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Abstract 

Current methods for the early detection and minimal residual disease (MRD) monitoring of urothelial carcinoma (UC) 
are invasive and/or possess suboptimal sensitivity. We developed an efficient workflow named urine tumor DNA 
multidimensional bioinformatic predictor (utLIFE). Using UC-specific mutations and large copy number variations, 
the utLIFE-UC model was developed on a bladder cancer cohort (n = 150) and validated in The Cancer Genome Atlas 
(TCGA) bladder cancer cohort (n = 674) and an upper tract urothelial carcinoma (UTUC) cohort (n = 22). The utLIFE-
UC model could discriminate 92.8% of UCs with 96.0% specificity and was robustly validated in the BLCA_TCGA and 
UTUC cohorts. Furthermore, compared to cytology, utLIFE-UC improved the sensitivity of bladder cancer detection 
(p < 0.01). In the MRD cohort, utLIFE-UC could distinguish 100% of patients with residual disease, showing superior 
sensitivity compared to cytology (p < 0.01) and fluorescence in situ hybridization (FISH, p < 0.05). This study shows that 
utLIFE-UC can be used to detect UC with high sensitivity and specificity in patients with early-stage cancer or MRD. 
The utLIFE-UC is a cost-effective, rapid, high-throughput, noninvasive, and promising approach that may reduce the 
burden of cystoscopy and blind surgery.
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Main text
Urothelial carcinoma (UC) is the 12th most common 
malignancy worldwide, originating from the bladder 
and upper urinary tract, including the renal pelvis and 
ureter [1]. Bladder cancer (BC) is the most common 
urinary tract malignancy [2, 3], and China has a rela-
tively higher percentage of upper tract urothelial carci-
noma (UTUC) patients than the Western world [4, 5]. 
For patients with hematuria, a series of examinations, 
including computerized tomography (CT)/magnetic 
resonance imaging (MRI), cystoscopy, urinary cytology, 
and fluorescence in  situ hybridization (FISH), might 
need to be performed for the diagnosis of UC [6, 7]. 
Cystoscopy is currently the gold standard for the diag-
nosis and monitoring of BC [6], but this technique is 
invasive, uncomfortable, and not suitable for diagnos-
ing UTUC. Of all noninvasive methods for diagnosing 
UC, urinary cytology has high specificity but relatively 
low sensitivity [8, 9], while the other 6 assays approved 
by the Food and Drug Administration (FDA), includ-
ing NMP22 Bladder Cancer ELISA-Test and NMP22 
BladderChek tests (sensitivity 52%–69%, specificity 
87%–89%), BTA Stat test (sensitivity 57–82%, speci-
ficity 68%–93%), BTA TRAK assay (sensitivity 66%–
77%, specificity 5–75%), ImmunoCyt test (sensitivity 
60–100%, specificity 75%–84%), and UroVysion test 
(sensitivity 69%-87, specificity 89–96%), have unsatis-
factory sensitivity and/or specificity [9].

Researchers have focused on utilizing urine DNA to 
develop noninvasive approaches for detecting UC [10–
13]. As reported, uCAPP-Seq analysis has confirmed 
that genetic mutation plays a significant role in the diag-
nosis and minimal residual disease (MRD) monitoring 
of UC, with a sensitivity of 83%, specificity of 97%, and 
area under the curve (AUC) of 0.89 [10]. However, not all 
UC patients harbor common mutations in genes such as 
TERT, TP53, PIK3CA, and ARID1A. Chromosomal insta-
bility has been reported to be nearly ubiquitous in cancer 
and is a hallmark of human cancer [14]. Chromosomal 
alterations, including deletions on chromosomes 3, 8, 9, 
11, 13, and 17, have been commonly observed in BC and 
can be measured by karyotyping and FISH [11, 12]. How-
ever, assays based on single-dimensional features often 
yield inadequate detection ability.

Here, we describe a novel noninvasive urine test called 
utLIFE-UC that addresses the issues described above. 
The test uses combined assays for genetic alterations and 
large copy number variants (CNVs) with a customized 
bioinformatics workflow named the urine tumor DNA 
multidimensional bioinformatic algorithm (utLIFE). This 
study aimed to assess the performance of utLIFE-UC for 
detecting UCs in a multicenter, single-blinded clinical 
trial.

Results and discussion
Study design
A flow diagram summarizing the study design is shown 
in Fig. S1 (Additional  file  1). The algorithm was estab-
lished in 3 phases: the discovery phase, the training 
phase, and the validation phase. In the discovery phase, 
181 BC tissue samples were used to find candidate mark-
ers as described in the supplementary methods (Addi-
tional  file  2). In the training phase, urine samples from 
83 BC patients and 67 healthy controls were used for 
model construction (Additional  file  3: Table  S1). In the 
validation phase, the BLCA_TCGA cohort (281 BC 
tumor specimens and 393 normal tissue samples) and 
the UTUC cohort with voided urine samples (11 UTUC 
patients and 11 nontumor controls) were enrolled in the 
analysis (Additional file 3: Table S2).

Additionally, we collected urine samples from 31 mus-
cle-invasive bladder cancer (MIBC) patients to monitor 
MRD (Additional file  3: Table  S3). All patients received 
neoadjuvant therapy (chemotherapy, immunotherapy, or 
both). Urine samples were collected before neoadjuvant 
therapy, after 2 cycles of neoadjuvant therapy, and before 
cystectomy. We did not share the test results with sur-
geons, and all urine tests were performed before pathol-
ogy diagnosis.

Identification of urine tumor DNA markers and their 
application in the early detection of UC
To define suitable mutation markers for noninva-
sive diagnostics, the genetic profiles of 181 BC tissues 
were analyzed to find genes that could cover the maxi-
mum number of patients with minimum variants. In 
all, 155 genes were chosen from the discovery cohort 
(Additional file  3: Table  S4). In the urine cell-free DNA 
(ucfDNA) from the training cohort, at least one muta-
tion was found in 63.9% of tumor cases, two mutations 
in 39.6%, and more than two mutations in 8.4%, while 
no mutation was found in healthy controls (Additional 
file  1: Fig. S2A). Across the tumor cases, the two most 
commonly mutated regions were in the TERT promoter 
(47%, 39/83) and TP53 (18%, 15/83) (Additional file  1: 
Fig. S2A). Moreover, other genes with a high frequency of 
mutation in our cohort were ERBB2, ERCC2, and FGFR3 
(Additional file 1: Fig. S2A). Based on the mutation analy-
sis, a 7:3 training and test cohort was calculated, with the 
best AUC of 0.819 (63.9% sensitivity at 100% specificity) 
in the modeling cohort (Additional file 1: Fig. S2B).

Large CNVs were analyzed by using shallow whole-
genome sequencing (1 × WGS) data of urine-exfoliated 
cell DNA (uexDNA). Chromosomal loss and gain were 
frequently identified in tumor cases but not in healthy 
controls (Additional file  1: Fig. S2C). For each subse-
quent sample, we standardized and calculated the CNV 



Page 3 of 7Yang et al. Molecular Cancer           (2023) 22:25  

score as described in the supplementary methods (Addi-
tional file 2). The CNV score was significantly higher in 
patients than in healthy controls in our cohort (p < 0.01) 
(Additional file  1: Fig. S2D). Then, we tested the CNV 
score performance according to different segment cut-
offs in the modeling cohort with 7:3 training and test 
sets, and it could discriminate tumor cases from healthy 
controls with an AUC of 0.934 (Additional file  1: Fig. 
S2E), sensitivity 86.75 and specificity 97.01% (Additional 
file 3: Table S5, S6). We also compared the performance 
between the model with all autosomes and with spe-
cific chromosomes from the UroVysion FISH assay. The 
model used specific chromosomes reached an AUC of 
0.864 (sensitivity 79.52, specificity 91.04%) in our cohort, 
which was inferior to that used all autosomes (p < 0.05) 
(Additional file 3: Table S6).

Next, we constructed the utLIFE-UC model based on 
a systematic machine learning (ML) framework using 
combined assays for genetic alterations and large CNVs 
(Fig.  1A). The detailed procedure used to build the 
utLIFE-UC model is described below:

1. The feature matrix containing genetic alterations and 
CNVs was calculated in the modeling cohort and in 
independent validation cohorts.

2. The modeling cohort was repeatedly randomly split 
at a 7:3 ratio into training and test sets. In the train-
ing phase, three ML methods, namely, random for-
est (RF), support vector machine (SVM), and logistic 
regression without regularization (LR), were consid-
ered. For the three methods, a 10-fold cross-valida-
tion procedure was used to estimate model hyperpa-
rameters using only 90% of the training set and the 
validation of model parameters using the other 10% 
of the training set. The test set was used to assess the 
robustness of the algorithm.

3. The independent validation cohorts of BLCA_TCGA 
and UTUC were used to verify and compare the per-
formance of the three ML methods by AUC, sensitiv-
ity, specificity and overall accuracy.

The accuracy of the SVM and LR methods showed 
superiority compared to the RF method in both the mod-
eling and validation cohorts (Fig.  1B-C, F, Additional 

file 1: Fig. S3, Additional file 3: Table S7, S8). Additionally, 
given that the generalization ability of the SVM method 
is stronger than that of the LR method [15], the SVM 
method is selected for subsequent research and named as 
utLIFE-UC model. The overall sensitivity of the utLIFE-
UC was 92.78%, with a specificity of 96.00% in the train-
ing set (Fig. 1B); in the test set, the sensitivity was 85.71%, 
with a specificity of 100.00% (Fig.  1C). The two-dimen-
sional model shows better clinical utility than one dimen-
sion of mutation or CNV score analysis, demonstrating 
the advantage of using an ensemble stacked ML model 
approach with multiple biomarkers. As a measure of rela-
tive importance, the proportional contributions to the 
algorithm score variance were calculated. The large CNV 
contributed 60%, and the mutation feature contributed 
40% in the utLIFE-UC algorithm.

To compare the performance of utLIFE-UC to that of 
urine cytology for UC diagnosis, 42 non-muscle-invasive 
bladder cancer (NMIBC) or MIBC patients in the mod-
eling cohort were included for further analysis (Fig. 1D). 
Overall, the utLIFE-UC assay obtained 2-fold more posi-
tive results than cytology (p < 0.01) (Fig.  1E). Moreover, 
utLIFE-UC could detect 82.6% (19/23) of MIBC patients, 
potentially better than the 69.6% (16/23) detected by 
urine cytology (p > 0.05) (Fig.  1E). Furthermore, in 
NMIBC patients, the sensitivity of the utLIFE-UC model 
(94.7%, 18/19) was 3-fold higher than that of cytology 
(31.6%, 6/19; p < 0.01) (Fig.  1E). Our results suggested 
that the utLIFE-UC model was suitable for both NMIBC 
and MIBC. Collectively, compared with urine cytology, 
the utLIFE-UC model seemed to exhibit improved sen-
sitivity, which would be further verified in a larger pro-
spective cohort.

To validate the clinical utility of utLIFE-UC in UC 
patients with different involved organs or different 
races, a BLCA_TCGA cohort and a UTUC cohort were 
used as independent validation cohorts (Additional 
file 1: Fig. S1). The utLIFE-UC model showed high accu-
racy in distinguishing BC patients from controls (AUC 
0.942, sensitivity 94.31%, specificity 98.73%) (Fig.  1F). 
The utLIFE-UC score of the BC group derived from 
the model were distinctively higher than those of the 
control group (p < 0.01) (Additional file  1: FigureS4A). 
The utLIFE-UC model of the BLCA_TCGA validation 

Fig. 1 The liquid biopsy testing of urine markers in the early detection of UC. A Schematic illustration of utLIFE-UC algorithm. Urine samples 
were collected from UC patients, as well as healthy controls. The ucfDNA was then extracted from the urine supernatant samples and subject to 
target sequencing, and the uexDNA was extracted from the urine sediment samples and subject to 1 × WGS. Mutation and large CNV features 
were extracted, and a base model was constructed. The DNA features were then calculated into a large matrix, which was subsequently trained by 
three ML methods, RF, LR, and SVM. The SVM method was chosen as the utLIFE-UC algorithm to be validated in independent cohorts. B ROC curve 
of the utLIFE-UC in the training set. C ROC curve of the utLIFE-UC in the test set. D The landscape of utLIFE-UC and cytology detection results in 
NMIBC and MIBC. E Diagnostic sensitivity of utLIFE-UC compared to cytology in the training cohort (Fisher’s exact test; **p < 0.01). F ROC curve of the 
independent TCGA validation cohort. G ROC curve of the independent UTUC validation cohort

(See figure on next page.)
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cohort showed a NPV of 96.04% (Additional file  3: 
Table S8), indicating the potential to prevent excessive 
invasive examination in BC patients. The BLCA_TCGA 

cohort was chosen for validation because urine DNA 
from UC patients showed similar regions known to be 
frequently altered in TCGA BC tumor tissues [16]. The 

Fig. 1 (See legend on previous page.)
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CNV segments were counted from CNV profiles of tis-
sues from the BLCA_TCGA cohort, further suggesting 
the analysis of TCGA tissue specimens could reflect the 
classification capacity of the utLIFE-UC algorithm.

Next, UTUC patients and healthy individuals 
matched for sex and age were enrolled in the UTUC 
cohort (Additional file  3: Table  S2). The utLIFE-UC 
model could classify UTUCs at a sensitivity of 90.91% 
and specificity of 90.91% (Fig.  1G), indicating that 
utLIFE-UC can be potentially aid in diagnostic deci-
sions regarding UTUC. The utLIFE-UC score of UTUC 
were also distinctly higher than those of the controls 
(p < 0.01) (Additional file 1: Fig. S4B).

These results indicated that the utLIFE-UC model 
possessed high accuracy and strong clinical utility 
in the detection of BC and UTUC. It also showed the 
potential of utLIFE-UC for detection in both Chinese 
and Caucasian patients. Taken together, our results 
showed higher sensitivity as well as considerable speci-
ficity compared to the six FDA-approved biomark-
ers [9]. The utLIFE-UC model also showed superior 
sensitivity (94.31%), which exhibited promising clini-
cal implications in early detection just as uCAPP-Seq 
(93%) [10] and UroSEEK (83%) [12]. Additionally, due 
to the informative sequencing data and the extensibility 
of the ML model, there are opportunities to optimize 

the clinical utility and implementation of the utLIFE-
UC model in a larger prospective cohort.

Application of the utLIFE algorithm to detect minimal 
residual disease
Next, we applied the utLIFE algorithm to the urine sam-
ples from patients who underwent radical resection or 
transurethral resection of bladder tumor (TURBT). The 
MRD cohort (n = 31) was divided into a training set 
(n = 16) and a validation set (n = 15) (Additional file  3: 
Table  S3). In the training set, eight patients achieved 
pathological complete response (pCR), and 8 patients 
still had residual disease detected in the surgical sam-
ple (including partial response (PR) or stable disease 
(SD), defined as non-pCR). The utLIFE-UC MRD score 
was similar between pCR and non-pCR urine samples at 
baseline, while the score was significantly decreased in 
the pCR group compared to the non-pCR group (p < 0.05) 
during neoadjuvant therapy (Fig. 2A). We constructed an 
MRD model in the urine samples which collected on the 
day before surgery, with a sensitivity of 100%, specificity 
of 87.5%, and negative predictive value (NPV) of 100% 
(Fig. 2B). In pCR patients, we observed an MRD-negative 
rate of 75.0% (6/8) at the second time point (during treat-
ment), and 87.5% (7/8) of patients were MRD-negative 
on the day before surgery, while in non-pCR patients, 

Fig. 2 utLIFE-UC MRD analysis in patients with localized bladder cancer. A Line chart of the utLIFE-UC score for 2 groups: patients with pCR and 
patients with non-pCR (student’s t test; *p < 0.05, **p < 0.01). B, C Stacked bar plots showing the proportions of each group with positive or negative 
utLIFE-UC scores of the training set (B) and the validation set (C). D The landscape of the utLIFE-UC MRD model, cytology, and FISH. E Diagnostic 
sensitivity and NPV of the utLIFE-UC MRD model compared to cytology or FISH (Fisher’s exact test; *p < 0.05, **p < 0.01)
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the MRD-positive rate was 75.0% (6/8) during treatment, 
and 100% (8/8) of patients were MRD-positive on the day 
before surgery (Additional file 1: Fig. S5), indicating that 
the MRD score may represent therapeutic effects in real 
time. The validation set achieved a sensitivity of 100%, 
specificity of 80%, and NPV of 100%, and the utLIFE-
UC MRD score of the non-pCR group was significantly 
higher than those of the pCR group (Fig. 2C).

We also compared the utLIFE-UC MRD model to the 
standard of care. Twenty of 31 patients in the MRD train-
ing and validation cohorts underwent urine cytology or 
FISH assays before surgery (Fig.  2D). The utLIFE-UC 
MRD model assay was approximately 3-fold more sen-
sitive than cytology (p < 0.01) and 2-fold more sensitive 
than FISH (p < 0.05) (Fig. 2E). These results further sup-
ported the possibility that utLIFE-UC MRD detection 
could be a predictor of pathologic response. In conclu-
sion, utLIFE-UC provides potential for accurate noninva-
sive UC screening prior to the current standard of care in 
clinical practice.

The MRD cohort study demonstrated a significant 
correlation between the preoperative utLIFE-UC MRD 
score and the pathologic response to neoadjuvant treat-
ment. Importantly, pCR was observed in BC patients 
with utLIFE-UC MRD-negative predictions with an 
NPV of 100%. Invasive cystoscopy during clinical vis-
its could be avoided in patients with utLIFE-UC MRD-
negative predictions due to the high sensitivity and NPV 
of these predictions. Furthermore, the utLIFE-UC score 
may reflect the therapeutic evaluation in real time, show-
ing the possibility of advising doctors to choose the right 
time for surgery. Of note, our MRD detection does not 
require prior sequencing of tumor tissue. Taken together, 
utLIFE-UC shows practical clinical utility in early detec-
tion and MRD monitoring.

Our study is a case-control study, which does not cap-
ture the full spectrum of patients expected to be encoun-
tered in the surveillance population. Therefore, more 
follow-up information needs to be collected in the future 
to adjust the sensitivity of utLIFE-UC. Additionally, the 
small size of the UTUC cohort can impact the model 
performance, likely resulting in an underestimation of 
sensitivity and specificity. A large, prospective, multi-
center cohort study is underway.

Conclusions
To our knowledge, this multicenter study is by far the 
largest cohort combining genetic mutations and large 
CNVs with ML to establish a diagnostic model in 
UC. The urine-based utLIFE-UC method for profiling 
mutations and the CNV model demonstrated a clini-
cally feasible test for noninvasive systematic diagnosis 

and MRD monitoring of UC. The at-home urine self-
collection device, which costs approximately the same 
as cystoscopy, makes the early detection and MRD 
monitoring of UC more convenient during the era of 
COVID-19.
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