells were re-sus-
pended in 300 μL PBS plus 5% bovine serum albumin 
(BSA; V900933; Sigma, USA) and fixed with 700 μL etha-
nol at 4  °C for 24 h after removing the supernatant fol-
lowing centrifugation. Next, the cells were washed with 
PBS and centrifuged to discard the ethanol, and re-sus-
pended in 100 μL PBS plus 1 μL ribonuclease A (10 mg/
μL). After incubation for half an hour, the cells were 
stained with 50 μL propidium iodide at 37 °C for half an 
hour. Cell cycle distribution was evaluated with BD Bio-
sciences FACSCalibur flow cytometry system and ana-
lyzed with FlowJo software (BD Biosciences, USA).

Wound healing
5 ×  104 cells were planted onto 6-well plates. When 
the confluence was up to 90%, the cell monolayer was 
scratched with a 200 μL pipette tip. After removing 
detached cells, the remaining cells were cultivated in 
medium without FBS. Images were investigated at 0, and 

Fig. 3 Development of an EME scoring system for reflecting 5mC/m6A modification status and predicting clinical outcomes in HCC. A Overview 
of the hub 5mC/m6A regulators and the EME scoring system. B The distribution of EME and clinical parameters across HCC patients. C The 
expression of the hub 5mC/m6A regulators along the EME. D PCA for the dissimilarity between the high and low EME subsets according to the 
expression matrix of the hub 5mC/m6A regulators. E Kaplan–Meier OS analysis for subgroup patients stratified by the EME. F ROCs of the EME 
for risk prediction of 1-, 3- and 5-year OS. G Univariate and multivariate Cox regression analysis of the EME and clinicopathological parameters. H 
Generation of a nomogram combining the EME with other independent clinicopathological factors. I Calibration curves for comparison of the 
nomogram-predicted and actual survival probabilities. The x-axis denotes the nomogram-predicted survival probability, and the y-axis denotes the 
actual survival probability. The diagonal line indicates the perfect prediction by an ideal model. J ROC curves of the nomogram for risk prediction. K 
Decision curve analysis of survival benefits

(See figure on next page.)
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Fig. 3 (See legend on previous page.)



Page 8 of 25Tian et al. Molecular Cancer            (2023) 22:5 

24 h and then imaged. Cellular migration was quantified 
utilizing Image J software.

Transwell assays
For migration assay, 5 ×  104 cells were suspended in 
100 μL serum-free DMEM and planted onto the upper 
chamber of Transwell (8.0  μm) inserts. Meanwhile, 
700 μL DMEM supplemented with 10% FBS was added 
to the lower chamber in a 24-well plate. After 48-h 
incubation at 37 °C, the migrated cells were fixed by 4% 
paraformaldehyde (E672002; Sangon Biotech, China) 
and dyed with 0.1% crystal violet solution for 15  min. 
For invasion assay, chambers were uniformly covered 
with 60 μL Matrigel (354,234; BD Biosciences) diluted 
with DMEM (1:8). After 2-h incubation at 37  °C, cell 
suspension was planted onto the upper chamber, with 
700 μL DMEM supplemented with 10% FBS adding to 
the lower chamber. Finally, the invasive cells were fixed 
and dyed.

Immunofluorescence
After 4% paraformaldehyde fixation, 0.1% Triton X-100 
permeabilization, and 3% BSA blockade, HCC cells 
were incubated with primary antibody against β-catenin 
(1:100; 51,067–2-AP; Proteintech), E-cadherin (1:100; 
20,874–1-AP; Proteintech), or PD-L1 (1:100; 66,248–1-
Ig; Proteintech) at 4  °C overnight, followed by incuba-
tion with Alexa Fluor-conjugated secondary antibody. 
Nuclei were counterstained via DAPI (D9542; Sigma). 
Images were photographed under a fluorescence 
microscopy (Olympus, Japan) and analyzed with ImageJ 
software.

Single‑cell sequencing (scRNA‑seq) data
The scRNA-seq count matrix of 21 HCC samples was 
downloaded from the GSE149614 cohort [13]. Qual-
ity control was implemented with Seurat package [35]. 
Single cells with > 20% mitochondrial UMI counts as 
low-quality cells were removed. Batch effects were 
eliminated utilizing Integrate Data function. The top 15 
principal components (PCs), and the top 1,500 highly 
variable genes, were selected. Influence of the percent-
age of mitochondrial UMI counts were removed with 
ScaleData function. Afterwards, cell populations were 
clustered with FindClusters function, and visualized 

with t-distributed stochastic neighbor embedding 
(t-SNE). The markers of each cell cluster were deter-
mined with FindAllMarkers function. The main cell 
types were determined on the basis of markers acquired 
from the CellMarker database (http:// biocc. hrbmu. edu. 
cn/ CellM arker/ or http:// bio- bigda ta. hrbmu. edu. cn/ 
CellM arker/) [36].

Cancer cell line data
We gathered drug sensitivity data of human cancer cell 
lines (CCLs) from the CTRP (https:// porta ls. broad insti 
tute. org/ ctrp) and PRISM (https:// depmap. org/ portal/ 
prism/) datasets that were acquired from the Cancer 
Cell Line Encyclopedia (CCLE) project (https:// porta 
ls. broad insti tute. org/ ccle/). Transcriptome data of the 
CCLE were employed for CTRP and PRISM analyses. 
The CERES score that can measure the dependency 
of genes in specific CCLs were downloaded from the 
dependency map (DepMap) portal (https:// depmap. 
org/ portal/), which was utilized for measuring the gene 
dependency in specific CCLs. Potential working mech-
anisms of the identified drugs were analyzed based on 
the Connectivity Map (CMap) database (https:// clue. io) 
[37].

Statistical analysis
Data processing, analysis, visualization, etc. were con-
ducted with R packages (version 3.6.3; https:// www. 
bioco nduct or. org/) or Graphpad Prism software (ver-
sion 8.0.1; https:// www. graph pad. com/). Differences 
between two groups were evaluated with student’s t or 
Mann–Whitney U test. One-way analysis of variance 
(ANOVA) or Kruskal–Wallis test was conducted for 
multiple comparisons. Fisher’s exact test was adopted 
for analyzing categorical data. Correlation between var-
iables was determined through Pearson or Spearman 
test. Survival analysis was implemented by Kaplan–
Meier approach and log-rank test through survival 
and survminer packages. Uni- and multivariable Cox 
regression models were built to calculate hazard ratios 
(HRs) and identify independent prognostic parameters. 
ROC curves were plotted using survivalROC package. 
Principal component analysis (PCA) was utilized to 

(See figure on next page.)
Fig. 4 The excellent performance of the EME scoring system in predicting HCC progression. A Kaplan–Meier DSS analysis for subgroup patients 
stratified by the EME. B ROC curves of the EME for risk prediction of 1-, 3- and 5-year DSS. C Kaplan–Meier PFS analysis for subgroup patients 
stratified by the EME. D ROC curves of the EME for risk prediction of 1-, 3- and 5-year PFS. E–H Validation of OS outcomes of high and low EME 
subgroup patients and the prediction performance of the EME by ROC curves in the (E, F) LIRI-JP and (G, H) GSE15654 cohorts. I Distribution of the 
EME among normal liver, early-stage HCC, and advanced-stage HCC in the GSE6764 dataset. J-L ROC curves of the EME for distinguishing normal 
liver, early-stage HCC, and advanced-stage HCC in the GSE6764 dataset

http://biocc.hrbmu.edu.cn/CellMarker/
http://biocc.hrbmu.edu.cn/CellMarker/
http://bio-bigdata.hrbmu.edu.cn/CellMarker/
http://bio-bigdata.hrbmu.edu.cn/CellMarker/
https://portals.broadinstitute.org/ctrp
https://portals.broadinstitute.org/ctrp
https://depmap.org/portal/prism/
https://depmap.org/portal/prism/
https://portals.broadinstitute.org/ccle/
https://portals.broadinstitute.org/ccle/
https://depmap.org/portal/
https://depmap.org/portal/
https://clue.io
https://www.bioconductor.org/
https://www.bioconductor.org/
https://www.graphpad.com/
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Fig. 4 (See legend on previous page.)



Page 10 of 25Tian et al. Molecular Cancer            (2023) 22:5 

Fig. 5 The EME scoring system accurately predicts the responses to mainstream therapies (TACE and sorafenib). A Comparison of the EME 
between subgroup patients stratified by clinicopathological parameters. B Difference in the EME between TACE responders and non-responders 
in the GSE104580 cohort. C ROC curves of the EME for evaluating the performance in predicting TACE response. D Difference in the EME between 
sorafenib responders and non-responders in the GSE109211 cohort. E ROCs of the EME for assessing the prediction value of the EME in sorafenib 
response. F Difference in the IC50 value of sorafenib between the high- and low-EME patients. G Heatmap of the expression of several sorafenib 
targets in the high- and low-EME patients. H, I The genomic alterations of sorafenib response-related genes in the high- and low-EME patients. 
Percentage of mutations is presented on the right panel. Mutation burden is exhibited as a bar plot on the top. Mutation type is displayed in the 
bottom. *p-value < 0.05; ****p-value < 0.0001
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assess the classification accuracy. P-value < 0.05 indi-
cated statistical significance.

Results
Multi‑omics analysis of the crosstalk between 5mC 
and  m6A regulators across pan‑cancer
This study collected 21 and 20 genes that function as 
regulators of 5mC-epigenetic and  m6A-epitranscriptomic 
mechanisms. The genome-wide omics data of the two 
regulator classes were analyzed in 33 cancer types. Firstly, 
we summarized the levels of 5mC and  m6A regulators 
across pan-cancer. Most regulators exhibited the co-
occurring genetic expression levels in each cancer type 
(Supplementary Fig.  1A). Additionally, the expression 
levels of the two regulator classes were comparable across 
33 cancer types. Through the GSCALite web server, we 
investigated the genetic alterations of 5mC and  m6A 
regulators across pan-cancer. 5mC and  m6A regulators 
presented comparable genetic alterations across 33 can-
cer types, and the remarkable co-occurrence of genetic 
alterations was found between the two regulator classes 
(Supplementary Fig.  1B-E). We also investigated the 
DNA methylation features of 5mC and  m6A regulators. 
Across most cancer types, there was a negative correla-
tion between the mRNA expression and methylation for 
the same regulator (Supplementary Fig. 2A, B). Interest-
ingly, the two regulator classes exhibited the comparable 
methylation levels across different cancer types, and their 
differential methylation status was correlated to survival 
outcomes (Supplementary Fig.  2C-F). Genomic aberra-
tions affect therapeutic responses and can be potentially 
applied for drug screening. We observed the significant 
correlations between drug sensitivity and mRNA expres-
sion of most 5mC and  m6A regulators (Supplementary 
Fig. 3A, B).

Landscape of the crosstalk between 5mC and  m6A 
regulators in HCC
We further evaluated the differential expression profil-
ing of 5mC and  m6A regulators in HCC using available 
tumor and normal tissue expression data. Almost all 
5mC and  m6A regulators were remarkably up-regulated 
in HCC than normal tissues (Fig. 2A), which reflected 
the critical significance of epigenetic and epitranscrip-
tomic regulation mechanisms in HCC. As illustrated 
in Fig.  2B and C, genetic mutations of 5mC and  m6A 
regulators were not frequent in HCC. As for CNV 

characteristics, a majority of 5mC and  m6A regulators 
displayed prevalent copy number amplifications or 
deletions (Fig.  2D, E). The above analysis revealed the 
transcriptomic and genomic characteristics of 5mC and 
 m6A regulators in HCC. Further investigation showed 
that the 5mC and  m6A regulators interacted with one 
another frequently (Fig. 2F). Moreover, at the transcrip-
tomic levels, positive interactions between 5mC and 
 m6A regulators were observed (Fig.  2G). For example, 
DNMT1 and METTL3 were both highly expressed in 
two HCC cell lines (HepG2 and Huh-7) than normal 
hepatocytes L-02 (Fig.  2H, I). Silencing DNMT1 or 
METTL3 significantly attenuated the expression of the 
other in HepG2 and Huh-7 cell lines (Fig. 2J-O). Simi-
larly, it was proven that the expression of TET3 and 
YTHDC1 influenced each other in HCC cells (Supple-
mentary Fig. 4A-F).

Development of an EME scoring system for reflecting 5mC/
m6A modification status in HCC
Pan-cancer survival analysis showed that 5mC and 
 m6A regulators played similar roles in OS outcomes of 
pan-cancer (Supplementary Fig.  5A). Most regulators 
served as risk factors of HCC patients’ OS (Supplemen-
tary Fig. 5B). To determine the hub regulators involved 
in 5mC and  m6A modifications in HCC, we employed 
WGCNA to select hub 5mC/m6A regulators that exhib-
ited the remarkably high correlations, which can be 
explained by their crosstalk. Functional enrichment 
analysis proved the key roles of hub 5mC/m6A regu-
lators in epigenetic and epitranscriptomic processes 
(Supplementary Fig.  6A-D). An EME scoring system 
was developed to reflect both the 5mC-epigenetic and 
 m6A-epitranscriptomic modification levels through cal-
culating the overall expression levels of hub 5mC/m6A 
regulators (Fig.  3A). According to the optimal cutoff 
value (0.004) of EMEs, TCGA-LIHC cohort was sepa-
rated into the high- and low-EME subsets (Fig. 3B, C). 
The t-SNE highlighted the distinct transcriptional pro-
gram for two subsets defined by hub 5mC/m6A regula-
tors (Fig. 3D).

The EME scoring system for risk stratification and OS 
outcomes of individual HCC patients
The clinical outcomes of high- and low-EME HCC 
patients remarkably varied. Patient with high EME had 

(See figure on next page.)
Fig. 6 5mC and  m6A regulators cooperatively weaken apoptosis and facilitate proliferation for HCC cells. A Heatmap of the associations between 
5mC/m6A regulators and the activity of tumorigenic pathways. B Heatmap illustrating the correlations of the EME score with the activity of 
tumorigenic pathways. C-E TUNEL staining for the apoptosis of HepG2 and Huh-7 cells with si-DNMT1 or/and si-METTL3. Bar, 20 μm. F–H The 
number of HCC cell colonies with si-DNMT1 or/and si-METTL3. I-K EdU staining for the proliferation of HCC cells transfected with si-DNMT1 or/and 
si-METTL3. Bar, 20 μm. Ns: no significance; *p-value < 0.05; **p-value < 0.01; ***p-value < 0.001; ****p-value < 0.0001
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shorter OS relative to those with low EME (Fig. 3E). To 
quantify the capacity of this scoring system to predict 
OS, ROC curves were generated. The 1-, 3-, and 5-year 
AUC values were 0.71, 0.63 and 0.64, respectively, imply-
ing that the scoring system performed well and had the 
excellent predictive ability (Fig.  3F). To examine the 
independence of the EME, uni- and multivariate cox 
regression analyses were implemented. After adjusting 
by common clinical parameters, the EME still exhibited 
a robust assessment capacity in OS (Fig. 3G). To further 
confirm the robustness and superiority of the EME, we 
implemented subgroup analysis according to age, gender, 
grade, stage, T stage, and HBV infection. In all subgroups, 
patients with high EME presented shorter OS than those 
with low EME (Supplementary Fig.  7A-L). Overall, the 
EME could greatly optimize risk stratification as well as 
accurately predict HCC prognosis.

To quantify the risk evaluation for individual HCC 
patients, a personalized scoring nomogram that com-
bined the EME with clinicopathological parameters 
(age and stage) was generated for predicting 1-, 3- and 
5-year OS probability (Fig. 3H). Based upon the calibra-
tion curves, the nomogram exhibited the excellent per-
formance in comparison to an ideal model (Fig. 3I). ROC 
curves also showed that the nomogram had the strong 
clinical significance for predicting OS (Fig.  3J). Moreo-
ver, the C-index was 0.668. In summary, the nomogram 
for OS had a considerable discriminative and calibrating 
capacity. The clinical benefits of the nomogram were also 
evaluated by decision curve analysis. In Fig. 3K, the nom-
ogram enabled to better predict 1-, 3-, and 5-year OS, 
because it added more net benefits for almost all thresh-
old probabilities.

The excellent performance of the EME scoring system 
in predicting HCC progression
Based on the robust association of the EME with OS, 
we hypothesized that it would have the same relation-
ships with disease-specific survival (DSS) and PFS. We 
found that the patients with low EME had a remarkable 
survival advantage, and the EME enabled to predict the 
DSS and PFS time (Fig. 4A-D). Aiming to verify the pre-
diction value of the EME, we enrolled the LIRI-JP and 
GSE15654 independent cohorts. High-EME patients’ OS 
was remarkably better; additionally, the EME exhibited 

the excellent predictive power for OS (Fig.  4E-H). The 
GSE6764 dataset was employed to evaluate whether the 
EME was associated with the pathological progression 
of HCC. As the disease progressed, the EME increased 
gradually (Fig.  4I). ROC curves demonstrated that the 
EME could accurately differentiate distinct pathological 
stages of HCC (Fig. 4J-L). Higher EME was found to be 
linked to advanced pathological grade and stage (Fig. 5A). 
Altogether, the EME can reflect the progression of HCC.

The EME scoring system accurately predicts the responses 
to mainstream therapies (TACE and sorafenib)
In addition to surgical resection, the mainstream thera-
pies against HCC mainly comprise TACE and sorafenib. 
We evaluated the capacity of the EME scoring system 
to predict the responses to TACE and sorafenib. In the 
GSE104580 cohort, TACE non-responders exhibited 
the higher EME than TACE responders (Fig.  5B). ROC 
curves were generated to reflect the predictive accu-
racy. The EME exhibited the high AUC value of 0.722 
(Fig.  5C), implying that the scoring system possessed 
the excellent performance in predicting the response to 
TACE. Next, we calculated the difference in the EME 
between sorafenib responders and non-responders in the 
GSE109211 dataset. As shown in Fig. 5D, we found that 
the EME score of sorafenib non-responders was higher 
than that of sorafenib responders. The AUC value was 
0.894 (Fig. 5E), demonstrating that the EME had the well 
accuracy in predicting the response to sorafenib. Further 
analysis using pRRophetic package showed that the low-
EME patients were more sensitive to sorafenib (Fig. 5F). 
Additionally, we found that several sorafenib targets 
(BRAF, RAF1, FLT1, KIT, FLT3, FLT4) had the higher 
expression in the high-EME patients (Fig. 5G). The higher 
mutation burden of sorafenib response-related genes was 
found in the low-EME patients (Fig. 5H, I).

5mC and  m6A regulators cooperatively weaken apoptosis 
and facilitate proliferation for HCC cells
Based on the relevance of the EME scoring system to 
HCC progression, we next explored the mechanisms by 
which the interplay between 5mC and  m6A regulators 
regulated HCC progression. We found that most 5mC 
and  m6A regulators were significantly correlated to tum-
origenic pathways (Fig. 6A). Furthermore, the EME score 

Fig. 7 5mC and  m6A regulators cooperatively enhance DNA damage repair and cell cycle progression in HCC. A Heatmap of the activity of 
the 50 well-defined biological states or processes in the high- and low-EME patients. B Associations between the EME and DNA damage repair, 
and cell cycle pathways. C Heatmap of the activity of DNA damage repair pathways in the high- and low-EME patients. D Associations between 
the EME and DNA damage repair pathways. E GSEA of DNA damage repair pathways for the high- and low-EME patients. F–H Flow cytometry 
for cell cycle distribution of HCC cells with si-DNMT1 or/and si-METTL3. Ns: no significance; *p-value < 0.05; **p-value < 0.01; ***p-value < 0.001; 
****p-value < 0.0001

(See figure on next page.)
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was positively linked with tumorigenic pathways (such 
as epithelial-to-mesenchymal transition (EMT), DNA 
damage, and apoptosis; Fig.  6B). Herein, we focused 
on the synergistic effect of 5mC regulator DNMT1 and 
 m6A regulator METTL3 on apoptosis and proliferation 
of HCC cells. TUNEL staining showed that apoptotic 
level of HCC cells was enhanced by si-DNMT1 or si-
METTL3 in HCC cells (Fig. 6C-E). Simultaneous inhibi-
tion of DNMT1 and METTL3 synergistically enhanced 
apoptosis in HCC cells. We also conducted colony forma-
tion assay and EdU staining to evaluate the proliferative 
capacity of HCC cells. It was found that si-DNMT1 or si-
METTL3 mitigated the proliferative capacity of HepG2 
and Huh-7 cells, and synergistic effect was observed 
when DNMT1 and METTL3 were simultaneously inhib-
ited (Fig.  6F-K). Above evidence implied that 5mC and 
 m6A regulators cooperatively weakened apoptosis and 
facilitated proliferation for HCC cells.

5mC and  m6A regulators cooperatively enhance DNA 
damage repair and cell cycle progression in HCC
DNA damage response is an important signaling pro-
cess regulating DNA repair, cell cycle arrest, and main-
taining genome homeostasis in response to endogenous 
and exogenous genotoxic stress. Evidence suggests that 
HCC cells display a strong DNA repair ability to over-
come DNA damage caused by treatment [38]. In Fig. 7A, 
B, we found that DNA damage repair, cell cycle-related 
pathways (G2M checkpoint, mitotic spindle, E2F, P53, 
MYC, PI3K Akt mTOR signaling, TGF-β signaling, etc.) 
exhibited the strong activation in the high EME patients, 
implying the cooperative effect of 5mC and  m6A regula-
tors on DNA damage repair and cell cycle progression. 
For this reason, we further analyzed the associations 
between the EME and different DNA damage repair 
signatures. Base excision repair, nonhomologous end 
joining, homologous recombination, mismatch repair, 
and Fanconi anemia were positively correlated to the 
EME (Fig. 7C, D), and these pathways were significantly 
enriched in the high EME group (Fig. 7E), implying that 
the crosstalk between 5mC and  m6A regulators might 
be functionally essential for DNA damage response. 
We examined the effects of knockdown of DNMT1 and 
METTL3 on cell cycle through flow cytometry. Com-
pared with knockdown of DNMT1 or METTL3 alone, 
we found that simultaneous inhibition of DNMT1 and 

METTL3 synergistically induced G2/M cell cycle arrest 
in HCC cells (Fig. 7F-H).

5mC and  m6A regulators synergistically accelerate 
migration, invasion and EMT of HCC cells
Further analysis showed that the EME was positively 
linked to EMT process (Fig. 8A-C). Wound healing and 
transwell assays showed that simultaneous inhibition of 
DNMT1 and METTL3 synergistically attenuated migra-
tion and invasion in HCC cells (Fig.  8D-L). Addition-
ally, simultaneous inhibition of DNMT1 and METTL3 
synergistically lowered the expression of β-catenin and 
enhanced the expression of E-cadherin both in HepG2 
and Huh-7 cells (Fig.  8M-R), implying the inactivation 
of EMT process. In summary, 5mC and  m6A regulators 
might synergistically accelerate HCC metastasis.

Correlation between the EME scoring system and potential 
extrinsic and intrinsic immune escape mechanisms in HCC
Immune surveillance is a key mechanism to prevent 
tumor development and progression. Extrinsic factors 
(immune cells) and intrinsic factors (including gene 
alterations and pathway activity) play important roles 
in immune escape mechanisms. Hub 5mC/m6A regula-
tors were remarkably linked to most tumor-infiltrating 
immune cells (Fig. 9A). ScRNA-seq can maximize unbi-
ased information to explore transcriptional diversity at 
the single-cell level. A total of 21 HCC scRNA samples 
were involved in our study. After quality control, nor-
malization, and dimensionality reduction analysis (Sup-
plementary Fig. 8A-G), the cells were classified as 9 main 
cell lineages (Fig.  9B), comprising NK cells, monocytes, 
iPS cells, T cells, hepatocytes, endothelial cells, smooth 
muscle cells, macrophages, and B cells. Figure  9C visu-
alized the top five markers of the main cell lineages. We 
found that 5mC/m6A regulators were almost expressed 
in all immune and non-immune cell lineages (Fig.  9D, 
E). Through implementing different algorithms, we esti-
mated the infiltration levels of immune cells across HCC. 
As a result, the EME was remarkably linked to the infil-
tration levels of most immune cell types (Fig.  9F-H), 
implying the widespread 5mC and  m6A modifications. 
Both in TCGA-LIHC and LIRI-JP datasets (Fig.  9I, J), 
the EME presented positive correlations to macrophage 
markers (such as FIZ1, TGFB1, IL15RA, and IL12A). 
In addition, a majority of MHC molecules and immune 

(See figure on next page.)
Fig. 8 5mC and  m6A regulators synergistically accelerate HCC cell migration, invasion and EMT. A GSEA of KEGG pathways in the low- and 
high-EME patients. B Comparison of the activity of specific EMT-related pathways in the high- and low-EME patients. C Associations of the EME 
with specific EMT-related pathways. D-F Wound healing of HCC cells with si-DNMT1 or/and si-METTL3. Bar, 200 μm. G-L Transwell of HCC cells with 
si-DNMT1 or/and si-METTL3. Bar, 100 μm. M-R Immunofluorescence of the expression of β-catenin and E-cadherin. Bar, 20 μm. Ns: no significance; 
*p-value < 0.05; **p-value < 0.01; ***p-value < 0.001; ****p-value < 0.0001
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checkpoints (Fig.  9K) as well as immunomodulators 
(chemokines, receptors, MHC, and immuno-stimulators; 
Fig. 9L) were positively correlated to the EME. CD8 + T 
cell exhaustion is a primary barrier to current immu-
notherapy [39]. The EME was positively correlated to 
CD8 + T cell exhaustion markers (CD276, TIGIT, LAG3, 
CD27, CXCL9, IDO1, etc.; Fig.  9M). Additionally, the 
remarkable difference in the EME was found among 
known immune subtypes, with the highest EME in C1 
(Fig.  9N). Persistent expression of PD-L1 in tumor cells 
promotes tumor cells escape from immune surveillance 
and host T cell exhaustion [40]. Both si-DNMT1 and si-
METTL3 mitigated the expression of PD-L1 in HepG2 
and Huh-7 cells (Fig.  9O-Q). Simultaneous inhibition 
of DNMT1 and METTL3 synergistically lowered the 
expression of PD-L1. In summary, EME scoring system 
was remarkably linked to extrinsic and intrinsic immune 
escape mechanisms in HCC.

The EME scoring system accurately predicts 
immunotherapeutic response and hyper‑progression 
in HCC
Based on the aforementioned strong relationship 
between the EME and antitumor immunity, we further 
evaluated whether the EME could be used to predict the 
response to immunotherapy. The high-EME subset had 
the higher enrichment scores of most immunotherapy-
predicted gene signatures than the low-EME subset 
(Fig.  10A), which was confirmed in the LIRI-JP cohort 
(Fig. 10B). Moreover, we found that the EME exhibited 
the positive correlations to most immunotherapy-pre-
dicted gene signatures (Fig.  10C). The cancer immune 
cycle includes a series of events required for immune-
mediated tumor growth control. Disruption of one or 
more steps enables tumor cells to escape immune sur-
veillance. The EME was significantly linked to most steps 
within cancer immune cycle (Fig.  10C). Additionally, 
the high-EME subset had the higher enrichment scores 
of immune inhibited oncogenic pathways and EGFR 
ligands (Fig.  10D). We also computed the TIDE score 
across HCC, a reliable immunotherapy response predic-
tor. The higher TIDE was observed in the high-EME sub-
set (Fig. 10E), and the TIDE was positively correlated to 

the EME (Fig. 10F), implying that the low-EME patients 
were more likely responsive to immunotherapy. Immu-
CellAI was also employed to predict cancer immuno-
therapy response. Immunotherapy non-responders had 
the higher EME than responders (Fig.  10G). The AUC 
value was 0.634, implying the well predictive accuracy of 
the EME in immunotherapy response (Fig. 10H). Immu-
notherapy response was also predicted by TIDE algo-
rithm. The higher EME was observed in immunotherapy 
non-responders than responders both in TCGA-LIHC 
and ICGC cohorts (Fig. 10I, J). The efficacy of the EME 
in predicting immunotherapy response was also vali-
dated in an anti-CTLA4 and anti-PD1 immunotherapy 
cohort (GSE91061). We computed the EME of patients 
in this cohort, and assessed the difference in the EME 
among patients who differently responded to immuno-
therapy. The low-EME subset presented a higher pro-
portion of complete response (CR) / partial response 
(PR) compared with the high EME subset (24% vs. 15%; 
Fig.  10K), and patients who completely responded to 
anti-CTLA4 or anti-PD1 therapy exhibited the low-
est EME (Fig. 10L). Additionally, the low-EME patients 
had a remarkable survival advantage (Fig.  10M). These 
results implied that the EME scoring system enabled to 
reflect the patients’ sensitivity to immunotherapy. We 
also focused on the immunotherapy-associated hyper-
progression. The high-EME subset displayed the higher 
transcript levels and copy number amplification fre-
quencies of genes positively linked to hyper-progression, 
such as CCND1, EGFR, and FGF4 (Fig. 10N, O). In sum-
mary, the high-EME HCC patients might not benefit 
from immunotherapy and instead present a higher pos-
sibility of hyper-progression.

Correlation of genomic alterations with the EME in HCC
The relationship between the EME and genomic altera-
tions was further analyzed. Firstly, we observed that the 
high-EME subset had the higher levels of immunogenic-
ity indicators (aneuploidy score, CTA score, HRD score, 
and intratumor heterogeneity; Fig.  11A-D). Next, we 
computed the GISTIC score in the high- and low-EME 
patients. Compared with the high-EME subset, higher 
GISTIC score and CNV frequency were found in the 

Fig. 9 Correlations between the EME scoring system and potential extrinsic and intrinsic immune escape mechanisms in HCC. A Heatmap of the 
relationships between 5mC/m6A regulators and tumor-infiltrating immune cells across HCC. B t-SNE plot of cell types annotated by unique colors. C 
Heatmap of the expression patterns of the marker genes in each cell type. D, E Dot-plot showing the expression levels of 5mC and  m6A regulators 
in distinct cell types. F Heatmap for the infiltration levels of immune cells in the high- and low-EME subsets. G, H Correlations between the EME 
and infiltration levels of immune cells through multiple approaches. I, J Associations between the EME and macrophage markers in TCGA-LIHC and 
LIRI-JP cohorts. K Correlations between the EME and the expression of MHC molecules and immune checkpoints. L Differences in the expression 
of immunomodulators (chemokines, receptors, MHC, and immuno-stimulators) between the high- and low-EME subsets. M Associations between 
the EME and T cell markers. N Differences in the EME among known six immune subtypes. O-Q Immunofluorescence for the expression of PD-L1 in 
HCC cells with si-DNMT1 or/and si-METTL3. Bar, 20 μm. *p-value < 0.05; **p-value < 0.01; ***p-value < 0.001; ****p-value < 0.0001

(See figure on next page.)
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low-EME subset (Fig. 11E, F). Then, FGA, FGG, and FGL 
were calculated, respectively. The low-EME subset dis-
played higher FGA, FGG and FGL levels than the high-
EME subset (Fig.  11G, H). This implied that the high 
5mC/m6A modification might contribute to a reduced 
copy number gain/loss frequency in HCC. Next, we ana-
lyzed the difference in gene mutations between the high- 
and low-EME subsets. However, we found that there 
was no remarkable difference between the two subsets 
(Fig. 11I).

Identification of potential therapeutic compounds 
and druggable targets for HCC patients with high EME
The drug response datasets CTRP and PRISM were 
employed to select potential compounds for the high-
EME subset. The compounds with lower AUC in this 
subset were screened via evaluating the differences in 
drug response between the high- and low-EME sub-
sets. As a result, five CTRP-derived compounds (pacli-
taxel, austocystin D, cucurbitacin I, GSK461364, and 
SB-743921; Fig. 11J) and six PRISM-derived compounds 
(norfloxacin, LY2606368, mitoxantrone, volasertib, navi-
toclax, and sirolimus; Fig.  11K) were determined via 
Spearman correlation analysis between the EME and 
AUC value (p-value < 0.05 and Spearman’s r <  − 0.3). In 
Fig.  11L, we showed the working mechanisms of above 
compounds: Tubulin inhibitor for paclitaxel; inducer of 
DNA damage for austocystin D; JAK inhibitor for cucur-
bitacin I; PLK inhibitor for GSK461364; KIF11 inhibitor 
for SB-743921; bacterial enzyme DNA gyrase inhibitor 
for norfloxacin; CHK1 inhibitor for LY2606368; topoi-
somerase inhibitor for mitoxantrone; PLK1 inhibitor 
for volasertib; BCL inhibitor for navitoclax; and mTOR 
inhibitor for sirolimus.

Proteins that were highly positively linked to the EME 
might exhibit potential therapeutic implications for the 
high-EME patients. Nevertheless, most human proteins are 
still undruggable because they are short of distinct active 
sites to which compounds are capable of binding or resid-
ing within cells that are inaccessible to biological agents. 

Thus, to determine potential druggable targets for the high-
EME patients with undesirable survival outcomes, this 
study obtained the target information of 6,125 compounds. 
Firstly, we computed Spearman’s correlation of the pro-
tein levels of druggable targets with the EME. As a result, 
671 druggable targets were determined (p-value < 0.05 
and Spearman’s r > 0.4; Fig. 11M). Then, by implementing 
correlation analyses on the CERES score of druggable tar-
gets and the EME, we determined 497 druggable targets 
(p-value < 0.05 and Spearman’s r < -0.45; Fig.  11N). Based 
on the previously identified druggable targets of HCC 
[41], two druggable targets including TUBB1 and P2RY4, 
were finally determined by above analysis. In HCC cells, 
silencing DNMT1 or METTL3 significantly decreased the 
expression of TUBB1 and P2RY4 (Fig. 11O-S). Simultane-
ous suppression of DNMT1 and METTL3 synergistically 
reduced their expression, implying that suppressing the 
function of these two targets in the high-EME subset might 
contribute to beneficial therapeutic response.

Discussion
The present study unveiled the crosstalk between 5mC-
epigenetic mechanism and  m6A-epitranscriptomic mecha-
nism in HCC at the multiomic levels. The EME scoring 
system was developed to reflect 5mC/m6A modification 
status in HCC, which may greatly optimize risk stratifica-
tion, and accurately predict HCC patients’ responses to 
mainstream therapies (TACE and sorafenib) and immu-
notherapy as well as hyper-progression. Moreover, the 
crosstalk between 5mC and  m6A modifications defined 
pharmacogenomic landscape including potential therapeu-
tic compounds and druggable targets (TUBB1 and P2RY4). 
Altogether, our findings laid a solid foundation for epige-
netic regulation of HCC as well as paved a new avenue for 
relevant therapeutic targets.

Interference with tumor growth via 5mC or  m6A modi-
fication levels is a promising therapeutic strategy for 
HCC. Phenotypic intra-tumor heterogeneity explains the 
poor efficacy of single-target systemic therapies in HCC 
[42]. Suppression of 5mC regulator (DNMT1) and  m6A 

(See figure on next page.)
Fig. 10 The EME scoring system accurately predicts immunotherapeutic response and hyper-progression in HCC. A, B Comparison of the 
enrichment scores of immunotherapy-predicted signatures in the high- and low-EME patients in TCGA-LIHC and LIRI-JP cohorts. C Correlations 
between the EME and immunotherapy-predicted pathways (left panel) and cancer immune cycle (right panel). D Comparison of the activity of 
immune inhibited oncogenic signaling and EGFR ligands in the high- and low-EME subsets. E Difference in the TIDE score between the high- and 
low-EME subsets. F Correlation between the EME and TIDE score. G Difference in the EME between ImmuCellAI-predicted immunotherapy 
responders and non-responders. H ROC curves for evaluating the predictive accuracy of the EME in immunotherapy response. I, J Comparison of 
the EME between TIDE-predicted immunotherapy responders and non-responders in TCGA-LIHC and ICGC cohorts. K The proportion of patients in 
the GSE91061 cohort with different clinical responses (CR, complete response; PR, partial response; SD, stable disease; and PD, progressed disease) 
in the high- and low-EME subsets. L Comparison of the EME among patients with different clinical responses in the GSE91061 cohort. M Kaplan–
Meier curves of OS between the low- and high-EME patients in the GSE91061 cohort. N, O Comparison of the mRNA expression and copy number 
amplification/deletion frequencies of hyper-progression-associated genes in the low- and high-EME patients. Ns: no significance; ***p-value < 0.001; 
****p-value < 0.0001
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regulator (METTL3) cooperatively attenuated HCC pro-
gression. HCC tumors exhibit intra- and intertumoral het-
erogeneity at the molecular, histological, and clinical levels. 
As a multifocal neoplasm, there are differences between 
distinct lesions in the same patient, known as “inter-
lesion” heterogeneity. The complex heterogeneity hinders 
the development of HCC treatment, notably those who 
respond differently to drugs and immunotherapies. Hence, 
stratification of HCC tumors into clinically and molecularly 
homogeneous subgroups may improve physicians’ thera-
peutic options. In the present study, the simple and easily 
applicable EME scoring system was developed to predict 
clinical outcomes as well as treatment responses (TACE 
and sorafenib) in patients with HCC, which was verified in 
the independent and external cohorts.

To better understand the cell cycle, the central mol-
ecules that participate in this process have been dis-
covered, along with the introduction of the checkpoint 
concept [43]. The regulatory network comprising the 
central molecules is capable of accurately regulating the 
process. The shared biological feature of HCC is uncon-
trolled growth, manifested by disordered cell cycle result-
ing in uncontrollable cell proliferation and attenuated 
apoptosis [38]. DNA damage repair is a crucial event in 
mediating cell cycle arrest. The work demonstrated that 
the EME exhibited positive correlations to diverse DNA 
damage repair mechanisms, and suppression of DNMT1 
and METTL3 synergistically mitigated cell cycle progres-
sion of HCC cells.

Complex genomics and tumor microenvironment 
create a molecular conundrum for the diagnosis and 
therapy of HCC and result in therapeutic failure and 
eventually fatal outcomes [44]. A previous study clas-
sified liver cancer into four immune subtypes: tumor-
associated macrophages, CTNNB1, cytolytic activity 
(CYT), and regulatory T cells (Tregs) [45]. Among them, 
CYT and Tregs subtypes are inflamed tumors, and 
TAMs and CTNNB1 subtypes are non-inflamed tumors. 
Emerging scRNA-seq can obtain quantitative tran-
scriptomic data at the single-cell level, while eliminat-
ing the bias that occur in RNA-seq caused by diverse 
cell subpopulations [46]. The 5mC and  m6A regulators 

were extensively distributed in most immune and non-
immune cell populations across HCC. Although HCC 
tumors harbor significant infiltration of immune cells, 
they cannot kill tumor cells by inference [47]. Epigenetic 
and epitranscriptomic modifications can impact the 
functions and phenotypes of immune cell types for cell 
killing and functional tuning. The transcriptional and 
epigenetic landscape of exhausted CD8 + T cells defines 
exhaustion as a distinct branch of CD8 + T cell differen-
tiation. Selective epigenetic reprogramming alters the 
T-cell landscape in HCC and may enhance the thera-
peutic efficacy. T cells cannot infiltrate tumors due to 
vasculature triggered by tumor cells, chemokines as well 
as known immunosuppressive cells (MDSCs, immature 
DCs, macrophages, Tregs, etc.). Epigenetic modulation 
involves all three aspects. PD-L1 binds to its receptor 
PD-1, thus leading to immune escape by counterac-
tion of activating signaling on T cells [48]. Moreover, 
CD80 can bind to PD-L1 and transmit negative signal-
ing. PD-L1 is upregulated in response to some inflam-
matory signals (IFN-γ, etc.) generated by active T cells 
during antitumor immune responses [49]. Simultane-
ous inhibition of DNMT1 and METTL3 synergistically 
lowered the expression of PD-L1 in HCC cells, thereby 
suppressing immune escape. Immunosuppression and 
immune evasion exert key roles in tumorigenesis and 
tumor progression, in which tumor cells can innately 
or adaptively express immunosuppressive molecules to 
escape host immune attack [50]. An in-depth under-
standing of immune escape mechanisms in tumor cells 
is critical for overcoming resistance as well as enabling 
innovative progress in immunotherapy. The advent of 
ICIs has notably altered the landscape of HCC therapy. 
Despite these improvements, one of the most relevant 
unaddressed medical requirements in the field is to iden-
tify a biomarker of therapeutic response that may assist 
determine patients who can respond to ICIs. The EME 
may predict efficacy of ICI therapy for HCC. From a 
methodological point of view, the EME scoring system 
may assist to identify potential responders to immuno-
therapy and reduce side effects for patients who are not 
likely to benefit from it.

Fig. 11 Associations between the EME and genomic alterations, potential therapeutic compounds and druggable targets in HCC. A-D Comparison 
of aneuploidy score, CTA score, HRD score, and intratumor heterogeneity in the low- and high-EME patients. E, F CNVs in the low- and high-EME 
patients. G, H Differences in FGA, FGG, and FGL between the high- and low-EME patients. I The top twenty mutated genes across HCC patients 
stratified by the EME. J, K Spearman correlation analysis on the EME with AUC of CTRP- and PRISM-derived compounds (left), and comparison of 
AUC between the low- and high-EME subsets (right). L Potential working mechanisms of the identified compounds. M Spearman’s correlation 
on the protein expression of compound targets and the EME. Blue dot represents a significant positive correlation (p-value < 0.05 and Spearman’s 
r > 0.4). N Spearman’s correlation on the CERES score of druggable targets and the EME. Red dot denotes a significant negative correlation 
(p-value < 0.05 and Spearman’s r < -0.45). O-S Western blot for the expression of TUBB1 and P2RY4 in the presence or absence of si-DNMT1 or 
si-METTL3 in HepG2 and Huh-7 cells. Ns: no significance; *p-value < 0.05; **p-value < 0.01; ***p-value < 0.001; ****p-value < 0.0001

(See figure on next page.)
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The work identified promising new pharmaceutical 
intervention strategies (five CTRP-derived compounds 
(paclitaxel, austocystin D, cucurbitacin I, GSK461364, 
and SB-743921) and six PRISM-derived compounds 
(norfloxacin, LY2606368, mitoxantrone, volasertib, 
navitoclax, and sirolimus)) for HCC patients with high 
EME. The newly identified EME may offer an oppor-
tunity to test experimental drugs for HCC. Moreover, 
we determined two druggable targets (TUBB1 and 
P2RY4) for high-EME patients, which might contrib-
ute to beneficial therapeutic response. Nonetheless, 
the use of the EME scoring system in a clinical set-
ting remains challenging because it requires access to 
molecular biological platforms for nucleic acid extrac-
tion, processing or sequencing. In addition, it depends 
upon the quality of the samples and is prone to nor-
malization problems. The EME score as possible tool 
might advance the field of HCC into the precision 
oncology paradigm. Prospective cohorts are required 
for optimizing the efficacy of this available therapeu-
tic response tool as well as solving other remaining 
issues. Altogether, our study might assist to determine 
whether the EME score can be used in clinical practice, 
thus assisting therapeutic decisions as well as selecting 
the patient subgroup with the highest clinical benefits 
from TACE, sorafenib or ICIs.

Conclusion
Altogether, our work unveils that the crosstalk between 
5mC-epigenetic and  m6A-epitranscriptomic mecha-
nisms may contribute to understanding the mechanisms 
that underlie HCC pathogenesis and progression. The 
EME scoring system that reflects 5mC and  m6A modi-
fication levels can accurately predict clinical outcomes 
and therapeutic response (TACE, sorafenib, and immu-
notherapy) for HCC patients, and thus assists clinicians 
to design a personalized treatment plan. Additionally, we 
determine potential therapeutic compounds and drug-
gable targets (TUBB1 and P2RY4) for the high-EME 
patients with poor prognosis. Altogether, our study 
extends the knowledge of the crosstalk between 5mC 
and  m6A modifications, and provides novel strategies for 
treating HCC.
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