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Abstract 

Decades of research has recognized a solid role for Pim kinases in lymphoproliferative disorders. Often up-regulated 
following JAK/STAT and tyrosine kinase receptor signaling, Pim kinases regulate cell proliferation, survival, metabolism, 
cellular trafficking and signaling. Targeting Pim kinases represents an interesting approach since knock-down of Pim 
kinases leads to non-fatal phenotypes in vivo suggesting clinical inhibition of Pim may have less side effects. In addi-
tion, the ATP binding site offers unique characteristics that can be used for the development of small inhibitors target-
ing one or all Pim isoforms. This review takes a closer look at Pim kinase expression and involvement in hematopoietic 
cancers. Current and past clinical trials and in vitro characterization of Pim kinase inhibitors are examined and future 
directions are discussed. Current studies suggest that Pim kinase inhibition may be most valuable when accompanied 
by multi-drug targeting therapy.
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Introduction
Pim kinases (Provirus Integration site for Moloney leu-
kemia virus) are a family of serine/threonine protein 
kinases with roles in cellular development, immunoreg-
ulation, and oncogenesis. Early studies of the original 
Pim kinase, Pim-1, led to the discovery of an oncogenic 
role for the Pim kinase family in lymphoma [1, 2]. Even 
though Pim-2 only shared 55% amino acid homology 
with Pim-1, it was considered a compensatory protein 
to Pim-1, as it shared a very similar kinase domain [3]. 
A third member of the family, Pim-3, was found to cata-
lyze histone phosphorylation and autophosphorylation 
[4]. All three Pim proteins can phosphorylate serine and 
threonine amino acids [5]; and can activate similar cel-
lular pathways. This has led researchers to believe that 

individual Pim kinases are compensatory, whereby the 
loss of one Pim kinase can be alleviated by the expres-
sion of another Pim kinase. There are several counter-
points to this theory, since individual Pim kinases have 
different expression patterns in cancer(s), distinct tissue 
locations, dissimilar regulation, and are encoded on dif-
ferent chromosomes [6]. Furthermore, Pim-1 and -2 have 
alternative isoforms that likely have unique functions. 
This suggests that while similar, individual Pim kinases 
may have distinct roles, which favor cellular distribu-
tion or various tumor microenvironments. This would 
explain why Pim-3 is highly over-expressed in some solid 
cancers, such as prostate and breast cancer, while Pim-1 
and Pim-2 are generally over-expressed in hematopoietic 
cancers. The study of genetically modified mice deleted 
for Pim-1,-2, and-3 demonstrate that Pim kinases are not 
embryonically lethal, but exhibit reduced body sizes at 
birth and throughout life [7]; while mice that are knocked 
out for all three Pim kinases lack proper hematopoietic 
cell development and regulation [8]. Despite their expres-
sion in tumorigenic cells, Pim kinases are considered 
“weak” oncogenes since over-expression studies produce 
tumors at low frequency and after a long latency period. 
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Pim kinases may have larger roles in tumor progression, 
rather than development; and have been proposed as 
broad drivers of chemotherapy resistance [9]. While an 
independent role in cancer initiation is weak, Pim kinases 
show especially strong synergistic roles in the presence 
of other oncogenes, such as c-Myc/n-Myc (C/N-MYC 
Proto-Oncogene), and Bcl-2 (BCL2 Apoptosis Regula-
tor) and in the presence of various carcinogens to initiate 
cancer [10].

The over-expression of Pim kinases is largely spe-
cific to hematologic cancers compared to solid 
tumors, though exceptions do exist, particularly 
regarding Pim-3. Generally, Pim kinases are expressed 
at higher levels in hematopoietic cells compared to 
other tissue. Expression data obtained during normal 
human hematopoiesis shows Pim-1 and Pim-2 have 
similar distribution patterns, with stronger expression 
in CD4 and CD8 cells (Fig.  1A) (https:// serve rs. binf. 
ku. dk/ blood spot/) [11, 12]. Indeed, Pim-1 protein is 

expressed during normal embryonic development in 
hematopoietic tissue especially the liver, spleen, and 
bone marrow, but is shut off in most adult tissues [13, 
14]. Pim-3 differs significantly, whereby expression is 
higher in granulocyte monocyte progenitors (Fig. 1A). 
Data obtained from the Human Protein Atlas (http:// 
www. prote inatl as. org) and publications, also confirms 
low, non-specific gene expression of Pim-3 in various 
adult tissue [15]. This contrasts with Pim-1 and Pim-2 
with higher expression in cells of the bone marrow/
lymphoid and in blood cells (Fig.  1B). In conjunc-
tion with their cellar distribution, Pim-1 transgenic 
mice are susceptible to lymphomas; and Pim kinases 
have roles in the differentiation, activation, and/or 
response of immune cells [16, 17]. Given the role of 
Pim kinases in tumorigenesis and their over-represen-
tation in immune cells, it should come as no surprise 
that Pim kinases often display robust expression in 
hematopoietic cancers.

Fig. 1 Pim kinase expression during normal hematopoiesis. A Hierarchical differentiation trees for the expression of Pim-1, − 2, and − 3 during 
normal hematopoietic stem cell differentiation from the bone marrow (HSC-BM). Pim kinase expression levels are indicated by the legend, whereby 
the size and color of the nodes indicates general expression patterns. Data are derived from Normal human hematopoiesis (HemaExplorer) 
obtained from the BloodSpot Data base (https:// serve rs. binf. ku. dk/ blood spot/) [11]. Definitions are as follows: CMP (Common myeloid progenitor 
cell), GMP (Granulocyte monocyte progenitors), MEP (Megakaryocyte-erythroid progenitor cell), NK cells (CD56+ natural killer cells), PM_BM 
(Promyelocyte from bone marrow), MY_BM (Myelocyte from bone marrow), PMN_BM (Polymorphonuclear cells from bone marrow), and PMN_PB 
(Polymorphonuclear cells from peripheral blood). B Pim-1, − 2, and − 3 expression patterns in blood samples. Graphs represent the normalized 
transcript expression values, denoted by average TPM (transcript per million). Data are derived from HPA (Human protein atlas) RNA-seq from the 
Human Protein Atlas database (https:// www. prote inatl as. org/)

https://servers.binf.ku.dk/bloodspot/
https://servers.binf.ku.dk/bloodspot/
http://www.proteinatlas.org/
http://www.proteinatlas.org/
https://servers.binf.ku.dk/bloodspot/
https://www.proteinatlas.org/
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The role of Pim kinases in cancer
Pim kinases phosphorylate proteins involved in pro-
survival and key T- and B-cell signaling pathways, which 
contribute to Pim kinase transforming properties in 
leukemias and lymphomas. In  vivo evidence by way of 
gene insertion, knock-out, and transgenic mouse stud-
ies largely established Pim kinase involvement in initiat-
ing tumorigenesis independently of other oncogenes or 
tumor suppressor inactivation. Insertion of the Moloney-
murine leukemia virus (M-MuLV), into either Pim gene 
locus leads to enhanced protein expression of Pim-1/− 2 
that can lead to T- and B-cell lymphomas [1, 3, 18]. The 
use of Pim-1 and Pim-2 expressing lymphoid cells in 
transgenic mice also causes a low frequency of lympho-
mas after long latency periods; whereas Pim-3 express-
ing liver cells of transgenic mice produce carcinomas but 
only in the presence of carcinogens [18]. Pim-1 trans-
genic mice are also more susceptible to accumulating 
mutation(s) in response to genotoxic agents’ exposure, 
as evidenced by an increase in tumor development in 
Pim-1 transgenic mice exposed to carcinogens or ioniz-
ing radiation [19, 20]. These in vivo models demonstrated 
that Pim kinases are oncogenic; however, studies have 
also shown that when expressed cooperatively with other 
oncogenes, tumorigenesis is significantly enhanced. In 
particular, the Myc pathway (including c-Myc, N-Myc, 
and L-Myc) is strongly associated with Pim kinase-medi-
ated transformation; and the two pathways act synergisti-
cally in tumorigenesis. Myc is often overexpressed at the 
gene/protein level or by translocation or rearrangement 
in a broad group of leukemias and lymphomas [21]. The 
cooperation between Pim and myc in the generation of 
leukemia/lymphoma is well documented: Pim-1/myc 
transgenic mice develop pre-B-cell leukemia at high fre-
quency [16], c-Myc/N-Myc enhances Pim-1 development 
of T-cell lymphoma in utero [22], and Pim-2/c-Myc mice 
develop pre-B-cell, B-cell, and T-cell lymphomas [23]. A 
role for Myc in cooperating with Pim-3 in the develop of 
B- or T-cell lymphomas/leukemias has only been shown 
indirectly [24]. However, in Myc transgenic mice harbor-
ing Pim-1/− 2 deletion, Pim-3 was activated in tumor 
cells [25]. Several loci that enhance Myc/Pim kinase 
tumor development have already been identified, includ-
ing Pal-1/Gfi-1 (Growth Factor Independent 1 Tran-
scriptional Repressor), Bmi-1 (B Lymphoma Mo-MLV 
Insertion Region 1 Homolog), and Runx2 (RUNX Family 
Transcription Factor 2) [18, 26, 27].

Pim kinases are constitutively active. They are largely 
overexpressed in cancer cells due to transcriptional acti-
vation and stabilization through positive feedback loops 
with upstream regulators, such as the JAK/STAT (Janus 
kinase/signal transducer and activator of transcription), 
PI3K/AKT (PI3-kinase/AKT serine/threonine kinase 

1), and NF-κB (NF-Kappa-B transcription factor) sign-
aling pathways. An examination of Pim kinase genomic 
alterations in cancer is largely lacking, even though muta-
tions and gene modifications are prevalent. A Pan-cancer 
genomic analysis of Pim kinase mutations found numer-
ous gene amplifications, deletions, missense mutations, 
and splice mutations in all 3 Pim kinases (Fig. 2A) [28–
30]. Of note, this database did not include an analysis of 
non-solid tumor tissue; largely excluding leukemias and 
most lymphomas. Genetic alterations were found in 6, 
8, and 5% of Pim1, Pim2, and Pim3, respectively, in the 
cancers examined. The most common alterations in the 
3 kinases were gene amplifications and deep deletions 
(Fig. 2B). In contrast to other malignancies, mature B-cell 
lymphomas displayed a high rate (18.5%) of mutations, 
especially in Pim1 (Fig.  2C). The most common muta-
tions were Pim1 missense mutations at L2F, L184F/N, 
and E135K. Data is still lacking on the biological signifi-
cance of these mutations as it relates to Pim kinase activ-
ity and oncogenicity. However, due to their location in 
recurrent hotspots, most Pim1 mutations are hypoth-
esized to be oncogenic. Examination of survival data sug-
gests, but does not confirm, that alterations of the Pim 
genes decreases overall patient survival (Fig. 2D). These 
results will need to be confirmed in controlled, matched, 
and cancer specific patient samples.

The pro-tumorigenic phenotype of Pim kinases is due 
to their phosphorylating specific serine/threonine motifs 
and increasing the activity of target proteins. These sub-
strates have key roles in cell proliferation, cell survival, 
cap-dependent translation, metastasis, and tumorigen-
esis. The ability of Pim kinases to phosphorylate proteins 
involved in transmembrane drug efflux pumps, such as 
the ABC transporters (ATP-binding cassette transport-
ers), increases their expression levels and leads to multi-
drug resistance [31–33]. The multilateral effects of Pim 
kinases on translational components allow for increased 
microRNA (miRNA) function and polysome occupancy, 
allowing for miRNA targeting despite an enhanced need 
for protein synthesis in activated or transformed immune 
cells [34]. This effect was greater for JAK/STAT/Pim 
signaling than for the parallel, PI3K/AKT/mTOR (mam-
malian target of rapamycin) signaling pathway. Their role 
in regulating translation causes Pim kinases to directly 
affect the metabolic function of cells. Triple knock-out 
mice for all three Pim kinases demonstrate reduced 
growth, protein synthesis, and 5′-cap dependent trans-
lation [35]. While a detailed analysis of every target is 
beyond the scope of this review, a brief description of 
currently known targets is listed below (Table 1), not only 
to demonstrate the vast array of Pim kinase targets, but 
notably, to highlight the oncogenic and central role of 
Pim kinases in cancer (Fig. 3). While it may appear that 
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Pim-3 does not have as large of a role in initiating and 
maintaining transformation of cells, this may be due to 
the lack of studies on Pim-3 phosphorylation targets, 
compared to the other Pim kinases.

As of 2020, the World Health Organization (WHO) 
reports the crude rate per 100,000 people worldwide of 
lymphoid cancers was 7.0, 6.1, 2.3, and 1.1 for non-Hodg-
kin’s lymphoma (NHL), leukemia, multiple myeloma 
(MM), and Hodgkin’s lymphoma (cHL), respectively. 
Novel therapeutics are needed to combat the rising inci-
dence of lymphoid cancers. Gene expression profiling of 
hematological cancers, acute myeloid leukemia (AML), 
chronic myeloid leukemia (CML), acute lymphoblastic 
leukemia (ALL), chronic lymphocytic leukemia (CLL), 
and myelodysplastic syndromes (MDS), and their various 
subclasses, demonstrated high expression of Pim kinases 
across hematologic malignancies (Fig. 4A/B) [11, 12, 74, 
75]. Pim-1 was highly expressed in complex AML, CLL, 
ALL, and MDS, while Pim-2 was especially prevalent 
in CML compared to other leukemias. Pim-3 showed 
higher expression in AML subclasses and c−/Pre-B-ALL. 

Given the strong role of Pim kinases in cancer progres-
sion, their over-expression in lymphoid cell lineage can-
cers, and their central role in several pro-tumorigenic 
pathways, Pim kinases represent an attractive therapeutic 
target. The following sections describe how Pim kinases 
are relevant in various lymphoid and myeloid cancers. 
These include, AML (acute myeloid leukemia), ALL 
(acute lymphocytic leukemia), and APL (acute promye-
locytic leukemia); multiple myeloma (MM); lymphomas, 
that comprise non-Hodgkin’s lymphoma (NHL), Hodg-
kin’s lymphoma (cHL), and chronic lymphocytic leuke-
mia (CLL); and chronic leukemias, that comprise, CLL, 
chronic myeloid leukemia (CML), adult T-cell leukemia 
(ATL), and myeloproliferative neoplasms (MPNs).

Acute myeloid leukemia (AML)
AML arises from the transformation of immature blast 
cells in the bone marrow through abnormal differen-
tiation and genetic alterations, particularly in Fms-like 
tyrosine kinase 3 (FLT3), a driver mutation for AML. As 
much as 30% of AML patients have mutations in FLT3, 

Fig. 2 Pan Cancer Analysis of Genetic Alterations in Pim kinases. A-D Results derived from the PanCancer Analysis of whole genomes (https:// www. 
cbiop ortal. org/) for Pim-1, − 2, and − 3. Data encompasses whole genome sequencing from 2583 whole cancer genomes and matched normal 
tissue across 38 tumor types [28, 29]. A Oncoprint of genetic alterations in Pim kinases. Missense mutations (both putative drivers and unknown 
significance), splice and truncating mutations, amplification and deep deletions are shown. B The frequency of cancers harboring mutations, 
amplifications, and deep deletions in the Pim kinases are shown. C Mutations in Pim-1, − 2, and − 3 are demonstrated. Most mutations in Pim-1 are 
derived from samples with follicular lymphoma, nodal marginal zone lymphoma, and DLBCL. The position of the mutations in the Pim gene and the 
frequency of the mutation are shown. The most common mutation in each of the Pim genes is noted (Pim1: L184F/N, Pim2: P139A/Q), and Pim3: 
D305N). D Patient overall survival in individuals harboring Pim genetic alterations. Data represent 36 patients with alterations in Pim genes and 245 
patients with unaltered Pim genes

https://www.cbioportal.org/
https://www.cbioportal.org/
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Table 1 Pim Kinase phosphorylation substrates

Direct Phosphorylation Targets Effect on Oncogenesis Pim(s)

Transcriptional Activation p65/RelA [36] NF-κB signaling pathway Pim1

Cot (MAP3K8/Mitogen-Activated Protein Kinase 
Kinase Kinase 8) [37]

NF-κB signaling pathway Pim2

c-MyC (myc Proto-Oncogene Protein) [38] c-Myc and NF-κB Signaling pathways Pim-1 and 2

H3 (Histone H3) [39] Enhance c-Myc transcriptional Activity Pim-1

C-MyB and A-Myb (Myb Proto-Oncogene) [40] Enhance transcriptional activities; Feedback: 
c-Myb can regulate c-Myc [41]

Pim-1

p100 (Nuclear Factor Kappa B Subunit 2) [42] Up-regulates c-Myb; NF-κB signaling pathway Pim-1

Runx1 and Runx2 (Acute Myeloid Leukemia 
Gene 1 and 2) [43]

(CBF) family of transcription factors; Required 
for Myc and Myb activity in leukemia [44]

Pim-1

Notch1 and Notch3 (Notch receptor 1 and 3) 
[45]

Transcriptional Activators (cleaved); activate 
c-Myc

Pim-1, −2, −3

Proliferation and Cell Cycle p21CIP1/WAF1 (CDKN1A/cyclin Dependent 
Kinase Inhibitor 1A) [46, 47]

Cell Cycle Progression Pim-1 and 2

p27KIP1 (CDKN1B/cyclin Dependent Kinase 
Inhibitor 1B) [48]

Cell Cycle Progression Pim-1, −2, −3

FoxO1a and FoxO3a (Forkhead box O1a and 
3a) [49, 50]

Cell Cycle Progression Pim-1

C-TAK1 (protein kinase Cdc25 C-associated 
kinase 1) [49]

Cell Cycle Regulator Pim-1

CDC25A and CDC25C (Cell Division Cycle 25A 
and C) [50, 51]

Cell Cycle Progression Pim-1

NuMA (Nuclear Mitotic Apparatus) [52] Mitosis Pim-1

HP1γ (heterochromatin-associated protein 1 
gamma) [53]

Mitosis Pim-1

Translation and Cell Metabolism TSC2 (TSC Complex Subunit 2) [54] Enhanced Protein Translation Pim-2

4E-BP1 (Eukaryotic Translation Initiation Factor 
4E Binding Protein 1) [55]

Enhanced Protein Translation; TSC2 target gene Pim-2

PRAS40 (AKT1 Substrate 1) [56] Increased mTOR activation of 4E-BP1 and 
p70S6K

Pim-1

eIF4B (Eukaryotic Translation Initiation Factor 
4B) [57]

Translation Initiation Pim-1

LKB1 (Serine/Threonine Kinase 11) [58] Cell Metabolism and Energy Production Pim-1

Apoptosis and Cellular Invasion Bad (BCL2 Associated Agonist of Cell Death) 
[59]

Anti-apoptotic release of Bcl-XL Pim-1, −2, −3

Bim (BCL2 Like 11) [60] Anti-apoptotic Pim-2

ASK1 (Apoptosis signaling kinase 1) [61] Anti-Apoptotic to stress and inflammation Pim-1

MDM2 (MDM2 Proto-Oncogene) [62, 63] p53 degradation and transactivation Pim-1 and 2

AR (androgen receptor) [64] Pro-migration and invasion [64, 65] Pim-1

14–3-3ζ [65] AR co-activator Pim-1

NKX3.1 (NK3 Homeobox 1) [66] 14–3-3ζ functional partner Pim-1

Lymphoid Signaling NFATC1 (Nuclear Factor of Activated T Cells 1) 
[67]

T-cell signaling, bone formation, immuno-
therapy

Pim-1, −2, −3

SOCS-1/3 (Suppressor of Cytokine Signaling 
1/3) [68, 69]

T-cell Regulation; JAK/STAT Signaling Pim-1

FLT3 (Fms Related Receptor Tyrosine Kinase 3) 
[70]

STAT5a/b regulation and cytokine-sensitive 
signaling pathways

Pim-1

CXCR4 (C-X-C Motif Chemokine Receptor 4) 
receptor [71, 72]

Cell trafficking through ligands, such as CXCL12 
(C-X-C Motif Chemokine Ligand 12)

Pim-1 and − 3

H19 [73] lncRNA involved in stem cell signature Pim-1

ABCB1 and ABCG2 (BCRP) ATP Binding Cas-
sette Subfamily G Member [31, 33]

Drug efflux; involved in drug resistance Pim-1
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with approximately 25% carrying constitutively activat-
ing internal tandem duplication mutations (FL3-ITD) 
[76]. FLT3 supports early hematopoietic and lymphoid 
cell proliferation. Expression of FLT3 or the presence 
of FLT3 mutations are linked to Pim kinases. While all 
three Pim kinases are over-expressed in AML patient 
samples, Pim-2 appears dominant (Fig.  5A). Genetic 
alterations in the Pim kinases, including mutations, are 
rare in AML patients. Whole exome sequencing veri-
fied a small percentage of adult AML patients harboring 
deep deletions and amplification of Pim-2 and Pim-3, but 
the clinical significance of this is unknown (Fig. 5B) [29, 
77, 78]. Pim-1 expression regulates cellular homing and 
migration, an essential role that drives in vivo FLT3-ITD 
transformation of bone marrow cells [71]. This is in part 
due to Pim-1 increasing the expression and activation of 
CXCR4 (C-X-C Motif Chemokine Receptor 4) in AML 
blasts and hematopoietic cells in the bone marrow niche. 
CXCR4 drives mTOR signaling in AML. Even though 
Pim-2 is not sufficient to transform FLT3-ITD primary 
cells, Pim-2 has been shown to be necessary for the sur-
vival of immortalized, hematopoietic progenitor cells, 
that stably express FLT3-ITD [79]. In AML blasts derived 
from patient samples, the Pim-2 protein (and not Pim-
1) was highly expressed compared to normal CD34+ 
cells [55]. Other studies have variable results and show 

high Pim-1 expression in AML patients, where Pim-1 
and Pim-2 gene levels were higher in AML patient sam-
ples than those in complete remission. Furthermore, an 
association between high Pim-1 expression and higher 
risk groups and overall survival was reported [80, 81]. 
Pim-3 was also found to be over-expressed in the bone 
marrow derived samples from AML patients [82]. The 
difference in expression levels observed in different stud-
ies could be due to the lack of direct correlation between 
Pim-1 gene and protein levels, or to the fact that Pim-1 is 
not expressed in early, non-treated AML blasts, whereas 
Pim-1 is up-regulated in late stage, more aggressive cases. 
Indeed, microarray expression data demonstrates vary-
ing levels of Pim kinases in subclasses of AML [11, 75]. 
Pim-1 and Pim-3 expression were high in complex AML, 
whereas Pim-3 was also high in AML t(8;21) and AML 
inv.(16) compared to other AML subclasses (Fig.  4B). 
Additionally, Pim expression could correlate only with 
certain genetic mutations (ie. FLTD-ITD or FLTD-ITD), 
and therefore the percentage of AML patients in each 
data set harboring these mutations, which could explain 
varying levels of Pim kinases among studies. Indeed, 
wild-type FLT3 or expression of FLT3-ITD leads to 
increased Pim-1 expression [83]. STAT5 is downstream 
of FLT3 and JAK signaling, which are known to be potent 
inducers of Pim expression. Along with STAT5, the 

Fig. 3 Current Pim-1, − 2, and − 3 Phosphorylated Cellular Targets. Cellular Pim kinase substrates are grouped based on their effect on 
transcriptional activation (green), translation/cellular metabolism (blue), survival (dark pink), proliferation (light pink), and lymphoid signaling 
(purple)
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transcription factor, HOXA9 (homeobox A9), is up-reg-
ulated in AML and can also drive Pim-1 expression [84].

Acute promyelocytic leukemia (APL) is a type of 
AML characterized by an accumulation of imma-
ture granulocytes, promyelocytes, that harbor genetic 
translocations in the retinoic acid receptor alpha gene 
(RARα) that generates the PML/RARα gene, PRα. 
Mutated FLT3-ITD, along with PRα, is important in 
the pathogenesis and leukemogenesis of APL [86]. 
Pim-2 was found to cooperate with PRα to induce APL 
in mice, possibly by enhancing the likelihood of clonal 
events that lead to leukemia [87]. Accordingly, APL 
patient samples have high expression of Pim-2. Preclin-
ical trials with Pim inhibitors have shown promising 
results. Treatment of newly diagnosed AML patients 
with K00135, an ATP-competitor of Pim kinases, leads 
to decreased cell viability in AML cells independent of 
FLT3-ITD, while the viability of normal, human cord 
blood cells was unchanged [88]. Treatment of the same 
patients with K00486, led to loss of Pim-1 regulated 
surface expression of CXCR4 without loss of cell viabil-
ity [71]. AZD1208 and SGI-1776 also inhibit AML pri-
mary cells, xenograft AML tumors in animal models, 

and cell growth by down-regulating global RNA and 
protein synthesis [89–91]. These drugs inhibit Pim-
mediated regulation of transcription and translation 
through c-Myc, 4E-BP1 (Eukaryotic Translation Initia-
tion Factor 4E Binding Protein 1), and p70S6K (Riboso-
mal protein S6 kinase beta-1).

Acute lymphoblastic leukemia (ALL)
The most common type of ALL is precursor B-lympho-
blastic leukemia (B-ALL) which accounts for 88% of child-
hood ALL, and 75% of adult ALL. A database analysis 
demonstrated high expression of Pim kinases in different 
subgroups of ALL patients, where Pim-1 expression was 
the highest in ALL patient samples (n = 350) when com-
pared to AML, MM, and DLBCL samples [92]. Pim-3 
is also elevated in ALL compared to other leukemias. 
Bone marrow mononuclear cells from B-ALL patients 
over-express Pim-1 and Pim2, whereas Pim-3 expression 
was unchanged compared to normal cells [93]. Pim-1 
is also highly expressed in pediatric T-ALL patient sam-
ples, especially the early T-cell precursor, ETP-ALL 
subtype, suggesting Pim-1 is a driver of early T-ALL 
growth compared to more mature T-ALL disease [94]. 

Fig. 4 Microarray Expression of Pim kinases in AML, CML, ALL, CLL, and MDS. A-B Data are compiled from the BloodSpot Data base (https:// serve rs. 
binf. ku. dk/ blood spot/) using expression data from the Microarray Innovations in Leukemia study (MILE) [11, 75]. Data are derived from four groups 
of leukemia: AML, CML, ALL, and CLL. The data are derived from 2095 patients, performed in various laboratories across the world. A Jitter strip chart 
demonstrating expression data of Pim-1, Pim-2, and Pim-3 across various subclasses of AML, CML, ALL, CLL, and MDS. B Hierarchical differentiation 
trees for the expression of Pim-1, − 2, and − 3 in AML, CML, ALL, CLL, and MDS. Pim kinase expression levels are indicated by the legend, whereby 
the size and color of the nodes indicates general expression patterns in various classes and subclasses of leukemia

https://servers.binf.ku.dk/bloodspot/
https://servers.binf.ku.dk/bloodspot/
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Commutatively, these observations demonstrate that Pim 
kinases are active in ALL; and evidence strongly links 
Pim activation to genetic translocation or mutation/acti-
vation of the JAK/STAT and/or interleukin-7 (IL-7Rα) 
pathways (Fig.  6A). Most primary samples from T-ALL 
express IL-7Rα and respond to IL-7 [95, 96]. Pim-1 is acti-
vated downstream of the IL-7Rα, through STAT5, either 
through mutation or through IL-7 stimulation [97, 98]. A 
large percentage of ALL cases harbor genetic abnormali-
ties in tyrosine kinases. The BCR/ABL-Ph + translocation 
(breakpoint cluster region/Proto-oncogene tyrosine-pro-
tein kinase ABL1), involving the Philadelphia chromo-
some (Ph+) translocation is the most common genetic 
translocation found in adult ALL cases, occurring in 
approximately 25% of cases. Though Pim-1 expression 
is not required for BCR/ABL-mediated transformation, 
it does benefit tumor cell survival. While the BCR/ABL 
is the most common genetic translocation in adult ALL, 
the TEL/AML1 (Transcription Factor ETV6/RUNX Fam-
ily Transcription Factor 1) fusion is the most common 
in childhood ALL, occurring in approximately 22% of 
cases. Though rare, the BCR/ABL-Ph + translocation has 

also been reported in T-ALL. In addition to TEL/AM1, 
chromosome aberrations in chromosome 6 are found in 
B-ALL patients. In a small case study of TEL/AML1+ 
ALL childhood samples, 86% harbored additional chro-
mosomal aberrations, including chromosome 6, where the 
Pim-1 gene (6p21–23) is located [99–101]. Though not 
confirmed it does suggest that genetic aberrations in the 
Pim-1 gene could contribute to leukemogenesis in B-ALL. 
Further supporting this, cells transformed by oncogenic 
tyrosine kinases (TEL/JAK2, TEL/TRKC (TEL/tyrosine 
kinase receptor C), TEL/ABL, BCR/ABL, FLT3-ITD, and 
H4/PDGFβR (D10S170/Platelet derived growth factor 
receptor beta)) all display elevated levels of Pim-1 and 
Pim-2 expression [102]. In addition, large genetic screens 
of ALL patients found a small percentage of genetic 
alterations in mostly pediatric ALL samples (Fig. 6B) [29, 
30, 103, 104]. These consisted mostly of deep deletions 
in the Pim-3 gene, with gene amplifications in all 3 Pim 
kinases (Fig.  6C). The significance of these alterations, 
and whether they lead to enhanced Pim kinase activity, 
is currently unknown. T-cell acute lymphoblastic leuke-
mia (T-ALL) comprises 12% of ALL in children and 25% 

Fig. 5 Pim Kinase Expression and Genetic Alterations in Acute Myeloid Leukemia (AML) and Multiple Myeloma (MM). A and C Model depicting 
Pim kinase regulation in AML (A) and MM (C). Pim kinases are depicted in purple, with relative expression depicted by the size of the node. B and D 
Oncoprints of genetic alterations in AML (B) and MM (D) for Pim kinases derived from the cBioPortal from Cancer Genomics [29]. For (B), the results 
published are from whole genome sequencing and/or whole exome sequencing generated by OHSU Beat AML Project and the TCGA AML Project 
[77, 78]. The Beat project encompassed 672 AML patients with 454 matched, normal samples, while the TCGA project included 200 adult de novo 
AML tumor/normal pairs. D Data are derived from the cBioPortal for Cancer Genomics. Data sourced to whole exosome sequencing of 203 paired 
MM and normal patient samples [85]
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in adults. Pim-1 is one of the critically deregulated onco-
genes in T-ALL. Similar to B-ALL, genetic aberrations in 
Pim-1 gene locus have been found in T-ALL and T-LBL 
patients, t(6;7)(p21;q34), producing, TCRβ-PIM1 (T-cell 
receptor beta locus/PIM1), whereby the TCRβ enhancer 
was found juxtaposed to the 5’UTR (untranslated region) 
of the Pim-1 gene [105–108]. Although this genetic trans-
location is rare in T-ALL patients, TCRβ-PIM1+ T-ALL 
patients and T-ALL subgroups (HOXA, TLX, and LYL1+ 
(Lymphoblastic leukemia derived sequence 1)) that have 
JAK/STAT activating abnormalities (JAK1, JAK2, JAK3, 
IL7R, STAT5A/B, PTPN2 (protein tyrosine phosphatase 
non-receptor type 2), and/or NUP214-ABL1 (Nucleop-
orin Nup214-ABL1)) all lead to very high levels of Pim-1 
gene expression [105, 108].

Multiple myeloma (MM)
MM is characterized by over-proliferating plasma cells 
in the bone marrow. Pim-1, − 2, and − 3 are expressed 
in MM cell lines and in primary MM patients [109] 

(Fig.  5C). However, Pim-3 expression is not strongly 
associated with the occurrence of MM cells. Pim-2 is 
highly expressed in MM cells and Pim-2 knock-down 
studies demonstrate that Pim-2 is required for MM cell 
proliferation [54]. Pim-2 expression is up-regulated in 
MM cells through IL-6/JAK2/STAT3 and TNFα/NF-κB 
mediated pathways and inhibitors to either STAT3 
(cucurbitacin I) or IKKα/β (I-Kappa-B Kinase)(parthe-
nolide) decrease Pim-2 expression [110]. Mutations, 
including hot spot, putative driver mutations in Pim-
1, have been found in MM patient samples (Fig.  5D) 
[29, 30, 85]. Pim-2 may also play an important role in 
osteolytic bone lesions often seen in MM patients. In 
fact, high expression of Pim-2 has been detected in 
osteoclasts and bone marrow stromal cells in the MM 
microenvironment [110]. This was associated with 
worsened osteoclastic functions and bone lesions in 
MM patients. In agreement with these observations, 
use of Pim kinase inhibitors provide some protective 
effect on bone disease in MM patients [109, 111, 112]. 

Fig. 6 Cellular Signaling Pathways and Genetic Alterations Leading to Pim Kinase Expression in Acute Lymphoblastic Leukemia (ALL). A Model 
depicting the regulation of Pim kinase expression and activity in ALL. IL-7 signaling leads to enhanced Pim-1 and Pim-2 expression. Alternatively, 
common genetic alterations found in ALL patients leads to enhanced JAK/STAT activity and up-regulation of Pim kinases. B-C Cancer type summary 
(B) and OncoPrint (C) of genetic alterations from 3 cancer genomic studies on ALL. Data are derived from the cBioPortal for Cancer Genomics [29, 
30]. The results published here (ALL, Target-2018) are in whole or part based upon data generated by the Therapeutically Applicable Research 
to Generate Effective Treatments (TARGET) https:// ocg. cancer. gov/ progr ams/ target initiative, phs000464 (Acute Lymphoblastic Leukemia (ALL) 
Expansion Phase 2). The data used for this analysis are available at https:// portal. gdc. cancer. gov/ proje cts. Target-2018 are derived from pediatric ALL. 
ALL-2016 are derived from 69, primarily children and young adult, B-progenitor ALL patient samples [103]. ALL-2015 are derived from 85 ALL infants 
with MLL rearrangements [104]

https://ocg.cancer.gov/programs/target
https://portal.gdc.cancer.gov/projects
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This was found to be at least partially due to Pim-2-me-
diated inhibition of osteoblastogenesis and Pim regula-
tion of NFATC1 (Nuclear factor of activated T-cells 1) 
and cathepsin K.

Non‑Hodgkin’s lymphoma (NHL), chronic 
lymphocytic leukemia (CLL), and Hodgkin’s 
lymphoma (cHL)
Non-Hodgkin’s lymphoma (NHL) encompasses a large 
array of leukemia/lymphomas, with over 60 subtypes 
recognized by the WHO. Nearly 85% of all NHLs are 
of B-cell origin. Aggressive NHLs include, diffuse large 
B-cell lymphomas (DLBCL) and its subtypes, Burkitt’s 
lymphoma (BL), peripheral T-cell lymphoma (PTCL), 
Mantle cell lymphoma (MCL), and transformed 
mucosa-associated lymphoid tissue (MALT) lymphoma 
and more indolent NHLs, including, chronic lympho-
cytic leukemia (CLL)/small lymphocytic lymphoma 
(SLL), follicular lymphoma (FL), cutaneous T-cell lym-
phoma (CTL), and nodal marginal zone lymphoma 
(NMZL). While an examination of Pim kinase expres-
sion, activity, and Pim kinase inhibitor therapy for all 60 
NHL subtypes is beyond the scope of this review, there 
are key takeaways for NHLs. Most NHLs over-express 
Pim-1/Pim-2 – as an examination of patient samples 
from indolent and aggressive NHLs (MCL, DLBLC, 
FL, MZL-MALT, CLL, and NMZL) showed marked 
over-expression of Pim-2, and to a lesser degree, Pim-
1, with Pim-3 levels similar to normal lymph node and 
tonsil tissues [113]. There are notable exceptions with 
BL patient samples displaying high levels of Pim-3 
expression; and MCL expressing more Pim-1, while 
Pim-2 was only expressed in conjunction with Pim-1 
[24, 63]. In addition, most NHLs are susceptible to Pim 
kinase inhibition either in mono or dual therapy; and 
the Pim-1 gene is susceptible to somatic hypermutation 
activity in some NHL subtypes (Fig. 7A).

The most common subtype of NHL, DLBCL, com-
promises 30–40% of all NHL. DLBCL can occur from 
FLs and CLLs; and originates in germinal center B-cells. 
DLBCL patient samples express high levels of all Pim 
kinases, that correlate with active STAT3/STAT5/
CXCR4. Survival and proliferation of these tumor 
cells rely upon activation of Pim as demonstrated by 
use of Pim inhibitors [113, 116]. There are two main 
molecular subtypes of DLBCL classified by their dif-
ferent source cells, stage of B-cell differentiation, and 
clinical outcomes: germinal center (GC-DLBCL) and 
activated B-cell-like DLBCL (ABC-DLBCL). Overall 
survival is lower in DLBCL patients expressing Pim-
2, which appears to be restricted to the ABC subtype 
[113]. Pim-2 expression was found to be higher in the 
ABC-DLBCL subtype than the GC subtype; whereby 

Pim inhibition with ETP-39010 or Pim2 knock-down 
decreased BAD (Bcl2 associated antagonist of cell death), 
AKT, and 4E-BP1. There are numerous special subgroups 
of DLBCL. Primary mediastinal large B-cell lymphoma 
(PMLBCL) is a subgroup of DLBCL, while both nodu-
lar lymphocyte-predominant HL (NLPHL) and classic 
Hodgkin’s lymphoma (cHL) also arise from different dif-
ferentiation stages in germinal center B-cells. A unique 
feature of these lymphomas, DLBCL, PMLBCL, NLPHL, 
and cHL, is the frequency of somatic hypermutation 
activity (SHA) that leads to genome instability. SHA is 
a common process of mutation of the immunoglobu-
lin variable (IGV) region of B-cells undergoing antigen 
primed maturation. In contrast to most leukemias, the 
Pim kinases are subject to high rate of genetic alterations 
in lymphomas. Whole genome sequencing finds that 
almost 8% of DLBCLs, CLL, MLL, mature B-cell lym-
phomas, and cutaneous T-cell lymphomas carry Pim-1 
genetic alterations (Fig. 7B) [29, 92–101, 114, 115]. These 
encompass, putative driver missense mutations, and 
amplifications, splice, missense, in frame, and truncat-
ing mutations of unknown significance. Pim-1 is one of 
four proto-oncogenes involved in DLBCL, PMLBCL, and 
FL SHA [102, 105, 106]. The 5’UTR of Pim-1, along with 
Pax-5 (Paired Box  5), RhoH/TFF (Ras homolog family 
member H/Trefoil Factor), and c-Myc, undergoes SHA 
with mutations occurring within coding exons leading 
to changes in amino acids and possibly Pim-1 activity. 
These genes, including Pim-1, are also highly suscepti-
ble to chromosomal translocations and double-strand 
DNA breaks [107]. SHA of the Pim-1 gene has also 
been shown for AIDS-related non-Hodgkin lymphomas 
(AIDS-NHLs) and HCV-positive B-cell NHL patients 
[108, 117]. In DLBCL, and particularly the subtype 
ABC-DLBCL, Pim-1 is one of the highest mutated genes 
[118]. The missense and frameshift mutations found in 
DLBCL due to SHA preserve Pim-1 functionality and 
tumor cells remain sensitive to PIM447 inhibition. These 
events were found to be only slightly correlated with 
negative disease prognosis. Even then, these phenotypes 
were mostly believed to arise from aberrant AID activ-
ity itself, and not Pim mutation [118]. In another sub-
type of NHL, primary central nervous system lymphoma 
(PCNSL), Pim-1 is one of the most highly mutated genes 
and over 77% of PCNSL harbored Pim1 mutations [119]. 
Pim-1 expression was high in PCNSL patients and cor-
related with MYD88 (Myeloid Differentiation Primary 
Response Protein MyD88) expression. High expression of 
either of these proteins led to a more unfavorable prog-
nosis and lower overall survival. Therefore, Pim-1, along 
with other proto-oncogenes, may have a substantial role 
in the development of lymphomas and presents as an 
interesting therapeutic target. MCL is an NHL in which 
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patients are characterized as having high levels of cyclin 
D1, with patients that go through patterns of continu-
ous relapse following chemotherapy. MCL subtypes have 
shown especially high levels of Pim-1 and Pim-2 [120]. 
Preclinical use of the Pim inhibitor SGI-1776 resulted in 
decreased phosphorylation of translational targets (4E-
BP1) associated with a lower expression of cyclin D1 and 
survival factor MCL1 (BCL2 family apoptosis regulator) 
leading to apoptosis of tumor cells [90].

T-cell lymphomas make up for less than 15% of all 
NHLs. These include lymphomas of the mature T-cells 
located in the periphery, such as primary peripheral 
T-cell lymphoma (PTCL) and adult T-cell leukemia/
lymphoma (ATLL). In PTCL patient samples, Pim-1 and 
Pim-2 expression is elevated and correlates with STAT, 
NF-κB, and IL-2 (interleukin-2) compared to normal 
lymph nodes [121]. PTCL cells treated with the pan-
Pim inhibitor, ETP-39010, lost viability due to apoptosis 

induction and an impaired DNA damage response. ATLL 
(adult T-cell leukemia/lymphoma) is a chronic leukemia/
lymphoma deriving from mature T-cells infected with the 
human T-cell leukemia virus type-1 (HTLV-I). Leukemic 
patient cells from ATLL patients exhibit high expres-
sion of all Pim kinases with over-expression of Pim-2 and 
Pim-3 when compared to normal PBMCs (peripheral 
blood mononuclear cells) [122]. All three Pim kinases are 
regulated by the JAK/STAT pathway, particularly STAT3 
and STAT5. Compared to normal PBMCs, ATLL cells are 
sensitive to Pim kinase inhibition (Smi-4a and AZD1208) 
and ex  vivo ATLL tumor burden is decreased in mice 
treated with AZD1208 [122]. Since ATLL is caused by the 
HTLV-I virus, a role for Pim-1, − 2, and − 3 in inhibiting 
viral transactivation has also been seen, which may allow 
immune escape and sustainment of ATLL cells [123].

CLL is the most common chronic leukemia in adults. 
While CLL is not by definition an NHL, CLL patients 

Fig. 7 Cellular Signaling and Genetic Alterations in Hodgkin’s and non-Hodgkin’s leukemia/lymphoma Leading to Enhanced Pim Kinase Activity. 
A Model depicting the regulation of Pim kinase expression and activity in various Hodgkin’s and non-Hodgkin’s lymphomas/leukemias. These 
include cHL (Classic Hodgkin’s Lymphoma), DLBCL (Diffuse Large B-cell Lymphoma), Follicular Lymphoma (FL), Marginal zone lymphoma (MZL), 
Mucosa-associated Lymphoid Tissue (MALT) lymphoma, Peripheral T-cell lymphoma (PTCL), Mantle Cell Lymphoma (MCL), Burkitt lymphoma (BL), 
Chronic lymphocytic leukemia (CLL), Small lymphocytic lymphoma (SLL), and Adult T-cell leukemia/lymphoma (ATLL). B OncoPrint of genetic 
alterations from 12 cancer genomic studies on various lymphomas and leukemias. Data was collected from cBioPortal for Cancer Genomics [29, 
30]. These include whole genome sequencing from 4 chronic lymphocytic leukemia (CLL) studies: CLL from Broad-2013 [114], CLL tumors and 
normal samples from Broad-2015 [115], CLL, Monoclonal B-cell lymphocytosis (MBL), and 24 SLL from ICGC-11 [92], and CLL from IUOPA-2015 [93]. 
Whole genome sequencing from 5 diffuse large B-cell lymphoma (DLBCL) studies, including normal samples: DLBCL from Duke-17 [97], DLBCL from 
BCGSC-13 [95], DLBCL from Broad-12 [96], DLBCL from DFCI-18 [94], and DLBCL from TCGA [98]. Whole genome sequencing from cutaneous T-cell 
lymphomas from 25 Sezary syndrome and cutaneous T-cell lymphomas (CTCL) from Columbia-15 [99], mantle cell lymphoma (MCL) from IDIBIPS-13 
[100], and mature B-cell malignancies from MD Anderson [101]
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can develop NHL through Richter’s syndrome. Stud-
ies have confirmed over-expression of Pim-1 and Pim-2 
in CLL patients compared to normal lymphocytes [124, 
125]. Pim-1/− 2 are especially elevated in B-CLL patients 
and correlated with worse prognosis in B-CLL (elevated 
in Binet stage C) and B-CLL subtype, while Pim-1/2 
expression was lower in patients achieving complete 
remission [126–129]. Pim-3 did not correlate with any 
clinical characteristic. Like AML, CXCR4 phospho-
rylation, a hallmark of CLL cells, correlates with Pim-1 
kinase expression [124]. CLL cells respond favorably 
to Pim kinase inhibitors– whereby K00135 and K00486 
(two inhibitors which preferentially target Pim-1/− 2) 
and the pan-Pim inhibitor, A47, decreased CLL cell pro-
liferation and apoptosis [124]. In addition, treatment with 
SGI-1776 inhibited ex vivo primary CLL patient samples 
by way of Mcl-1 mediated apoptosis and decreased RNA 
transcription [125]. Use of the Pim inhibitor, SEL24/
MEN1703 (SEL24-B489), in ex vivo primary CLL patient 
samples led to similar effects that were not seen in nor-
mal B-cells [129]. Knock-down of individual Pim kinases 
in CLL cells demonstrated that Pim-1 regulates CXCR4 
surface expression, while Pim-2 and Pim-3 are more 
important for CLL survival [124]. Therefore, the use of 
Pim kinase inhibitors leads to a loss in CLL chemotaxis 
due to less phosphorylation and expression of CXCR4 on 
the cells surface and loss of CXCR4 activation of mTOR 
[129].

The most common B-cell lymphoma outside of NHLs, 
are classic Hodgkin’s lymphoma (cHL). cHL is character-
ized by Reed-Sternberg cells, enlarged B-cells that express 
few B-cell specific genes. Aside from SHA of the Pim-1 
gene that is also seen in DLBCL, cHL patient samples 
also express Pim kinases through normal transcriptional 
means. Patient samples from cHL have high expression 
of Pim-1,-2, and − 3 driven by NF-κB and STAT path-
ways and are sensitive to Pim kinase inhibition with the 
Pim/FLT3 inhibitor, SEL24/MEN1703 (SEL24-B489), or 
the dual Pim kinase combined with histone deacetylase 
inhibitor (suberoylanilide hydroxamic acid (SAHA) [130, 
131]. Pim inhibition in cHL modulates expression of 
immunoregulatory molecules (PD-L1/2 and Gal-1) creat-
ing an immunosuppressive tumor microenvironment.

Myeloproliferative neoplasms (MPN)
MPNs and CML comprise a class of chronic leukemias 
that arise from mature hematopoietic cells in the lymph 
nodes. MPNs are classified into Philadelphia chromo-
some-positive (Ph+) or -negative (Ph-) categories. Most 
MPNs are considered classical MPNs, without Ph- trans-
locations and are divided into three main types, poly-
cythemia vera (PV), myelofibrosis (MF), and essential 
thrombocythemia (ET). MPNs occur when bone marrow 

stem cells grow abnormally and over-produce leukocytes, 
such as red blood cells (PV), platelets (ET), granulocytes 
(CML), or neutrophils/eosinophils. MF is the deadliest 
MPN whereby scar tissue develops in the bone marrow, 
causing a disruption in normal leukocyte production, 
with enhanced megakaryocytes. MPNs are character-
ized not only by their cytology, but also the high level of 
JAK2 mutations. 95% of PVs and 50–60% of ETs and MFs 
harbor JAK2 mutations [132]. In addition, mutations in 
calreticulin (CALR) and MPL (thrombopoietin receptor), 
particularly the MPLW515L/K mutation, which signals 
through JAK2, are frequently seen. Pim-1/− 2 expres-
sion is dependent upon JAK2 signaling in MPN (Fig.  8) 
[133]. In PV patient samples carrying the constitutively 
active JAK2 mutation, V617F, Pim-1 is over-expressed 
due to an active JAK/STAT pathway compared to non-
V617F PV patients samples [134]. Pim-1 is highly over-
expressed in granulocytes, PBMCs, and bone marrow 
from MF patient samples [135]. Pim-1 cooperates with 
JAK or MPL mutants in the development of MF. Loss of 
Pim-1 gene expression or treatment with Pim inhibitors 
(TP-3654) in various in  vivo MF models, involving JAK 
V617F or MPL515L, led to loss of MF development and 
decreased bone fibrosis. Furthermore, in  vitro cell data 
demonstrated that V617F transformation in erythroleu-
kemia cells was dependent upon downstream JAK signal-
ing components, c-Myc, Pim-1, and Pim-2 [136].

CML results from hematopoietic stem cells of mye-
loid origin. As much as 90% of CML patients carry the 
Ph + translocation, which results in a shortened chro-
mosome 22. Like ALL, this results in the oncogene 
tyrosine kinase gene, BCR-ABL. Pim-1 is up-regulated 
downstream of BCR-ABL through STAT5 induction and 
miR-328 mediated regulation of the Pim-1 3’UTR [137]. 
In CML patients Pim-1 is essential for BCR-ABL medi-
ated in  vivo transformation and leukemogenesis [138]; 
and simultaneous knockdown of Pim-1 and Pim-2 in 
cells transformed by BCR-ABL eliminated growth fac-
tor dependent growth [139]. These results suggest Pim 
kinase inhibition could also be an effective treatment 
against CML.

Targeting Pim kinases in leukemia and lymphoma
Pim kinases have a unique ATP binding mode, which 
unlike other kinases has a single hydrogen bond donor 
in the hinge region [140]. This structural difference has 
allowed the development of specific and selective inhibi-
tors that target Pim kinases. First and second-class gen-
erations of Pim kinase inhibitors have been developed 
over the past decade (Table  2). Early Pim inhibitors, or 
1st generation inhibitors, targeted solely Pim-1, without 
much efficacy against other isoforms. However, given the 
redundancy in some Pim kinase substrates it was soon 
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realized that an inhibitor that blocked all three kinases 
was needed to block Pim signaling. Subsequently, inhibi-
tors were developed that inhibited all three Pim kinases 
(pan-Pim kinase inhibitors, or 2nd class Pim inhibitors). 
These include most of the Pim kinase inhibitors used in 
clinical trials. SuperGen’s, SGI-1776, was the first, and 
only 1st generation Pim inhibitor to be used in human 
clinical trials. While showing limited efficacy in solid 
tumors and lymphomas, SGI-1776 caused adverse car-
diac QTc prolongation events, leading SGI-1776 to be dis-
continued. The 2nd generation Pim inhibitor AZD1208, 
developed by AstraZeneca, entered Phase I human tri-
als in 2012. Dose escalation studies were originally per-
formed in advanced solid tumors and hematological 

malignancies. However, clinical results did not meet 
primary endpoints; and AZD1208 was associated with 
adverse events suggesting it would not be clinically use-
ful [141]. More recently, two new 2nd class inhibitors, 
PIM447 (LGH447) and Uzansertib (INCB053914) have 
been developed. PIM447, developed by Novartis, shows 
greater pan-Pim inhibition than either AZD1208 or SGI-
1776, enhancing the block against Pim-2 [142]. PIM447 
was also effective at significantly lower doses and with 
low to moderate clearance. As of this review, PIM447 has 
been used in at least 5 clinical trials, with results from 
one limited study demonstrating positive results (dis-
cussed below for MM). Incyte Corporation developed 
Uzansertib as a 2nd class generation therapy with potent 

Fig. 8 Cellular Mechanisms for Increased Pim Kinase Activity in Myeloproliferative Neoplasms. Model depicting the regulation of Pim kinase 
expression in various myeloproliferative neoplasms (MPNs). These include Polycythemia Vera (PV) blood cancer, Essential Thrombocythemia (ET) 
blood cancer, Myelofibrosis (MF) blood cancer, and Chronic Myelogenous Leukemia (CML). These cancers arise from mature hematopoietic cells in 
the lymph nodes. Pim kinases are activated through various mechanism, including genetic alterations JAK/STAT pathway and BRC/ABL mutations 
leading to downstream activation of Pim kinases
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toxicity against all three Pim isoforms [143]. Uzansertib 
has been part of 3 Phase 1 clinical trials. While one study 
was terminated due to a lack of funding, another found 
possible efficacy as a monotherapy in advanced hemato-
logical malignancies (discussed below for AML) [144].

At least three, Phase 1 clinical trials with Uzansertib 
have been conducted in advanced hematological malig-
nancies, which included AML. Early data suggests Uzan-
sertib was favorably tolerated, inhibited Pim activity, 

and had few adverse effects (that could be treated with 
reduced Uzansertib or additional therapy) [144]. This 
trial included advanced AML, high-risk MDS, MPN, 
MM, and lymphomas. The most common adverse effects 
were elevated alanine aminotransferase (ALT) and aspar-
tate aminotransferase (AST) levels, which could be sug-
gestive of liver or heart issues. Phase 1 clinical trials on 
AML patients using AZD1208 or PIM447 have also been 
performed. Monotherapy with AZD1208 was unable to 

Table 2 Current Pim inhibitors used in vitro, ex vivo, and in current or past clinical trials

Drug Target Development Clinical Trials Treatment Group Therapy Type

A47 pan-PIM Preclinical – – –

Abemaciclib (Verzenio) Pim1-CDK4/6 Phase 1 NCT03905889: Active (NR) Metastatic Renal Cell 
Carcinoma

Dual therapy with Abe-
maciclib and Sunitinib

AZD1208 pan-PIM Phase 1
Phase 1

NCT01588548: Com-
pleted
NCT01489722: Termi-
nated

Adv Solid Tumors/Malig-
nant Lymphoma
Relapsed/Refractory AML

Monotherapy
Monotherapy

AZD1897 pan-PIM Preclinical – – –

ETH-155008 Pim3-CDK4/6 (FLT3) Phase 1 NCT04840784: Recruiting R/R: B-NHL, CLL/SLL and 
AML

Monotherapy

ETP-39010
ETP-45299
ETP-47551

pan-PIM Preclinical – – –

INCB053914 (Uzan-
sertib)

pan-PIM Phase 1
Phase 1/2
Phase 1

NCT03688152: Com-
pleted
NCT02587598: Ter/BD
NCT04355039: WD/LF

Relapsed/Refractory 
DLBCL
Adv Solid Tumors
Relapse/Refractory MM

Dual therapy with 
INCB050465
Monotherapy and with 
cytarabine, azacitidine, and 
ruxolitinib
Triple agent therapy with 
pomalidomide with dexa-
methasone

JP11646 Pim2 Preclinical – – –

K00135 Pim1/Pim2 Preclinical – – –

K00486 Pim1/Pim2 Preclinical – – –

LGB321 pan-PIM Preclinical – – –

PIM447 (LGH447) pan-PIM Phase 1
Phase 1
Phase 1
Phase 1
Phase 1

NCT02370706: Com-
pleted
NCT01456689: Com-
pleted
NCT02078609: Com-
pleted
NCT02144038: Com-
pleted
NCT02160951: Com-
pleted

Myelofibrosis
Relapsed/Refractory MM
AML or High Risk MDS
Relapsed/Refractory MM
Relapsed/Refractory MM 
(Japan)

Triple agent therapy with 
Ruxolitinib and LEE011
Monotherapy
Monotherapy or Dual 
therapy with midostaurin 
(AML only)
Dual agent therapy with 
BYL719
Monotherapy

SEL24/MEN1703 (SEL24-
B489)

PIM/FLT3 Phase 1/2 NCT03008187: Recruiting AML Dual Pim/FLT3 therapy

SGI-1776 Pim1 Phase 1
Phase1

NCT01239108: Withdrawn
NCT00848601: Termi-
nated

Relapsed/Refractory 
Leukemias
Refractory Prostate and 
Refractory NHLs

Monotherapy
Monotherapy

Smi-4a
Smi-16a

PIm1
Pim1/Pim2

Preclinical – – –

TP-3654 Pan-PIM Phase 1/2 NCT04176198: Recruiting Intermediate/high-risk 
primary or secondary MF

Monotherapy
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clear disease and had adverse events, particularly related 
to gastrointestinal effects of nausea and diarrhea [141]. 
Febrile neutropenia and rash were also noted. While 
monotherapy with Pim inhibitors showed promise for 
treating AML, (particularly Uzansertib and PIM447) 
intrinsic resistance to Pim inhibition has made dual-
therapeutic options a more attractive option. Addition 
of FLT3-ID inhibitors to AZD1208 is effective in enhanc-
ing apoptosis in primary AML blasts due to the positive 
feedback loop that exists between Pim-1 and FLT3 [70, 
145]. Based on the fact that Pim loss leads to increases 
in ROS/p38/AKT/mTOR signaling (Fig.  3 and Table  3); 
dual targeting with a p38 inhibitor (SCIO-469), AKT 
inhibitors (MK2206 and AZD5363), mTOR inhibitors 
(AZD8055 and AZD2014), or PI3K inhibitors (GDC-
0941) have all shown beneficial effects [146–150]. Dual 
chemotherapy of primary FLT3-ITD AML cells with 
topoisomerase inhibitors (daunorubicin, etoposide, and 
mitoxantrone) and AZD1208 also sensitizes cells because 
of accumulation of reactive oxygen species (ROS) and 
DNA double strand breaks [151, 152]. EC-70124, a multi-
kinase drug targeting FLT3, JAK, SYK, and Pim kinases 
was also efficient at targeting AML cells [153]. Enhanced 
efficacy with dual pan-Pim kinase inhibitors and CDK4/6 
(PD 0332991), JAK/STAT5 (ruxolitinib) inhibitors, or 
CXCR4 antagonists (BL-8040 and Plerixafor) that are in 
clinical trials, may also prove beneficial in treating refrac-
tory AML [154–159]. In fact, a Phase I human clinical 
trial has recently begun recruiting for the use of ETH-
155008, a triple inhibitor to Pim-3, FLT3, and CDK4/6 

in the treatment of relapsed/refractory AML, CLL/SLL, 
and B-cell NHL. ETH-155008 has shown promise in pre-
clinical trials with AML cell lines and in vivo AML mouse 
models [160]. SEL24/MEN1703 is another dual-therapy 
drug showing promise in AML. SEL24/MEN1703 is a 
PIM/FLT3 inhibitor currently recruiting for Phase I/
II clinical trials. Early results indicate SEL24/MEN1703 
may be effective as a single use agent in AML. SEL24/
MEN1703 had a manageable safety profile and complete 
remission was seen in several patients [161].

To date, there are currently no human clinical trials 
ongoing or recruiting for treatment of ALL with Pim 
inhibitors. However, extensive pre-clinical testing sug-
gests this could be an interesting option to reduce ALL 
burden (Table 4). Inhibition of Pim kinases in Ph + ALL, 
including relapsed and refractory Ph + ALL, leads to 
robust reductions in colony formation, which are further 
enhanced with the addition of the Bcl-2 antagonist, sabu-
toclax [162]. This combination is also effective against 
leukemia burden in mice ejected with Ph + ALL cells. 
Treatment with Pim inhibitors (AZD1208 or TP-3654) in 
T-ALL or T-LBL patient derived xenograph mice models 
carrying the TCRβ-PIM1+ translocation or high Pim-1 
expression levels caused tumor growth to be substantially 
inhibited [163]. Significant survival was further seen in 
these mouse models when dexamethasone, a glucocorti-
coid used in current ALL treatment, was given in parallel. 
T-ALL cells are also sensitive to Pim inhibitors (AZD1208 
and LGB321) to varying degrees depending upon the 
level of Pim-1, JAK/STAT, IL-7, and/or the sensitivity to 

Table 3 Pim kinase inhibitors used in preclinical and clinical (bold) trials for AML

Acute Myeloid Leukemia Target(s) Type Clinical Trials

AZD1208 pan-Pim Single AML NCT01489722
AZD1208 + Daunorubicin (etopo-
side, and mitoxantrone)

pan-Pim + Topoisomerase 2 Dual-therapy Preclinical –

AZD1208 + SCIO-469 pan-Pim + p38 Dual-therapy Preclinical –

AZD1208 + MK2206 (AZD5363) pan-Pim + AKT Dual-therapy Preclinical –

AZD1208 + AZD2014 (AZD8055) pan-Pim + mTOR Dual-therapy Preclinical –

AZD1897 pan-Pim Single Preclinical –

EC-70124 pan-kinase (Pim, FLT3, JAK, SYK) Single Preclinical –

ETH-155008 Pim3
FLT3
CDK4/6

Triple inhibitor (FLT3, Pim-3 and CDK4/6) 
Monotherapy

AML NCT04840784

ETP-45299 + GDC-0941 Pim1 + PI3K Dual-therapy Preclinical –

K00135 Pim1/Pim2 Single Preclinical –

K00486 Pim1/Pim2 Single Preclinical –

PIM447 pan-Pim Single AML NCT02078609
SEL24/MEN1703 PIM

FLT3
Double inhibitor (FLT3, Pim) Monotherapy AML NCT03008187

SGI-1776 pan-Pim Single Yes –

Uzansertib Pan-Pim Single AML NCT02587598
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Notch gamma secretase inhibition [164, 165]. Combined 
Pim and tyrosine kinase inhibitor (ponatinib and dasat-
inib) therapy led to synergistic effects; with decreased 
tumor burden and prolonged survival in T-ALL engrafted 
mice [165]. Pim inhibitor therapy (Smi-4a) could also 
synergize with mitogen-activated protein kinase kinase 
1/2 (MEK1/2) inhibitor (U0126) in reducing tumor bur-
den in T-ALL and B-ALL engrafted mouse tumors [166, 
167]. Interestingly, glucocorticoids that are given during 
the early, induction phase of T-ALL and T-LBL treat-
ment, can induce IL-7Rα activity. This suggests that 
tumor cells surviving initial treatment may over-express 
Pim-1, given that IL-7 activity leads to JAK/STAT activa-
tion. Indeed, mouse xenograph models of T-ALL/T-LBL 
treated with a standard chemotherapy regimen (vincris-
tine, dexamethasone and L-asparaginase) showed strong 
up-regulation of Pim-1 in residual leukemic blasts [168]. 

Increased survival was noted when PIM447 was added. 
This suggests that combination therapy, in which a Pim 
kinases inhibitor is added to ALL treatment, cannot only 
aid in reducing ALL leukemia cells, but also could be 
beneficial in reducing the MRD burden.

Several human clinical trials of Pim inhibitors to treat 
MM are underway (Table 5). MM patients were included 
in the clinical trials with Uzansertib that were discussed 
with the AML patients above. Phase I clinical trials with 
PIM447 in relapse/refractory MM are completed; how-
ever, results have not been officially published. In one 
trial of 79 patients with at least four previous treatments, 
the partial response rate (or better) was 8.9% with a clini-
cal benefit rate of 25.3% [169]. PIM447 was well tolerated 
even with adverse events that comprised thrombocyto-
penia and anemia. A smaller study, comprised of 15 Japa-
nese patients with relapsed or refractory MM, showed an 

Table 4 Pim kinase inhibitors used in preclinical and clinical (bold) trials for ALL

Acute Lymphoblastic Leukemia Target Type Clinical Trials

AZD1208 pan-Pim Single Yes

AZD1208 + Ponatinib or Dasatinib pan-Pim + TKI Dual-therapy –

AZD1208 + Ponatinib + Z-VAD-FMK pan-Pim + TKI+ pan-caspase Triple-therapy –

AZD1208 + Sabutoclax pan-Pim + BCL2 Dual-therapy –

AZD1208 + inLCK pan-Pim + LCK Dual-therapy –

LGB321 pan-Pim Single Preclinical

PIM447 Pan-Pim Single Yes

Smi-4a Pim1 Single Preclinical

Smi-4a + U0126 pan-Pim + MEK1/2 Dual –

TP-3654 Pan-Pim Single Preclinical

TP-3654 and dexamethasone Pan-Pim and glucocorticoid therapy Dual-therapy –

Table 5 Pim kinase inhibitors used in preclinical and clinical (bold) trials for MM

Multiple Myeloma Target Type Clinical Trials

IBL-202 Pim/PI3K Double inhibitor (PI3K, Pim) 
Monotherapy

Preclinical –

IBL-301 Pim/PI3K/mTOR Triple inhibitor (PI3K, mTOR, 
Pim) Monotherapy

Preclinical –

INCB053914 + pomalido-
mide + dexamethasone

pan-Pim + thalidomide ana-
logue + corticosteroid

Triple-therapy MM NCT04355039

JP11646 Pim2 Single Preclinical –

LGB321 pan-Pim Single Preclinical –

LGB321 + BKM120 pan-Pim + PI3K Dual-therapy Preclinical –

PIM447 pan-Pim Single MM NCT01456689
MM NCT02144038

SGI-1776 pan-Pim Single Yes –

Smi-16a Pim1/Pim2 Single Preclinical –

Smi-16a + doxorubicin Pim1/Pim2 + topoisomerase Dual-therapy – –

Uzansertib pan-Pim Single MM NCT04355039



Page 17 of 25Bellon and Nicot  Molecular Cancer           (2023) 22:18  

overall response rate of 15.4% and a similar clinical ben-
efit rate of 23.1%, with at least 2 patients achieving partial 
responses [170]. Thrombocytopenia, anemia, and leu-
kopenia were also observed at high rates. These results 
are highly significant to MM therapy, considering these 
patients are often refractory to other therapies. As is the 
case with other leukemias, these studies suggest that Pim 
inhibitors can be used and are relatively well tolerated 
in MM patients but may require dual or multi-inhibitor 
combination therapies. In preclinical studies both Pim 
kinases inhibitors SGI-1776 and LGB321 inhibit MM 
cells in mouse xenograph models [54, 171]. LGB321 could 
combine with BKM12 (inPI3K), with subsequent loss of 
mTOR activity. The underlying mechanism was related to 
inhibition of Pim-2 phosphorylation of TSC2 and activa-
tion of mTOR activity in MM cells [54]. Additional stud-
ies showed that the Pim kinase inhibitor Smi-16a inhibits 
MM cell viability and demonstrated synergistic effect 
when combined with doxorubicin [172]. Dual and triple 
drugs that contain Pim kinase inhibitors, along with PI3K 
and/or mTOR inhibitors have also been effective in MM 
cells [172]. Based on these observations it is tempting to 

speculate that combination treatment used to treat AML 
patients could be effective for MM patients. The treat-
ments developed to target FLT3, CXCR4, and the PI3K 
pathway could work in conjunction with Pim inhibitors 
in MM, given the similarity in oncogenic pathways found 
in both these cancers. Furthermore, Pim kinase inhibi-
tion also relieve symptoms of osteolytic bone lesions 
often seen in MM patients and in pre-clinical trials, treat-
ment of MM cells with Smi-16a or PIM447 prevents MM 
tumor growth in mice and suppresses myeloma-induced 
bone destruction [109, 111]. Finally, targeting miRNAs 
that regulate Pim kinases may represent future solutions 
for the treatment of MM. The proteasomal inhibitor, 
MLN2238, has been used in clinical trials and has been 
found to positively regulate miR-33a expression [171]. 
miR-33a directly regulates Pim-1 and MM cells treated 
either with miR-33a or MLN2238 suffer reduced Pim-1 
signaling and cell viability.

One of the first Pim kinases Phase I clinical trials 
included lymphoma patients (Table  6). As discussed 
above, Phase I clinical trials with SGI-1776 on relapsed/
refractory NHL patients, showed proof of principle 

Table 6 Pim kinase inhibitors used in preclinical and clinical (bold) trials for cHL and NHL

Pim Inhibitor Target Type Clinical Trials

cHL SEL24/MEN1703 PIM/FLT3 Double inhibitor (FLT3, Pim) 
Monotherapy

Yes –

Pim Inhibitor + suberoylanilide 
hydroxamic acid (SAHA) or sodium 
butyrate (SB

Pim + Histone deacetylase inhibi-
tors

Dual-therapy Preclinical –

DLBCL AZD1208 + ibrutinib pan-Pim + BTK Dual-therapy Preclinical –

ETH-155008 Pim3-CDK4/6(FLT3) Triple inhibitor (FLT3, Pim-3 and 
CDK4/6) Monotherapy

DLBCL NCT04840784

Uzansertib pan-Pim Single DLBCL NCT03688152
Uzansertib + Parsaclisib pan-Pim + PI3K Dual-therapy DLBCL Incyte
Uzansertib + Itacitinib (or ruxoli-
tinib)

pan-Pim + JAK Dual-therapy Preclinical –

Uzansertib + cytarabine pan-Pim + Chemotherapy Dual-therapy Preclinical –

PTCL ETP-39010 pan-Pim Single Preclinical –

ETP-47551 pan-Pim Single Preclinical –

MCL SGI-1776 PIM1 Single MCL NCT01239108
CLL/SLL K00135 Pim1/Pim2 Single Preclinical –

K00486 Pim1/Pim2 Single Preclinical –

A47 pan-Pim Single Preclinical –

ETH-155008 Pim3-CDK4/6 (FLT3) Triple inhibitor (FLT3, Pim-3 and 
CDK4/6) Monotherapy

CLL/SLL NCT04840784

SGI-1776 PIM1 Single Yes –

SEL24/MEN1703 PIM/FLT3 Double inhibitor (FLT3, Pim) 
Monotherapy

Yes –

LGB321 pan-Pim Single Preclinical –

LGB321 + ibrutinib pan-Pim + BTK Dual-therapy Preclinical –

ATL Smi-16a Pim1/Pim2 Single Preclinical –

AZD1208 pan-Pim Single Yes –
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– that Pim kinase inhibition could be effective in treat-
ment of lymphoma, but was terminated due to adverse 
cardiac events. Preclinical trials with SGI-1776 and Pim 
kinase inhibitors in MCL cells have also been success-
ful, targeting transcription and translation in these cells 
[90, 173]. Preclinical and clinical data suggests that Pim 
kinase inhibition may facilitate to overcome the resist-
ance associated with long-term chemotherapy. In fact, 
in Phase I trials of patients with recurrent NHL that has 
disseminated to the central nervous system (CNS), high 
Pim-2 expression was a marker for resistance to rituxi-
mab monotherapy [174]. In studies of MCL patients 
given high dose therapy, stem cell transplantation, and 
rituximab; Pim-1 expression also served as a predic-
tive marker of poor outcome [120]. The CDK/Pim/FLT3 
inhibitor, ETH-155008, is currently being assessed in 
refractory/relapsed B-cell, NHL patients as well as CLL 
and SLL patients. Clinical trials have also been conducted 
with DLBCL patients. Uzansertib has been used in Phase 
I clinical trials with relapsed/refractory DLBCL patient 
samples; however, results have not been reported. Incyte 
has actively recruited patients to test dual-therapy, Uzan-
sertib with a PI3K inhibitor (Parsaclisib). This was based 
on preclinical data showing the effectiveness of Uzan-
sertib along with Parsaclisib or JAK inhibitors (itacitinib 
or ruxolitinib), or cytarabine (a common chemother-
apy reagent) in DLBCL xenografts [143]. While clini-
cal trials have not been initiated for many of the NHLs 
and cHLs, preclinical data is very promising. As dis-
cussed above, preclinical xenograft models of ATL with 
AZD1208 led to reduced tumor burden, while in  vitro 
treatment of PTCLs and cHLs with Pim inhibitors and/

or led to reduced proliferation. LGB321 was also success-
ful in reducing tumor burden in CLL xenografts. Similar 
to other conclusions, tumor burden was further reduced 
when the Pim kinase inhibitor was given as dual therapy 
with ibrutinib, an inhibitor of Bruton’s tyrosine kinase 
(BTK) [175]. Treatment with AZD1208 and ibrutinib was 
also successful in DLBCL cells [176].

JAK2 mutations, especially V617F, play a critical role in 
MPN pathogenesis and drug resistance; however, JAK2 
inhibitor monotherapy is largely ineffective in achiev-
ing consistent remission in MPN patients carrying these 
mutations. Resistance to JAK2 inhibitors has been shown 
in MPN cells carrying JAK2 mutations and in CML 
patients harboring the BCR-ABL translocation [177]. 
Because tumor cells rely upon constitutive activation of 
STAT5, ERK-1/2 (Extracellular signal-regulated kinase 
2), and AKT signaling pathways, targeting down-stream 
JAK2 targets, such as Pim kinases may have significant 
benefits in preventing JAK2 inhibitor resistance (Table 7). 
Indeed, the fact that JAK2 chemo resistant cells harbor-
ing the V617F mutation display high expression of Pim 
kinases, compared to sensitive cell lines, suggests a role 
of Pim kinases in drug resistance [178]. Pan-Pim kinase 
inhibitors, such as AZD1208, Uzansertib, and SGI-1447 
have been shown to be effective in ex vivo MPN patient 
samples, when combined with JAK inhibitors (ruxoli-
tinib, AZ960, TG101209, and SAR302503) [133, 178–
181] (Fig.  6). Unlike other Pim inhibitors, preclinical 
models with single therapy, TP-3654 have shown efficacy, 
even over JAK2 inhibitors (ruxolitinib) in treating fibrosis 
MF in vivo models [135]. Furthermore, the combination 
of TP-3654 with ruxolitinib led to greater reductions in 

Table 7 Pim kinase inhibitors used in preclinical and clinical (bold) trials for MPNs

Pim Inhibitor Target Type Clinical Trials

MPNs AZD1208 pan-Pim Single Yes –

AZD1208 + Ruxolitinib pan-Pim + JAK Dual-therapy Preclinical –

SGI-1776 Pim1/Pim2 Single Yes –

INCB053914 + Ruxolitinib pan-Pim + JAK Dual-therapy Preclinical –

PIM447 pan-Pim Single MF NCT02370706
PIM447 + Ruxolitinib + LEE011 pan-Pim + JAK + CDK4/6 Triple-therapy Preclinical –

TP-3654 pan-Pim Single MF NCT04176198
TP-3654 + Ruxolitinib pan-Pim + JAK Dual-therapy Preclinical –

Pim inhibitor (PIM447) + SAR302503 
(TG101348)

pan-Pim + JAK Dual-therapy Preclinical –

Uzansertib pan-Pim Single MF NCT02587598
CML Smi-4a Pim1 Single Preclinical –

AZD1208 pan-Pim Single Yes –

AZD1208 + imatinib mesylate pan-Pim + TKI Dual-therapy No –

SGI-1776 Pim1 Yes –

SGI-1776 + imatinib mesylate pan-Pim + TKI Dual-therapy No –
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MPN cells and fibrosis. Preclinical data is also promis-
ing for the combination of PIM447, ruxolitinib, and the 
CDK4/6 inhibitor, LEE011, in JAK2 V617F and MPL515L 
in vivo MF models, with longer survival and no additive 
toxicity seen [182].

In BCR-ABL carrying CML cells Pim inhibitors influ-
enced cell viability and proliferation by targeting GSK3-β 
(glycogen synthase kinase 3 beta), mTOR, translation, 
and MYC/Mcl-1 [183, 184]. Chemoresistance of can-
cer stem cells represent a significant challenge and CML 
stem cells are inherently resistant to imatinib mesylate, a 
standard therapy for CML. Part of this resistance is due 
to high levels of Pim-2, which phosphorylates and inacti-
vates proapoptotic factor, BAD. While imatinib mesylate 
was effective in treating CML stem cells with high Pim-2 
expression induced through STAT5; imatinib mesylate 
resistant cells continued to exist due to activation of 
Pim-2 through an alternative, STAT4 dependent path-
way [185]. To overcome this block in imatinib mesylate 
CML therapy, mono Pim kinase inhibitor or dual therapy 
with imatinib mesylate has been used [183, 184]. Treat-
ment with SGI-1447 or AZD1208, along with imatinib 
mesylate, has a suppressive effect on Ph + primitive, 
imatinib mesylate sensitive, leukemic progenitor cells 
and imatinib mesylate insensitive, CML stem cells from 
CML patients, respectively [183, 185]. This suggests (like 
other lymphoproliferative cancers) that effective inhibi-
tion of Pim kinase activity can be a very successful treat-
ment option to reduce disease burden and/or overcome 
resistance to current therapies.

Conclusion
Clinical trials using first generation Pim inhibitors have 
failed to significantly reduce disease burden or alleviate 
chemoresistance in patients. In addition, higher doses of 
Pim inhibitors may have off-target effects and can lead 
to adverse effects, including cardiac events, gastrointes-
tinal issues, febrile neutropenia, and rash, among oth-
ers. Newer, highly specific Pim kinase inhibitors, such as 
PIM447, Uzansertib, and TP-3654 can overcome these 
problems, allowing Pim targeting at lower concentra-
tions. Another option is to directly target Pim kinases 
through either monoclonal Pim antibody therapy or by 
indirectly targeting Pim kinase regulators. Pim-1 was 
found on the cell surface of some leukemic cells, that 
could be targeted, with loss of proliferation, by mono-
clonal Pim-1 (mPim-1) therapy [186]. In addition, 
in  vivo prostate cancer models treated with mPim-1, 
led to tumor growth reductions [187]. These early, pre-
clinical trials suggest mPim-1 therapy may work; how-
ever, whether redundancy with other Pim kinases would 
reduce in  vivo efficacy remains to be seen. Previous 

studies in MM and CML suggest that Pim kinases are 
subject to 3’UTR mediated down-regulation by miRNAs 
through miR-33a and miR-328, respectively. Pim-1 and 
Pim-3 are both regulated by miR-33a [188, 189]; and in 
various tissues and cell lines, the 3’UTR of Pim-1 is also 
targeted for inhibition by miR-206 [190], miR-214 [122], 
miR-370 [191], miR-486-5p, [192] miR-328 [137, 193], 
miR-124 [194], miR-144 [195], miR-542-3p [196], miR-
101-3p [197]. Pim-2 is targeted by miR-26-5p [198] and 
miR-135-3p [199], while Pim-3 can also be targeted by 
miR-506 [200]. Targeting miRNAs directly or indirectly, 
such as is the case with MLN2238 in MM, may be a 
future direction for therapy.

Effective strategies to treat leukemia/lymphoma 
will likely incorporate dual or combination therapy 
that includes a pan-Pim inhibitor. Numerous pre-
clinical studies have demonstrated increased effi-
cacy when Pim inhibitors are part of a dual therapy 
regimen along with JAK inhibitors. Pim kinases are 
elevated by common protein tyrosine kinase recep-
tors that are deregulated in most lymphoproliferative 
disorders, therefore targeting Pim and the JAK/STAT 
pathway is a very interesting option. This would allow 
reduced Pim inhibitor dosing, while possibly prevent-
ing JAK inhibitor resistance. In addition, several JAK 
inhibitors are part of common chemotherapy regi-
mens and have good safety profiles, including ruxoli-
tinib for lymphoproliferative disorders and, tofacitinib, 
baricitinib, and upadacitinib, for rheumatoid arthritis 
that have already gained FDA approval. The dual Pim-
CDK4/6 inhibitor, abemaciclib, and multi-inhibitors, 
Pim-3-CDK4/6-FLT3, ETH-155008, and PIM-FLT3, 
SEL24/MEN1703 show promise and are currently 
undergoing clinical trials. Another strategy is to pair 
pan-Pim inhibitors with inhibitors of the PI3K/AKT/
mTOR pathway, for which Pim kinases show paral-
lel functions. Clinical trials are already underway or 
completed for drugs like, AKT inhibitor, MK-2206, 
for CLL/SLL and relapse/refractory leukemias or lym-
phomas, while mTOR inhibitors sirolimus (rapamycin) 
and everolimus are being used in clinical trials. Dual 
therapy with Bcl-2 or Mcl-1 antagonists with pan-
Pim inhibition may also prove useful, as evidenced by 
results from preclinical data in ALL with sabutoclax 
(in-Bcl-2). Future studies are still needed to delegate 
the specific roles of individual Pim isoforms, their 
downstream targets, and how Pims are regulated to 
refine therapeutic options more precisely. However, 
the sheer number of pre-clinical and clinical trials 
being conducted with Pim inhibitors demonstrates the 
clinical significance of targeting the Pim pathway in 
lymphoproliferative disorders and solid tumors.
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Abbreviations
4E-BP1  Eukaryotic Translation Initiation Factor 4E Binding 

Protein 1
ABC-DLBCL  Activated B-cell-like DLBCL
ABCB1/2 (BCRP)  ATP Binding Cassette Subfamily G Member
ABC transporters  ATP-binding cassette transporters
AIDS-NHL  AIDS-related non-Hodgkin lymphoma
AKT  AKT serine/threonine kinase 1
ALL  Acute lymphoblastic leukemia
ALT  Alanine aminotransferase
AML  Acute myeloid leukemia
APL  Acute promyelocytic leukemia
AR  Androgen receptor
ASK1  Apoptosis signaling kinase 1
AST  Aspartate aminotransferase
ATLL  Adult T-cell leukemia/lymphoma
B-ALL  B-lymphoblastic leukemia ALL
BAD  Bcl2 associated antagonist of cell death
Bcl-2  BCL2 Apoptosis Regulator
Bim  BCL2 Like 11
Bmi-1  B Lymphoma Mo-MLV Insertion Region 1 Homolog
BCR/ABL-Ph+  Breakpoint cluster region/Proto-oncogene tyrosine-

protein kinase ABL1
BL  Burkitt’s lymphoma
C-MyB and A-Myb  Myb Proto-Oncogene
C-Myc/N-Myc  C/N-MYC Proto-Oncogene
C-TAK1  Protein kinase Cdc25 C-associated kinase 1
CALR  Calreticulin
CDC25A/C  Cell Division Cycle 25A and C
cHL  Hodgkin’s lymphoma
CLL  Chronic lymphocytic leukemia
Cot  MAP3K8/Mitogen-Activated Protein Kinase Kinase 

Kinase 8
CML  Chronic myeloid leukemia
CNS  Central nervous system
CTL  Cutaneous T-cell lymphoma
CXCR4  C-X-C Motif Chemokine Receptor 4
eIF4B  Eukaryotic Translation Initiation Factor 4B
ERK-1/2  Extracellular signal-regulated kinase 2
ET  Essential thrombocythemia
ETP-ALL  Early T-cell precursor ALL
FL  Follicular lymphoma
FLT3  Fms-like tyrosine kinase 3
FoxO1a and FoxO3a  Forkhead box O1a and 3a
GC  Germinal center
H3  Histone H3
H4/PDGFβR  D10S170/Platelet derived growth factor receptor beta
HOXA9  Homeobox A9
HP1γ  Heterochromatin-associated protein 1 gamma
HTLV-1  Human T-cell leukemia virus type-1
IGV  Immunoglobulin variable
IKKα/β  I-Kappa-B Kinase alpha/beta
IL-2  Interleukin-2
IL-7Rα  Interleukin-7
ITD  Internal tandem duplication
JAK  Janus kinase
LKB1  Serine/Threonine Kinase 11
LYL1  Lymphoblastic leukemia derived sequence 1
M-MuLV  Moloney-murine leukemia virus
mPim-1  Monoclonal Pim-1
mTOR  Mammalian target of rapamycin
MALT  Transformed mucosa-associated lymphoid tissue 

lymphoma
MCL  Mantle cell lymphoma
MCL1  BCL2 family apoptosis regulator
MDM2  MDM2 Proto-Oncogene
MDS  Myelodysplastic syndromes
MEK1/2  Mitogen-activated protein kinase kinase ½
MF  Myelofibrosis
MM  Multiple myeloma
MPL  Thrombopoietin receptor

MYD88  Myeloid Differentiation Primary Response Protein MyD88
NF-κB  NF-Kappa-B transcription factor
NFATC1  Nuclear factor of activated T-cells 1
NKX3.1  NK3 Homeobox 1
NHL  Non-Hodgkin’s lymphoma
NLPHL  Nodular lymphocyte-predominant HL
NMZL  Nodal marginal zone lymphoma
Notch-1/3  Notch receptor 1 and 3
NuMA  Nuclear Mitotic Apparatus
NUP214-ABL1  Nucleoporin Nup214-ABL1
p21CIP1/WAF1  CDKN1A/cyclin Dependent Kinase Inhibitor 1A
p27KIP1  CDKN1B/cyclin Dependent Kinase Inhibitor 1B
p70S6K  Ribosomal protein S6 kinase beta-1
p100  Nuclear Factor Kappa B Subunit 2
Pal-1/Gfi-1  Growth Factor Independent 1 Transcriptional Repressor
Pax-5  Paired Box 5
PBMCs  Peripheral blood mononuclear cells
PCNSL  Primary central nervous system lymphoma
PI3K  PI3-kinase
Pim  Provirus Integration site for Moloney leukemia virus
PMLBCL  Primary mediastinal large B-cell lymphoma
PRAS40  AKT1 Substrate 1
PTCL  Peripheral T-cell lymphoma
PTPN2  Protein tyrosine phosphatase non-receptor type 2
PV  Polycythemia vera
RARα  Retinoic acid receptor alpha
RhoH  Ras homolog family member H
Runx2  RUNX Family Transcription Factor 2
SAHA  Suberoylanilide hydroxamic acid
SHA  Somatic hypermutation activity
SLL  Small lymphocytic lymphoma
SOCS-1/3  Suppressor of Cytokine Signaling 1/3
STAT   Signal transducer and activator of transcription
TCRβ-PIM1  T-cell receptor beta locus/PIM1
TEL/AML1  Transcription Factor ETV6/RUNX Family Transcription 

Factor 1
TEL/TRKC  TEL/tyrosine kinase receptor C
TFF  Trefoil Factor
TSC2  TSC Complex Subunit 2
UTR   Untranslated region
WHO  World Health Organization
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