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EMT/MET plasticity in cancer 
and Go-or-Grow decisions in quiescence: 
the two sides of the same coin?
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Abstract 

Epithelial mesenchymal transition (EMT) and mesenchymal epithelial transition (MET) are genetic determinants of 
cellular plasticity. These programs operate in physiological (embryonic development, wound healing) and pathologi-
cal (organ fibrosis, cancer) conditions. In cancer, EMT and MET interfere with various signalling pathways at differ-
ent levels. This results in gross alterations in the gene expression programs, which affect most, if not all hallmarks of 
cancer, such as response to proliferative and death-inducing signals, tumorigenicity, and cell stemness. EMT in cancer 
cells involves large scale reorganisation of the cytoskeleton, loss of epithelial integrity, and gain of mesenchymal traits, 
such as mesenchymal type of cell migration. In this regard, EMT/MET plasticity is highly relevant to the Go-or-Grow 
concept, which postulates the dichotomous relationship between cell motility and proliferation. The Go-or-Grow 
decisions are critically important in the processes in which EMT/MET plasticity takes the central stage, mobilisation of 
stem cells during wound healing, cancer relapse, and metastasis. Here we outline the maintenance of quiescence in 
stem cell and metastatic niches, focusing on the implication of EMT/MET regulatory networks in Go-or-Grow switches. 
In particular, we discuss the analogy between cells residing in hybrid quasi-mesenchymal states and  GAlert, an inter-
mediate phase allowing quiescent stem cells to enter the cell cycle rapidly.
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Introduction
Epithelial mesenchymal transition (EMT) is a process of 
conversion of polarised epithelial cells into mesenchymal 
cells. First discovered in embryonic development, EMT 
and a reverse process of mesenchymal epithelial transi-
tion (MET) were later implicated in human diseases, 
organ fibrosis, and cancer. EMT and MET are vital in 
embryogenesis for the early (gastrulation, neural crest 

delamination) and late (formation of various organs, such 
as the heart) stages. The classical physiological function 
of EMT in normal and pathological conditions is the gen-
eration of motile cells capable of degrading and crossing 
basement membranes [1]. A basement membrane is a 
specialised extracellular matrix built by proteins depos-
ited by epithelial cells and cells of the underlying stroma. 
It is composed of polymerized laminin, glycoproteins, 
and collagen fibrils and separates epithelial layers from 
stromal tissues [2]. After passing through basement 
membranes, cells undergoing an EMT may penetrate 
surrounding tissues and migrate to new destinations.

Epithelial cells are linked to the basement mem-
branes via focal adhesions and epithelium-specific 
adhesion structures, hemidesmosomes. The structural 
integrity and functionality of epithelial tissues depend 
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on intercellular adhesion complexes, tight junctions, 
adherens junctions (AJ), and desmosomes, which medi-
ate attachments between adjacent cells [3]. These differ-
entiated, highly specialised structures are essential for 
maintaining the basolateral polarity of epithelial cells and 
tissue homeostasis [1].

During EMT and MET, cells experience drastic 
changes in their physiology. In the course of EMT, the 
alterations involve the disappearance of intercellular 
adhesions, loss of epithelial polarity, dynamic restructur-
ing of the cytoskeleton, degradation of basement mem-
branes, etc. Several transcription factors collectively 
termed EMT-TFs govern the coordinated changes in cell 
physiology manifesting EMTs. Zn-finger transcription 
factors of SNAIL (SNAIL, SLUG) and ZEB (ZEB1, ZEB2) 
families and basic helix-loop-helix proteins TWIST1 
and TWIST2 are best-studied EMT-TFs in the context 
of normal and pathological conditions [4–6]. Mechanis-
tically, EMT-TFs repress transcription of a set of genes, 
whose function is critical for maintaining the epithelial 
state. Repression of the E-cadherin-encoding CDH1 gene 
results in the dissolution of AJ; reduction in the levels of 
the polarity complexes components, Crumbs and Scrib-
ble, CRB3 and LDL2 (Lethal Giant Larvae 2) leads to 
the loss of basolateral polarity [7, 8] (Fig. 1A). EMT-TFs 
repress transcription by recruiting various co-repressor 
complexes with HDAC and HMTase activities, Mi2/
NuRD/G9A [9, 10], SIN3a/HDAC1/HDAC2 [11], coR-
EST/CtBP1/HDAG2/G9A [12], SWI/SNF [13], and 
EZH2/HDAC1[2] [14] among others (reviewed in [15]). 
Concurrently, EMT-TFs directly or indirectly activate 
transcription of mesenchymal genes, including a criti-
cal component of mesenchymal intermediate filaments 
vimentin, CDH2 (codes for N-cadherin), matrix metal-
loproteinases specializing in the degradation of the base-
ment membrane, and others. Direct activation requires 
binding co-activators with HAT activities, CBP, p300, 
and PCAF [15–18]. The binding of EMT-TFs to the effec-
tors of some signal transduction pathways may result in 
their conversion from transcriptional repressors to acti-
vators (see Sect. 2). The EMT/MET balance is regulated 

by yet another group of transcription factors, which can 
be collectively referred to as MET-TFs. This relatively less 
explored set of factors includes diverse proteins belong-
ing to various families, namely, zinc-finger-containing 
proteins Ovo-Like Transcriptional Repressor 2 OVOL2 
[19] and Krüppel-like factor 4 (KLF4) [20], Grainyhead-
like protein GRHL2 [21], and ETS family members E74-
like ETS transcription factor 3 and 5 [22, 23] among 
others. MET-TFs promote epithelization in normal 
physiological conditions and cancer cells by direct tran-
scriptional repression of mesenchymal markers and by 
establishing mutual bidirectional inhibitory circuits with 
EMT-TFs [24–27]. Moreover, some MET-TFs directly 
activate transcription of the genes encoding proteins 
specifying epithelial lineages, such as CDH1, ZO-1, 
CLDN4, and CLDN5 (encode Claudin-4 and -5) [28, 29] 
(Fig. 1A).

EMT and cellular signalling networks
EMT-TFs are induced in response to various signalling 
cues in embryonic or fibrotic tissues or tumour micro-
environment, such as TGFβ, RTK ligands, HIPPO, WNT, 
NOTCH, or inflammatory cytokines [5, 30]. Impor-
tantly, EMT programs often modify EMT-inducing signal 
transduction pathways by activating positive or negative 
feedback regulatory loops. The underlying mechanisms 
vary in their nature. EMT-TFs form double negative 
self-enforcing loops with several classes of microRNA 
(Fig.  1B). For instance, ZEB proteins are repressors of 
microRNA clusters encoding miR-200 family mem-
bers, which in turn are ZEB repressors [31, 32]. Similar 
connections exist between miR-34a and SNAIL family 
members and miR-186 and TWIST1. ZEB1/2-miR-200 
module affects expression levels of critical components 
of TGFβ[33, 34], WNT [35–37], and NOTCH (up-regu-
lation of MAML2/3; [38]) signalling pathways. When the 
balance in ZEB/miR-200 equilibrium is moved towards 
EMT-TFs, this may lead to the activation of TGFβ, 
WNT, or NOTCH pathways and thereby potentiate 
EMT via positive feedback loops. Likewise, SNAIL- or 
SLUG-induced EMT programs involve similar feedback 

(See figure on next page.)
Fig. 1 EMT pathways are embedded in signalling networks in cancer cells. Various signalling pathways exemplified on the top promote EMT 
by activating EMT-TFs. A Transcriptional regulation of epithelial-mesenchymal plasticity. In cells undergoing EMT, EMT-TFs repress transcription 
of epithelial genes encoding components of various epithelial structures, such as polarity complexes and adherens junctions, and activate the 
expression of mesenchymal genes. MET-inducing transcription factors (MET-TFs) repress transcription of mesenchymal markers, activate epithelial 
transcription programs, and act in double-negative feedback loops involving EMT-TFs. B EMT-inducing signals are modified by EMT-TFs/microRNA 
loops. EMT-TFs and microRNAs form interrelated double-negative feedback loops which affect expression levels of certain components of 
EMT-inducing signalling network. C EMT-TFs physically interact with components of signalling pathways forming complexes that in turn influence 
target genes. D EMT/MET mutually regulate alternative splicing. EMT-TFs regulate expression of epithelial (e.g., ESRP1/2) or mesenchymal (e.g., QKI) 
splicing factors, which in turn determine formation of epithelial- or mesenchymal-specific protein isoforms required for the accomplishment of EMT 
or MET programs. E Expression of metabolic genes of glycolysis and oxidative phosphorylation pathways are controlled by EMT-TFs
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Fig. 1 (See legend on previous page.)
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regulation: repressing miR-34a subsequently leads to 
the increased expression of its EMT-potentiating tar-
gets, such as TGFβ1, LEF1, AXL, FRA-1, etc. [39–42]. 
TWIST1-targeted miR-186 is a repressor of the WNT 
pathway as well as HIF1α, among other targets known 
to contribute to the EMT programs in various cancer 
types [43, 44] (Fig.  1B).  Long non-coding RNAs (lncR-
NAs) represent one more class of RNA molecules closely 
associated with regulating the EMT/MET balance. Vari-
ous lncRNA  species modulate EMT pathways via dif-
ferent mechanisms and at different levels. For example, 
lncRNA-ATB or lncRNA-OC1 may act as competing 
endogenous RNAs (ceRNAs) to promote EMT by spong-
ing miR-200 family members or miR-34a respectively 
[45, 46]. Additionally, lncRNAs may serve as scaffolds for 
essential interacting components of EMT pathways or 
participate in the recruitment of chromatin-modifying 
complexes to the promoters of genes implicated in EMT 
or MET programs. The interactions of lncRNA with vari-
ous signalling pathways implicated in epithelial plasticity 
are covered in recent comprehensive reviews [47, 48].

EMT-TFs also interfere with cellular signalling net-
works via direct physical interactions with the effectors 
of TGFβ, RTK, HIPPO, and WNT pathways (Fig.  1C). 
The resultant complexes recruit chromatin modifiers 
and ensure cooperative transcriptional control of target 
genes (reviewed in [49]. In particular, TGFβ-induced 
EMT programs involve physical and functional interac-
tions between transcription factors SMAD2/3 and ZEB 
proteins or SNAIL [50, 51] or between TWIST1 and 
SMAD4 [52]. Binding of HIPPO effectors YAP and TAZ 
to SNAIL family members [53] or formation of multi-
meric complexes composed of sequence-specific tran-
scription factors of TEAD, AP-1, NF κB families, and 
EMT-TFs [54–56] are essential for cooperation between 
EMT, HIPPO and RTK signalling. Binding the HIPPO 
effector YAP and AP-1 complexes results in the release 
of CtBP, and recruitment of HAT CBP and shift of ZEB1 
from transcriptional repression to activation [54]. Com-
plexes containing SNAIL and β-catenin were reported in 
colorectal cancer cells, and this interaction was essential 
for activating WNT-dependent genes [57]. TWIST1 was 
co-immunoprecipitated with TCF4/β-catenin complex in 
dermal papilla cells [58] (Fig. 1C).

The above-cited reports exemplify interactions 
between EMT and several signal transduction pathways, 
but they do not cover the impact of EMT on gene regu-
lation in its full complexity. Indeed, EMT-microRNA 
circuits deeply interfere with fundamental cell signal-
ling  mechanisms at several levels. EMT pathways acti-
vate mesenchymal splicing programmes [59, 60] and 
are implicated in metabolic reprogramming [61, 62] 
(Fig. 1D, E). EMT is responsible for the rewiring of RTK 

signalling [63]; it alters the cellular epigenetic landscape 
[64]. Through the analysis of current literature and pub-
lic databases, a recent study identified 932 genes in total 
that are associated with EMT/MET across various can-
cer types [65]. Therefore, it is not surprising that in addi-
tion to the classical role of EMT/MET programmes in 
determining phenotypic cell plasticity, they affect most, if 
not all, cancer features. These features classified as “hall-
marks of cancer” by R Weinberg and D Hanahan include 
cell cycle regulation, replicative immortality, apoptotic 
resistance, immune evasion, evading growth suppressors, 
self-renewal ability, neovascularization and altered ener-
getics (Fig. 1) [66].

The deregulated cell cycle and acquired cell stemness 
are among cancer characteristics closely associated with 
EMT/MET-controlled cell plasticity and will be dis-
cussed in the following sections.

Go‑or‑Grow: EMT and cell cycle control in normal tissues
From a general perspective, molecular mechanisms 
controlling cell proliferation and migration must be 
connected. Indeed, migrating and mitotic cells share 
common signalling modules and structural elements 
(e.g., microfilaments and microtubules). The critical path-
way which integrates growth-promoting and growth-
suppressing signals into a decision for proliferation or 
cell cycle exit is Rb-E2F. Cyclin D-CDK4/6 and cyclin 
E-CDK2 complexes consecutively phosphorylate RB to 
drive  G1 progression and entry into the S phase. Cyclin-
dependent kinase inhibitors (CKIs),  p27KIP1,  p21CIP1, and 
 p57KIP2, are key regulators of CDK activity [67] (Fig. 2). In 
addition to their canonical function in cell cycle regula-
tion, CKIs are also implicated in cytoskeletal dynamics, 
cell migration, and invasion [68]. For instance, the central 
inhibitor of  G1-S transition,  p27KIP1, facilitates cell motil-
ity and invasion by increasing the turnover of invadopo-
dia through PAK1/cortactin signalling [69, 70], affecting 
actomyosin dynamics [71], and by inducing EMT via 
STAT3-TWIST1 pathway [72] (Fig. 2). As cell migration 
and proliferation share common elements of molecular 
pathways, there might be competition in determining 
which process prevails in a given cell. Indeed, the math-
ematical modeling predicts that the increase in cell pro-
liferation occurs at the expense of cell migration and 
vice versa [73]. This popular concept of the dichotomy 
between proliferation and migration is discussed in the 
literature as the “Go-or-Grow” or “Divide or conquer” 
concept.

The Go-or-Grow hypothesis was studied in normal 
physiological conditions.  C. elegans  anchor cells (AC) 
represent a model allowing to study molecular mecha-
nisms of invasion in embryonic development. AC, 



Page 5 of 16Akhmetkaliyev et al. Molecular Cancer           (2023) 22:90  

specialized uterine cells, play a role in the development 
of the nematode reproductive system; they breach the 
basement membrane separating the uterine and vulval 
tissues to form a uterine-vulval connection. AC inva-
sion depends on the fos-1a gene, whose loss prevents the 
disintegration of the basement membrane [74]. Of note, 
mammalian orthologues of fos-1a, AP-1 family mem-
bers cooperate with EMT-TFs at different levels and are 
potent EMT inducers in various cancers [75–77]. Mecha-
nistically, a nematode  p21CIP1 homolog was required for 
the  G1/S cell cycle arrest and, at the same time, essential 
for AC invasion [78].

An association between embryonic EMT programmes 
and cell cycle control was studied in the course of the 
formation of neural crest cells (NCC). This population of 
multipotent cells is generated via EMT during the closure 
of the neural tube in the embryonic development of ver-
tebrates. The population of NCC gives rise to various cell 
lineages, including peripheral neurons, Schwann cells, 
melanocytes, and craniofacial structures, among others. 
Delamination of NCC from neural folds and their migra-
tion to new embryonal territories is regulated by distinct 
EMT-TFs in distinct species of vertebrates [79, 80]. It has 
been reported that different NCC utilize different mecha-
nisms of EMT upon delamination, and their migration 
may or may not be associated with the exit from the cell 
cycle. While cranial NCC exhibit various distributions 
over the cell cycle phases, delaminating cells at the sites 
of neural tube closure within the trunk are accumulated 
in the  G0/G1 phases (reviewed in [80, 81].

A mechanistic link between reversible cell cycle arrest 
(cell quiescence) and EMT was established in  vitro in 
studies analyzing gene expression signatures of serum-
deprived quiescent primary fibroblasts. In addition to a 
number of genes associated with the cell cycle regula-
tion, serum deprivation activated several genes impli-
cated in EMT, namely TGFb1, IL6, IL11, N-cadherin 

encoding  gene  CDH2, EMT-TF-encoding gene  ZEB2, 
and others [82].

Go‑or‑Grow: EMT and cell cycle control in cancer
The applicability of the Go-or-Grow concept to cancer is 
of particular interest. Indeed, on the one hand, a central 
feature of cancer cells is their ability to overcome growth-
inhibiting stimuli and sustain uncontrolled proliferation 
[66]. On the other hand, most conventional or targeted 
anti-cancer agents are effective against cells passing 
through the S and G2/M phases of the cell cycle, and can-
cer cells residing in  G1/G0 are therapy-resistant. There-
fore, the proliferative plasticity or the ability of cancer 
cells to transit between proliferative and quiescent states 
poses an obstacle to therapy, and understanding under-
pinning mechanisms is critically important [83, 84].

EMT substantially impacts drug resistance largely 
because it is commonly associated with slow prolifera-
tion or cell cycle arrest. Indeed, one of the most potent 
EMT inducers, TGFβ, is a classical tumour suppressor 
and canonical inhibitor of the cell cycle in the  G1 phase. 
TGFβ-mediated cell cycle arrest involves SMAD-medi-
ated activation of CDKN2B and CDKN1A genes encoding 
CDK inhibitors  p15INK1 and  p21CIP1 [85]. In squamous 
cell carcinoma, TGF-β/SMAD signalling  induced quies-
cence via activation of  p21CIP1 in the proportion of cells. 
In contrast to the bulk of the tumour, these cells exhibited 
resistance to DNA damage and increased tumorigenic 
potential [84]. This study did not address the implication 
of EMT-TFs, which act in concert with TGFβ/SMAD. 
However, in earlier reports, the ability of EMT-TFs to 
attenuate  G1/S cell cycle progression has been shown 
in  vitro. In particular, SNAIL- and ZEB2-induced EMT 
in cultured carcinoma cells went along with the delays 
in  G1- to S-phase transition caused by the transcrip-
tional repression of  CCND2  and  CCND1,  respectively 
[86, 87]. In addition, CDK inhibitors are transcriptional 

Fig. 2 An overview of “Go-or-Grow” concept. Main orchestrators of CDK activity namely  p27KIP1,  p21CIP1, and  p57KIP2 inhibit proliferation (”Grow”) 
and activate migration (”Go”) via direct/indirect interactions with the components of cell cycle machinery and EMT-TFs network (see text for details)
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targets of EMT-TFs; SNAIL activated  p21CIP1-encoding 
gene  CDKN1A [86]; and SLUG induced both  CDKN1A 
and CDKN1B  (codes for  p27KIP1) in cervical carcinoma 
cells [88]. Concomitant with the attenuated cell cycle 
progression, EMT-TFs stimulate individual cell motility 
and invasion. To our knowledge, the impact of EMT-TFs-
induced CDK inhibitors on the motility of cells during 
EMT has not been addressed. Activation of the  G1/S 
checkpoint represents a common EMT feature; ERK2 
induces EMT, which is associated with enhanced expres-
sion of CDKN1A and CDKN1B [89]. Emerging evidence 
indicates a negative feedback mechanism links EMT-
TF ZEB1 with the  G1/S checkpoint regulation. CDK4/6 
kinases phosphorylate and stimulate deubiquitinase 
USP51, which stabilises ZEB1 [90]  (Fig.  2). This regula-
tory circuit may fine-tune the balance between “Go” and 
“Grow” types of cell behaviour, and generate proliferating 
cells which an intermediate epithelial-mesenchymal phe-
notype (see following sections).

Experimental data supporting the “Go-or-Grow” 
hypothesis in cancer cells in  vitro align with the analy-
ses of patients’ samples. In several cancer types, high cell 
proliferation indices are typical for the central areas of 
solid tumours, whereas cells at the tumour periphery are 
often non-proliferative and highly invasive. According 
to some reports, enhanced expression of D- and E-type 
cyclins in breast cancer correlated with a less malignant 
phenotype and a more favourable prognosis [91, 92]. 
EMT at the invasive front of colorectal cancer is associ-
ated with the enhanced expression of the CDKN2A gene 
product p16INK4A, which correlates with low survival 
rates [93]. EMT programs at the tumour-stroma bound-
ary are induced by ZEB1 and lead to the transient loss 
of the basement membranes due to proteolytic cleavage 
of their components and down-regulated synthesis of 
laminin-5, a basement membrane component secreted 
by tumour cells [94]. These data can be interpreted as 
proof of the dichotomy between the growth of primary 
tumours versus invasion, with the latter being responsi-
ble for poor prognosis. The “Go-or-Grow” phenotypic 
switch in cancer was modeled in  vivo by knocking out 
the  p21CIP1-coding gene  CDKN1A  in the polyoma virus 
middle T mammary tumour model [95]. Depletion of 
this potent CDK inhibitor stimulated tumour growth 
and resulted in the suppressed cell invasion in vitro and 
reduced metastatic spread. These results reflect the func-
tion of the nematode  p21CIP1 homologous protein in the 
invasion of AC cells in C. elegans. They suggest that met-
astatic cancer cells can hijack and utilize the evolutionar-
ily conserved mechanisms regulating the “Go-or-Grow” 
switches. On the other hand, there is no correlation 
between cell motility and proliferation in established 
cancer cell lines in  vitro [96]. Therefore, mechanisms 

coupling cell cycle regulation and cell motility can be 
circumvented in cancer. Alternatively, the mechanisms 
maintaining “Go-or-Grow” switches do exist; but in a 
single cell, the “Go” and “Grow” functions are separated 
in time. On the level of cell populations, rapidly dividing 
cells can be highly invasive.  These cell populations may 
exist in brain tumours, malignant mesothelioma, or cuta-
neous melanoma. Although the death of patients with 
these cancer types is caused mainly by metastatic disease, 
the unfavorable prognosis is closely associated with high 
mitotic activity [96]. This contrasts with the above-cited 
reports on the presence of slowly proliferating cells on 
the invasive front predicting poor survival of ER + breast 
or colorectal cancer patients [91–93]. If proliferative 
capacity and invasive potential within a given cell are not 
separated in time, this may have important implications 
for tumour biology. Cells that underwent TGFβ-induced 
EMT but were resistant to TGFβ-imposed growth 
inhibition displayed genetic instability and defects in 
cytokinesis. These abnormalities were associated with 
SNAIL-dependent suppression of Lamin B1 and other 
nuclear envelope proteins implicated in mitotic control. 
Thus, breaching the Go-or-Grow principle in cancer cells 
may trigger heritable genetic defects, subsequently con-
tributing to tumor evolution [97].

Quiescence, adult stem cells, and EMT
Quiescence is a characteristic of subpopulations of adult 
stem cells (ASC), a specialised type of tissue-resident cells 
responsible for tissue homeostasis and repair. In the epi-
dermis, intestinal epithelium, and regenerating tissues, 
quiescent ASC co-exist with the stem cells repeatedly 
undergoing asymmetric divisions. The latter subpopu-
lation maintains tissue integrity by differentiating into 
parenchymal cells and producing new stem cells (self-
renewal) [98, 99]. Unlike irreversibly arrested senescent 
and terminally differentiated cells, quiescent ASC can be 
reversibly activated by environmental triggers [100, 101].

Stem cells are located in specialised niches formed by 
stem cell progeny, and supportive stromal cells. The niche 
determines a balance between quiescent and proliferat-
ing stem cells. Disruption of this equilibrium in a healthy 
tissue may result in deregulated cell proliferation, com-
promised tissue repair, impaired homeostasis, and regen-
eration processes [100]. For example, failure to maintain 
quiescence in hematopoietic stem cells (HSC) leads 
to the extended expansion of the stem cell population 
and its exhaustion leading to the depletion of adaptive 
immunity and myeloproliferative disorders [102]. The 
importance of quiescence was also demonstrated in the 
studies on NCC, the decrease in the hippocampal neural 
stem cell population resulted in cognitive defects due to 
decreased amounts of new neurons [103].
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To maintain quiescence/proliferation balance, stem 
cells communicate with each other and other compo-
nents of a niche via cell–cell, cell-soluble factors, and 
cell-extracellular matrix (ECM) interactions [100, 101]. In 
healthy tissues, lack of niche-derived soluble factors is a 
determinant of quiescence, whereas secretion and release 
of growth factors from ECM enforce stem cells to enter 
the cell cycle. For instance, the presence of the hepato-
cyte growth factor (HGF) in injured muscles stimulates 
muscle cell proliferation via the c-MET/mTOR pathway 
and tissue repair [104]. Intercellular interactions are yet 
another factor supporting the quiescent state of the ASC. 
Quiescent ASC present in neural, muscle, hematopoietic, 
and endometrial stem cell niches are associated with the 
surrounding cells via AJ mediated by N-cadherin [105–
108] and N-cadherin depletion leads to the dissolution of 
AJ, the release of stem cells from contact inhibition and 
their activation. In addition, niches maintain stem cell 
quiescence by producing growth-inhibitory factors, at 
least two of which, TGFβ1 and IL-6 family, are classical 
inducers of EMT programs [109, 110]. Therefore, at least 

two considerations, a role for the mesenchymal marker 
N-cadherin and the presence of the EMT triggers in the 
stem cell niches, indicate that in normal physiological 
conditions, EMT and stemness are associated (see Fig. 3).

The interconnection between EMT and cell stemness 
is apparent in embryonic tissues: NCCs, generated via 
EMT, represent a stem cell population that gives rise to 
various tissues in a developing embryo. In adult tissues, 
the impact of EMT programmes on stem cell biology has 
been studied in several types of epithelia. In the strati-
fied epithelium of a mammary gland, stem cells are pre-
sent within the outer basal layer. These stem cells express 
low levels of asymmetrically distributed E-cadherin that 
mediates their physical association with luminal cells. At 
the same time, adult mammary stem cells express some 
levels of mesenchymal markers N-cadherin and vimentin 
indicating that they reside in an intermediate phenotypic 
state in which epithelial and mesenchymal features are 
combined [111, 112]. This state is governed by the EMT-
TF SLUG in conjunction with its interacting partner 
chromatin modifier Lysine-specific histone demethylase 

Fig. 3 A parallel between  GAlert and E/M hybrid states of cells. The same factors such as N-cadherin, TGFβ, IL6, GAS6/AXL,  p27KIP1 and SNAIL2 are 
implicated in both stem cell quiescence and EMT/MET equilibrium
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1 (LSD1) [113]. Indeed, SLUG ablation in KO mice signif-
icantly delays mammary gland morphogenesis reflecting 
impaired lineage commitment, and the combined ectopic 
expression of SLUG and SOX9 results in the reprogram-
ming of luminal cells into mammary stem cells with the 
renewal potential [114]. The role of a particular EMT-
TF, SLUG, in stemness is not restricted to the mammary 
gland. In the stratified epithelium of other tissues, such 
as the prostate gland, upper airways of the lungs, and 
hair follicles, SLUG was shown to inhibit differentiation 
and support oligopotency [112, 115–117]. In addition to 
SLUG, other EMT-TFs, such as ZEB1, are expressed and 
sustain stemness in the subpopulations of basal cells in 
the prostate and mammary glands [118, 119].

As EMT-TFs are implicated in the biology of ASC, the 
Go-or-Grow principle might be applicable to these cell 
types. A recent study has shown that ZEB1 is required for 
branching morphogenesis and maintains quiescence in 
the subset of basal mammary stem cells via the upregu-
lation of WNT pathway inhibitor Axin2 [120]. Likewise, 
experimental data support the existence of a Go-or-
Grow dichotomy in HSC. The SDF-1 (stromal-derived 
factor-1) plays a crucial role in mobilisation and hom-
ing of hematopoietic stem cells via the interaction with 
cognate receptor CXCR4 [121]. Conditional ablation 
of either the receptor or the ligand stimulates HSC to 
enter the cell cycle [122], suggesting that this pathway is 
responsible for cell quiescence and motility. Several small 
Rho GTPases regulate cytoskeletal dynamics and cell 
motility downstream of SDF-1/CXCR4 signalling, while 
CDC42 is responsible for the retention of HSC in  G1/G0 
[123, 124]. Interestingly, CXCR4 is the effector of ZEB2 
in some hematopoietic cells [125], and genetic ablation 
of ZEB2 in hematopoietic lineage resulted in an increase 
in HSC and progenitors in the bone marrow and other 
specific features resembling myeloproliferative diseases 
in humans [126].

As opposed to the broad implication of SLUG in cell 
stemness in stratified epithelia, neither this protein nor 
other EMT-TFs are associated with stem cells in most 
single-layered epithelial tissues, such as pancreatic ducts 
or intestinal epithelium [112]. This is, however, in stark 
contrast with the cancer stem cells (CSC), cells that har-
bour stem features and are present in cancers derived 
from the same types of simple epithelia.

EMT and cancer stem cells
CSC represent a distinct pool of tumour cells, which are 
highly tumourigenic but retain some features of normal 
epithelial stem cells. Like their normal counterparts, 
CSC are characterised by asymmetric division, self-
renewal, and the ability to generate more differentiated 
progeny composing tumour mass. Because of their high 

tumourigenic potential, and resistance to various thera-
pies, it is accepted that CSC represent a source for distant 
metastases and post-therapy cancer relapse. A causative 
link between EMT and cancer stemness was proposed 
theoretically and then demonstrated experimentally in a 
series of seminal works [127–131]. Expression of EMT-
TFs SNAIL or TWIST1 in immortalised mammary 
epithelial cells generated cells with the  CD44highCD24− 
phenotype. These cells were capable of forming mam-
mospheres, which contained both basal and luminal 
precursors. Similar mammosphere-forming  CD44high and 
CD24-negative cells with EMT gene expression signa-
tures were isolated from normal and cancerous breast 
tissues [130].

The use of single-cell RNA sequencing technology for 
the analysis of the metastatic process in a PDX breast 
cancer mouse model has shown that EMT-derived 
stem-like cells appear at the early stages of metastatic 
dissemination [132]. These metastasis-inducing cells 
with reduced levels of E-cadherin and CD24 expressed 
EMT-TFs SLUG and TWIST1 and dormancy-associ-
ated gene signature including high  CDKN1B   (p27KIP1). 
Metastatic cells in PDX models with a high metastatic 
burden demonstrated higher expression of luminal dif-
ferentiation genes, c-MYC, and proliferative signatures 
[132]. These data are in line with the hierarchical model 
of cancer metastasis. The model suggests that dormant 
CSC disseminate at the initial stages of the metastatic 
process, while extensive proliferation and differentiation 
occur at the advanced stages. The hierarchical model 
also applies to colorectal cancer, where Lgr5 (Leucine-
rich repeat-containing G protein-coupled receptor 5) 
receptor is a marker of stem cells in the normal intesti-
nal epithelium [133].  Lgr5+ cells isolated from normal 
tissues, primary tumours, or metastases do not show 
any EMT features but are characterised by stem cell 
gene signatures. After depletion of  Lgr5+ cells from pri-
mary  Apcmin/+;KrasG12D-induced tumours,  Lgr5− cells 
displayed activated c-Myc pathway and  overrepresenta-
tion of genes implicated in cell-cycle progression [134]. 
The hierarchical model is supported by the analyses of 
the pools of CTC (circulating tumour cells) isolated from 
blood samples of breast, colon, or lung cancer patients. 
These cells are derived from epithelial tumours, possess 
tumour-initiating potential, and express mesenchymal 
markers [135–137].

As cited above, compelling evidence collected in dif-
ferent cancer models indicates that epithelial traits are 
required for cancer cells to re-establish tumour growth 
in target organs and accomplish the metastatic pro-
cess [132, 134]. Indeed, in the polyomavirus middle T 
antigen breast cancer mouse model, single metastatic 
tumor cells arriving at target organs were predominantly 
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mesenchymal, but all micrometastases comprising three 
or more cells were E-cadherin-positive [138]. Irrevers-
ible loss of epithelial differentiation by enforced SNAIL 
expression led to the inhibition of tumorigenic and 
metastatic potentials in prostate and bladder cancer 
cells [139]. The role of E-cadherin was studied in mouse 
models of invasive ductal mammary adenocarcinoma. 
Although down-regulation of the CDH1 gene coding for 
E-cadherin enhanced the invasive capacity of tumour 
cells, their metastatic potential was diminished as the 
result of activated TGFβ signalling, decreased cell pro-
liferation, and reduced stress resistance [140]. These and 
many other reports demonstrate the importance of the 
reversibility of EMT programmes (EMT/MET plastic-
ity) in metastatic processes [4, 112, 141]. While the epi-
thelial state mainly contributes to the increasing mass 
of primary and secondary tumours (“Grow” function), 
the mesenchymal state facilitates invasion and colonisa-
tion (“Go” function). Indeed, given the tiny diameter of 
microcapillary utilized by metastasizing cells, loss of epi-
thelial adhesion would make intravasation much more 
efficient. However, research combining in  vivo imaging 
and lineage tracking has shown that migration of epithe-
lial cell clusters is often a common feature. In these clus-
ters, cells retain intercellular junctions and form cohesive 
migrating groups (so-called collective migration) [142]. 
Regardless of their epithelial appearance, intercellular 
adhesion in these groups is weakened because of a partial 
EMT [143] (see next section). Some reports have shown 
that MET programs are essential not only for forming 
macrometastases but also capable of generating highly 
tumourigenic epithelial-like CSC with metastasis-seed-
ing properties [144–146]. Moreover, in some cases, such 
as the syngeneic mouse model of breast cancer, epithe-
lial CTCs (defined by high levels of Epcam, E-Cadherin, 
and Grhl2 expression) have the strongest metastatic abil-
ity as compared to the pool of mesenchymal CTCs (low 
EpCAM, E-cadherin expression, high levels of Vimentin, 
and EMT-TFs expression) [147].

Intermediate EMT stages and reconciliation of “Go” 
and “Grow” features
A concept reconciling findings that “Go” and “Grow” 
capabilities are combined in a single cell proposes that 
EMT and MET do not represent binary switches. This 
model suggests that both programs represent processes 
empowering cancer cells by the spectra of both epithelial 
and mesenchymal traits leading to the generation of so-
called hybrid, quasi-mesenchymal, or E/M phenotypes. 
In vitro studies have shown that several distinct interme-
diate states can be delineated, which differ with regard 
to the expression of differentiation markers [148–150]. 
These distinct E/M states are characterised by particular 

chromatin landscapes and are epigenetically stabilized 
to a certain degree. However, cells in the early and late 
hybrid states were the most plastic and retained the capa-
bility to equally produce epithelial and mesenchymal 
subpopulations [151–153].

The in  vivo existence of E/M cells was demonstrated 
by immunohistochemistry or by the analyses of gene 
expression signatures. Significantly, enrichment for 
hybrid EMT RNA signature has been associated with 
poor survival and resistance to therapy in several tumor 
types (reviewed in: [151]), including breast cancer [145]. 
Whereas quiescent  CD44high/CD24− cells with EMT sig-
natures were detected primarily at the invasive fronts 
of primary mammary tumours, proliferative epithelial 
cells expressed aldehyde dehydrogenase  (ALDH+) and 
were located within central tumour areas. A pool of the 
cells with intermediate E/M features,  CD44high/CD24−/
ALDH+ cells, was also detected in tumour tissue and 
corresponded to less than 0.1% of cells within a tumour 
[145]. In later studies, the isolation of E/M cells from 
mammary carcinoma cell cultures was carried out using 
a combination of CD104 and CD44 antigens. These cells 
stably resided in the hybrid state, displayed CSC features, 
and expressed high levels of SNAIL, SLUG, and TWIST1. 
The canonical WNT signalling pathway drove this highly 
aggressive phenotype. Ectopic expression of ZEB1 in E/M 
cells induced a complete EMT, inhibited tumourigenicity, 
and triggered a switch from canonical to non-canonical 
WNT signalling [154]. These results show that although 
individual EMT-TFs are capable of inducing complete 
EMT in vitro, their functions in tumourigenesis are dif-
ferent in vivo. Indeed, ZEB1, but not TWIST1 or SNAIL, 
is a driver of tumour progression in the mouse model of 
pancreatic ductal adenocarcinoma  KrasG12D;P53R172H/+ 
[155, 156]. A different series of cell surface markers 
(EpCAM, VCAM, ITGAV, and ITGB3) along with single-
cell RNA sequencing (sc-RNAseq) was applied to identify 
E/M states in squamous cell carcinoma of the skin [152].

Application of unbiased single-cell RNA sequencing 
approach led to the identification of intermediate states 
in different cancer types, including glioblastoma, meta-
static breast cancer, pancreatic ductal adenocarcinoma, 
squamous cell carcinoma of the skin, head and neck, and 
cutaneous melanoma [151, 157–160].  In particular, an 
intermediate state in malignant melanoma exhibited an 
NCC transcriptional program, which overlapped with 
the expression programs specifying proliferative, invasive 
and CSC phenotypes. These cells driven by the nuclear 
receptor RXRG were present in the pool of persister cells 
tolerant towards BRAFV600E and MEK inhibitors [158].

E/M cells were present in CTC pools isolated from the 
blood samples of patients with various cancer types, and 
E/M CTC, rather than fully differentiated epithelial or 
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mesenchymal cells, are associated with short metastasis-
free and overall survival [151]. Epithelial cells expressing 
mesenchymal markers are often detected in clusters of 
CTC. These clusters form microemboli via association 
with non-malignant cells, including the platelets, which 
maintain mesenchymal features of CTC by releasing 
TGFβ [161]. Circulating microemboli have up to 50 times 
more metastatic potential than single CTCs [162]. These 
clusters are oligoclonal in their origin and do not contain 
intravascular CTC aggregates [163]. In breast and pan-
creatic cancer modes, the CTC clusters are composed of 
highly motile E/M and proliferative epithelial cells. They 
are capable of Plakoglobin- and E-cadherin-dependent 
collective migration and enter the circulation as groups 
while retaining proliferative potential [143, 164].

Thus, analyses of animal models and patient samples 
show that combining “Go” and “Grow” capabilities in 
E/M hybrid states facilitates tumorigenesis. Stimulat-
ing one capability at the expense of the other locks cells 
in E or M states (for instance, via manipulation with the 
expression levels of ZEB1) [154, 155] and reduces tumo-
rigenicity and metastasis.

E/M plasticity, exit from quiescence and metastasis
While most CTCs do not survive in circulation, a pro-
portion extravasate into target organs, form pools of dis-
seminated tumour cells (DTC), and survive therapy in a 
reversible dormant state. The presence of dormant can-
cer cells detectable in bone marrow reflects a condition 
termed the minimal residual disease that is a sensitive 
indicator of poor prognosis and a major clinical chal-
lenge. Understanding the mechanisms of the exit from 
dormancy is of tremendous importance also because the 
colonisation of secondary organs is the bottleneck in the 
metastatic process [165]. Three likely complementary 
mechanisms are implicated in maintaining single-cell 
or micrometastatic dormancy: angiogenic dormancy, 
immune-mediated dormancy, and cellular dormancy 
[166, 167]. Whereas the two first scenarios involve a bal-
ance between cell proliferation and death imposed by 
lack of nutrients or immune attacks, the third scenario 
suggests that DTC may enter deep quiescence. Cell cycle 
exit is associated with resistance to anti-proliferative 
drugs; quiescent DTCs evade immunosurveillance [168] 
and are insensitive to immunotherapies. Therefore this 
third type of dormancy can be particularly clinically rel-
evant and will be discussed below.

By combining a sophisticated lineage-tracing approach 
with the scRNA-seq, Simeonov and colleagues investi-
gated mechanisms of metastasis in PDAC and identified 
four E/M hybrid stages (H1-H4) in addition to the fully 
differentiated epithelial and mesenchymal cell pools 
[160]. In this  KrasG12D;P53R172H/+ -driven cancer model, 

proliferative gene expression signatures were observed in 
cells with the E and H3 differentiation states. Based on 
the expression of cell surface markers, EpCAM-negative 
squamous carcinoma cells were separated into six dis-
crete subpopulations of the E/M cells presenting differ-
ent degrees of mesenchymal differentiation [151, 152]. In 
agreement with the Go-or-Grow conception, the prolif-
erative capability gradually decreased while the invasive 
potential progressively increased along the epithelial-
mesenchymal spectrum. In the experimental metastasis 
assay, early E/M cells (i.e., E/M cells positioned closer to 
the epithelial end of the spectrum) exhibited the highest 
metastatic potential that significantly exceeded the meta-
static propensity of fully differentiated E or M cells [151]. 
Likewise, in the   Cre+/-PtenL/L;KrasG12D/+ mouse model 
of prostate cancer, E/M hybrid cells exhibited increased 
proliferative and decreased invasive potential compared 
to highly invasive mesenchymal cells [169].

Cells corresponding to the mesenchymal end of the 
E/M spectrum are highly invasive and, due to their non-
proliferative nature, apoptosis-resistant. Therefore, it 
has been accepted that these cells are the source of dor-
mant DTCs, and supposedly they represent metastatic 
seeds. The ability to differentiate along the mesenchy-
mal-epithelial axis leading to the exit from dormancy is 
the requirement for successful colonisation. This ability 
depends on the mutational landscape of tumour cells and 
is driven by microenvironmental cues.

DTCs reside in metastatic niches, specific loca-
tions in target organs, which provide anchorage and 
survival support [170]. There is an apparent analogy 
between metastatic niches occupied by DTCs pos-
sessing the CSC features and ASC niches, which are 
present in most normal tissues. The pre-existing ASC 
niches can attract metastatic tumour cells. For example, 
HSC niches in the bone marrow are targeted and occu-
pied by DTCs derived from metastatic prostate cancer 
[171, 172]. Apparently, the dormant state of HSC and 
DTCs is controlled via the same pathways initiated by 
niche-produced ligands belonging to the TGFβ family 
[172]. Additionally, growth arrest specific-6 (GAS6), 
a ligand secreted by osteoblasts in the bone marrow 
environment, contributes to the dormancy of pros-
tate cancer-derived DTCs and inhibits the prolifera-
tion of hematopoietic progenitors [172, 173]. GAS6 
and the cognate receptor AXL, a TAM (TYRO3, AXL, 
MER) RTK family member, play a major role in EMT, 
therapy resistance, and metastasis in different tumour 
types [174]. Shifting the balance in HSC niches towards 
quiescence and more mesenchymal end of the E/M 
spectrum aligns with multiple reports describing the 
role of GAS6/AXL signalling in EMT and drug resist-
ance in cancer [174, 175]. Interestingly, the analysis of 
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neural stem cells showed that AXL and MER were part 
of the 1000 gene signature that is downregulated in 
cells, which were released from quiescence and entered 
the cell cycle [176]. These observations indicate that 
TAM receptors maintain quiescence in different line-
ages, which is in line with the widespread role of these 
molecules in drug resistance in cancer. In breast and 
ovarian cancer, AXL-induced EMT programmes are 
mediated by SNAIL family members [63, 177]. Remark-
ably, SLUG  was shown to maintain quiescence also in 
HSC in bone marrow niches [178]. However, it remains 
unclear if, by analogy with EMT-inducing malignant 
signalling, SLUG is an effector of the GAS6/AXL path-
way in normal stem cells as well.

The newly discovered facets of ASC reveal new aspects 
of their similarity with DTCs. Quiescence of ASC does 
not represent a deep static condition of dormancy but 
is highly dynamic. Quiescent ASC may transit between 
different states, characterised by various depths of dor-
mancy [100]. For example, in addition to the canonical 
deep quiescence  (G0), muscle ASC can acquire another 
form of quiescence,  GAlert. Cells in the  GAlert phase 
require much less time than canonical  G0 cells to enter 
the cell cycle in injured muscle tissue.  G0/GAlert transition 
is regulated by the mTORC1 pathway during the repair 
of injured tissue [179, 180]. Likewise, the phenomenon of 
fluctuating depths of quiescence was reported in hemat-
opoietic ASC [181]. In contrast to  G0/GAlert  transitions, 
the balance between different phases of quiescence in 
hematopoietic ASC was independent of mTORC1 and 
regulated by the levels of CDK6. Apparently, Rb/E2F 
pathway regulates transitions within  G0, as well as the 
transition from the quiescence to  G1 [100, 182]. As the  G0 
phase is characterised by much higher levels of  p27KIP1 
than  G1 [183], this CDK inhibitor is likely implicated in 
 G0/G1 transition by regulating CDK4/6 activity. However, 
the detailed mechanism of this transition is not studied, 
definite  G0 markers are unknown, and this area warrants 
further investigations.

The plastic nature of quiescent ASC is reminiscent of 
tumour cells which have the potential to adopt various 
differentiation states along the E/M spectrum. This plastic 
feature of both cell types is predetermined by character-
istic epigenetic patterns. Trimethylated lysines 4 and 27 
of histone 3 (H3K4me3 and H3K27me3) mark promoters 
of actively transcribed and silenced genes, respectively. In 
some populations of ASC identified in muscle and neu-
ronal tissues, both repressive and activating marks are 
present in the same chromatin domains (so-called biva-
lent domains) [184, 185]. This organisation of the chro-
matin allows rapid activation or silencing of genes by 
removal of H3K27me3 or H3K4me3 marks, respectively, 
in response to the proliferation or differentiation-inducing 

stimuli. Remarkably, the same pattern of chromatin modi-
fications was associated with E/M plasticity [186, 187]. 
The similarity in the epigenetic landscapes between ASC 
and disseminated tumour cells is an indication that com-
mon signalling mechanisms govern the exit from quies-
cence in stem cell and metastatic niches. This assumption 
can be tested by analyzing similarities in the chromatin 
accessibility landscapes in ASC and cancer cells derived 
from the same tissue and undergoing  G0-GAlert-G1 and 
E-E/M-M transitions, respectively.

Concluding remarks and perspectives
Uncontrolled proliferation, enhanced invasiveness, and 
drug resistance of dormant cancer cells are critically 
important from a clinical perspective. In this review, we 
discussed the migration—proliferation dichotomy (“Go-
or-Grow” conception) in light of EMT/MET plasticity. 
EMT and MET programs have been implicated in balanc-
ing invasive and proliferating states and also in the acqui-
sition of stem cell traits in both homeostasis and cancer. In 
recent years, the identification of cells combining epithe-
lial and mesenchymal features led to the re-evaluation of 
a concept considering EMT and MET as binary switches 
between fully differentiated states. Cells adopting inter-
mediate states express both epithelial and mesenchymal 
markers. They were isolated from stem cell compartments 
of adult epithelial tissues, primary tumours, and popula-
tions of CTCs. Thus, EMT/MET plasticity is a character-
istic feature of both DTC and ASC.

ASC often reside in the dynamic  GAlert phase, which 
is important for accelerated regeneration of damaged 
tissues. It remains not studied whether DTC undergo a 
similar type of  G0-GAlert-G1 transitions in the process of 
colonisation and during cancer relapse after therapy fail-
ure. Given the established role of EMT triggers in regu-
lating ASC proliferation, it is reasonable to speculate that 
the molecular pathways controlling the transition across 
the E-M axis are also implicated in the dynamic shifts 
within the  G0 phase. Then the interpretation of the sig-
nals in the niches will involve coordinated changes in sig-
nalling networks controlling cell motility and cell cycle 
entry leading to the “Go-or-Grow” decision.

Cell plasticity is responsible for cellular adaptations to 
microenvironmental cues during the metastatic process 
and for generating drug-tolerant persister cells. The pres-
ence of bivalent domains in the chromatin of cancer cells 
is critical for determining their multipotency. Therefore, 
targeting chromatin bivalency can limit the cellular ability 
to transit across the E/M axis and to adopt characteristics 
of  GAlert states. There is a great hope that further research 
in cancer epigenetics and the development of tools for 
targeting bivalent chromatin will freeze cancer cells in the 
drug-susceptible state and prevent metastasis.
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