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Abstract 

Mantle cell lymphoma (MCL) is a subtype of Non‑Hodgkin lymphoma (NHL) of mature B‑cells characterized by trans‑
location, which is typically due to excess expression of Cyclin D1. Although with the progress in our knowledge of the 
causes for MCL and available treatments for MCL, this cancer is still incurable. Age, male gender, rapid advancement, 
significant nodal involvement, elevated serum lactate dehydrogenase level, and prognostic indications including 
increased expression of Ki‑67 and presence of TP53 mutation, are symbols of poor outcome. Advanced immunother‑
apy using chimeric antigen receptor (CAR)‑T cells is advantageous for patients suffering from B‑cell malignancies and 
MCL. Targeting B‑cell antigens on the cell surface is a feasible approach in re‑occurring (R/R) MCL because of signifi‑
cant responses obtained in other B‑cell cancers. USFDA has approved brexucabtagene autoleucel (Tecartus, KTE‑X19), 
a novel CAR T‑cell therapy to be used in patients with MCL who have not responded to previous treatments or have 
relapsed. The FDA approved this new treatment depending on the outcomes of the ZUMA‑2 clinical trial. Serious 
adverse reactions, moderate anti‑tumor activity, allergen withdrawal, antigen escape, limited tumor infiltration, and 
trafficking are major barriers to successful CAR T‑cell therapy. This review is a brief synopsis of the development of CAR 
T‑cell therapy for MCL.
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Introduction
Mantle cell lymphoma (MCL) is a rare class of Non-
Hodgkin lymphoma (NHL) and has a very varied course 
of manifestation. The terminology ‘mantle-cell lym-
phoma’ was first coined by Raffeld and Jaffe in 1991 [1]. 
Mantle zone cells of primary lymphoid follicles are the 
source of this B-cell lymphoma. An outer circle of small 
lymphocytes encircling the germinal core of a lymphatic 
follicle is known as ‘mantle zone’ [2]. CD5-positive IgM-
producing ‘B1a’ cells have been identified as the MCL’s 
probable cell of origin [3]. This neoplasm expresses a 
distinctive immunophenotype, such as  CD5+,  CD10+, 
Bcl-2+, Bcl-6+,  CD20+, and also IgM and IgD surface 
immunoglobulins, which provides mature B-cells a typi-
cal morphologic appearance [4, 5]. Most of the cases 
have the characteristic translocation of chromosome 
t (11;14) (q13: q32), which leads to excessive activity of 
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the cell cycle regulator, cyclin D1 (CCND1/PRAD-1) 
gene [6]. CCND1 is a diagnostic feature for MCL because 
normal B lymphocytes do not express it [7, 8]. Although 
the cell cycle is dysregulated because of this oncogene’s 
excessive production, it is not the only contributing fac-
tor. Instead, the progress of MCL is dependent on sec-
ondary oncogenic processes, like mutations that reduce 
DNA damage response systems [9].

CDKN2A deletions, CCND1 gene alterations, CDK4 
amplification, TP53 mutations, SOX-11 overexpression, 
etc. are a few of the key pathogenetic aberrations of MCL 
[10]. The growth and progression of MCL depend on 
several variables, including SOX-11 cell cycle disruption, 
genetic changes, distinctive gene expression, epigenetic 
abnormalities, and microenvironmental milieu [11–13].

The symptoms of MCL are the same as that of NHL 
[14]. MCLs typically exhibit disease-related symptoms, 
such as lymphadenopathy, lymphocytosis, splenic, Wal-
deyer’s ring  and tonsil  growth, lymphomatous polypo-
sis, and bone marrow involvement [11, 15]. Patients, 
however, may continue to be asymptomatic despite lym-
phocytosis [16]. Kidneys, soft tissues, skin, the central 
nervous system (CNS), and other bodily sites are affected 
extranodal. Patients with non-nodal leukemic MCL fre-
quently appear with asymptomatic indolent or ‘smoul-
dering’ MCL [17].

In Western countries, MCL accounts for around 7% of 
adult NHLs, with a 4–8 case prevalence per million peo-
ple each year [18]. MCL incidence rises with age. In the 
United States, the median age for the initial appearance 
of MCL is 68 years, whereas it is younger in Asian coun-
tries. Additionally, among the patients, three-quarters 
are men. Moreover, Caucasians experience the condition 
more frequently than those of other races do. Initially, 
MCL could only be detected in a highly limited, smaller 
subset of individuals with early-stage, low-risk diseases. 
However, the majority of patients require treatment 
quickly after diagnosis [19].

Despite improvements in current knowledge of the eti-
ology of MCL and therapeutic strategies, it is still incura-
ble. The initial evaluation of a certain MCL patient might 
define their treatment options. Chemoimmunotherapies 
based on Rituximab (R), with or without auto-SCT, are 
the usual first-line therapy for young, fit, and healthy 
individuals [19, 20]. Newer medicines that are chemo-
therapy-free targeted treatments are being researched as 
a result of the negative effects of chemoimmunotherapy, 
which include chronic myelosuppression, infections, 
and secondary malignancies [21]. Lenalidomide [22], 
Venetoclax [23], and other novel medications like Bru-
ton tyrosine kinase inhibitors (BTKi; viz. Zanubrutinib, 
Acalabrutinib, ibrutinib) are beneficial but their duration 
of action is short, and patients typically relapse [24, 25]. 

Old age, male gender, blastoid variation, rapid progres-
sion, substantial nodal participation, augmented serum 
lactate dehydrogenase (LDH) level, and predictive indi-
cators including elevated expression score of Ki-67 and 
existence of mutated TP53 are all factors that are indica-
tive of poor outcome [26–29]. Consequently, to tackle the 
MCL challenge, innovative targeted agents are required.

Chimeric antigen receptor (CAR)-T cell therapy is a 
novel idea to the detriment of tumors because it was 
developed using headway in adoptive T cells and gene 
therapy [30]. The treatment involves taking T-cells from 
an infected person and altering the cells genetically to 
identify and destroy lymphoma cells [31]. Newer immu-
notherapy using CAR T-cells is advantageous for patients 
suffering from malignancies associated with B-cells [32]. 
Targeting B-cell antigens on the cell surface is a worth-
while approach in relapse and refractory MCL (R/RMCL) 
due to the significant responses obtained in other B-cell 
cancers [33]. This review is a brief synopsis of the devel-
opment of CAR T-cell therapy for MCL.

Treatment approaches for MCL
The primary treatment strategy for MCL differs depend-
ing on age and associated diseases as summarized in 
Fig.  1. Young and physically active patients begin with 
intensive immunochemotherapeutic regimens containing 
Cytarabine, which are eventually combined with autolo-
gous stem cell transplantation (ASCT) [34]. However, for 
aged persons and patients with poor functional levels, 
chemotherapy of lesser intensity and continuous Rituxi-
mab treatment is the better alternatives; there are also 
nanotechnology-based interventions under development 
[1, 35–37].

One of these treatments is the Nordic regimen, signi-
fies as maxi-CHOP, which contains high dose Vincristine, 
Doxorubicin, Cyclophosphamide, and Prednisone alter-
nated with augmented Cytarabine dose and Rituximab 
[38, 39]. Other strategies are R-CHOP, which is alternated 
with Rituximab, Cytarabine, and Dexamethasone includ-
ing a derivative of Platinum (R-DHAP). Rituximab and 
Bendamustine (RB) are given consecutively or alternately 
with high-dose Cytarabine (RC) [38, 40, 41]. Following 
autologous stem cell transplantation (ASCT), Rituximab 
administration has also been proven to improve overall 
survival [42].

It has been demonstrated that ASCT in the first remis-
sion enhances progression-free survival (PFS), but not 
overall survival (OS) [43]. As a result, the part of trans-
plants is being re-evaluated in some studies. Rituximab 
after stem cell transplant is being studied in the ongo-
ing ECOG-ACRIN 4151 randomized phase III trial to 
assess how well it performs in comparison to Rituximab 
alone in treating individuals who have been found to have 
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‘minimal residual disease-negative status’ using next-
generation sequencing (NGS) [44]. Although most young 
patients have favourable results, some high-risk cat-
egories don’t significantly benefited after intensive treat-
ment, such as those with an elevated Ki-67 proliferation 
score or TP53 mutations [45].

Older individuals or those with associated diseases can-
not sustain a high dose of Cytarabine, given randomized 
data contrasting them to R-CHOP, regimens including 
Rituximab and Bendamustine or Rituximab, Bortezomib, 
Prednisone, Cyclophosphamide, and Doxorubicin are 
favoured treatments [46–49]. Nevertheless, Rituximab 
and Lenalidomide may perhaps be advised for individuals 
who have not yet received therapy [50].

For patients with R/RMCL, chemoimmunotherapy 
plays a far smaller part in disease management than 
frontline therapy as relapses are frequent with poor prog-
nosis [51, 52]. Targeted medications are typically used 
due to their safety and effectiveness. The first approved 
targeted therapies were Bortezomib, Temsirolimus, and 
Lenalidomide; nevertheless, Bruton Tyrosine Kinase 
(BTK) inhibitors have emerged as the key players in sec-
ond-line treatment [28, 53, 54]. Ibrutinib, Acalabrutinib, 
and Aanubritinib are three BTK inhibitors that have so 
far been authorized by FDA for use in R/RMCL. Despite 
having short half-lives, these drugs are easy to dose 
because of how they covalently link to the BTK enzyme’s 
Cysteine and cause irreversible inhibition [55]. In R/

Fig. 1 Existing approaches for first‑line MCL therapy. When choosing a patient’s course of treatment, it’s crucial to take into account factors like age, 
performance level, the degree of clinical manifestations, eligibility for stem cell transplantation, multimorbidity, cardiovascular diseases, prognosis 
risk status, and convenience to clinical trials. High‑risk individuals are often those who have blastoid/pleomorphic MCL, TP53‑mutated or aberrant 
TP53, or Ki‑67% > 30%. Abbreviations: ASCT, autologous stem cell transplantation; HD‑AraC, high‑dose cytarabine; R, rituximab; R‑CVP, rituximab, 
cyclophosphamide, vincristine, prednisone; R‑CHOP, rituximab, cyclophosphamide, doxorubicin, vincristine, prednisone; R‑DHAP, Rituximab, 
dexamethasone, cytarabine, cisplatin; VR‑CAP, bortezomib, rituximab, cyclophosphamide, doxorubicin, prednisone; CNS, central nervous system
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RMCL, combination treatment is also being extensively 
investigated. The combination of Ibrutinib with Vene-
toclax is very effective, producing results that are better 
than those of either drug used alone while maintaining a 
tolerable level of safety. Significant response rates were 
achieved as a result of the combined effect of inhibiting 
the BTK system and the BCL2 gene, yielding complete 
response (CR) of 42% (without a PET) and 62% (with a 
PET) at 16 weeks [56]. The effectiveness of the synergistic 
use of Ibrutinib and Venetoclax over Ibrutinib alone in 
R/RMCL is being analyzed in the clinical trial (Phase 3) 
SYMPATICO (NCT03112174) [28].

Effective therapy for patients who relapse follow-
ing BTK inhibitor (BKTi) is an urgent clinical need. It 
is unclear what the best course of action should be for 
patients who improve after using a BTKi, however, Vene-
toclax, chemoimmunotherapy, and immunotherapy are 
options to consider for treatment of the disease. Retro-
spective analysis revealed that the Rituximab, Benda-
mustine, and Cytarabine (R-BAC) combination had a 
high objective response rate (ORR) (83%) in MCL survi-
vors who had developed it following BTKi therapy. The 
R-BAC technique was used as a transitional treatment 
in transplant-eligible individuals before consolidating by 
ASCT, despite responses being not very long-lasting (PFS 
of 10.1 months) [57].

Furthermore, another class of drug, the BCL2 (B-cell 
lymphoma) inhibitors have the potential for treating 
MCL, where BCL2 is typically overexpressed. Veneto-
clax is a strong and a selective inhibitor of BCL2. Veneto-
clax had a 75% response rate (21 patients) and a 21% CR 
rate in a phase 1 study involving patients with R/RMCL 
[58]. Although BTK and BCL2 inhibitors have promis-
ing response rates, their usage may be constrained by 
the expansion of drug resistance. Evidence suggests that 
mutations in the BCL2 family of proteins are responsible 
for MCL’s acquired resistance to Venetoclax [59, 60].

A potential trial evaluated allo-SCT as a rescue treat-
ment for patients who had R/RMCL and as the first-line 
management of MCL, and both groups showed com-
parable outcomes with a 5-year overall survival of 73%. 
According to a trial, performed by Simon Rule et. al. an 
early allo-SCT could be advantageous for juvenile sub-
jects with increased risk outlines, predominantly those 
who have mutations of TP53 [61].

Even if conventional treatment options have some 
limitations, the development of anti-CD19 CAR T-cell 
therapy has revolutionized the treatment of R/R lym-
phoid malignancies [62, 63]. CAR T-cell-based adoptive 
cellular immunotherapy offers effective and long-lasting 
therapeutic effects for a subset of patients with recurrent 
BCL2. According to the ZUMA-2 clinical trial research, 
it was discovered that CAR T-cell therapy is the most 

effective treatment for MCL and R/RMCL when com-
pared to other treatment options [64].

CAR T‑cell therapy
CAR is a modular protein, fused with 4 domains i.e., an 
extracellular domain of target binding generally obtained 
from variable fragments of a single-chain antibody (scFv), 
a transmembrane domain, a spacer domain, and CD3z 
(an intracellular domain of signalling linked with CD28, 
CD134, CD137 or many other co-stimulatory molecules 
depending on the CAR generation) [65]. It further results 
in independent cell activation through a major histocom-
patibility complex (MHC) [66]. From 1989 to 1993, two 
immunologists Gideon Gross and Zelig Eshhar from the 
Department of Chemical Immunology at the Weizmann 
Institute of Sciences, Israel, generated the first modified 
T-cell with the chimeric molecule [66, 67]. Figure 2A rep-
resents various generations of CARs. The CAR T cell’s 
first generation was perfectly adapted for stimulating 
cytolytic characteristics and giving selectivity like T-cells 
antibodies and causing damage to the targeted cell [68, 
69]. Nevertheless, activating resting T-cells was not pos-
sible because the intracellular domain contains a single 
activation chain [70]. CAR-T cells need an additional 
co-stimulatory signal to operate effectively in the body, 
much like regular T-cell activity. Thus, to advance CAR-T 
cells’ survival, multiplication, and antitumor activity, the 
second generation of CAR-T cells was shaped with an 
intracellular co-stimulatory domain [71]. The co-stimula-
tory molecules that are most frequently used are hemat-
opoietic cell signal transducer (DAP10), CD28, Inducible 
T-cell costimulatory (ICOS), TNF receptor superfamily 
member 9 and 4 (4-1BB and OX40 respectively) [72].

In comparison to second-generation, the third-genera-
tion CARs had in vivo persistence and enhanced effector 
functions since it combines two co-stimulatory molecules 
like CD28 and 4-1BB (Fig. 2A) [73]. T-cells redirected for 
antigen-unrestricted cytokine-initiated killing (TRUCK), 
the fourth generation of CAR-T cells, have an additional 
transgenic expression cassette that upon activation allows 
the synthesis of cytokines. This promotes the death of 
targeted as well as bystander cells mediated by cytokines 
while activating the innate immune system [74].

The Memorial Sloan Kettering Cancer Centre team 
created the first operative CAR-T cells in 2002, when tar-
geting a prostate cancer antigen. However, the first prom-
ising findings of CAR T-cell therapy were announced in 
2011, which demonstrated a full reduction in individu-
als with chronic leukaemia [75]. Around the same time, 
significant advancements in the management of acute 
BCL patients including children, as well as adults were 
reported. Following these, on 30th August, 2017, the US 
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FDA permitted Tisagenlecleucel (Kymriah) for the ther-
apy of acute BCL in young adults and children [76].

In April 2015, Kite, a Gilead Company started a clini-
cal trial (ZUMA-1) to check the effectiveness and safety 
profile of Axicabtagene ciloleucel (Yescarta) in adult suf-
ferers having Refractory Aggressive NHL with a total 
of 307 participants [31]. The ZUMA-1 trial follow-up 
data for 2  years showed that Axicabtagene ciloleucel 
can evoke enduring responses, and an average of more 
than 2 years of life-span in patients with R/R BCL, along 
with a tolerable long-term safety profile [77]. On  18th 
October 2017, the USFDA authorized Axicabtagene 
ciloleucel, as a treatment for R/R diffuses large B-cell 
lymphoma (DL-BCL) and other uncommon large B-cell 
lymphomas(LBCL), which is the first approved CAR 
T-cell therapy in history [78].

On June  28th, 2018 the European Medicines Agency 
(EMA) permitted CD19 CAR  T-cell therapies like Tisa-
genlecleucel (Kymriah, Novartis) based on the ELIANA 
study and Axicabtagene ciloleucel (Yescarta, Gilead-
kite) based on the ZUMA-1 study in R/R lymphoblastic 
leukaemia in adolescents and children and DL-BCL for 
adults [70].

The USFDA, on July 24, 2020, granted another novel 
CAR T-cell therapy Brexucabtagene autoleucel (Tecartus, 
KTE-X19), which is a second-generation CAR for MCL. 
The approval relied on the ZUMA-2 results in those 
MCL patients who did not show any response to earlier 
medications or who have relapsed [79, 80]

Since 2017, USFDA has approved six such therapies as 
a treatment for different blood cancers such as multiple 
myeloma and leukaemia. USFDA-authorized CAR T-cell 
therapies (Fig.  3) include Axicabtagene ciloleucel tisa-
genlecleucel, Idecabtagene vicleucel, Ciltacabtagene 

autoleucel, Lisocabtagene maraleucel, and Brexucabta-
gene autoleucel [81]. Among all of these treatments, 
Brexucabtagene autoleucel, which targets the CD19 anti-
gen, is the most effective for MCL [82].

The manufacturing process affects the effectiveness 
of CAR T-cell therapy. In contrast to other commonly 
used drugs, autologous CAR T-cells are created from the 
patient’s T-cells, making this therapy safer and having 
more tolerable side effects [83]. T-cells are first removed 
from the patient’s WBC during the manufacturing pro-
cess. They are altered and activated to express CARs, 
giving them the capability to identify and eradicate 
tumor cells [32]. Following that, the modified T-cells are 
readministered to the patient [31]. The patient under-
goes conditioning with lymphodepleting chemotherapy 
before re-administration [84]. The white blood cells are 
collected by conventional leukapheresis. Leukocytes are 
separated from the patient’s blood, which is then elimi-
nated from the body before the remaining blood is put 
back into circulation. Figure 2B and 4 depicts the manu-
facturing process of CAR T-cells.

After sufficient harvesting of leukocytes, the anticoagu-
lant present in the leukapheresis buffer during the pro-
cess is washed out from the leukapheresis product [85]. 
T-cells are concentrated by using the counter flow cen-
trifugal elutriation process. This procedure also allows 
for the preservation of cell viability, the separation of leu-
kocyte cells from other blood cells based on size and den-
sity, and for the enrichment of the leukapheresis product 
for lymphocytes [86]. The T cells are selectively enriched 
or isolated mainly using a magnetic bead-based technol-
ogy CD3/CD28 beads or CD4 and CD8 beads. Then the 
cells are activated by culturing with a artificial antigen-
presenting cells (APCs, primarily anti-CD3/CD28 beads) 

Fig. 2 Different generations of CARs and manufacturing process of Tisagenlecleucel CAR. A. Generations of CAR. All the approved CARs are from 
the second generation. B. manufacturing process of Tisagenlecleucel CAR Abbreviations: scFv; variable fragments of a single‑chain antibody, TM; 
transmembrane protein, CoStim; Costimulatory domain, IL; Interleukin
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followed by transduction using a viral vector encoding 
for CAR [87]. The selection, activation, transduction, 
and expansion steps are performed aseptically in multi-
ple systems such as G-Rex bottles, Gas Permeable Bags, 
CliniMACS Prodigy, WAVE/Rocking Motion bioreac-
tor. The media contains a combination of cytokines such 
as IL2, IL7, IL15, or IL21 and human AB serum and the 
complete media is perfused or exchanged on alternate 
days to allow for rapid expansion [88]. The expansion 
takes anywhere from 6 to 21 days. During and at end of 
the process, the samples are taken out to determine the 
identity, safety, purity, and potency of the products. It 
includes expression of CAR receptor, T-cell purity, per-
cent viability, cell number, sterility, absence of Myco-
plasma, absence of replication-competent retrovirus, 
vector copy number, in  vitro killing of B-cells and anti-
gen-dependent cell proliferation and cytokine secretion, 
etc. [89].

Usage of CAR T‑cell therapy
Targeting cancer‑associated fibroblasts (CAF)
CAFs, which narrates a crucial part in tumor initiation 
and development, are common stromal components in 

the tumor microenvironment (TME) [90]. CAR T-cell 
therapy aimed at Anti-Fibroblast Activated Protein 
(Anti-FAP) is the utmost promising immune-based 
therapy established to decrease CAF, but its success 
has been inconsistent. Several preclinical investiga-
tions on FAP-aimed CAR T-cells in conjugation with 
various anticancer medications for pancreatic, breast, 
and lung cancer have shown considerable anti-tumor 
activity [91]. Other trials using FAP-targeted CAR 
T-cells, reported less efficacy as well as fatal cachexia 
and bone toxicity as a result of off-target toxic effects 
triggered by the abolition of FAP + progenitor stromal 
cells [92]. Two clinical investigations have now con-
firmed the existence of anti-FAP CAR T-cells. Four 
patients with malignant pleural mesothelioma were 
engaged in a Phase 1 study employing FAP CAR T-cells 
in 2012 (NCT01722149). Another recent trial uses a 
fourth-generation CAR T-cell treatment that targets 
Nectin4/FAP to treat advancing malignant solid tumors 
(NCT03932565). Despite considerable progress in CAF 
biology, currently, the absence of precise markers of 
CAF cells, along with the variety of CAFs, hinders the 
application of CAR T-cell therapy to eradicate CAFs in 
the tumor microenvironment [91].

Fig. 3 USFDA approved CAR T‑Cell therapies
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Targeting tumor vasculature
In the current context, endothelial tumor cell depletion by 
CAR T- cells is a useful technique. CAR T-cell therapies 
targeting endothelial antigens have several advantages 
over traditional techniques, including genetic constancy 
and access to circulating T-cells [93]. This approach can 
also be employed in the management of solid tumors. 
Vascular endothelial growth factor receptor (VEGFR) is 
the most promising CAR T cell target endothelial can-
didate and multiple studies have shown its efficacy in 

a variety of preclinical scenarios [94, 95]. When CAR 
T-cells are used as monotherapy, however, their efficacy is 
generally limited due to the binding of CAR to circulating 
VEGF-A. Tumor endothelial marker 8 (TEM8), prostate-
specific membrane antigen (PSMA), the NKG2D-ligand 
Rae1, αvβ3 integrin, and the EIIIB fibronectin splice vari-
ant are among the compounds being explored for CAR 
T-cell therapy aimed at vascular disruption [96]. In gen-
eral, the off-target/on-target consequences of these CAR 
T-cell therapy candidates are still poorly considered [91].

Fig. 4 Process of CAR T‑cell therapy. The therapy involves the modification of the T‑cell of the patient. Here, the blood is collected through the 
vein and sent into the apheresis (Not present in the diagram) where it separates along with the white blood cell. The remanent of the blood is 
infused back into the patient. Gene for the special treatment known as CAR is administered with T‑cell, which facilitates the binding. This complex is 
amplified in the laboratory and then reverted to the patient, which targets the cancerous mass and destroys them
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CAR T‑Cell Therapy targeting B‑ cell Lymphoma
CAR T-cell therapy is the newer treatment that is found 
to be effective in R/R MCL patients. Four anti-CD19 
CAR T-cell therapies (Kymriah™, Tecartus™, Yescarta™, 
and Breyzani™) are presently authorized for the treat-
ment of BCL, follicular lymphomas, and MCL [97]. The 
anticancer activity of the CAR depends on vital compo-
nents of CAR. In the instance of BCL, the single-chain 
variable component preferentially targets B-lineage 
cells irrespective of the MHC when it fixes to the anti-
gen epitopes on a tumor cell.

By eliminating circulating CD19 expressing malig-
nant cells, anti-CD19 CAR T-cell therapy, Axicabta-
gene ciloleucel (Axi-cel, KTE-X19, Tecartus™) is 
prepared for patients associated with MCL [98]. Axi-
cel is an autologous cell therapy, like other CAR-T 
cell products, which conveys a protein complex con-
taining a T-cell signalling domain (intracellular) 
and an antigen recognition domain (extracellular) 
(NCT02601313). An anti-CD19 antibody’s change-
able single-chain fraction known as the extracellular 
antigen-recognizing domain attracts changed T-cells 
to the surface of both healthy and cancerous B cells 
[99]. The additive domains CD28 and CD3-zeta enable 
subsequent signalling pathways when anti-CD19 CAR 
T-cells interact with target cells that express CD19. 
This causes T-cell stimulation, proliferation, the devel-
opment of effector abilities, and the release of inflam-
matory chemokines and cytokines [63]. Because of the 
destruction of CD19-expressing cells, the exhaustion 
and activation of anti-CD19 CAR T-cells decrease dur-
ing the ex vivo process of manufacturing [64]. Axi-cel 
was approved by the FDA for R/R large BCL in 2017 
and shortly after by the European Medical Agency 
(EMA) in 2018. These approvals were based on opti-
mistic phase-2 results from the ZUMA-1 study that 
reveal long-term remission and CR rates. Axi-111 
cel’s patients with refractory LBCL in a phase 2 trial 
demonstrated an 82% overall response rate and a 54% 
total response rate. Despite the fact that three patients 
died while undergoing treatment, the study’s risk–ben-
efit analysis revealed that CAR T-cell therapy showed 
appreciable levels of sustained response, with a safety 
profile that included myelosuppression, neurologic 
complications, and cytokine release syndrome [31].

Following this, Tisa-cel (Tisagenlecleucel; CTL019), 
was also licensed in 2017 for the treatment of R/R DLBCL 
according to the findings of the global, phase-2, pivotal 
JULIET study (NCT02445248). A total of 93 individuals 
received tisa-cel as part of the trial and assessed its effec-
tiveness and safety. In total, 86% of patients showed grade 
3 or 4 adverse events (AEs). Three individuals passed 
away due to disease progression 30  days after receiving 

the treatment. However, tisa-cel was not connected to 
any fatalities [100].

Another trial namely TRANSCEND examined the 
anti-CD19 CAR drug Liso-cel (Lisocabtagene maraleu-
cel; JCAR017) is incorporated in the management of 
R/R LBCL (NCT03483103). Liso-cel displayed long-
lasting clinical efficacy with a favourable safety profile. 
Among the 255 subjects, the ORR and CR rate were 
found to be 73% and 53% respectively; also, DOR was 
55% and PFS was 44%, respectively, at 12  months. All 
histologic groups and patients with poor prognoses, 
such as those who were refractory, elderly, comorbid, 
and/or had a large tumor load, showed clinically signifi-
cant effectiveness [101].

CAR T‑Cell Therapy for MCL
In MCL, there is less success using CAR T-cell therapy; 
however, two trials ZUMA 2 and TRANSCEND NHL 
001 in patients with relapsed and resistant MCL have 
produced fascinating findings recently. Table  1 summa-
rizes various clinical development outcomes for MCL. 
ZUMA 2 is a Phase 2, multicenter clinical study that 
aimed to look at the effectiveness of KTE-X19 in people 
who have R/R MCL (NCT02601313). A CD19-directed 
CAR T-cell therapy with a co-stimulatory domain of 
CD28, is used in ZUMA-2 CAR T-cell therapy. The trial 
started on November 9, 2015, by Kite, a Gilead Com-
pany. In phase 2 of the experiment, every brexu-cel goal 
dose contained 2 folds 106 viable CAR-positive -T cells/
kg. Brexu-cel is a 68-mL infusion bag containing a fro-
zen solution of autologous T-cells (genetically modified) 
in 5% dimethyl sulfoxide (DMSO) with 1% human serum 
albumin [97]. With just a single infusion of the medica-
tion, the study had a remarkable response rate. Aside 
from the manufacturing process, brexucabtagene auto-
leucel is exactly similar to axicabtagene ciloleucel. Dur-
ing the ZUMA-2 clinical trial, no statistical significance 
was found in any specific adverse predictive subgroups. 
Brexucabtagene autoleucel treatment was found to be 
safe, and effective, and has a remarkable response rate in 
older age patients, patients with blastoid variant and high 
Ki-67 proliferation index, and in those with a high risk of 
MIPI scores and TP53 mutation [102].

CAR T-cell treatment has the ability to manage 
MCL resistance when compared with other existing 
drugs, according to Michael Wang, who conducted 
the ZUMA-2 experiment. In ZUMA 2, KTE-X19 was 
evaluated in 60 MCL patients who had previously been 
provided with up to five therapies [103]. Previous treat-
ments were required to include a monoclonal antibody 
(anti-CD20), chemotherapy based on Anthracycline- or 
Bendamustine, and BTKi (a protein having a notewor-
thy part in the progress and existence of certain types 
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of cancer, inhibition with Ibrutinib (Imbruvica) or 
Acalabrutinib (Calquence) [104].

Brexu-cel was very active in the cohort (n = 60) 
employed for the initial efficacy assessment, with 93% 
of ORR and 67% of CR. Whereas, in an intention-to-
treat evaluation, all 74 participants had an ORR of 85%, 
with 59% attaining a CR. Brexu-cel had quick therapeu-
tic responses, with 1-month median times to respond 
and 3-month median times to CR.

The investigators presented the safety and effi-
cacy results as of December 2019, with a follow-up of 
17.5  months, at the  47th Annual Meeting of the Euro-
pean Society of Blood and Marrow Transplantation 
(EBMT) (14th–17th March 2021). According to the 
median follow-up (17.5  months) report, twenty-nine 
patients (48 percent) remained in response, including 
70% of those who had a CR [117]. With lengthier fol-
low-up, brexu-cel responses have remained consistent. 
With 32.3 months of follow-up, 39 percent of the trial’s 
first 28 patients were still responding. Brexu-cel’s long-
term durability is unknown, but thus far, its efficacy 
is encouraging in a group of high-risk BTK inhibitor-
refractory patients [117].

The ZUMA-2 clinical trial achieved remarkable and 
durable remissions, according to Frederick Locke, 
MD, Moffitt Cancer Institute, Tampa, Florida. It is also 
important to note that there was no statistical signifi-
cance for any specific subgroups with poor prognoses 
when Dr. Locke and colleagues examined the continu-
ing response rate stratified by high-risk or other char-
acteristics often linked to worse outcomes with MCL. 
The rates of long-term response were the same for 
patients aged 65 and above. The long-term response 
rates for patients with blastoid variations were compa-
rable to those for other individuals. The percentages of 
long-term remission were the same in patients with a 
high Ki-67 proliferation index. The same held true for 
TP53-mutated individuals as well as those with moder-
ate or high MIPI (MCL International Prognostic Index) 
scores. Dr. Locke added that even in high-risk patients, 
the KTE-X19 CAR T-cell treatment is showing out-
standing long-term response rates [64]. Every patient 
who received KTE-X19 experienced at least one AE. 
An AE of grade 3 or higher was present in 99% of the 
participants. The most typical AE was hematologic tox-
icity. Two patients (3%) who had both received condi-
tioning chemotherapy experienced grade-5 AEs; in the 
second patient, the bacteremia was connected to both 
the chemotherapy and the brexu-cel infusion [64].

AEs of special significance for all CAR T cell treatments 
include immunologic effector cell-associated neurotoxic-
ity syndrome and cytokine release syndrome (CRS). Out 
of the 91% of patients with CRS overall, 15% had CRS 

grade 3 or above. To treat CRS, 59% of patients received 
tocilizumab, while 22% received glucocorticoids [118].

Brexu-cel selectively aims at CD19-positive cells, hence 
aplasia of B-cell is a predicted adverse effect, result-
ing hypogammaglobulinemia. Flow cytometry analysis 
revealed B-cell aplasia in patients who experienced an 
objective response and effective CAR T-cell growth dur-
ing the initial evaluation [82, 119]. In contrast, during 
the course of the experiment, B-cell aplasia was absent in 
every patient who did not have a response. Intravenous 
immunoglobulin infusions are given to 32% of patients to 
treat hypogammaglobulinemia. However, with extended 
follow-ups, those who had continuing responses at 
12  months demonstrated symptoms of B-cell recovery 
[64, 117].

Furthermore, in TRANSCEND research (lisocabtagene 
maraleucel (liso-cel; Breyanzi)) along with other sub-
groups of lymphoma, MCL patients were also enrolled. 
As of December 2020, 32 patients received liso-cel infu-
sions, while 41 patients completed collection. Liso-cel 
was highly effective in patients who received it, with an 
ORR of 84% and a CR of 59%. The individuals with blas-
toid morphology showed 75% response rate, according to 
the researchers. Excellent safety was shown for liso-cel in 
this population. Hematologic abnormalities made up the 
bulk of adverse AEs of grade 3 and above. 34% of people 
experienced a grade 3 or higher hematologic toxic impact 
that persisted through day 29 following infusion [120].

The haplo-CAR T, where the T-cells are derived from 
matched healthy donors within the blood relation, like 
siblings or children, has been shown to be effective for 
patients with refractory MCL. Haplo-CAR T-cells could 
effectively proliferate in vivo and had clinically significant 
antitumor activity without serious side effects [121]. The 
patient achieved a partial remission, with minimal resid-
ual disease.

Limitations of CAR T‑Cell Therapy
CAR T-cell therapy is not completely free from side 
effects and like other medications; it is related to some 
adverse effects. Despite this approach being most known 
for its antitumor efficacy in B-cell hematological malig-
nancies that have relapsed or are resistant to treatment, it 
is nevertheless linked to a significant relapse rate. Serious 
adverse reactions, moderate anti-tumor activity, allergen 
withdrawal, limited tumor infiltration, and limited traf-
ficking are all pitfalls to successful CAR-T cell therapy 
[122]. Numerous factors contributed to the initial CAR 
T-cell therapy’s failure. For instance, in some individu-
als, either after infusion or throughout the manufactur-
ing process, the generated CAR T-cells did not grow 
adequately inside the patient’s body. In other instances, 
CAR T-cells were improperly produced, or the patients 
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had underlying illnesses. The lack of sufficient research 
to maximize the therapeutic usefulness of CAR T-cells 
is another factor in the failure or limits of the initial 
CAR T-cell treatment [123].

Antigen escape or the development of tumor resist-
ance to single antigen-targeting CAR constructs is one 
of the prime constraints of CAR T-cell therapy. Many 
techniques now rely on targeting numerous antigens to 
lessen this restriction [124]. In order to simultaneously 
target several target tumor antigens, these use tandem 
CARs, which is a single CAR construct that comprises 
two scFvs, or dual CAR constructions. Clinical investi-
gations using CD19 and CD20 or CD19 and CD22 have 
shown that each of these approaches has a chance of pro-
ducing sustained permanent remission rates [125]. T cell 
and CAR T-cell metabolic reprogramming methods both 
improve TME responses, activity, and effector function, 
or they mitigate the detrimental consequences of certain 
TME-specific alterations conducted by the tumour cells 
on the invading T lymphocytes [126].

Off-tumor/on-target recognition, insertional oncogene-
sis, anaphylaxis, graft versus host disease, and recognition 
of off-target antigens are some common adverse effects 
connected to CAR T-cell therapy [127]. Thus, to ensure 
therapeutic efficacy and prevent "on-target off-tumor" 
toxicity, antigen selection is essential in CAR design. The 
targets for MCL mainly have CD19 and CD22, which is 
expressed by healthy normal B-cells as well. As a result, 
CAR T-cells targeting either of these antigens are able to 
eliminate normal B cells. In this context, B cell aplasia is 
regarded as a measure for determining the efficacy and 
durability of CD19 and CD22 CAR T-cell therapies, and 
their success rate [128]. This limitation can be overcome 
by designing TME specific CAR T-cell therapy like tar-
geting hypoxia of TME [129]. This technique was devised 
to limit CAR expression to to those CAR T cells that 
reside in the hypoxic TME (rather than those that reside 
in the non-hypoxic milieu of non-malignant tissues). Tar-
geting tumor-specific post-translational changes, such as 
solid tumor overexpressed truncated O-glycans like Tn 
(GalNAca1-O-Ser/Thr) and sialyl-Tn (STn) (NeuAca2-
6-GalNAca1-O-Ser/Thr), maybe a way to get around this 
constraint [130–132].

Additionally, interconnections between the micro-
environment of the tumor, host, and CAR T- cell give a 
remarkable influence on CAR T-cell function. In addi-
tion, emerging and executing these treatments demands 
a diverse workforce. The common adverse effects asso-
ciated with T-cell therapy may be delayed, immediate, 
severe, or mild type or it may continue through the lifes-
pan of the genetically modified T-cell [127]. The toxicity 
depends on the interaction of CAR T-cells with the spe-
cific protein in patients’ falls into one of two categories; 

the other is caused by the activation of CAR T-cells and 
the elevated production of a cytokine storm. Cytokine 
release storm (CRS), neurotoxicity, macrophage activa-
tion syndrome (MAS), and hemophagocytic lympho-
histiocytosis are among the symptoms of the systemic 
cytokine toxicity of CAR  T-cells (HLH)[133]. A toxic 
effect known as CRS is caused by the in  vivo multipli-
cation of CAR T-cells and triggers the release of several 
cytokines as well as a systemic inflammatory response. 
There are several grading scales for the severity of CRS, 
including variants of the Lee criteria, the American Soci-
ety for Transplantation and Cellular Therapy (ASTCT), 
the Common Terminology Criteria for Adverse 
CAR  T-Cell Therapy-Associated Toxicity (CARTOX), 
and the Penn criteria [134]. Immune effector cell-associ-
ated neurotoxicity syndrome (ICANS) is how the ASTCT 
classifies neurotoxicity in this circumstance. Lethargy, 
psychosis, encephalopathy, ataxia, convulsions, rest-
lessness, and, in extremely rare circumstances, cerebral 
edema are only a few of the signs of neurotoxicity. ICANS 
scores are evaluated using a 10-point immune effector 
cell encephalopathy (ICE) grade, whereby evaluates men-
tal health using a condensed set of inquiries concerning 
following instructions, identifying objects, focusing, and 
writing [135].

Although the FDA approved CAR T-cell therapy after 
stripping away some significant barriers, the drug seems 
to still have some side effects. For example; fever, hypo-
tension, infections, encephalopathy, tiredness, tachy-
cardia, and arrhythmia are all typical unwanted effects 
of brexucabtagene. FDA has issued warnings related to 
these side effects while continuing use of the therapy. 
Although the majority of side effects developed within 
the first two weeks of treatment, the FDA warned that 
some could appear later [136]. Due to these risks, brexu-
cabtagene was authorized with a mitigation strategy and 
risk assessment to guarantee its safe use. A boxed warn-
ing for the potential of CRS and neurologic toxicities is 
included on the product label for brexucabtagene auto-
leucel [63].

According to Dr Wang, three of the trial’s 60 subjects 
died due to treatment-associated side effects. In addition, 
deprived of CAR-T cell treatment, all of the affected peo-
ple in the study might have died of MCL in less than a 
year. Dr Wang stated that more research was necessary 
to confirm the average length of time patients required 
for treatment [137]. This authorization of CAR  T-cells 
seems to be another indication of personalized therapies 
using a patient’s immune system to fight cancer, while 
also utilizing a scientific breakthrough in this new prom-
ising area of medicine.  KTE-X19 is linked to a risk of 
cytokine release syndrome, a potentially fatal condition, 
as well as neurocognitive adverse reactions. KTE-X19 
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is only accessible through a Risk Evaluation and Mitiga-
tion Strategy (REMS) program due to these significant 
threats. This REMS program is identical to that of the 
same company’s other CAR T-cell therapy (axicabtagene 
ciloleucel; Yescarta) [138].

Mark Roschewski, MD, a specialist in lymphoma at the 
NCI’s Center for Cancer Research, stated of the therapy: 
"This therapy represents a tremendous development 
for the treatment of recurrent and treatment-resistant 
MCL and should be evaluated in all patients with the ill-
ness. According to Dr. Roschewski, the approval will be 
crucial for the treatment of individuals whose malignan-
cies are resistant to BTK inhibitors. These patients have 
a poor prognosis overall, and some quickly progress to a 
more severe form of the illness after using BTK inhibitors 
[137].

Zanubrutinib, Ibrutinib, and Acalabrutinib, three 
authorized targeted BTK inhibitors, have altered the 
landscape of the management of R/R  MCL. There have 
been recently released clinical trial (phase 1) findings 
for Tirabrutinib (ONO-4059/GS-4059) and another 
trial (phase 2) data for Orelabrutinib (ICP-022), two 
second-generation BTKi medicines that are currently 
being developed. These substances could soon be used as 
developing MCL therapy alternatives [139].

Management of Toxicity and resistance of CAR T‑cell 
therapy
Notwithstanding the above-mentioned successes, CAR 
T-cell therapy has a high probability of giving rise to sev-
eral side effects, such as neurotoxicity, cytokine release 
syndrome, on-target/off-tumor recognition, insertional 
oncogenesis, graft vs host disease and anaphylaxis [123, 
140]. Like Axicabtagene ciloleucel, Brexucabtagene auto-
leucel also has some adverse effects like cytokine release 
syndrome and neuronal toxicity, but these adverse effects 
can be easily managed and are self-limiting [141]. To 
overcome the systemic cytokine toxicities researchers 
have introduced different methods such as CAR subunit 
dimerizing agents, CAR T-cells associated with off/on 
switches on small molecule adapter agents, downstream 
signalling inhibitors of CAR, control of CAR protein 
expression by using protease inhibitors, and engineered 
modified CAR T-cells with the capability to synthesise 
factors (It can counteract the cytokine storm, and the 
capacity to control the CAR expression) [142].

Management of neurotoxicity by rabbit Antithymocyte 
globulin (ATG)
Following CAR T-cell treatment in R/R MCL patient, 
cerebral edema can be deadly. However, a study evalu-
ated that, cerebral edema because of CAR T-cell treat-
ment can be completely recovered by multimodal clinical 

intervention that included rabbit antithymocyte globulin 
(ATG). After ATG injection, biomarker data demonstrate 
initial and vigorous CAR T-cell growth and associated 
production of inflammatory cytokines, then swift reduc-
tions in CAR T-cell and proinflammatory cytokine levels. 
This clinical data sheds information on the promising 
utility of ATG in the management of severe neurotoxicity 
caused by CAR T-cells [143].

Management of toxicity by Engineered CAR T‑cells
To be therapeutically beneficial, the CAR T-cell must stay 
inside its therapeutic window since toxicity results from 
exceeding the therapeutic window [144]. The quantity 
of tumour antigen produced by cancerous cells, tumour 
load, the affinity of the antigen-binding domain to its 
target epitope, and the costimulatory component of the 
CAR all influence the activation rate of CAR T-cells.  In 
order to maximise therapeutic effectiveness and reduce 
toxicity, it is crucial to carefully analyse a number of 
CAR’s modular components [145]. It would be expected 
that as the antigen-binding domain’s affinity decreases, 
larger antigen densities on tumour cells will be needed 
in order to achieve significant levels of activation. Anti-
gen-binding domains with micromolar affinity were sub-
stantially more selective for cancers with higher levels of 
target antigen expression than antigen-binding domains 
with low nanomolar/subnanomolar affinity [146]. By 
altering the hinge and transmembrane areas of activated 
CAR T-cells, it is also feasible to control cytokine pro-
duction. Alteration of the CD8α-derived transmembrane 
amino acid sequences and hinge reduced cytokine release 
and CAR T-cell proliferation in a CD19-targeted CAR 
[147]. Another customizable area in CAR design is the 
costimulatory domain, for instance, by employing less 
developed subsets of T-cells or designing CAR T-cells 
with 4-1BB ligand, which creates a supportive environ-
ment for CAR-T cells, the in-vivo efficacy of CAR T-cells 
can be improved. By overcoming physical obstacles and 
antigen heterogeneity in solid tumors, CAR T-cell infil-
tration into solid tumors can be improved [133].

Management of immunogenicity of CAR 
The general toxicity of traditional chemotherapeu-
tic drugs can be decreased by the ability of modified 
immune cells to recognize their target. Pharmacological 
immunosuppression, targeted activation, and expression 
of some elimination genes in CAR T-cells are some com-
mon steps to minimize the adverse effects of CAR T-cell 
therapy [127]. Using human or humanized antibody 
fragments instead of murine-derived CARs to reduce 
CAR immunogenicity may be helpful because the host 
immune system’s detection of CAR constructs may con-
tribute to cytokine-related toxicities [148].
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Management of neurotoxicity by Modifying CAR transduced 
T‑cells
Myeloid cells and cytokines appear to play a substantial 
role in CAR T-cell-induced neurotoxicity, since reports 
have demonstrated large increases in CD14 + cells in 
patients with grade 3 or greater neurotoxicity [149]. 
According to a pivotal large B-cell lymphoma CAR 
T-cell clinical trial, GMCSF increase was the blood bio-
marker most strongly linked to the onset of grade 3 or 
higher neurotoxicity [150]. Lenzilumab inhibits the 
macrophage and monocyte activating cytokine Granu-
locyte–macrophage colony-stimulating factor (GM-
CSF) in preclinical trials, which results in a reduction 
in neurotoxicity and CRS and an increase in CAR T-cell 
activation [151, 152]. Similar outcomes seem to be pro-
duced by GM-CSF mutational inactivation in T cells that 
have been CAR-transduced. Thus, these results imply 
that GM-CSF neutralisation aids in lowering neurotox-
icity and CRS [153]. Additionally, catecholamine and 
cytokine levels are reduced when tyrosine hydroxylase 
is deleted in a manner that is unique to myeloid cells or 
when this enzyme is inhibited by metyrosine. Further-
more, according to preclinical research, CD19-targeted 
CAR therapy for leukemia/lymphoma animal models 
reduced neuroinflammation when IL-1 receptor antago-
nists were used [154, 155].

Suicide gene strategies of CAR 
Suicide gene or "off-switches" techniques, through the 
use of a secondary inducing factor, would make it easier 
to selectively reduce engineered cells when unfavourable 
events start to occur [156]. For example, CAR designed 
to express full length CD20 or CD20 mimotopes help 
CAR-T cells be eliminated, through the use of rituximab 
[157]. The main drawback of these treatments, or those 
that are comparable to them, is that while they are desir-
able for assuring safety, their use abruptly ends treatment 
for a disease that is developing quickly. This restriction 
has provided a tremendous impetus for the development 
of safety-enhancing techniques that reserve suicide gene 
activation as a last option [158].

To increase results and get beyond CAR T-cell con-
straints, the right efforts must be made from the iden-
tification of patients here to separation, production, 
multiplication, and injection of CAR T-cells. To avoid 
CAR  T-cell therapy restrictions or failure, it is cru-
cial to monitor CAR  T-cell effectiveness and antigen 
loss throughout treatment [123]. Improvement of con-
ventional CAR-T cell design is necessary to overcome 
inadequacies or adverse effects of this therapy [133]. To 
assess the long-term protection of KTE-X19, the FDA 
has mandated that the manufacturing company initi-
ate pharmaco-vigilance survey research of people who 

underwent KTE-X19 therapies. Due to the high cost and 
labour requirements, studies have begun to focus on allo-
geneic CAR T infusion, and these under different stages 
of clinical development. Transfusion of CAR T-cells 
is often a concern that hinders further progression and 
consequentially leads to cytotoxicity. However, CAR 
T-cell treatment modalities are still relatively new, and 
the widespread use of CAR T-cell therapy will undoubt-
edly confront a multitude of challenges in scientific 
knowledge before it can be extensively used [159].

Conclusions
MCL is a pathologically unique and life-limiting disease 
that necessitates innovative therapeutic approaches. 
Providentially, the development of the CAR-T cell 
approach and cellular immunotherapy has opened up 
a novel world of therapeutic options. Researchers are 
investigating the CAR  T-cells for different types of 
tumors, but until now, the most successful CAR T-cell 
therapy has involved only for the blood cancers. The 
majority of the CAR  T-cell treatments carry the pos-
sibility of serious side effects, which must be handled 
quickly and carefully by medical professionals who 
are well versed in the procedure. In addition, Patients 
and healthcare providers experience distinct logistical 
and financial challenges. Severe toxicities like cytokine 
storm, macrophage activation syndrome, neurotoxicity, 
and HLH in patients due to the CAR T-cell therapy are 
some other unavoidable obstacles [160]. To minimize 
such events, researchers are working towards safety 
aspects of the CAR T-cell therapy by either increasing 
the selectivity of the CAR through safer choices of anti-
gens, or alteration of the sensitivity of single-chain vari-
able fragments of an antibody. It can also be possible 
by combinatorial antigen targeting and masking of the 
CAR, or by controlling the CAR T-cell activity by intro-
ducing possible suicide genes and limiting the CAR 
expression [161]. The real-world outcomes of brexu-
cel for the treatment of R/R MCL in the United States 
were documented in a recent follow-up from July 2020 
to December 2021. As per the report, ORR was 84% for 
all patients and 78% for patients with less than 180 days 
of follow-up. At six months, OS and PFS were 79% 
and 66%, respectively. After receiving tocilizumab and 
corticosteroids, grade 3 ≥ CRS (9%) and ICANS (29%) 
had mostly subsided by 21  days after initiation. 32% 
of patients acquired severe infections, 22% of patients 
had chronic cytopenia, and 3% of patients developed 
subsequent malignancies [162]. This is the most com-
prehensive report on the application of brexu-cel. This 
suggests the success of CAR T-cell therapy in MCL 
including those with high-risk features however, severe 
toxicities demands further investigation. Even though 
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further research is necessary MCL therapy, there is 
hope that these trials would lead to a new medication 
in the therapy of lymphoma and would present a bet-
ter cure for patients with an advanced type of cancer. 
These trials would pave a new way for research into dif-
ferent types of lymphoma and alter the lives of these 
previously difficult-to-treat individuals.
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