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Abstract 

As a nontraditional T-cell subgroup, γδT cells have gained popularity in the field of immunotherapy in recent years. 
They have extraordinary antitumor potential and prospects for clinical application. Immune checkpoint inhibitors 
(ICIs), which are efficacious in tumor patients, have become pioneer drugs in the field of tumor immunotherapy 
since they were incorporated into clinical practice. In addition, γδT cells that have infiltrated into tumor tissues are 
found to be in a state of exhaustion or anergy, and there is upregulation of many immune checkpoints (ICs) on their 
surface, suggesting that γδT cells have a similar ability to respond to ICIs as traditional effector T cells. Studies have 
shown that targeting ICs can reverse the dysfunctional state of γδT cells in the tumor microenvironment (TME) and 
exert antitumor effects by improving γδT-cell proliferation and activation and enhancing cytotoxicity. Clarification of 
the functional state of γδT cells in the TME and the mechanisms underlying their interaction with ICs will solidify ICIs 
combined with γδT cells as a good treatment option.
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Introduction
In recent years, many studies have shown that cytotoxic 
γδT cells have a strong killing ability toward autologous, 
allogeneic or xenogeneic tumor cells, and their concen-
tration is often closely related to the clinical progno-
sis of patients [1–5]. In contrast to αβT cells, γδT cells 
can recognize antigens in a way that is not restricted by 
major histocompatibility complex (MHC) molecules 
[6], and they mediate the killing of target cells in vari-
ous ways, participate in immunomodulation, and have a 
broader tumor cell killing spectrum [7, 8]. As the “bridge” 
between innate immunity and adaptive immunity as well 
as the first line of defense against tumors, γδT cells play 
an important role in the occurrence and development 
of tumors and can be used to evaluate the prognosis of 
patients [8–10]. Therefore, immunotherapy based on γδT 
cells has been studied in many kinds of tumors [11, 12].

Although previous types of adoptive cell therapy and 
other treatment methods have been effective [11, 13], 
these types of treatments often have low efficiency, and 
the response rate is not high. The reason for this lack of 
efficacy may be that the tumor microenvironment (TME) 
inhibits effector γδT cells through various mechanisms, 
thus making γδT cells dysfunctional and aiding in tumor 
cell immune escape [4, 14, 15]. The safety of Vγ9Vδ2T 
cell immunotherapy in practical applications has been 
partially confirmed, but only 10% ~ 33% of patients with 
hematological and solid malignant tumors benefit from 
this therapy [16]. In some cancer patients, the number 
and function of γδT cells is decreased, and the infiltrat-
ing γδT cells show an increased apoptosis rate, limited 
antitumor ability and an exhausted immunophenotype; 
these shortcomings can be improved by immune check-
point inhibitor (ICI) treatment [17–19]. These findings 
indicate that some TMEs are immunosuppressive, which 
affects the normal function of γδT cells. The inhibition 
of γδT cells in the TME is the main factor that hinders 
their excellent antitumor ability. Tumor cells can undergo 
tumor immunoediting [20–23] and downregulate the 
expression of MHC-I molecules [24]; at the same time, 
immune checkpoint ligands (ICLs) are highly expressed. 
Binding with their respective immune checkpoint recep-
tors (ICRs) leads to phosphorylation of the immune 
receptor tyrosine-based inhibition motif (ITIM)/immune 
receptor tyrosine-based switch motif (ITSM), lead-
ing to the activation of Scr homology region 2 domain-
containing phosphatase (SHP-1/2), triggering a series of 
dephosphorylation events, and inhibiting cell activation 
[25]. To facilitate the immune escape of tumor cells, ICRs 
can inhibit cell activation by competing for ligands that 
bind to activated receptors [26, 27]. Therefore, it is very 
important to overcome the dysfunction of γδT cells in 
the inhibitory TME.

Targeting immune checkpoints (ICs) and reversing the 
inhibitory effects of the TME on cytotoxic γδT cells is the 
key to the success of immune checkpoint therapy (ICT). 
ICT has become the core pillar of tumor immunotherapy 
[28–30]. Studies have shown that the antitumor function 
of γδT cells can be recovered after ICIs are used [31]. 
In this paper, we hope that by describing the relation-
ship between γδT cells, the TME and ICs, we can further 
reveal the antitumor potential of γδT cells and lay a theo-
retical foundation for the application of γδT cells in ICT.

Interaction between the TME and γδT cells
γδT cells are a relatively rare population in periph-
eral blood (PB) T cells and are one of the main types of 
intraepithelial lymphocytes (IELs) of mucosal tissues 
[32]. γδT cells have many subgroups and high plasticity 
[33, 34] (Fig. S1–S4). According to differences in γ and δ 
chains, γδT cells can be divided into different structural 
subgroups. In the process of γδ T-cell receptor (TCR) 
rearrangement, Vδ2 is almost always coexpressed with 
Vγ9, so Vγ9VδT cells are the main type of γδT cells in 
human PB [35, 36]. Different functional subsets of γδT 
cells have diverse immune functions (Fig.  1). For exam-
ple, depending on the cytokines they secrete and the 
microenvironment in which they are located, γδT17 
cells, which mainly secrete interleukin (IL)-17, can have 
either immunosuppressive or immune-promoting prop-
erties; in an immunosuppressive microenvironment, the 
γδ regulatory T cell (γδTreg) subpopulation tends to play 
a role similar to that of αβTreg cells [37, 38]. In addition, 
the TME of tumor patients has a great influence on the 
phenotype and functional distribution of γδT cells [39, 
40]. For example, the expression of ICs can be different in 
different γδT-cell subsets and may be determined by the 
stimulation of cytokines in the differentiation environ-
ment. PD-1 is evenly distributed across several subgroups 
with different functions in Vγ9Vδ2T cells, but compared 
with that in Vδ2 T cells, the proportion of TIGIT+, 
PD-1+ and TIM-3+ cells in Vδ1 T cells is higher [41, 42].

Many experimental and clinical studies have shown 
that γδT cells have antitumor effects [18, 43, 44]. High 
levels of γδT cells were positively correlated with clinical 
stage, overall survival (OS) time, and CD8+/CD4+ T-cell 
infiltration [45]. In metastatic colorectal cancer, γδT cells 
still show the ability to limit tumor progression [5]. By 
analyzing 25 kinds of cancers (other than brain cancers), 
it was found that a tumor-related γδT-cell gene signa-
ture was the factor most correlated with the OS rate of 
patients [46]. Furthermore, Vγ9Vδ2T cells can preferen-
tially penetrate into basement membrane tissue, and pre-
clinical studies have proven the ability of Vγ9Vδ2T cells 
to prevent brain tumor development [47, 48].
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γδT cells are also involved in immunomodulation and 
indirectly exert antitumor effects mainly by interacting 
with other immune cells. For example, via interferon-
gamma (IFN-γ), tumor necrosis factor-alpha (TNF-α), 
and granulocyte-macrophage colony stimulating fac-
tor (GM-CSF) production, γδT cells are able to induce 
the activation of macrophages or monocytes [49]. γδT 
cells can promote the differentiation and maturation of 
monocytes, and they can also interact with dendritic cells 
(DCs) via cell-to-cell contact or soluble molecules (espe-
cially I/II IFNs and BTN3A) [50], thus promoting cross-
regulation and mutual activation between γδT cells and 
DCs. Plasmacytoid dendritic cells (pDCs) stimulated by 

Toll-like receptor 7 and TLR9 ligand (TLR7/9-L) or zole-
dronate (ZOL) can activate γδT cells, promote their pro-
liferation, enhance their secretion of Th1 cytokines, and 
enhance their cytotoxic activity [50]. γδT cells can trigger 
phenotypic changes and functional activation of pDCs 
[50, 51]. γδTAPC cells can assist antigen presentation, pro-
mote expression of MHC-I molecules by tumor cells, and 
enhance the expression of costimulatory molecules such 
as CD80/86, thus activating DCs and αβT cells and play-
ing an important role in the activation of B cells [52]. In 
addition, γδT cells can also express the chemokine recep-
tor CXCR5, and after binding with CXCL13, γδT cells 
regulate the recruitment of B cells and antigen-presenting 

Fig. 1 Under ideal conditions, activated γδT cells can kill tumor cells. Depending on the cytokines secreted by γδT cells and the microenvironment 
in which they are located, γδT cells can differentiate into different subpopulations, such as γδT17 or γδTregs. To some extent, the expression of 
checkpoint molecules on the surface of γδT cells can reflect their functional status. Activated effector γδT cells are cytotoxic, and they can express 
Fas ligand (FasL) and tumor necrosis factor-related apoptosis-induced ligand (TRAIL). Through direct cell–cell contact, apoptosis of tumor cells can 
be induced through the Fas-FasL and TRAILR-TRAIL death receptor pathways. Proinflammatory cytokines such as IFN-γ and TNF-α can directly inhibit 
tumor cells, and perforin-granzyme can directly act on the target cell membrane, leading to tumor cell cytolysis. αβT cells can promote the function 
of γδT cells through cytokines such as IL-2 and the transcription factors T-bet and have a synergistic antitumor effect with γδT cells. Dendritic cells 
and monocytes-macrophages can also be activated to promote antigen presentation and antibody class switching of B cells, as well as enhance the 
antibody-dependent cell-mediated cytotoxicity (ADCC) of γδT cells
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cells, secrete cytokines such as IL-4 and IL-10, and par-
ticipate in immunoglobulin class switching and somatic 
hypermutation (SHM) [53, 54]. IL-4 plays an important 
role in the homotypic transformation of IgA and main-
taining the structure of the germinal center (GC) [55]. 
Through various interactions with other immune cells, 
γδT cells can activate immunity together with effector 
cells and resist the growth of tumor cells (Fig. 1).

Dysfunction of γδT cells in the TME
Continuous stimulation with tumor‑associated 
phosphoantigens promotes the exhaustion of γδT cells
Due to the metabolic reprogramming of tumor cells, γδT 
cells gradually adapt to phosphoantigens (PAgs) in the 
TME, resulting in a low response state and ultimately 
exhaustion. PAgs usually originate from microbial I-4-
hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP) 
or endogenous isopentenyl pyrophosphate (IPP), and 
HMBPP can double the binding affinity between extra-
cellular butyrophilin 3A (BTN3A) and Vγ9Vδ2 TCR [56]. 
During tumor cell development, the activity of the intra-
cellular mevalonate pathway is enhanced, and the pro-
duction of PAgs in the TME is upregulated and reaches 
the threshold for antigen stimulation of γδT cells under 
physiological conditions; thus, tumor cells can become 
the target of γδT cells [50, 57]. PAgs can rapidly induce 
Ca2+ signal transduction and activate Vγ9Vδ2T cells 
after cell-to-cell contact occurs [58]. The BTN gene is 
located in the MHC gene region of humans and is the 
key molecule involved in PAg-mediated activation of 
Vγ9Vδ2T cells [59–61]. BTNs have the following three 
gene subfamilies in humans: BTN1, BTN2, and BTN3 
[62–64]. BTN3A2 is abundant in tumor tissues and has 
been proven to have a negative regulatory effect on natu-
ral killer (NK) cells [65]. Further study showed that there 
was an interaction between isomers, and BTN3A2 could 
regulate the subcellular transportation, localization and 
optimal activity of BTN3A1 [66]. Some scholars have 
hypothesized that BTN3A2 may affect receptor bind-
ing by binding to the hypothesized ligand, which may 
decrease antigen recognition sensitivity or lead to the 
exhaustion of γδT cells [65]. The activation of Vγ9Vδ2T 
cells is also related to members of the ABC transport 
family [50, 67, 68]. ABCA1 is thought to be the key mol-
ecule needed for PAgs to enter Vγ9Vδ2T cells before 
the B30.2 domain of BTN3A1 is activated [69]. The par-
ticipation of transcription factors such as HIF-1α in the 
multiple myeloma TME promotes the active function of 
myeloid suppressor cells and Tregs and upregulates the 
expression of PD-L1 and ABCA1 on the surface of tumor 
cells. Then, ABCA1, apolipoprotein A-I (apoA-I) and 
BTN3A1 play a synergistic role causing myeloma cells to 
secrete supraphysiological levels of IPP, which eventually 

leads to the exhaustion of Vγ9Vδ2T cells and a decrease 
in cytotoxicity and other related antitumor effects [70] 
(Fig. 2).

Immune‑related inhibitory molecules and cells reduce 
the antitumor effects of γδT cells
Immunosuppressive cells and related inhibitory mol-
ecules infiltrating the TME can promote the exhaus-
tion of γδT cells and reduce the antitumor function of 
γδT cells. Myeloid-derived suppressor cells (MDSCs) in 
the TME can inhibit the secretion of IFN-γ by γδT cells, 
thus inhibiting their cytotoxic activity [71]. Mesenchymal 
cells, M2-type tumor-associated macrophages and Tregs 
can prevent the infiltration and/or activation of cytotoxic 
γδT cells through the synthesis and release of immuno-
suppressive molecules [72, 73]. Inhibitory neutrophils 
can affect the proliferation and activation of circulat-
ing γδT cells and the production of cytokines through 
reactive oxygen species (ROS). The increase in neutro-
phils and their related soluble mediators is related to a 
decrease in the survival rate of cancer patients [74–76].

Under the action of some cytokines, γδT cells can dif-
ferentiate into other inhibitory phenotypes, and their 
antitumor function is reduced. IL-10 and transforming 
growth factor-β (TGF-β) in the TME can promote the 
transformation of γδT cells into tumor-promoting phe-
notypically distinct functional subgroups, such as γδT17 
cells and γδTregs [72, 77]; in addition, inhibitory γδT 
cells tend to express CD39 and CD73 molecules [78–80], 
which can be signs of T-cell dysfunction [81–83]. For 
example, in breast tumors, the TME of tumor-bearing 
mice can induce γδT cells to differentiate into γδT17 
cells and produce IL-17 [84]; when the production of 
IL-17 by Vδ1+ T cells in the lung increases, it promotes 
the infiltration of inhibitory neutrophils into lung ade-
nocarcinoma and the development of tumors [85, 86]. 
CD39/CD73+ tumor-infiltrating lymphocytes (TILs) are 
defined as early dysfunctional T cells. They have signifi-
cantly decreased secretion of IFN-γ and IL-2 and expres-
sion of perforin and granzyme, in addition to significantly 
increased expression of PD-1. Ultimately, these cells can 
hinder the activation of γδT cells mediated by PAgs and 
TCR [87]. Tumor-derived TGF-β is able to induce CD39/
CD73+ γδT cells to differentiate into immunosuppres-
sive T cells, which promote γδT cell dysfunction (Fig. 3).

Abnormal IC signaling promotes γδT‑cell dysfunction
High expression of ICLs was observed in tumor cells, and 
aberrant signaling tends to cause anergy or exhaustion of 
γδT cells. The level of ICRs on the surface of γδT cells is 
higher than that of normal cells, which results in dysfunc-
tion and decreased cytotoxicity. Competition between 
inhibitory and costimulatory signals leads to γδT-cell 
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anergy. Some ICs, such as PD-1, CTLA-4, and BTLA, 
can block TCR signaling and interfere with costimulatory 
signaling, ultimately blocking the activation of γδT cells 
and leading to γδT-cell dysfunction. Butyrophilin-like 
protein 2 (BTNL2) is highly expressed in many human 
tumor samples, BTN/BTNL can bind to the Vγ chain in 
γδTCR, and the interaction may affect TCR signal trans-
duction [88, 89]. Castella et al. [90] found that the upreg-
ulation of the expression of multiple checkpoints, such as 
PD-1, TIM-3 and LAG-3, on γδT cells can even lead to a 
state of “super anergy”.

Prolonged peak expression and increased numbers of 
different ICs lead to the exhaustion of γδT cells. PD-1 
expression, which is associated with methylation of the 
promoter DNA sequence, peaks 2 to 4 days after TCR 
activation in adult Vδ2 cells, but the peak expression 
remains longer in neonatal Vδ2 cells [91], after which it 
gradually drops to a moderate level [92]. However, γδT 
cells in the immune microenvironment mostly con-
tinuously express high levels of PD-1, suggesting that 
decreased cytotoxicity of γδT cells is related to overex-
pression of PD-1. PD-1 expression in Vδ2T cells is sig-
nificantly increased in hepatocellular carcinoma [93], and 
LAG-3 is highly expressed in dysfunctional γδT cells [4, 
94]. Double negative (DN) T cells infiltrating Merkel cell 

carcinoma are mainly composed of Vδ2T cells expressing 
PD-1 and LAG-3, which is consistent with the phenotype 
of exhausted and immunosuppressed γδT cells [95]. The 
expression of PD-1, TIM-3 and TIGIT may lead to the 
exhaustion or dysfunction of γδT cells in patients with 
acute myelogenous leukemia (AML) and multiple mye-
loma (MM) [31]. The proportion of TIGIT+CD226– γδT 
cells is increased in AML patients [96], which suggests 
that increased expression of TIGIT and significantly 
decreased CD226 expression may be associated with 
γδT-cell dysfunction. The frequency of TIM-3 + Vδ2 T 
cells in AML patients was significantly higher than that 
in healthy controls, and the levels of PD-L1 and high 
mobility group box protein 1 (HMGB-1) were also higher 
[97]. Vδ2T cells highly express BTLA in the lymph nodes 
of lymphoma patients [98], and the circulating soluble 
BTLA (sBTLA) level can be used as an independent prog-
nostic factor for the OS of patients after ICI treatment 
[99]. The expression of PD-1 and TIM-3 on CD39 + γδT 
cells in laryngeal carcinoma was significantly higher than 
that in paired normal tissues [100]. Furthermore, the 
expression of B7-H3 in PB and tumor tissues of colon 
cancer patients was also significantly increased, and the 
proportion of circulating tumor-infiltrating γδT cells 
expressing LAG-3 in melanoma patients was increased, 

Fig. 2 γδT cells gradually become dysfunctional in the tumor microenvironment. During tumorigenesis and tumor development, the metabolism 
of tumor cells is changed, and the phosphoantigens produced through the mevalonate pathway increase. ABCA1 and apoA-I can act synergistically 
with BTN proteins to stimulate γδT cells and induce the secretion of supraphysiological levels of IPP. Binding to the B30.2 domain causes the 
conformation of BTN3A/BTN2A to change, which promotes γδT-cell antigen recognition, proliferation and activation. At the same time, immune 
checkpoint ligands are highly expressed on the surface of tumor cells, which can interfere with the normal TCR signaling pathway and transmit 
inhibitory signals to γδT cells by binding to immune checkpoint receptors. Excessive and persistent antigen stimulation and the inhibitory signals 
transmitted because of the high expression of immune checkpoint molecules eventually cause γδT cells to enter an anergic or exhausted state, 
resulting in dysfunction and weakened antitumor effects
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indicating that LAG-3 may help tumor cells achieve 
immune escape by inhibiting γδT cells [101].

In addition to traditional ICs such as PD-1, human leu-
kocyte antigen (HLA) class I inhibitory receptors also 
transmit inhibitory signals that interfere with the effector 
function of γδT cells. The downregulation of β2M gene 
expression in tumor cells leads to the downregulation of 
MHC-I molecule expression on the cell surface and high 
expression of HLA-G, which can decrease the clonal-
ity of Vγ9Vδ2T cells and the secretion of IFN-γ because 
HLA-G can bind to inhibitory leukocyte immunoglob-
ulin-like receptors (LIRs) or Ig-like transcripts (ILTs), 
such as ILT2 [102–105]. After blocking the inhibitory 
signal transmitted by ILT2, γδT-cell proliferation and 
cytotoxicity are improved [104, 106]. Similarly, inflam-
matory factors in the TME tend to lead to overexpression 
of HLA-E, and the expression level is even higher than 
that of PD-L1. Furthermore, the continuous stimula-
tion of TME-derived cytokines such as TGF-β and IL-15 
and tumor antigens also upregulates the expression of 
CD94/NKG2A [61, 107]. In NK cells, NKG2A can inhibit 

cytotoxic effector function by disrupting the actin net-
work at the immune synapse of the activating receptor 
NKG2D [108]. In γδT cells, NKG2A receptor-mediated 
inhibitory signaling tends to prevail [109]. NKG2A+ 
and NKG2A- cells can be formed from γδT cells during 
early thymic development and do not appear to change 
significantly with cell growth [110], and their expression 
kinetics are similar to those of cells expressing TIM-3 
and CD39, which emerge late but are stably expressed 
[111]. The combination of HLA-E with NKG2A, depend-
ent on the participation of ITIMs and SHP1/2, can trans-
mit inhibitory signals to interfere with the activation of 
γδT cells and limit the function of effector γδT cells. 
NKG2A + Vδ2 T cells in glioblastoma multiforme (GBM) 
have been shown to affect the OS of patients. Unlike 
its role in healthy tissues, HLA-E in tumor tissues sig-
nificantly regulates the high reactivity of NKG2A + Vδ2 
TILs, ultimately generating dysfunctional immune cells 
and tumor cell escape [110].

Glycoimmune checkpoints can also interfere with acti-
vation signals and transmit inhibitory signaling to γδT 

Fig. 3 Crosstalk between γδT cells and the TME. Myeloid-derived suppressor cells (MDSCs), regulatory T cells (Tregs), neutrophils with a suppressive 
phenotype and related immunosuppressive molecules in the tumor microenvironment (TME) can inhibit γδT cells. The binding of glycoimmune 
checkpoint molecules and BTNL2 to their receptors can lead to the recruitment of MDSCs. Under the action of some cytokines, such as TGF-β, IL-4, 
and IL-10, in the TME, γδT cells can differentiate into cells with a suppressor phenotype and upregulate the expression of CD39/CD73, which can 
promote γδT cell exhaustion. γδT cells gradually develop dysfunctional characteristics, such as decreased secretion of perforin, granzyme and IFN-γ; 
in contrast, γδT cells secrete IL-17/A, which promotes tumor development and even metastasis by increasing angiogenesis and the infiltration of 
other inhibitory immune cells. At the same time, γδT cells express high levels of immune checkpoint ligands and inhibit other immune effector 
cells, such as αβT cells, by binding to immune checkpoint receptors on their surface. In addition, CD39/CD73, as the rate-limiting enzyme of the 
adenosine pathway, can promote the accumulation of adenosine in the TME by acting with soluble molecules such as TGF-β and the sBTN proteins. 
These interactions generate an immunosuppressive network by inhibiting effector cells, including but not limited to γδT cells, αβT cells and NK cells, 
through adenosine receptors, which further reduces the antitumor effects of γδT cells
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cells. Abnormal levels of carbohydrates are an important 
feature of cancer cells [112–114]. Many glycosyltrans-
ferases, including sialyltransferase, are often altered in 
malignant tumor cells, resulting in abnormal expression 
of sialoglycan [115]; high expression of sialoglycan can 
be recognized by sialic acid binding immunoglobulin-
like lectin (Siglecs). Siglecs, which are highly expressed 
in TILs, can also transmit negative signals through 
ITIMs and SHP1/2, thus hindering the effector function 
of γδT cells. Tumor marker gangliosides (TMGs) can 
interfere with the binding of IL-2 and IL-2R, and sialyla-
tion of cancer cells can destroy the interaction between 
NKG2D and ligands, hinder the transmission of activa-
tion signals, and inhibit the proliferation and activation 
of T cells [116]. Galectins, members of the lectin fam-
ily, are also regulatory glucose checkpoints. Gal-1 can 
interact with TCR and CD45, affect CD45 phosphatase 
activity and the downstream signaling pathway of effec-
tor T cells, and selectively promote Treg amplifica-
tion and secretion of IL-10, eventually leading to T-cell 
exhaustion and promoting tumor cell immune escape 
[117]. Gal-9 is a ligand of TIM-3, which can affect the 
TCR activation threshold by binding to N-glycans and 
selectively binding to PD-1 in a manner mediated by 
glycans [118]. Blockade of Gal-3, a ligand of LAG-3, can 
reverse the exhaustion of T cells [119]. Furthermore, the 
P-selectin ligand PSGL-1 can inhibit antitumor immu-
nity by interacting with the IC VISTA [119]. In addition, 
glycoimmune checkpoint molecules can act on mye-
loid regulatory cells. For example, MUC1 can bind to 
Siglec-9 on macrophages, leading to their differentiation 
into immunosuppressive M2 macrophages and upregu-
lating the expression of PD-L1 [120]. It has been proven 
that decreasing the level of sialoglycan in melanoma and 
neuroblastoma mice with Ac53FaxNeu5Ac can inhibit 
tumor growth and significantly change the immune cell 
composition of the TME [121].

Effects of γδT cells on the TME
Studies have found that in addition to high expression of 
ICRs, exhausted γδT cells often show high expression of 
ICLs. When ICLs bind with ICRs on other immune effec-
tor cells, they provide inhibitory signals and negatively 
regulate the killing function of T cells [86, 122]. Preclini-
cal data suggest that infiltrating γδT cells account for 
40% of the infiltrating lymphocytes in pancreatic ductal 
adenocarcinoma (PDAC), and high expression of PD-L1 
in these γδT cells inhibits the activation of other T cells 
[123]. PDAC tumor growth was inhibited in the pres-
ence of anti-PD-L1 antibodies, but anti-PD-L1 antibodies 
had no effect on tumor growth in mice lacking γδT cells 

(TCRγδ−/−) [124], highlighting the importance of the 
interaction between γδT cells and the TME.

Once activated in the TME, γδT17 cells can secrete 
immunosuppressive cytokines, promote the expres-
sion of PD-L1 and participate in the construction of an 
inhibitory TME [114, 125]. Driven by BTNL2, γδT17 
cells secrete IL-17A and recruit myeloid suppressor cells, 
resulting in an increase in the number of TME mesen-
chymal stem cells, M2 macrophages and tumor-associ-
ated macrophages (TAMs) [126]. It has been confirmed 
that the main cell group producing IL-17A in laryngeal 
carcinoma is CD39 + Vδ1 T cells [100]. IL-17 supports 
tumor growth during early tumorigenesis [127], in addi-
tion to recruiting immunosuppressive cells, promoting 
angiogenesis and even directly promoting the prolifera-
tion and metastasis of tumor cells [128–130]. IL-17 also 
leads to granulocyte colony stimulating factor (G-CSF)-
mediated tumor-associated neutrophil expansion; block-
ing CCL2 in mice reduces the production of IL-17 by 
γδT17 cells, thus reducing the proliferation of neutro-
phils and enhancing the activity of CD8+ T cells. IL-17 
also promotes the secretion of IL-6, activating the STAT3 
pathway and inducing the expression of PD-L1 [131]. 
Furthermore, Vδ1T17 cells also secrete IL-8, IL-17 and 
GM-CSF to recruit immunosuppressive cells such as 
MDSCs to establish an immunosuppressive network.

High expression of CD39 and CD73 on the surface of 
dysfunctional γδT cells can inhibit other effector cells 
through the adenosine pathway. CD39 can hydrolyze 
eATP into adenosine monophosphate (AMP), while 
CD73 can convert AMP into immunosuppressive adeno-
sine (ADO) [132, 133]. ADO inhibits antitumor immu-
nity through the A2A receptor (A2AR) expressed on 
immune cells. A2AR can block the early signal transduc-
tion of TCR in a cyclic AMP (cAMP)-dependent manner, 
thus weakening the response of T cells and inhibiting the 
proliferation and the cytokine production of T cells; the 
A2AR antagonist CPI-444 can reverse the suppression 
of T-cell signal transduction and IL-2 and IFN-γ secre-
tion [134]. Approximately 20% of the infiltrating γδT 
cells in human advanced breast cancer samples express 
CD73, and these cells may play an immunosuppressive 
role by producing immunosuppressive molecules such 
as IL-10, IL-8 and ADO, thus promoting tumor growth 
[135]. Regulatory CD39+ γδT cells inhibit the prolifera-
tion of other effector T cells in a concentration-depend-
ent manner [80]. CD39 and CD73 are closely related to 
the prognosis of patients [136]. Moreover, researchers 
have confirmed that CD39+ γδTregs can directly inhibit 
effector T cells more strongly than CD4+ or CD8+ Tregs 
through the ADO pathway [137]. The inhibitory function 
of CD39 and CD73 is not particularly affected by the use 
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of monoclonal antibodies (mAbs) that block CTLA-4 or 
PD-1 [137, 138].

Targeting ICs can regulate the immune function 
of γδT cells
In the inhibitory TME, γδT cell dysfunction develops 
gradually. It is difficult to reverse for terminal exhaus-
tion of γδT cells by antigen re-exposure or inhibition 
signal blockade, and dysfunctional γδT cells may even 
aid tumor cells [139–143]. Therefore, early intervention 
and reversal of the state of immunosuppressive γδT cell 
state are key to the success of ICT. Targeting ICs on the 
surface of γδT cells can reverse the immunosuppressive 
state of γδT cells or revive exhausted γδT cells.

Targeting BTN family proteins can affect the immune 
response of γδT cells
BTN and BTNL family proteins play an important role 
in antitumor immunity dominated by γδT cells and are 
also related to clinical prognosis. In non-small cell lung 
cancer (NSCLC) and breast cancer, the expression of 
BTN1A and members of the BTNL family is significantly 
related to OS [144]. Overexpression of BTN2/3A is asso-
ciated with poor prognosis in glioma [145]. In addition, 
in many tumor models, high expression of BTN3A in tis-
sues and high levels of soluble BTN3A2 and BTN2A in 
plasma can be used as markers of the efficacy of Vγ9Vδ2 
T-cell immunotherapy [65, 146–151]. BTN3A2 can also 
regulate the interaction between γδT-cell receptors and 
the NF-κB signaling pathway [148], which is related to 
the survival time of patients [152]. Studies have shown 
that specific BTNs have spatiotemporal specificity in 
shaping or selecting γδT-cell subsets [153]. Therefore, it 
is very important to further characterize the interaction 
between γδT cells and BTNs.

BTN3A/CD277 is an indispensable molecule in γδT-
cell activation. Administration of a mAbs that activated 
BTN3A1 can enhance the activation of γδT cells and 
their cytotoxic effects [63]. By adding anti-CD277 mAbs 
and knocking down CD277, Harly et  al. showed that 
CD277 plays a unique role in the response of Vγ9Vδ2T 
cells induced by PAgs, and the mechanism of γδT-cell 
activation depended on CD277 and was based on TCR 
signal transduction [154]. Without any other stimulation 
(such as anti-CD3 mAbs), administration of the soluble 
mAb 20.1 targeting BTN3A/CD277 indirectly increased 
the antigen recognition of Vγ9Vδ2T cells and mimicked 
PAgs to induce complete activation of Vγ9Vδ2T cells, 
accompanied by activation of Ca2+ signal transduc-
tion, upregulation of CD69 expression and increased 
IFN-γ secretion [154, 155]. The anti-BTN3A mAb 20.1 
combined with Vγ9Vδ2T-cell immunotherapy restored 

the proliferation and cytotoxicity of Vγ9Vδ2T cells in 
tumors, prevented the exhaustion of adoptively trans-
ferred Vγ9Vδ2T cells, improved the survival rate of ani-
mals and reduced the tumor burden in blood and bone 
marrow [152]. Aude De Gassart and coworkers [156] 
also developed a new humanized anti-BTN3A mAb, 
ICT01, that can specifically activate Vγ9Vδ2T cells and 
upregulate the proportion of CD69+ Vγ9Vδ2T cells in 
a concentration-dependent manner. ICT01 can induce 
the degranulation of Vγ9Vδ2T cells and promote the 
production of IFN-γ, TNF-α, IL-8, IL-1β, monocyte 
chemoattractant protein 1 (MCP-1) and other proin-
flammatory cytokines. In addition, after the application 
of ICT01, the tumor growth rate of mice was obviously 
slowed. Importantly, the mAbs had no obvious effect on 
normal cells, highlighting the potential clinical value of 
the anti-BTN3A mAb ICT01.

After blocking BTN proteins, the response of γδT cells 
to PAgs was blocked, and there was no longer a tumor 
cell killing effect. Yamashiro et al. found that the expres-
sion level of BTN3 was inversely correlated to the activ-
ity of lymphocytes, and administration of the mAb 232-5 
lead to phosphorylation of the BTN3A3 molecule and 
transduction of negative signals; these effects caused 
CD4+ and CD8+ T cells to act like CD4 + CD25+ 
Tregs, accompanied by a decrease in cell proliferation 
and cytokine secretion [157]. However, the mAb 20.1 
has no significant stimulatory or costimulatory effect 
on αβT cells [154], suggesting that BTN proteins may 
jointly inhibit effector T cells through negative sig-
nal transmission and that BTN3A3 may be a novel tar-
get [158]. In addition, although the mAb 103.2 does 
not affect the proliferation and activation of CD8+ T 
cells, it can inhibit the response of γδT cells induced by 
PAgs and even inhibit the degranulation and cytokine 
secretion of Vγ9Vδ2T cells, decreasing their antitumor 
effects. Audrey Benyamine and coworkers also dem-
onstrated that the mAbs 103.2 and 108.5 targeting the 
BTN3A molecule can completely inhibit the tumor cell 
lysis mediated by Vγ9Vδ2T cells [65, 152]. In addition 
to BTN3A, the B30.2 domain of BTN2A is required for 
the response of γδT cells to PAgs. The expression of the 
BTN2A1/BTN3A1 complex can trigger the activation 
of Vγ9Vδ2TCR, and the expression of BTN2A1 in can-
cer cells is related to the cytotoxicity of Vγ9Vδ2T cells. 
Anti-BTN2A1 mAbs can significantly inhibit the degran-
ulation of Vγ9Vδ2T cells, and the inhibition of Vγ9Vδ2T-
cell cytotoxicity induced by the 7.48 mAb generates an 
effect similar to the real TME [159].

Targeting BTN family proteins is beneficial for restor-
ing the antitumor function of γδT cells and promot-
ing their interaction with other immune cells, and they 
exert their antitumor effects synergistically. It has been 
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reported that melanoma cells can hijack the interaction 
between pDCs and γδT cells to escape immune con-
trol, which is manifested as dysfunction of BTN3A and 
impaired ability of γδT cells to regulate ICs [160]. Con-
formational change of BTN3A1 is the key event of PAg 
perception [161], and BTN2A1 is the key ligand that 
binds to the Vγ9+ TCR γ chain; it can directly bind to the 
germline coding region of the Vγ9 chain in Vγ9Vδ2TCR 
and simultaneously bind to BTN3A1 on the cell surface. 
The synergistic effect of BTN3A1 and BTN2A1 enhances 
the recognition of target cells by Vγ9Vδ2T cells and plays 
an important role in PAg perception [162–166]. BTN3A1 
can also recognize the N-mannosylated oligosaccharide 
in the near-membrane domain of CD45 and anchor the 
CD45 dimer near TCR, which may physically block the 
interaction of TCR-peptide-MHC-I complexes (pMHC), 
thus effectively inhibiting the separation of CD45 mol-
ecules from immune synapses and ultimately inhibiting 

the functions of TCRs and αβT cells [167]. Therefore, 
CD277-specific antibodies can restore the effector activ-
ity of αβT cells and induce BTN3A activity to mediate the 
synergistic killing of BTN3A1+ tumor cells by αβT cells 
and γδT cells in a BTN2A1-dependent manner. In sum-
mary, BTN family proteins are potential targets for fully 
exploiting the potential of γδT cells in IC therapy (Fig. 4).

Blocking inhibitory IC signaling can reverse 
the immunosuppressive state of γδT cells
ICIs can restore the proliferation and activation of γδT cells
The proliferation and activation of γδT cells were 
improved after administration of mAbs against ICs 
(Fig.  5). ICIs targeting B7-H3 and TIM-3 can improve 
the proliferation and/or activation of dysfunctional γδT 
cells. In colorectal cancer, knocking down or blocking 
B7-H3 can inhibit the apoptosis of Vδ2T cells, promote 

Fig. 4 The activation of γδT cells can be modulated by anti-BTN3A antibodies. BTN2A can bind to the γ chain of γδTCR and plays an important role 
with BTN3A in the activation of γδT cells by phosphoantigens. After the binding of an antagonistic monoclonal antibody to BTN3A, the activation of 
Vγ9Vδ2T cells will be blocked, and the cytotoxicity of Vγ9Vδ2T cells will decrease or even disappear. In contrast, after the use of an agonist targeting 
BTN3A, Vγ9Vδ2T cells have increased antigen sensitivity and enhanced ability to kill tumor cells, suggesting that targeting BTN family proteins can 
significantly regulate the immune response of γδT cells against tumor cells

Fig. 5 Targeting immune checkpoint molecules can revive dysfunctional γδT cells. Dysfunctional γδT cells express high levels of multiple 
checkpoint molecules on their surface, a phenotype similar to that of anergic or exhausted T cells. Vδ2T cells can recognize phosphoantigens with 
the assistance of BTN3A/BTN2A, and some subsets of Vδ1T and Vδ3T cells can recognize lipid antigens presented by CD1d and transmit activation 
signals through γδTCR. Activated γδT cells express NKG2D and/or other similar costimulatory molecules on their surface. Immunoglobulin-like 
transcripts (ILTs) or leukocyte immunoglobulin-like receptors (LIRs) belong to the Ig superfamily. ILT2 (LIRB1) binds to HLA-G in addition to 
recognizing other ligands and can inhibit the immune functions of γδT, NK, and B cells. NKG2A can recognize the nonclassical MHC-I molecule 
HLA-E and inhibit the stimulatory signal of NKG2D. Inhibitory Siglecs are immune regulatory sialic acid-binding receptors that resemble traditional 
immune checkpoint molecules with one or more ITIM-like motifs in the intracellular segment. Abnormal signaling of immune checkpoint 
molecules interferes with the normal function of TCRs, affects the level of intracellular protein phosphorylation through ITIM motifs and SHP-1/2, 
inhibits the proliferation and activation of γδT cells, and ultimately reduces the cytotoxicity of γδT cells. After blocking the inhibitory signals with 
monoclonal antibodies targeting immune checkpoint molecules, the ability of γδT cells to kill tumor cells and their interactions with other immune 
effector cells can be enhanced

(See figure on next page.)
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the proliferation of Vδ2T cells and induce the expres-
sion of the activation markers CD25 and CD69 in 
Vδ2T cells [168]. Caspase-3 participates in the activa-
tion of the TIM-3 signaling pathway, so γδT cells with 

upregulated TIM-3 are more prone to experience early 
apoptosis. After blocking TIM-3, the proliferation of 
Vγ9Vδ2T cells, the STAT phosphorylation level and 
the induction of IL-21 increased significantly [97, 169]. 

Fig. 5 (See legend on previous page.)
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However, the expression of cyclin B1 and cyclin D1, 
which are related to cell proliferation, was not affected 
by TIM-3 blockade [170].

The expression of PD-1 may be one of the reasons for 
the failure of Vγ9Vδ2T-cell expansion in tumor patients. 
Blocking the PD-1 signaling pathway can partially restore 
the damaged proliferation of PD-1+ γδT cells and induce 
their activation. A study showed that the response of 
bone marrow-derived Vγ9Vδ2T cells to PAgs stimulation 
was weakened in MM patients, while the proliferation 
response of γδT cells was enhanced after zoledronic acid 
stimulation with anti-PD-1 mAbs in  vitro [51]. In addi-
tion, researchers have found that the bispecific (PD-L1× 
CD3) antibody Y111, which can simultaneously recog-
nize PD-L1 and CD3, can effectively connect T cells with 
tumor cells expressing PD-L1. In the presence of PD-L1+ 
tumor cells, Y111 can induce the activation of Vγ2Vδ2T 
cells in a dose-dependent manner [171]. Although some 
studies have shown that the inhibitory effects of the 
PD-1 signaling pathway on γδT cells may be reversed by 
the synergistic effects of TCR and IL-2 signaling, block-
ing PD-1 signal transduction with anti-PD-L1 antibodies 
alone does not affect IL-2 production by γδT cells [172, 
173], and the inhibitory TME also weakens TCR signal 
transduction. Blocking the PD-1/PD-L1 signaling path-
way, restoring the proliferation and activation of γδT 
cells and promoting their differentiation into antitumor 
effector cells in the early stage of γδT cell development 
are important for effective ICT.

Furthermore, some studies have shown that PD-1 is 
not the main molecule affecting the proliferation of γδT 
cells and that the proliferation of γδT cells is strictly 
regulated by BTLA [174]. BTLA and TCR are clustered 
at the synapse between Vγ9Vδ2T cells and target cells, 
and the close localization of BTLA and TCR suggests 
that BTLA may affect TCR-dependent signal trans-
duction. γδT cells need TCR signals to maintain their 
stability [175], and it has been suggested that the inter-
action between BTLA and HVEM inhibits the prolifera-
tion of Vγ9VδT cells and their response to lymphoma 
cells. BTLA on PB γδT cells interacted with HVEM on 
leukemic cells and caused some cells to stagnate in S 
phase; however, this did not affect the percentage of G0 
cells but did increase the percentage of cells in G2/M 
phase. After blocking the interaction between BTLA 
and HVEM with mAbs, PAg/TCR-mediated signal 
transduction can be enhanced, and the proliferation of 
γδT cells can be upregulated [51, 98, 176]. However, no 
synergistic effect was found after the combined block-
ade of BTLA and PD-1, suggesting that BTLA and PD-1 
may have independent effects on the proliferation and 
cytotoxicity of human PB γδT cells [174]. That is, inhi-
bition of the BTLA signaling pathway can promote the 

proliferation of γδT cells without affecting their cyto-
toxicity, the production of IFN-γ or the nontargeted 
degranulation induced by bromohydrin pyrophosphate 
(BrHPP) [176].

ICIs can enhance the cytotoxicity of exhausted γδT cells
After treatment with ICIs, the cytotoxicity of γδT cells 
was enhanced (Fig. 5). After blocking PD-1, the antibody-
dependent cell-mediated cytotoxicity (ADCC) effects 
of CD16+ Vγ9T cells on lymphoma cells was improved 
[177]. However, it has also been reported that in the envi-
ronment of PD-L1+ tumor cells, blocking or knocking 
out PD-1 does not significantly increase the cytotoxicity 
of γδT cells. In contrast, anti-PD-L1 mAbs could enhance 
the cytotoxicity of γδT cells against some cancer cells, 
and the expression level of PD-L1 was positively corre-
lated with the cytotoxicity of γδT cells [178].

Increased secretion of antitumor cytokines After ICs 
are blocked, γδT cells can produce more inflamma-
tory cytokines, especially IFN-γ and TNF-α. Inhibitory 
ICs may reduce the production of IFN-γ by inhibiting 
the key transcription factor Eomes [179]. The PD-1 
signaling pathway may be involved in the regulation of 
IFN-γ production by γδT cells [180]. An in vitro study 
of γδT cells showed that, similar to that of traditional 
αβT cells, the cytotoxicity of activated PD1+ Vδ2T cells 
was inhibited, and the secretion of IFN-γ decreased 
after PD-L1 binding [172]. Blocking PD-1 with anti-
bodies such as pembrolizumab can promote the secre-
tion and release of IFN-γ and TNF-α by activated γδT 
cells. After the combined use of anti-LAG-3 and anti-
PD-1 antibodies, the secretion of cytokines, especially 
IFN-γ, in γδT cells increased [92, 171, 177]. However, 
it should be noted that presensitization of target cells 
or γδT-cell activation is needed for the production of 
IFN-γ; that is, the regulatory effects of PD-1 signal-
ing on the proliferation and cytokine secretion of γδT 
cells depends on costimulatory signals or early activa-
tion of γδT cells [92]. The TIM-3 signaling pathway also 
inhibits the secretion of IFN-γ and TNF-α by γδT cells. 
In  vitro studies have shown that TIM-3+ γδT cells do 
not produce IFN-γ or TNF-α and have reduced cytotox-
icity [96, 181]. In addition, the effects of B7-H3 on the 
cytokine profile of Vδ2T cells was studied. It was found 
that B7-H3 inhibited the expression of IFN-γ in Vδ2T 
cells by inhibiting T-bet [168], suggesting that the abil-
ity of γδT cells to produce cytokines would be restored 
after blocking TIM-3 and B7-H3 with ICIs.

The expression of effector genes in the IFN signaling path-
way is negatively correlated with the degree of γδT-cell 
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exhaustion. In exhausted T cells, several inhibitory recep-
tors, including VSIR, KLRG1, LAG3 and TIGIT, as well as 
the transcription factors NR4A2 and ID2, are significantly 
upregulated, and IFN response genes, such as IFITM1, 
STAT1 and IFI6, are also upregulated [182].

Increased secretion of perforin and granzyme After 
blocking ICs, the expression of perforin and granzyme 
is not inhibited, and cytotoxicity is enhanced. In  vitro 
studies showed that after a PD-1 blocking drug was used 
and ZA was administered as stimulation, the cytotoxic-
ity of Vγ9Vδ2T cells increased nearly 5 times, accompa-
nied by an increase in the expression of the degranula-
tion marker CD107 and an increase in the proportion 
of CD107+ Vγ9Vδ2T cells [51]. ERK1/2, STAT-3 and 
Wnt are known to regulate the expression of perforin 
and granzyme B in various immune cells. Some stud-
ies have found that increased expression of members of 
the TIM-3 pathway can significantly decrease the level 
of pERK1/2 in Vγ9Vδ2T cells activated by recombinant 
human (rh) Gal-9 but does not affect the level of pSTAT3 
or Wnt [183]. Therefore, blocking TIM-3 can increase 
the killing effects of Vγ9VδT cells on colon cancer cells 
by activating the ERK1/2 pathway and upregulating 
the expression of perforin and granzyme B. B7-H3 also 
inhibits the cytotoxicity of Vδ2T cells by downregulating 
the expression of perforin and granzyme B [168], which 
can be reversed by using B7-H3 blockers. In tumor tis-
sue, compared with PD-1 + LAG-3– cells, PD-1 + LAG-
3+ T cells have a weaker ability to produce cytokines 
and/or undergo degranulation [177]. The cytotoxic-
ity of Vδ2T cells against NSCLC tumor cell lines was 
enhanced after blocking PD-1 [171, 174], so the degran-
ulation of γδT cells can be improved with the inhibition 
of the PD-1/PD-L1 or LAG-3 signaling pathway.

KIRs increase the threshold for Vγ9Vδ2T cell antigen-
based activation, inhibiting the killing effects of cyto-
toxic Vγ9Vδ2T cells on MHC-I+ tumor cell lines. Block-
ing the binding of NKG2A to HLA-E can restore the high 
responsiveness of NKG2A+ Vδ2T cells. Low expression 
of NKG2A is usually accompanied by high expression of 
other ICs, such as PD-1 [141]. NKG2A is often coexpressed 
with PD-1, CTLA-4, LAG-3 and TIM-3 in CD8+ T cells, 
but they have different inhibition mechanisms [184]. The 
safety of humanized anti-NKG2A mAbs has been verified 
in clinical trials, and studies on HLA-E+ tumor cells have 
proven that combinations blocking the inhibitory signals of 
PD-1 and NKG2A have synergistic effects, which are char-
acterized by enhanced ADCC and increased expression of 
CD107 and degranulation substances [108, 185].

ICIs can promote synergistic antitumor effects of γδT cells 
and other immune cells
When ICLs on the surface of γδT cells are blocked, 
the positive interaction between γδT cells and other 
immune cells becomes more efficient (Fig.  5). Studies 
have shown that γδT cells are the key source of immu-
nosuppressive ICLs in tumor tissues and may have the 
ability to regulate αβT cells. Blocking PD-L1 on γδT 
cells in PDAC can enhance the levels of infiltrating 
CD4+ and CD8+ T cells and improve immunotherapy 
efficacy [124]. Data from mouse models also indicate 
that specific γδT-cell subsets that express PD-L1 can 
inhibit αβT cell infiltration through PD-1/PD-L1 sign-
aling and promote tumor growth. Vδ2T cells can also 
activate CTLA-4 and inhibit αβT cells through CD86. 
In individuals with normal γδT-cell function, the use of 
PD-L1 or Galectin-9 inhibitors can promote the expan-
sion and activation of CD4+ and CD8+ T cells, but this 
effect is not observed in the absence of γδT cells [92, 
124, 186]. In addition, PD-L1 is a downstream target 
of HIF1α [187]. Hypoxia and coculture with γδT cells 
increased the apoptosis rate of CD8+ T cells, suggest-
ing that γδT cells can induce the death of CD8+ T cells, 
and this effect was significantly changed after blocking 
PD-1. After blocking BTNL2, the number of cytotoxic 
CD8+ T cells in the TME increased [126]. Monali-
zumab can inhibit the newly recognized IC NKG2A 
[188] and thus activate the antitumor effects of αβT, 
γδT and NK cells. Therefore, after using ICIs to reverse 
the immunosuppressive state of γδT cells, αβT cells can 
better promote tumor cell killing.

Targeting checkpoint molecules on γδT cells with 
ICIs can also inhibit Tregs. PD-L1 expressed by γδT 
cells can promote the production of Tregs and enhance 
the expression of the FOXP3 gene, thus maintaining 
the expression of TIGIT, which plays an important role 
in immune regulation; these effects promote Tregs to 
directly inhibit effector T cells through CTLA-4 and 
LAG-3 [71, 189]. A high TIGIT/DNAM-1 ratio was 
detected in Foxp3+ γδT cells of patients with AML 
and Tregs of patients with melanoma. High expres-
sion of TIGIT can promote the stability and inhibi-
tory function of Tregs, which is highly correlated with 
poor clinical prognosis [190]. Therefore, treatment 
with anti-TIGIT mAbs can mediate the direct killing 
of tumor cells in patient tumor samples and preclinical 
mouse models and can also kill Tregs via Fc receptors 
(FCRs) [191].

In conclusion, after blocking ICR-ICL signaling with 
ICIs, γδT cells can gradually recover their functions 
and produce synergistic antitumor immune effects.
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Relationship between ICI resistance and γδT cells
The rate of response to ICIs is related to many fac-
tors [192, 193], and ICT can be a good option for can-
cer patients who are likely to have an active immune 
response. However, tumor cells may evolve other 
mechanisms of resistance after a period of treatment 
[78, 194–198]. The mechanisms of drug resistance may 
not be failure of targeted drugs but rather compensa-
tory changes in γδT cells leading to acquired resistance 
to drugs [72, 199]. For example, in EGFR- and KRAS-
mutant mice and human lung cancer specimens, thera-
peutic PD-1-blocking antibodies still bind to T cells as 
the disease progresses; this finding suggests that mAbs 
still play a role when drug resistance occurs, so attention 
should be given to pathways other than PD-1/PD-L1 in 
adaptive drug resistance [200].

During the course of treatment with mAbs, compen-
satory and alternative suppressor receptors on γδT cells 
are upregulated, indicating that γδT cells may also be 
involved in the development of ICI tolerance in can-
cer patients. Some data show that anti-PD-1 inhibition 
significantly increases the frequency of TIM-3+ Vδ2T 
cells, indicating compensatory upregulation of TIM-3; 
additionally, combined inhibition of TIM-3 and PD-1 
can significantly increase the production of TNF-α and 
IFN-γ [97]. CTLA-4 and BTNL2 are also upregulated 
[126, 201], which proves that BTNL2 may also be part 
of a novel immune escape mechanism in cancer. In addi-
tion, in melanoma, anti-PD-1 monotherapy or anti-
PD-1× anti-CTLA-4 antibodies combination therapy 
increases the expression of VISTA on lymphocytes and 
thus reshapes the tumor immune microenvironment, 
resulting in increased expression of PD-L1 in TAMs, 
increased Treg infiltration and decreased MHC expres-
sion on DCs; these results indicate that the tumor cells 
have acquired drug resistance, which is related to poor 
prognosis of the patient [202].

After the use of ICIs, the lack of the ICR signaling can 
promote γδT cells to secrete tumor-promoting cytokines 
and change toward tumor-promoting functional sub-
groups, suggesting that γδT cells are part of another ICI 
resistance mechanism. Studies have shown that a lack of 
the ICR signaling promotes the expression of IL-17 by 
γδT cells. For example, defects in the PD-1 gene promote 
the production of IL-17A and IL-22 by γδT cells [203]. 
Lack of BTLA activity further activates γδTh17 cells [204]. 
Lack of VISTA expression also increased the expression 
of IL-17A in γδTh17 cells [205]. IL-17A is a proinflam-
matory factor that can induce γδT cells to express various 
ICRs [98] and IL-17A-producing γδT cells may instigate 
resistance to ICT [206]. Furthermore, blocking TIM-3 
significantly increases the expression of IL-21R and neg-
atively regulates the antitumor function of γδT cells by 

promoting the development of CD73+ γδT cells [169]. In 
ICI therapy-resistant patients, there were higher propor-
tions of TGD-c21 γδT cell subsets, and the ligand-recep-
tor binding ability, IFN signal transduction and pathway 
activity of these cells were significantly reduced. There-
fore, TGD-c21 cells might be exhausted γδT cells with 
impaired antitumor immune function [207]. In summary, 
the heterogeneity of γδT cell subsets can lead to a lack of 
response to immunotherapy. The interaction between ICs 
and cytokines and abnormalities in the IFN-γ signaling 
pathway can also lead to secondary drug resistance in the 
context of an inhibitory TME [27, 208].

Another acquired resistance mechanism is compensa-
tory upregulation of other ICs. A preclinical study evalu-
ated the efficacy of checkpoint blockade combined with 
anti-PD-1 and anti-BTLA therapy in the treatment of 
GBM [209], and the combined treatment effectively lim-
ited the progression of tumors. Therefore, multitarget 
blockade may better restore the antitumor function of 
γδT cells, but the clinical rationale remains to be further 
explored.

The association between γδT cells and dysbiosis
Abnormal activation and increased numbers of γδT cells 
may induce immune-related adverse events (irAEs) or 
exacerbate preexisting autoimmune diseases of patients. 
As the immune system is activated, immune cells can 
become more active and secrete more proinflammatory 
cytokines, and this may lead to an increase in autoanti-
bodies [210, 211], thus disrupting the balance between 
immunosuppression and immune activation. Studies 
have shown that irAEs caused by ICIs have a pathogen-
esis similar to that of autoimmune disorders, and hyper-
reactivity of Th17 cells and proinflammatory cytokines 
such as IL-17A, IL-21 and IL-22 have prominent roles 
in the pathogenesis of many autoimmune diseases [212]. 
Among these mechanisms, increased levels of IL-17 were 
found to be associated with the development of irAEs 
such as colitis after receipt of ICI therapy [213], suggest-
ing that dysfunctional γδT17 cells may also be involved 
in the occurrence and development of irAEs. IrAEs 
often manifest as gastrointestinal toxicity, and adverse 
reactions such as celiac disease have been reported 
[214]. Researchers found that the number of γδT cells 
in patients with celiac disease was higher than that in 
normal people [215, 216], suggesting that abnormally 
activated γδT cells may contribute to gastrointestinal 
dysfunction.

Microbiota participate in immune regulation and can 
affect patient response to ICI therapy. γδT cells can 
interact with microbiota and influence antitumor immu-
nity. Given their larger tumor size and shorter survival 
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time, antibiotic-treated (Abt) mice are more susceptible 
to B16/F10 melanoma and Lewis lung carcinoma due 
to the loss of protection from nonspecific commensal 
microbiota. Abt mice also showed increased sensitiv-
ity to tumor development, accompanied by decreased 
expression of IL-17A, IL-6 and IL-23 by γδT17 cells and 
partially inhibited function of CD8+ αβT cells. Supple-
mentation of γδT cells and IL-17 restored the antitu-
mor immune response of Abt mice [217]. Paradoxically, 
after antibiotic treatment in mice that received antitu-
mor immunotherapy, the amino acid metabolism path-
way changed, and the increased production of 3-indole 
propionic acid enhanced the cytotoxicity of γδT cells 
by promoting the secretion of granzyme B, perforin and 
IFN-γ instead of IL-17 without affecting the proliferation 
of γδT cells [218].

Previous studies have shown that IL-17+ γδT cells par-
ticipate in dysbiosis, and IL-17+ γδT cells may be the 
effector T cells that regulate intestinal dysbiosis. Escheri-
chia coli can promote the phagocytosis and killing capac-
ity of γδT cells in a TCR-dependent manner [219]. After 
the onset of dysbiosis induced by ischemic brain injury, 
Th17 cells are not significantly affected, while the fre-
quency of γδT17 cells in the intestinal tract is altered, 
and these cells are involved in injury repair and neuro-
protection after homeostatic dysregulation [220]. Addi-
tionally, the proportion of γδT cells in the liver is 5–10 
times higher than that in other tissues and organs, and 
some studies have suggested a tissue-specific interaction 
between the microbiota and immune cells in the liver. 
Hepatocyte-expressed CD1d can present lipid antigens 
from microbiota, stimulate TCRγδ and maintain homeo-
stasis of liver-resident γδT17 cells. Moreover, in nonalco-
holic fatty liver disease, an overall high microbiota load 
can induce an increase in hepatic γδT17 numbers, which 
may be accompanied by a bystander effect. For example, 
inflammation induced by a high-fat diet (HFD) can stim-
ulate γδT17 cells, and together, these factors exacerbate 
disease progression [221].

Microbiota and their metabolites affect the prolif-
eration, cytokine secretion and cytotoxicity of γδT cells, 
and the interactions among γδT cells, microbiota and 
other immune cells are closely related to the mainte-
nance of homeostasis and have significance for immune 
surveillance.

Future perspective
The binding of ICLs and ICRs is a means by which tumor 
cells escape immunity, and it is also the chief cause of 
the dysfunction of γδT cells. However, the relationship 
between γδT-cell-targeting ICIs and the TME is rarely 
discussed. ICT based on traditional cytotoxic T lympho-
cytes commonly has a low response rate due to MHC 

restriction. Therefore, it is important to exploit the anti-
tumor potential of γδT cells. In regard to the relationship 
between γδT-cell-targeting ICIs and the TME, there are 
still many topics worthy of further study.

The heterogeneity of γδT-cell subsets needs to be fur-
ther clarified. There are many subpopulations of γδT 
cells, but there is some overlap between subgroups char-
acterized based on structural classifications and func-
tional classifications. Moreover, γδT cells have high 
plasticity, and their specific functional state is easily con-
trolled by the TME. Therefore, it is necessary to reveal 
the relationships between surface markers and functional 
changes in γδT cells with the help of techniques such as 
single-cell and spatial omics analyses [222]. For exam-
ple, the upregulation of ICs does not mean the absolute 
exhaustion of γδT cells [141, 143]. As such, it remains 
to be determined how the specific epigenetic state of 
γδT cells changes as dysfunction develops. Furthermore, 
when chromatin remodeling occurs, is it reversible? How 
do γδT cells exhibit opposite effects under the influence 
of different TMEs, and can these effects be exploited? 
Are the changes in the expression patterns of γδT-cell 
ICs similar to those of αβT cells? If future research can 
identify a method for selective targeting of certain sub-
sets, γδT cells will be able to play a more efficient antitu-
mor role.

Tumor models used for the study of γδT cells urgently 
need to be improved for several reasons. First, the groups 
of γδT cells are different between humans and mice [37]. 
Therefore, the subgroup results obtained in mice cannot 
be perfectly applied to humans. Second, BTNs similar to 
those in humans have not been found in mice. Therefore, 
rodent models cannot completely represent the actual 
environment in humans [223]. Furthermore, the TME is 
different in different tumor models and is also different 
from that in humans.

The therapeutic prospects of targeting checkpoints 
on the surface of γδT cells are broad. However, resist-
ance to ICT based on γδT can occur, which necessitates 
researches on the mechanism underlying resistance to 
γδT-cell therapy and multitarget combination therapy. 
Furthermore, the role of γδT cells in irAEs needs to be 
further clarified, which will pave the way for the inclusion 
of γδT cells in the arsenal of immunotherapy options.

First, MHC molecule independence and glycolipid 
antigen recognition activity are great advantages for γδT 
cells. In ICI-resistant tumor cells, a similarity between 
cells with ICI resistance and a hypermetabolic pheno-
type was observed. This phenotype included synergistic 
upregulation of glycolysis and mitochondrial oxidative 
phosphorylation, which assists tumor cells in maintaining 
vigorous growth under hypoxia and resisting ICT [195, 
224]. The associations between checkpoint molecules 
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related to the internal metabolism of tumor cells and ICs 
is also an interesting topic [225].

Second, ICs can be either costimulatory or coinhibi-
tory molecules. Agents targeting inhibitory molecules 
combined with αβT cell agonists have been shown to 
have synergistic antitumor effects [226–230]. As dys-
functional γδT cells can also express multiple ICs, it may 
be possible to restore the antitumor potential of γδT 
cells. In addition, given that the mechanism of action of 
CD39/CD73 is relatively independent of traditional ICs 
and that CD39/CD73 and its related ADO pathway have 
been proven to be related to the survival and prognosis of 
patients [231], the rationality of ICI combined with other 
targets, such as agents targeting CD39/CD73, deserves 
further discussion.

In addition to considering the combination of multi-
target therapy with ICT, whether combination immuno-
therapy based on γδT cells can have a synergistic effect 
is also worth exploring. Vγ9Vδ2T cells can release a 
large number of cytokines and chemokines to induce the 
activation of other bystander immune cells after being 
activated by amino bisphosphonic acids such as ZA. 
With the help of MCP-2, γδT cells can activate the effec-
tor function of granulocytes [232]. Some studies have 
shown that the maturation of immature DCs may mainly 
result from a bystander process because immature DCs 
rely on the activation of Vγ9Vδ2T cells by TCR signal 
transduction and are able to promote Vγ9Vδ2T cells to 
secrete cytokines required for the maturation process 
[233]. Bystander activation of T cells is a type of anti-
gen-independent activation that can occur through dif-
ferent receptors and costimulatory signals and has been 
observed in cancers [234]. Microorganism-related pat-
tern recognition receptors, such as Toll-like receptors 
(TLRs), and cytokines such as IL-12, IL-15, and IL-18 
are associated with activating bystander T-cell responses 
[235]. Thus, both the innate immune properties of γδT 
cells and their excellent cytokine and chemokine secre-
tion abilities may aid in the recruitment of other immune 
cells [236] or interactions with other bystander cells 
in the TME and may be involved in bystander activa-
tion. Bystander T cells rarely show an exhausted status 
and have excellent innate killing ability [237]; therefore, 
reversing the immunosuppressive state of γδT cells may 
allow γδT cells to promote ICI responsiveness by acti-
vating bystander cells. ICT based on γδT cells combined 
with strategies that target bystander T cells (such as 
intratumoral injection of viral peptides) may have addi-
tional beneficial effects on antitumor immunity, but this 
hypothesis needs to be further experimentally verified 
and mechanistically explored.

In clinical applications, adoptive cell infusion based 
on γδT cells combined with ICIs or CAR-γδT cells may 

be promising future research directions. The feasibility 
and antitumor ability of CAR-γδT cells have been pre-
liminarily proven [238, 239], and it has been shown that 
CAR-γδT cells can successfully migrate into the TME and 
cross-present tumor-associated antigens, providing more 
stable and durable antitumor immunity than conventional 
CAR-T cells in the solid tumor environment [240–242]. 
Compared with CAR-αβT cells, CAR-γδT cells have no 
alloreactivity and lower incidences of off-target toxicities 
and cytokine release syndrome [243, 244]. Arming CAR-T 
cells with bacterial-derived virulence factors with strong 
immunomodulatory properties can mediate bystander 
immunity through epitope spreading and can expand the 
therapeutic spectrum [245]. Antigen recognition by γδT 
cells is closely related to microbial metabolites, indicating 
that CAR-γδT cells may benefit from microbial engineer-
ing. CAR-γδT cells have just taken the first step toward 
clinical application [246, 247], and more clinical trials are 
required to determine the potential of CAR-γδT cells. 
In clinical trials, excellent antitumor activity and good 
patient tolerance were demonstrated for adoptive γδT-
cell-based therapies after γδT cells were expanded in the 
presence of appropriate doses of ZA or BrHPP or infused 
with IL-2/IL-21 [248]. One study showed that Vδ2T cells 
were able to maintain a low PD-1 expression state in vivo 
after administration of immunotherapy [249]. However, 
not all patients respond to adoptive Vγ9Vδ2T-cell thera-
pies. Considering that γδT cells present in the suppressive 
TME can display exhaustion or anergy, combination with 
ICIs might improve the cytotoxicity of γδT-cell immuno-
therapy and lead to better antitumor effects [250].

First describing the interaction between the TME and 
γδT cells, this paper has summarized the potential of 
γδT cells to participate in ICT by describing the func-
tional regulation of ICs on γδT cells. Agents targeting 
ICs can significantly regulate the proliferation, activation 
and cytotoxicity of γδT cells, which provides a strategy 
to reverse the immunosuppressive state of γδT cells and 
supports the use of ICT based on γδT cells in clinical 
applications in the future.
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