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Abstract 

Ongoing research has revealed that the existence of cancer stem cells (CSCs) is one of the biggest obstacles in the 
current cancer therapy. CSCs make an influential function in tumor progression, recurrence and chemoresistance due 
to their typical stemness characteristics. CSCs are preferentially distributed in niches, and those niche sites exhibit 
characteristics typical of the tumor microenvironment (TME). The complex interactions between CSCs and TME 
illustrate these synergistic effects. The phenotypic heterogeneity within CSCs and the spatial interactions with the 
surrounding tumor microenvironment led to increased therapeutic challenges. CSCs interact with immune cells to 
protect themselves against immune clearance by exploiting the immunosuppressive function of multiple immune 
checkpoint molecules. CSCs also can protect themselves against immune surveillance by excreting extracellular 
vesicles (EVs), growth factors, metabolites and cytokines into the TME, thereby modulating the composition of the 
TME. Therefore, these interactions are also being considered for the therapeutic development of anti-tumor agents. 
We discuss here the immune molecular mechanisms of CSCs and comprehensively review the interplay between 
CSCs and the immune system. Thus, studies on this topic seem to provide novel ideas for reinvigorating therapeutic 
approaches to cancer.
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Introduction
Many therapeutic modalities have been developed, which 
are currently used to treat cancer, such as surgery, radia-
tion, chemotherapy and targeted therapies, but the risk of 
recurrence remains high [1, 2]. Studies have shown that 
the proliferation and spread of tumor cells are related to 

the presence of stem-like cells within the tumor, which 
are collectively referred to cancer stem cells (CSCs) [3]. 
The existence of this cell type was first reported in acute 
myeloid leukemia (AML) [1]; subsequently, the pres-
ence of CSCs is also reported in different types of solid 
tumors, containing brain, breast, lung, liver, pancreas, 
colon and prostate cancer [4, 5]. These cells are capable of 
differentiation, self-renewal, tumorigenesis and chemore-
sistance [6]. CSCs are also capable of controlling the role 
of immune cells, containing T cells, B cells, NK cells as 
well as macrophages [7]. The tumor microenvironment 
is resulted from the presence of immune checkpoint 
inhibitors, such as programmed death-1/programmed 
cell death ligand (PD-L1), cluster of differentiation 47 
(CD47), T cell immunoglobulin and mucin-containing 
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domain-3 (TIM3), lymphocyte activation gene 3 (LAG3) 
and cytotoxic T-lymphocyte antigen-4 (CTLA4) [8–10].

The contact between CSCs and immune cells is medi-
ated not only through immune targets, but also through 
EVs that enable the transfer of large biomolecular cargos 
among different types of cells. CSCs regulate the com-
position of TME through the release of EVs and various 
soluble factors, including cytokines, chemokines, growth 
factors, metabolites and hormones [11–13]. Several fac-
tors are involved in the cross-talk between CSCs and the 
tumor microenvironment, such as interleukins (ILs) (IL-
6, IL-8 and IL-1β), matrix metalloproteinases (MMPs), 
vascular endothelial growth factor (VEGF) as well as 
transforming growth factor beta 1 (TGF-β1) which can 
be freely released into the extracellular space or encap-
sulated in EVs [14–20]. Given the important immu-
nomodulatory role of CSCs, further scientific studies are 
still required to evaluate the extent of the clinical impact 
of CSCs.

The current review primarily concentrates on the 
recent advances in the crosstalk between CSCs and 
immune cells, immune checkpoint molecules and EVs 
in the TME, together with the possible mechanisms of 
CSCs induced immune suppression in accordance with 
the above-mentioned interactions. In addition, we show 
the present understanding of the origins, activators, het-
erogeneity and plasticity of CSCs. In the end, we present 
major CSCs-based targeted immunotherapeutic strate-
gies that can probably improve anti-tumor immunity in 
the TME and show several potential research directions 
in the future.

Development of cancer stem cells
Intrinsic features: genetic and epigenetic
Cancer stem cells (CSCs) stand for a small subpopula-
tion of the tumor and possess self-renewal properties 
[2, 21–23]. CSCs undergo asymmetric division, giving 
rise to two different cell types with distinct cellular fates: 
one retains stem cell-like features keeping the capac-
ity for self-renewal, whereras the other transforms into 
specialized progenitor cells with the capacity to generate 
proliferating tumor cells and populate the tumor mass 
[24]. Several surface markers of CSCs have been identi-
fied, including EpCAM, CD44 and CD133, which provide 
a possible identification method of CSCs in the tumor 
stroma (Table 1) [25–34].

Intrinsic heterogeneity includes genetic and epige-
netic alterations that promote oncogenic activity [1, 
35]. Genetic and epigenetic alterations make an integral 
function in promoting tumor development, progression, 
survival and therapeutic resistance to treatment. The 
plasticity of cancer stem cells allows phenotypic switch-
ing between CSCs and non-CSCs states in response 

to environmental signals and is ruled by intrinsic fac-
tors [36–39]. Maintenance of cancer stem cell plasticity 
makes a necessary role in stimulating the growth and sur-
vival of tumor cells. The maintenance of the cancer stem 
cell state can be controlled by genomic changes (chro-
mosomal amplifications, deletions, rearrangements and 
DNA mutations), epigenetic modifications and micro-
environmental cues [40]. In contrast to genetic changes, 
epigenetic reprogramming facilitates adaptation and 
resistance to treatments, thus, greatly influencing cellular 
fate decisions. Similarly, genetic and epigenetic modifica-
tions involved in the signaling pathways can promote the 
stemness of CSCs.

Cell signaling pathways regulating cancer stem cells
Numerous signaling pathways are activated in CSCs, 
including Wnt/β-catenin, Notch, Hedgehog (Hh), 
Nuclear factor kappa B (NF-κB), Yes-associated protein 
(YAP) and Integrins, making vital functions in control-
ling cell survival, growth, differentiation and self-renewal. 
Several components of the cell signaling pathways were 
found to be genetically altered in CSCs. All these genetic 
alterations lead to epigenetic reprogramming causing 
deregulation of many signaling pathways, which col-
lectively determine the fate of CSCs present within the 
tumors.

The canonical Wnt/β-catenin signaling pathway is con-
sidered to be a vital regulator of tumor cell plasticity [41]. 
Activation of the canonical Wnt signaling pathway can be 
regulated by the transcription factor β-catenin [42, 43]. 
Wnt/β-catenin is a signaling pathway which regulates cell 
proliferation, differentiation, apoptosis and tissue home-
ostasis [44–46], whereas aberrant Wnt/β-catenin signal-
ing enhances the expression of surface markers of CSCs 
and promotes self-renewal, localization within special-
ized niches and other related CSCs properties [47].

The Notch signaling pathway regulates stem cell differ-
entiation and self-renewal [48–50]. Aberrant Notch sign-
aling stimulates self-renewal of CSCs in ovarian, breast, 
and hepatocellular carcinoma (HCC) [38]. Epigenetic 
analysis of osteosarcoma cells indicates that leukemia 
inhibitory factor (LIF) is associated with the activation 
of NOTCH1 signaling through lysine 27 of histone H3 
(H3K27 me3) demethylation, inducing the expression of 
"stemness" related genes, sphere formation, self-renewal 
as well as metastasis [51–53].

In CSCs, the hedgehog (Hh) signaling pathway has 
been engaged in driving tumor growth, invasion and 
tumor recurrence following therapeutic intervention [54, 
55]. In colorectal cancer, cancer-initiating cells express 
the indian hedgehog (IHH) gene, which is present in 
a bivalent state and contributes to the maintenance 
of colorectal cancer-initiating cells [54, 56]. In gastric 
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adenocarcinoma, increased promoter methylation of 
transcription factors CDX1/2 and KLF5, which are the 
downstream targets of the sonic hedgehog (SHH) signal-
ing, caused reduced expression of CDX1 and KLF5 and 
elevated expression of CDX2. Elevated expression of 
CDX2 was related to lymph node metastases in patients 
[55]. Likewise, DNA hypermethylation of the CpG bank 
of the SHH gene leads to the loss of the expression of the 
SHH gene in invasive uroepithelial carcinoma [57].

Yes-associated protein (YAP) and transcriptional coac-
tivator with PDZ-binding (TAZ) are transcriptional co-
activators, which are upregulated in many cancer types 
[58–61]. A splice variant of the α6 cytoplasmic structural 

domain (α6β1) of integrin was discovered to be capable of 
activating TAZ, causing the transcription of genes related 
to self-renewal [59]. In prostate cancer, over-expression 
of α3 integrins in drug-resistant cancer cells led to the 
inhibition of metastasis, which occurred via the inhibi-
tion of Rho GTPase activity by Abl kinase in the Hippo 
oncogenic signaling pathway [62]. However, in glioblas-
toma, α3 expression was discovered to be associated with 
tumor invasion and metastasis via the activation of the 
extracellular signal-regulated kinase 1/2 (ERK1/2) signal-
ing pathway [63].

Integrins refer to heterodimeric cell surface receptors 
that promote cell proliferation, differentiation, adhesion 

Table 1  Characterization of surface markers of CSC in the tumor immune microenvironment

SCCHN Squamous cell carcinoma of the head and neck, SCLC Small cell lung cancer, OSCC Oral squamous cell carcinoma, NK Natural killer, Treg cells Regulatory T cells, 
MDSC Myeloid-derived suppressor cells (MDSC), DC Dendritic cell, CAF Cancer-associated fibroblast, TAM Tumor-associated macrophage

CSCs Phenotypes of CSCs Immune cell 
Involving CSCs

Immune mechanism of CSCs Ref

EpCMA Liver CSCs NK cell; The high expression of EpCAM + cells resulting in
resistance to NK cell-mediated cytotoxicity

[26]

CD44 SCCHN CSCs Treg cells;
MDSC;

CD44 + cells inhibit T-cell proliferation, 
Treg cells and MDSC

[27]

CD44 Lung CSCs B cell;
CD4 + T cell;
Neutrophil;
DC;

CD44 was associated with PD-L1 and
infiltration of immune cells, and was a
negative prognostic factor for predicting
worsed OS in lung adenocarcinoma

[28]

CD44 + /CD133 +  Pancreatic CSCs CD8 + T Cell; CD44 + /CD133 + CSCs are associated with
low CD8 + T cell infiltration and high PD-L1
expression Level

[29]

CD44 + CD90 +  SCLC CSCs CD8 + T Cell; The interaction between CD44 + CD90 + 
CSC-like cells and T cells led to the
upregulation of checkpoint molecules
PD-1, CTLA-4, TIM-3, and LAG3

[30]

CD90 Pancreatic CSCs Monocyte;
Macrophage;

The CD90 highly expressed population in
PDAC cells harbors high stemness features
and tumorigenicity. Notably, CD90 acts as
an anchor for monocyte/macrophage adhesion,
providing immunosuppressive features

[31]

CXCR4 OSCC CSCs CAF;
TAM;
Monocytes;

CAF effectively attracts monocytes
via the CXCL12/CXCR4 pathway and
induces their differentiation to M2
macrophages

[32]

CD166 Lung CSCs DC vaccine Dendritic cell vaccination significantly decreased
percentage of CD166 + CSC.This anticancer stemness
effect was attributed to the immune-stimulatory effect
as indicated by increased percentage of CD83 + and CD8 + 
cells, upregulation of Il-12, and downregulation of TGF-β,
CTLA-4, PD-L1 and FOXP3 gene expression compared to
lung cancer control group

[33]

SOX2 Colorectal CSCs CD8 + T cell;
Treg cells;

The prognostic value of the SOX2 cancer
stem-like cell marker in colon cancer is modified
by expression of immune-cell related factors
FoxP3 and PD-L1

[34]

Nanog Colorectal CSCs CD8 + T cell; Inhibition of Nanog in a murine model
of colon cancer rendered tumor cells
susceptible to immune-mediated clearance
and led to successful, long-term control of
the disease

[35]
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to extracellular matrix (ECM) and migration by sensing 
the cellular microenvironment [64–67]. Overexpression 
of integrins in different cancer types has been docu-
mented, and a variety of peptide ligands against integrins 
have been developed for targeted therapies [68, 69]. 
The alphavbeta3 (αVβ3) integrin has been implicated in 
developing resistance to receptor tyrosine kinase inhibi-
tors [60]. Increased expression of αVβ3 integrin also was 
discovered in lung tumors that mediated resistance to 
erlotinib [70]. While in another research, integrin α6 was 
strongly denoted in glioblastoma cells [71]. Currently, 
α6 is used as a biomarker for the identification of cancer 
stem cells [72]. In addition, integrins can also regulate 
cellular signaling events facilitating extracellular signal-
ing events.

Taken together, signaling pathways are deterministic in 
the establishment of stemness traits. Moreover, the sur-
vival of cancer stem cells can also be dependent on tumor 
microenvironment events in the local niche of the tumor 
that help them to remain in a quiescent state or switch to 
a proliferative state. Significantly, there exists a growing 
body of evidence showing that a favourable environment 
plays a vital role in dedifferentiating tumor cells into 
CSCs. Besides, further identification of more detailed 
microenvironmental signals supporting or determining 
the stemness is of paramount importance to propose bet-
ter intervention strategies.

Immunomodulatory traits of CSCs and tumor 
microenvironment
In many cancer types, tumors consist of rare subpopu-
lations of CSCs that differ in cellular phenotype, gene 
expression pattern and functional characteristics [73]. 
The tumor microenvironment can regulate the develop-
ment of cancer stem cells [1, 74, 75], which includes the 
ECM and non-tumor cells present in the tumor stroma, 
like cancer-associated fibroblasts (CAF) and endothe-
lial cells, exerts a vital function in the progression of the 
tumor. Stromal cells can regulate the activity of CSCs via 
paracrine signaling. For example, hepatocyte growth fac-
tor (HGF) secreted by myofibroblasts activates Wnt sign-
aling pathway and induces dedifferentiation of non-CSCs 
into CSCs [76]. Likewise, the vasculature of the tumor 
microenvironment supports carcinogenesis and provides 
a specialized ecological niche for CSCs. It was shown that 
endothelial cells induce CSC phenotype in colon cancer 
by producing Notch ligand Delta-like ligand 4 (DLL4) 
[77]. Endothelial cells secrete growth factors that induce 
stem cell phenotype in glioblastoma [78, 79]. In addi-
tion, CSCs can even create their own ecological niche by 
trans-differentiation into endothelial progenitor cells [80, 
81], providing CSCs with the necessary growth factors 
[80, 82]. Another perspective of the microenvironment 

possessing the power to influence CSCs behavior is the 
immune cells. Therefore, a better understanding of the 
interaction between CSCs and immune cells may provide 
potential new approaches to develop therapeutic inter-
ventions for tumors.

Immune cells‑targeted immunotherapy for CSCs
Interaction between CSCs and immune cells in the TME
The CSCs niche maintains the state and plasticity of 
cancer cells and protects them from immune cell attack 
[26, 83–92]. The persistent interaction of cancer stem 
cells with the tumor microenvironment confers the abil-
ity to avoid recognition and eradication by immune 
cells, ensuring their survival and development [93, 94]. 
Therefore, understanding the capacity of cancer cells 
to circumvent immune evasion is a prerequisite to bet-
ter understanding the immunobiology of CSC and thus 
developing more effective therapeutic approaches.

Dendritic cells (DCs) refer to the primary antigen-
presenting cells (APCs), presenting tumor-associated 
antigens (TAAs) on major histocompatibility com-
plex (MHC)-I molecules, thereby activating immune 
responses. CSCs can either impair the production of 
mature DCs or enhance the number of tolerogenic DCs 
by secreting TGF-β1 [95], leading to the downregula-
tion of MHC-II expression as well as the production of 
CD80, CD86 costimulatory molecules [96–98]. CD105 
expressing CSCs secrete EVs carrying MHC-I and human 
leukocyte antigen G (HLA-G), which impair the matura-
tion of DCs through the signal transducer and activator 
of  transcription  3 (STAT3) signaling pathway [99, 100]. 
The interaction between C-X-C motif chemokine ligand 
(CXCL)-12 on regulatory dendritic cells (DCregs) and 
C-X-C motif chemokine receptor (CXCR)-4 receptor on 
CSCs contributes to the maintenance of the self-renewal 
property of CSCs [101]. Furthermore, CXCL1+ DC-regs 
induce stemness signaling in CD133+ colon cancer cells 
to facilitate metastatic capacity [102].

The interaction of tumor-associated macrophages 
(TAMs) with CSCs confers the emergence of an immu-
nosuppressive TME [103]. Ecotopes of CSCs are enriched 
in ILs, ECM, TGF-β and periostin that facilitate mac-
rophage recruitment and macrophage polarization  [85, 
104]. The expression of periostin on the cell membrane of 
CSCs recruits monocytes from the vasculature [85] and 
converts monocytes into TAMs in the TME to support 
the activity and survival of CSCs. TGF-β1 promotes the 
generation of EpCAM+ CSCs, which facilitate HCC inva-
sion and metastasis by triggering epithelial-mesenchymal 
transition (EMT) [105]. Furthermore, TAMs trigger the 
over-expression of CD47 on pancreatic [106], HCC [107] 
and leukemic [108] stem cells. CD47 on CSCs binds to 
SIRPα on macrophages protecting CSCs from immune 
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cell-mediated phagocytosis. In addition to this, secreted 
factors from TAMs stimulate the expression of immune 
checkpoints, including PD-L1 [109]. Overall, the cross-
talk between CSC and TAM induces the immunosup-
pressive TME, which supporting the survival of CSCs 
and complicates tumor eradication after immunotherapy.

Myeloid-derived suppressor cells (MDSCs) secrete 
cytokines and chemokines to reduce the efficacy of 
immunotherapy [110]. The mammalian target of rapa-
mycin (mTOR) signaling in CSCs promotes the infiltra-
tion and aggregation of MDSCs at tumor sites [110]. In 
melanoma, CD133+ CSCs activate TGF-β1 expression 
and recruit immunosuppressive MDSCs in the tumor site 
[111]. In addition, TIM-3/Galectin 9 (Gal-9) expressed 
on the surface of leukemic stem cells (LSCs) elevates 
the number of infiltrating MDSCs and TAMs, leading to 
impaired anti-tumor immune responses [112]. Similarly, 
MDSCs induce stemness in CSCs through upregulation 
of piRNA-823 [113]. Moreover, MDSCs secrete exosome 
S100A9 that enhances the activity of signal transducer 
and activator of  STAT3/noncanonical nuclear factor-
kappaB (NF-κB) signaling [114] and the production of 
prostaglandin E2 (PEG-E2) [115], promoting cancer cell 
stemness and survival. These findings suggest that CSCs-
MDSCs interactions reshape the stemness of CSCs, lead-
ing to tumor growth and progression.

The cross-talk of Tregs with CSCs promotes the for-
mation of immunosuppressive TME. PD-L1 and TGF-
β1 expressed by CSCs mediate Tregs infiltration in 
glioblastoma [116]. Similarly, CSCs secrete CCL1 to 
recruit Tregs, producing TGF-β1 and IL-17 to stimu-
late the self-renewal capacity of CSCs [117–119]. Gas-
tric CSCs facilitate the development of cancer stem 
cells through STAT3 signaling pathway while protect-
ing CSCs from being recognized by T cells [120]. Tregs 
derive VEGF to maintain the survival, stemness and self-
renewal of CSCs under hypoxia conditions [82]. Further-
more, Tregs secreted cyclooxygenase 2 (COX-2) hinders 
the function of effector T cells in a PEG-E2-dependent 
mechanism, verifying that the interactions between CSCs 
and Tregs promote immune escape, leading to the failure 
of cancer immunotherapy [121].

In general, T cells recognize TAAs on the surface of 
APCs as MHC-peptide complexes. However, CSCs can 
downregulate the expression of MHC-I [122] and TAAs 
[91], induce the expression of allelic variants of MHC-1 
[123, 124] and upregulate the expression of immune 
checkpoints, including PD-L1 [125], to evade immune 
surveillance and recognition by anti-tumor immunity. 
Besides, downregulation of MHC-1 expression influences 
CD8+ T cell activation [126]. EMT/β-catenin signaling in 
CSCs regulates the glycosylation and stabilization of the 
immune checkpoint PD-L1, thus, evading T cell immune 

surveillance [127]. In a hypoxia environment, CSCs 
induce the expression of VEGF, PD-L1 and TIM-3 [128]. 
During the development and metastasis of human neu-
ral crest cells (HNCCs), CD276+ CSCs are found to be 
located at infiltrating tumor sites and evade anti-tumor 
immunity by hindering the infiltration of CD8+ T cells 
[129, 130]. Prostate CSCs inhibit T cell proliferation and 
cytokine production via Gal-3 expression, thus, protect-
ing CSCs from cytotoxic T cells mediated lysis [131]. Fur-
thermore, quiescent CSCs protect the ability of T cells 
to recognize and lysis of tumor cells by downregulating 
NLR family CARD domain containing 5 (NLRC5) trans-
activator which belongs to the MHC class I mediated 
immune responses [132].

The activation of natural killer group 2 member D 
(NKG2D) receptor expressed on the surface of NK cells 
promote the lysis of MHC-I negative CSCs by a non-
APC dependent mechanism [133]. NK cells expressing 
NKG2D can mediate the lysis of MHC-I negative colonic 
CD133+CD44+ CSCs [134], and NK cells expressing 
NKp30 and NKp44 can directly target and eradicate 
MHC-I negative CD24+ CSCs in ovarian cancer [135]. 
CSCs upregulate HLA-G expression, which interacts 
with the NK cell inhibitory ligands killer cell immuno-
globulin-like receptor 2DL4 (KIR2DL4) and natural killer 
group 2 member A (NKG2A), making them become 
less sensitive to NK cell-mediated lysis by inhibiting NK 
cell activation [136–138]. In addition, CSCs expressing 
SOX2/SOX9 downregulate NKG2DL expression and 
protect them from NK cell-mediated immune clear-
ance [139]. CSCs develop therapeutic resistance to NK 
cell-based immunotherapy by upregulating MHC-I mol-
ecules, which eventually leads to tumor recurrence [140]. 
Therefore, understanding the potential mechanism driv-
ing NK cell-mediated recognition and elimination of 
CSCs can probably provide opportunities for anti-CSC 
targeted immunotherapies (Fig. 1).

Targeting CSC‑immune cells therapy
From our perspective, CSCs and the tumor immune sys-
tem an inextricable linked. CSCs can create their TME 
after cross-talk with immune cells, thus, promoting 
tumor immunosuppression and immune escape. This 
research demonstrates the therapeutic potential of focus-
ing on CSC-TAM, CSC-T cell and CSC-MDSC cross-talk 
[141]. TAM can increase the increased expression of hya-
luronic acid (HA) from CSCs in human neck squamous 
carcinoma (HNSCC); thus, targeting TAMs to inhibit 
CSC function is a viable option [142]. CSCs suppress T 
cell function by secreting cytokines (TGF-β1, CCL2 and 
Tenascin-C (TNC)) and exosomes to promote bone mar-
row-derived macrophage (BMDM) activation. MDSC 
promotes CSC stemness and inhibits T cell activation 
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in breast cancer through the STAT3 signaling pathway 
[143]. MDSC also increases CSC stemness and PD-L1 
expression in epithelial ovarian tumor cells by produc-
ing PGE2 [144]. MDSC also promotes the stemness of 
CSCs in ovarian cancer through triggering the CSF2/p-
STAT3 signaling pathway. Therefore, it is considered that 
targeting MDSC and the CSF2/p-STAT3 signaling path-
way can improve the efficacy of conventional therapies 
[145]. These preclinical studies show that targeting CSC-
immune cell cross-talk has therapeutic potential in the 
treatment of cancer patients.

Targeting CSC‑CAR‑T cells therapy
TILs are isolated from a patient, cultured with IL-2, 
tested for their ability to recognize tumor-specific anti-
gens, and then reinfused into the same patient [146]. T 
cells have been reprogrammed into chimeric antigen 
receptor (CAR) T cells through the use of artificially 
designed CARs and gene editing techniques, allowing 
T cells to more effectively lyse tumor cells. CAR-T cells 
first showed promise in hematological tumors, then in 
a variety of other solid tumors [147]. CAR-T cells cur-
rently lack unique and specific targets. Several issues 

Fig. 1  CSCs interfere with immune cell activity directly or through cytokines. CSCs suppress or evade antitumorigenic T cells in part by immune 
checkpoint (MHC-I, PD-L1 and CD80). CSCs reduce DCs mature and differentation via TGFβ and Ev (MHC-I, HLA-G). NKG2DL are able to kill MHC-I 
negative CSCs in an APC-independent manner. NK cells inhibitory ligands KIR2DL4 and NKG2A interact with HLA-G on CSCs and directly inhibits 
NK cells activation. CSCs further drive recruitment and polarization of TH17 cells and Treg cells by the combination of CCL-1, IL-2, IL-8, IL-10 and 
TGF-β1. Tregs produce TGF-β1 and IL-17 to promote self-renewal capacity, stem cell markers, and EMT toward tumor progression and invasion. CSCs 
also derived PD-L1 mediate the infiltration of Tregs. An additional layer of regulation of T cell activity is mediated indirectly by immunosuppressive 
myeloid cells, including macrophages and monocytic myeloid-derived suppressor cells (M-MDSCs). This effect partially depends on CSF1, CCL2, 
CCL5, TGF-β1 and PEG-E2 secreted by CSCs. The pathway of CSCs expressing TIM-3/Galectin 9 (Gal-9) expands the number of MDSCs. Exosome 
S100A9 enhances STAT3/NF-κB phosphorylation and production of prostaglandin E2 (PEG-E2) to promote CSCs. Collectively, these interactions 
reshape the tumour microenvironment and create a habitat where Treg cells and TH17 cells support CSCs, the latter via IL-17 production
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concerning the effective concentration and persistence 
of CAR-T cells in the target region remain unresolved 
[148, 149]. Current CSC CAR-T cell therapy experimen-
tal studies primarily involve in  vitro coculture systems 
and preclinical studies; more clinical studies are needed 
in the future to demonstrate its efficacy alone or in com-
bination with other tumor-targeted therapies.

CAR-T therapies have a distinct structure, the single-
stranded variable fragment (scFv), which recognizes cell 
surface antigens directly and specifically without rely-
ing on MHC down-regulation [150]. The identification 
of CSC surface markers such as EpCAM, CD44, and 
CD133 has caused the identification of specific therapeu-
tic targets for inhibiting tumor recurrence and metas-
tasis [151]. Furthermore, CSC expressed molecular 
markers like epidermal growth factor receptor variant 
III (EGFRvIII), human epidermal growth factor recep-
tor 2 (HER2) as well as chondroitin proteoglycan sulfate 
4 (CSPG4) provide therapeutic targets for inhibiting 
tumor recurrence and metastasis [152–154]. CAR-T cell 
development targeting CSC molecular markers has so far 
demonstrated therapeutic efficacy. As shown in Table 2, 
CD133, EpCAM and ALDH have been adopted for CSC-
directed immunotherapy, and the majority of them are 
recruited. Because the presence of CSCs in TME pre-
vents autologous cells and T cells receiving CAR-T ther-
apy from directly destroying tumor cells, a combination 
of CSCs-targeted CAR-T therapy and CSCs-targeted 
TME strategies may improve prognosis. Current research 
indicates that increased PD-L1 expression in CSCs pro-
motes the occurrence and progression of TME [155]. 
The binding of PD-L1 to PD-1 on activated T cells can 
inhibit CAR-T cell function, resulting in CAR-T cell fail-
ure [156]. Therefore, CSCs targeted therapies combined 
with FDA-approved PD-1/PD-L1 checkpoint inhibitors 
[157] or dual CTLA-4 blockade provided significant anti-
tumor effects and CSC eradication [157, 158]. There-
fore, combining a-PD-L1 and a-CTLA-4 inhibitors with 

CAR-T cells that target CSCs may become an efficient 
immunotherapeutic strategy for treating cancer patients.

Targeting CSC‑NK cells therapy
The targeting of NK cells to CSCs highlights the trans-
lational potential of NK immunotherapy as a treatment 
for solid malignancies [159, 160]. Moreover, CD34+ AML 
stem cells suppress NKG2DL expression via poly-ADP-
ribose polymerase 1 (PARP1), implying that NKG2DL 
mediates immune evasion of NK cell depletion and that 
genetic or pharmacological inhibition of PARP1 inhib-
its NKG2DL expression in CD34+ AML stem cells. This 
causes NKG2DL re-expression on the surface of AML 
stem cells, making them re-sensitive to NK cells [161]. 
Melanoma CCR7+ CSCs have increased NKp30/NKp46 
ligand expression while decreasing MHC-I expression, 
making them become vulnerable to NK cell-mediated 
cytotoxicity [162].

The combination of autologous NK cell enhancement 
and engineered CAR-NK cells can target CSCs with 
increased affinity. Activation of NK cells by cytokines 
induction into killer (CIK) cells can resensitize NK-
resistant CSCs, but the cytokine dose must be adjusted 
to avoid the expansion of immunosuppressive Tregs 
[163]. CIKs with anti-tumor activity recognize NKG2D 
and kill CSCs [164], combining CIK-mediated tumor cell 
killing with artificially engineered CAR cells. CAR-CIKs 
can be created to target CSC antigens including CD44v6 
and CSPG4 [165, 166]. These CAR-CIKs are effective 
at eliminating CSCs both in vitro and in vivo, but more 
clinical trials are required to assess the synergistic effect 
with other therapeutic strategies. The therapeutic effect 
of breast CSCs has been significantly improved by using 
CAR-NK cells to eliminate the EGFR in the mouse 
in vivo model [167]. The same cytokine IL-15 can induce 
CAR-NK cell expansion in  vivo and has a high affinity 
for EpCAM+ CSC [168]. Understanding the underlying 
mechanisms of NK cell-mediated CSC recognition and 

Table 2  CSCs targeted CAR-T cells therapy in clinical trials

Trial Solid Tumor Phase Enrollment NCT Number Current status

CD133 CAR-T Advanced malignancies I/II 20 NCT02541370 Completed

MUC1 CAR-T/PD-1 KO Advanced esophageal cancer I/II 20 NCT03706326 Recruiting

EGFR IL-12 CAR-T Metastatic colorectal cancer I 20 NCT03542799 Not yet recruiting

MESO CAR-T Refractory–relapsed ovarian cancer I/II 20 NCT03916679 Recruiting

MESO-19 CAR-T Metastatic pancreatic cancer I 4 NCT02465983 Completed

MOv19-BBz CAR -T Recurrent high-grade serous ovarian cancer I 18 NCT03585764 Recruiting

LeY CAR-T Advanced cancer I 30 NCT03851146 Recruiting

EpCAM CAR-T Recurrent breast cancer I 30 NCT02915445 Recruiting
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clearance may thus lay the groundwork for a new genera-
tion of CSC-targeted immunotherapy.

Targeting CSC‑DC vaccines therapy
Tumor vaccines can stimulate the human immune sys-
tem, inhibiting tumor growth or eliminating tumor cells. 
Patients can be immunized by delivering tumor antigens 
through various established methods. DC-based vaccines 
are effective against CSCs in a variety of cancers. ALDH+ 
CSC-DC vaccines can directly target ALDH upregulated 
by CSCs, indicating the potential for adjuvant therapy 
in cancer patients [158, 169]. MUC1, a transmembrane 
glycoprotein, is involved in CSC stemness maintenance, 
and CSC vaccines targeting MUC1 have been developed, 
primarily by activating humoral immunity to inhibit 
CD133+ CSCs [170]. At the moment, a strategy of com-
bining CSC-DC vaccine with chemotherapeutic drugs 
has been proposed to make targeting CSCs more effec-
tive and safe [171], and more clinical trials are needed to 
prove this.

CSCs targeted by Oncolytic Viro Therapy (OVT)
OVT has an anti-CSC effect by inducing tumor cell death 
and activating T cells. OVT has been shown to mediate 
IFN-γ release, angiogenesis inhibition and a decrease in 
the number of regulatory T cells in the tumor [172]. Onc-
olytic viruses that target specific CSC markers and signal-
ing pathways can potentially be used as CSC therapeutics. 
Herpes simplex virus (HSV), adenovirus (Ads), measles 
virus (MV), retrovirus and vaccinia virus (VACV) have 
all been used in clinical trials to target CSCs. HSV has 
received much attention for its ability to kill tumor cells 
[173], with oncolytic HSV (oHSV), G207, being used in 
clinical advanced glioma trials, and CD133+ CSCs glioma 
cells being susceptible to tumor lysis by HSV [174]. oHSV 
modified by interleukin IL-12, on the other hand, will 
switch from a pro-tumor T helper (Th) -2 response to an 
anti-tumor Th-1 response [175]. Ads have the ability to 
infect both dividing and non-dividing tumor cells [176]. 
To evaluate the killing effect of conditional replication Ad 
(CRAd) on breast cancer, CD44+CD24− CSCs extracted 
from the pleural effusion of patients with metastatic 
breast cancer and injected into the fat pad of SCID mice 
decreased after tumor formation, which may contribute 
to the differentiation and proliferation of CSCs to form 
solid tumors. Five weeks after intratumoral injection, 
CRAd treatment demonstrated significant anti-tumor 
effects [177]. MVS form syncytial bodies in neighboring 
cells via viral protein binding and receptor protein fusion, 
so oncolytic MVS (oMVS) are used to induce syncytial 
formation in CSCs to ensure complete tumor eradica-
tion [178, 179]. After chemotherapy, the proportion of 
CD44+CD24– CSCs increased significantly, whereas 

oMV infection caused apoptosis of CD44+CD24– CSCs 
[180]. The oncolytic potential of VACV is realized via 
susceptibility and oncolytic action. In the breast can-
cer model, mice were injected into the left and right fat 
pads with tumor implants containing CD44+CD24– and 
CD44+CD24+ CSCs, respectively. After post-orbital 
delivery of VACV, the left and right breast tumors were 
generally suppressed, indicating that VACV could be 
used for systemic treatment of breast cancer [181]. At 
the moment, oncolytic viruses combined with standard 
chemotherapy have been shown to be feasible and effec-
tive in the treatment of CSCs [182]. Furthermore, the 
sensitivity and susceptibility of oncolytic viruses to host 
tumor cells remains a critical issue for oncolytic virus 
engineering.

Immune 
checkpoint‑targeted immunotherapy for CSCs
Cancer stem cells and innate immune checkpoint
A leading conundrum is how it is probable that even a 
subset of patients can yield a spontaneous CD8+ T cell 
response against tumor-associated antigens, obviously in 
the lack of pathogen involvement. Moreover, this can nar-
row to a question of mechanisms of sterile immunity and 
indicate the likely participation of stress-associated or 
damage-associated molecular patterns triggering innate 
immune activation [183]. CD47 is a transmembrane pro-
tein belonging to the immunoglobulin superfamily [106, 
184–187]. The binding of CD47 to SIRPα generates a "do 
not eat me" signal [188–193]. Increased CD47 expression 
in tumors to evade immune surveillance by macrophages 
has also been associated with poor clinical prognosis 
[194]. Blockade of CD47-SIRPα interaction in cancer 
induces the activity of the innate immune system and 
increases phagocytosis of CSCs by macrophages [195]. 
By extending the potential clinical application of CD47 
blockade combined with CAR-T cells to a wider range 
of malignancies [195], these treatment modalities can 
reduce the survival of CSCs and thereby prevent tumor 
recurrence. Therefore, targeting CD47 have emerged as 
an effective therapeutic strategy for cancer.

Cancer stem cells and adaptive immune checkpoint
CSCs avoid immune attacks by reducing the expression 
of adaptive immune checkpoints, which can directly 
contribute to immune activation. PD-1-PD-L1 axis 
refers to one of the immune checkpoints that can enable 
tumor cells to evade immune attack from PD-1+ T cells 
[196]. Following interaction with PD-L1 and PD-L2, 
PD-1 inhibits T cells mediated immune responses and 
subsequently induces IL-10 production by the tumor 
[197–202]. PD-L1 expression has also been detected in 
CSCs [203–207]. Activation of PI3K/AKT and mTOR 
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signaling pathways by PD-L1 is a key cellular process that 
maintains the pluripotency of CSCs and detects the dif-
ferentiation fate of CSCs [208]. Activation of the EMT/
STAT3 signaling axis induces PD-L1 expression on CSCs, 
enabling them to circumvent immune attacks [209]. 
Therefore, specific targeting of the PD-1-PD-L1 axis with 
monoclonal antibodies may serve as a potential thera-
peutic intervention for CSCs [127, 210].

Cytotoxic T lymphocyte-associated protein 4 (CTLA-
4) is a member of the immunoglobulin superfamily and 
encodes a protein that inhibits the overactivation of T 
cells [211, 212]. Upregulation of CTLA-4 on Tregs plays 
an immunomodulatory role in suppressing overreac-
tive T cells and protecting tissues from immune-medi-
ated damage [213, 214]. CD28 on T cells interacts with 
CD80 and CD86 on the surface of APC and can offer a 
costimulatory signal for T cell activation [214]. Monoclo-
nal antibody targeting CTLA-4 can trigger an anti-tumor 
immune response [215]. Combination therapy with spe-
cific antibodies to CTLA-4 and PD-1 may be an effective 
way to treat patients with tumors [216].

T cell immunoglobulin mucin receptor 3 (TIM-3) 
regulates immune responses mediated by various kinds 
of immune cells, like CD8+ T cells, Foxp3+ Treg cells 
and macrophages [217–222]. TIM-3 plays the role of 
an immune checkpoint on T cells driving immune tol-
erance, and thus the defective expression of this check-
point contributes to the development of autoimmune 
diseases and tumors [223–225]. TIM-3 is overexpressed 
on AML LSCs [226, 227] and CSCs in many solid tumors 
[112, 228–233]. TIM-3+Foxp3+ Treg cells express IL-10 
and upregulate CTLA-4 and PD-1 expression, and these 
cells display more tumor suppressive function than TIM-
3–Foxp3+ Treg cells [234, 235]. IL-12 and IL-18 mediate 
the expression of TIM-3 on NK cells and inhibit the anti-
tumor activity of NK cells [236–238]. There is evidence 
that TIM-3 expressed on T cells interacts with Gal-9 on 
CD11b+Ly6G+ MDSCs to induce the proliferation of 
MDSCs, creating an immunosuppressive environment 
to regulate immune responses [239]. Treatment of Th-1 
cells by TIM-3 monoclonal antibodies induces immune 
responses against tumor cells by modulating the ERK 
signaling pathway in Th-1 cells [240].

Lymphocyte-activation protein 3 (LAG-3), an immu-
noglobin (Ig) superfamily protein, is denoted on NK cells, 
activated CD4+ and CD8+ T cells and Treg cells [241]. 
Galectin-3, a carbohydrate-binding protein, is highly 
expressed in breast, gastric, colorectal and ovarian can-
cers [242]. Interaction of LAG-3 with MHC class II mol-
ecules can inhibit the function of melanoma-infiltrating 
lymphocytes and enables tumors to escape recogni-
tion and lysis by immune cells [243, 244]. Interaction of 
Galectin-3 on tumor cells with LAG-3 on CD8+ T cells 

inhibits anti-tumor immune responses [245]. In glio-
blastoma multiforme (GBM), expression of galectin-3 on 
CSCs mediates immunosuppression by inducing T cell 
apoptosis [246]. CSCs mediated activation of LAG-3 and 
PD-1/PD-L1 signaling pathways synergistically hinders 
IFN-γ and TNF secretion from CD8+ T cells; therefore, 
combined blockade of LAG-3 and PD-1 is likely to acti-
vate T cells more potently in clinical settings [247, 248] 
(Fig. 2).

Targeting CSCs on the efficacy of immune checkpoint 
inhibitor therapy
Evaluating CSCs regulation with immune checkpoints 
and their relationship to tumor recurrence is an issue 
that needs to be addressed further. Alternative check-
points, such as v-domain immunoglobulin inhibitory 
T-cell activation (VISTA) and indoleamine 2, 3-dioxy-
genase 1 (IDO1), inhibit the tumor-killing function of T 
cells in addition to PD-L1 and CTLA-4 [249]. The intrin-
sic mechanism of tumor resistance caused by alterna-
tive checkpoints and PD-1 treatment must be clarified 
[250]. Anti-PD-L1 antibodies have limited specificity, 
and PD-L1 heterogeneity is caused by differences in affin-
ity or target epitopes [251]. On the other hand, patients 
with androgen receptor prostate cancer did not express 
PD-1, PD-L1 or CTLA-4, whereas the B7-H3 is highly 
expressed [252] and inhibits cytotoxic T cell activity 
[253]. Immune checkpoint heterogeneity will influence 
immune checkpoint inhibitor (ICI) therapy response and 
can be applied to be a tool to identify appropriate tar-
geted checkpoints in different tumor types. In addition, 
based on a better understanding of CSC surface biomark-
ers, obvious progress has been made in the development 
of antibodies that target CSCs (Table 3).

In terms of anti-tumor and immunotherapy efficacy, 
CSCs represent a novel target for cancer treatment. 
Because CSCs can continue to develop into drug-resist-
ant tumors even after conventional treatment. CSC 
therapy can therefore be combined with immune check-
point inhibitor (ICI) therapy to produce a more potent 
antitumor effect. B-lymphoma Mo-MLV insertion region 
1 (BMI1) is a critical component of polycomb reac-
tive complex 1, which coordinates immune escape in 
CSCs [254]. The proportion of BMI1+ CSCs in HNSCC 
increased significantly after anti-PD-1 and cisplatin com-
bination therapy, whereas BMI1 inhibition resulted in 
the elimination of these CSCs and a significant increase 
in CD8+ T cell infiltration. Depletion of BMI1+ CSCs 
may thereby be an efficient strategy for improving anti-
PD-1 therapy efficacy and preventing tumor recurrence 
[255]. Depletion of BMI1+ CSCs may thus be an effective 
strategy for improving anti-PD-1 therapy efficacy and 
preventing tumor recurrence [255]. Metformin directly 
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kills cancer stem cells [256] while improving anti-PD-1 
therapy efficacy [257]. In addition, the two functions are 
linked.

TME complex components contribute to CSC dedif-
ferentiation, causing them to intervene in tumor immu-
nogenicity rather than tumor immunosuppression [258]. 
There exists a significant positive relationship between 
tumor immunogenicity and ICI therapy efficacy, but 
more research is needed in this area, particularly in dif-
ferent types of cancer. The concept of tumor hetero-
geneity leading to a low immune response to tumors is 
important in clinical evaluation [259]. Intertumor or 
intratumor heterogeneity is thought to be an impedi-
ment to tumor targeted therapy [260]. Tumor heteroge-
neity and cancer stem cell plasticity are linked, and it is 

thought to be an emerging marker related to cancer inva-
sion [261]. Tumor heterogeneity is caused by the state of 
the complex tumor immune microenvironment [262], 
tumor mutation reflects immune characteristics [263] 
and represents tumor sensitivity to anti-PD-1 treatment 
[264].

CSCs can transition from epithelial to mesenchymal 
cells [265], which is due to their epithelial-mesenchymal 
plasticity (EMP) [266]. The phenotype of EMT is strongly 
associated with elevated levels of immune checkpoint 
expression (PD-1, PD-L1, CTLA-4 and TIM-3). There-
fore, EMT characteristics have been proposed as predic-
tors of response to ICI therapy [267]. Zinc finger E-box 
binding homeobox  1 (ZEB1) is a critical transcription 
factor in EMT that connects CSCs to EMT [268]. ZEB1 

Fig. 2  Immune checkpoint targeting CSCs. Administrated NK cells or CAR NK cells target TAAs on CSCs. Ex vivo maturation of DCs exposed 
to CSCs-lysate/TAAs/peptides produce a vaccine that after administration arm the cytotoxic T cells in an MHC-1-TCR-dependent manner for 
targeting specifc CSCs. Antibodies targeting immune checkpoint molecules such as PD1/PDL1, CD276, and CTLA4 could improve the anticancer 
immune responses. Anti-CD47 antibody sensitizes CSCs to cell-mediated phagocytosis. FASL, FAS ligand; mDC, mature DC; TRAIL, TNF-related 
apoptosis-inducing ligand
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was also linked to increased PD-L1 expression and tumor 
killing by T cells [269]. PD-L1 on the surface of CSCs is 
downregulated after they transform to the MET pheno-
type, resulting in increased sensitivity to TIM-3 targeted 
therapy.

CSCs make a critical function in the promotion of 
angiogenesis in solid tumors. Anti-angiogenic inhibi-
tors, like cabozantinib and regorafenib, are currently 
approved for the treatment of HCC after sorafenib fail-
ure [270, 271]. Ramucirumab, an anti-VEGF antibody, 
has also been approved for patients undergoing unre-
sectable HCC who have failed sorafenib treatment [272, 
273]. These anti-vascular therapies, when combined, 
may have anti-tumor effects by targeting CSCs. Further-
more, the relationship between CSCs and angiogenesis 
promotes tumor cell immune escape. Therefore, immu-
notherapy combined with a VEGF antagonist is a novel 
approach with clinical potential [274]. A phase III trial 
(IMbrave150) recently found that combining atezoli-
zumab (a PD-L1 inhibitor) and bevacizumab (an anti-
VEGF antibody) led to improved overall survival and 
progression-free survival in patients undergoing unre-
sectable HCC (NCT03434379) [275]. Therefore, the FDA 
approved atezolizumab and bevacizumab as the most 
recent first-line systemic treatment for patients with 
unresectable HCC [275]. Furthermore, the REGONIVO 
trial (NCT03406871) showed that combining nivolumab 
(a PD-L1 inhibitor) and regorafenib (an anti-VEGFR 

antibody) resulted in responses in patients suffering from 
gastric and colorectal cancer [276]. Finally, the combina-
tion of immune checkpoint inhibitors and anti-angio-
genic inhibitors may result in CSC depletion.

Secretome‑targeted immunotherapy for CSCs
CSCs and their EVs are essential for the progression 
of cancer
Cell-to-cell communication occurs through different 
pathways, such as tunneling, microtubules reorganiza-
tion and direct intercellular connections created by con-
nexin channels; while extracellular vesicles (EVs) are 
increasingly recognized as an important mediator of 
intercellular communication [277]. EVs mediate inter-
cellular transport of biomolecular cargo, such as non-
coding nucleic acids, mRNA, proteins, metabolites and 
intact organelles [278]. EVs can influence the prolifera-
tion and energy metabolism of cancer cells as well as the 
components of the tumor microenvironment [279, 280]. 
EVs also result in the dedifferentiation of cancer cells into 
the CSC state.

Given the considerable heterogeneity of CSCs and EVs in 
various cancers, the impact of these cells and EVs secreted 
by these cells is also widespread, yet CSCs share some 
properties with cancer cells that help develop resistance 
to immunotherapy by evading immune surveillance [281]. 
Numerous cellular processes contribute to the maintenance 
of the specific functions of CSCs, including autophagy and 

Table 3  Targeting agents on the efficacy of CSCs associated surface markers in clinical trials

Antibody target Drug name Solid Tumor Phase Enrollment NCT number Current status

CD47 TTI-621 Solid tumor I 260 NCT02663518 Recruiting

Hu5F9-G4 Solid tumor I 88 NCT02216409 Completed

IBI188 Advanced malignancies I 42 NCT03763149 Recruiting

AO-176 Solid tumor I 90 NCT03834948 Recruiting

SRF231 Solid tumor I 148 NCT03512340 Recruiting

Bivatuzumab mertansine Metastatic breast cancer I 24 NCT02254005 Completed

CD44 RO5429083 Malignant solid tumors I 65 NCT01358903 Completed

SPL-108 Ovarian cancer I 18 NCT03078400 Recruiting

PD-1 Nivolumab Glioblastoma multiforme II 29 NCT02550249 Completed

Pembrolizumab Glioblastoma multiforme II 80 NCT02337491 Completed

Durvalumab Solid tumors II 124 NCT02403271 Completed

PD-L1 Atezolizumab Non-small-cell lung cancer III 1225 NCT02008227 Completed

Avelumab Recurrent glioblastoma II 52 NCT03291314 Completed

TIM3 Sym023 Solid tumors I 48 NCT03489343 Recruiting

CD70 Varlilumab (CDX-1127) Solid tumors II 175 NCT02335918 Completed

LAG3 Sym022 Solid tumors I 30 NCT03489369 Recruiting

CD70/LAG3 MGD013 Solid tumors I 255 NCT03219268 Recruiting

EpCAM/CD3 Catumaxomabr (emovab) Ovarian cancer II 44 NCT00189345 Completed

CD44V6 AMC303 Solid tumor I 55 NCT03009214 Recruiting

CTLA-4 Ipilimumab Non-small-cell lung cancer II 24 NCT01820754 Completed
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EVs secretion [282], with autophagy contributing to the 
transport of cellular proteins as well as the secretion of EVs 
[282, 283]. Targeting EV secretion could become a possi-
ble therapeutic strategy for anti-tumor therapy [282, 284]. 
EV-mediated communication between non-CSCs and 
CSCs are essential for adaptation to the ecological niches 
[285, 286]. CSCs-derived EVs are engaged in tumor metas-
tasis, resistance to therapy, angiogenesis, maintenance of 
stemness and immunosuppression [287, 288]. The fusion 
of CSC-derived EVs with macrophages and other immune 
cells mediates immunosuppression through the release of 
proteins and miRNAs [289–294].

The EVs: the role of CSCs and immune cells
Cell-to-cell interaction in the TME contributes to car-
cinogenesis [295].  The interaction between CSCs and 
immune cells is mediated not only through immune tar-
gets, but also through EVs that enable the transfer of large 
biomolecular cargos among different types of cells [295, 
296]. Exosomes, with an average diameter of -100 nm, are 
a subset of EVs. Interaction of exosomal tenascin C with 
integrins α5β1 and αvβ6 on T cells attenuates p-mTOR 
signaling [297, 298].  CSCs-derived exosomes can also 
suppress T cell function by inducing bone marrow-
derived myeloid cells [299]. EVs released from CD105+ 
CSCs inhibit dendritic cell maturation and T cell-medi-
ated immune responses [99]. Furthermore, the transfer of 
CSCs-derived exosomes into monocytes triggers mono-
cyte agonist protein reorganization, induces monocyte 
differentiation into immunosuppressive M2 macrophages, 
and increases PD-L1 expression on CSCs via the STAT3 
signaling pathway [300]. Glioblastoma is infiltrated with 
numerous microglia, and cross-talk between glioblastoma 
and microglia induces immunosuppressive TME in tumor 
mass [301]. Following coculture with microglia cells, gli-
oma CSCs release exosomes carrying lncRNA MALAT1, 
which induces secretion of IL-6 and TNF-α from LPS-
stimulated microglia cells. Colorectal CSCs derived 
exosomes activate NF-κB signaling cascade in neutrophils 
inducing IL-1β expression [302, 303] (Fig. 3).

EVs‑based therapeutic strategies for targeting CSCs
Tumor therapy mediated by exosomes targeting CSCs 
has been revealed to be extremely efficient in the clini-
cal trials. More precise targeted therapy can be achieved 
by improving existing exosome engineering technology 
to target the unique markers of CSCs. CD44 is highly 
expressed in metastatic HCC CSCs, and anti-CD44 
antibody-coated liposomes can directly deliver doxoru-
bicin to CSCs [304]. The anti-CD44 antibody can cause 
apoptosis in CD90+ HCC CSCs. Similarly, anti-CD44 
antibody-coated exosomes can cause CSCs to die [305]. 
In addition, anti-CD44 antibody-coated exosomes can 

also be used for drug delivery. As a result, other CSC 
markers including EpCAM, CD133 and CD24 can be 
applied as targeting candidates to enhance the efficacy of 
engineered exosomes targeting CSCs. Because CSCs sur-
face markers may be denoted on normal cells, antibody-
coated exosomes must be engineered to enhance their 
targeting efficiency to cancer stem cells and thus reduce 
side effects on normal cells.

Compared to synthetic nanoparticles, nanotechnology-
based drug delivery systems are more biocompatible, 
biodegradable, less toxic and immunogenic [306–309]. 
Thus, exosome-based nanocarrier drug delivery tech-
nologies with advanced targeting capabilities have been 
developed, and they show great promise in targeting 
CSCs [310–312]. The development of exosome-nano-
particle technology based on EVs as a drug delivery vehi-
cle targeting CSCs will aid in improving the anti-tumor 
immune response [313, 314]. A recent study found that 
biocompatible tumor cell-exocytosed exosomes encapsu-
lated doxorubicin-loaded mimetic porous silica nanopar-
ticles (PSiNPs) have the potential to be enriched inside 
CSCs, resulting in CSC eradication [315]. Finally, exo-
some engineering approaches are likely to improve the 
efficacy of CSCs targeted therapies.

Conclusions
Cancer immunotherapy is adopted to either suppress 
tumor growth or remove tumor cells through activating 
the immune system; consequently, cancer immunother-
apy shows great potential in treating malignant diseases 
from different cancer types. CSCs can suppress the 
immune response by recruiting immunosuppressive cells 
(TAM and Tregs); thus, promoting the establishment of 
an immunosuppressive TME. CSCs can also impair NK 
cell function by expressing specific ligands. In this out-
look, we demonstrate the mechanism by which CSCs 
communicate with immune cells in the tumor microen-
vironment in a variety of cancer types. Therefore, there 
is a need to find new strategies to target CSCs through 
immunotherapeutic approaches.

CSCs evade immune surveillance through various 
immune checkpoints, which are expressed at higher levels 
in CSCs. CSCs express CD47, CTLA4, PD-L1, TIM-3 and 
LAG3, which promote immune evasion in the malignant 
environment and maintain tumor survival. In addition, 
CSCs orchestrate the tumor microenvironment by releas-
ing immunosuppressive cytokines and growth factors. 
CSCs can also modulate the immune microenvironment 
of tumors through the excretion of EVs; thus, further 
understanding of the molecular mechanism driving anti-
tumor immune response is a prerequisite to develop new 
anti-tumor therapies with higher efficacy.
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To achieve desired therapeutic goals, CSC protocols 
need to be optimized in immunocompetent preclini-
cal models, and the contact of CSCs with the immune 
system is needed to be studied using models that rig-
orously validate functional and phenotypic character-
istics of CSCs. Traditional two-dimensional coculture 
experiments have been performed to clarify the mech-
anisms promoting CSC characteristics in the TME; 
unfortunately, two-dimensional models do not allow 
for the observation of dynamic cellular interactions 
in real time. Three-dimensional coculture systems 
enable us to better visualize the complex interactions 
between CSCs and immune effectors. The current 
emerging 3D cell coculture models are represented by 
organoids that closely resemble tumor microenviron-
ments, including ecological niches that nurture host 
CSCs. With the rapid development of single-cell spa-
tial analysis, it would be possible to visualize the com-
plex interactions involving different types of immune 
cells and CSCs.

Abbreviations
CSCs	� Cancer stem cells
TME	� Tumor microenvironment
EVs	� Extracellular vesicles
TIME	� Tumor immune microenvironment
AML	� Acute myeloid leukemia
PD-L1	� Programmed death-1/programmed cell death ligand
CD47	� Cluster of differentiation 47
TIM3	� T cell immunoglobulin and mucin-containing domain-3
LAG3	� Lymphocyte activation gene 3
CTLA4	� Cytotoxic T-lymphocyte antigen-4
ILs	� Interleukins
MMPs	� Matrix metalloproteinases
VEGF	� Vascular endothelial growth factor
TGF-β1	� Transforming growth factor beta 1
Hh	� Hedgehog
NF-κB	� Nuclear factor kappa B
YAP	� Yes-associated protein
HCC	� Hepatocellular carcinoma
LIF	� Leukemia inhibitory factor
H3K27 me3	� Lysine 27 of histone H3
IHH	� Indian hedgehog
SHH	� Sonic hedgehog
TAZ	� Transcriptional coactivator with PDZ-binding
ERK1/2	� Extracellular signal-regulated kinase 1/2
ECM	� Extracellular matrix

Fig. 3  Crosstalk between CSCs and TME cells. CSCs secrete exosome regulated infltrating immune cells (IICs), MDSC, DC, macrophage and 
neutrophils to the TME. Cell–cell interactions in TME contribute to the development of cancer. The mechanism of interaction between CSCs and 
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