
REVIEW

Co-inhibition of TIGIT and PD-1/PD-L1 in Cancer Immunotherapy: Mechanisms and Clinical Trials

Xianjing Chu^{1†}, Wentao Tian^{1†}, Ziqi Wang¹, Jing Zhang¹ and Rongrong Zhou^{1,2,3*}

Abstract

Over the past decade, immune checkpoint inhibitors (ICIs) have emerged as a revolutionary cancer treatment modality, offering long-lasting responses and survival benefits for a substantial number of cancer patients. However, the response rates to ICIs vary significantly among individuals and cancer types, with a notable proportion of patients exhibiting resistance or showing no response. Therefore, dual ICI combination therapy has been proposed as a potential strategy to address these challenges. One of the targets is TIGIT, an inhibitory receptor associated with T-cell exhaustion. TIGIT has diverse immunosuppressive effects on the cancer immunity cycle, including the inhibition of natural killer cell effector function, suppression of dendritic cell maturation, promotion of macrophage polarization to the M2 phenotype, and differentiation of T cells to regulatory T cells. Furthermore, TIGIT is linked with PD-1 expression, and it can synergize with PD-1/PD-L1 blockade to enhance tumor rejection. Preclinical studies have demonstrated the potential benefits of co-inhibition of TIGIT and PD-1/PD-L1 in enhancing antitumor immunity and improving treatment outcomes in several cancer types. Several clinical trials are underway to evaluate the safety and efficacy of TIGIT and PD-1/PD-L1 co-inhibition in various cancer types, and the results are awaited. This review provides an overview of the mechanisms of TIGIT and PD-1/PD-L1 co-inhibition in anti-tumor treatment, summarizes the latest clinical trials investigating this combination therapy, and discusses its prospects. Overall, co-inhibition of TIGIT and PD-1/PD-L1 represents a promising therapeutic approach for cancer treatment that has the potential to improve the outcomes of cancer patients treated with ICIs.

Keywords Immune checkpoint inhibitors, TIGIT, PD-1, PD-L1, Combined therapy

¹Xianjing Chu and Wentao Tian contributed equally to this work. Correspondence: zhourr@csu.edu.cn (R.Z.), zj782@csu.edu.cn (J.Z.)

*Correspondence:

Rongrong Zhou

zhourr@csu.edu.cn

¹Department of Oncology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Kaifu District, Changsha 410008, China

²Present address: Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha 410008, China

³National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, P.R.

Hospital, Central South University, Changsha 410008, Hunan Province, F China

Introduction

Immune checkpoint inhibitors (ICIs) have significantly advanced cancer treatment by blocking signals that allow cancer cells to evade immune detection, providing durable responses and long-term survival benefits for many cancer patients since the first approval of ipilimumab in 2010 [1]. PD-1/PD-L1 blockades are the most extensively studied ICIs therapy to date, and it has shown that they offered notable survival benefits for metastatic non-small cell lung cancer (NSCLC), improving the median overall survival to 21.9 months [2]. However, response rates can vary across different cancers and individuals, and a

© The Author(s) 2023. **Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

significant proportion of patients hardly respond or eventually develop resistance during treatment. For instance, only 20.06% of lung cancer patients are expected to benefit from ICIs, with less than 1.5% of patients experiencing complete responses and around 15% showing partial responses [3]. This is partly due to the complex interplay between cancer cells and the immune system [4-6]. For example, some cancer cells can downregulate molecules that promote T-cell activation, leading to resistance to ICIs [7, 8]. Additionally, factors such as regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSCs), and immunosuppressive cytokines within the tumor microenvironment can inhibit anti-tumor immunity, leading to a predominantly immunosuppressive microenvironment [8–10]. Moreover, no biomarkers currently precisely predict which patients will benefit from ICIs [11–13].

To address these limitations, researchers are exploring combination therapies that target multiple checkpoint molecules or combine ICIs with other treatments such as chemotherapy, radiation therapy, or targeted therapy [14]. One such strategy is dual ICI combination therapy, which targets two inhibitory receptors simultaneously to enhance the anti-tumor immune response. Moreover, dual ICI therapy may provide an opportunity to expand the proportion of patients who respond to immunotherapy and overcome resistance to PD-1/PD-L1 blockades [15, 16]. T cell immunoreceptor with Ig and immunoreceptor tyrosine-based inhibitory motif (ITIM) domains (TIGIT) has emerged as a promising target for co-inhibition with PD-1/PD-L1 in cancer immunotherapy [10]. It has been proven that TIGIT is associated with T-cell exhaustion and immunosuppressive effects across all stages of the cancer immunity cycle [17-21]. Moreover, co-inhibition of TIGIT and PD-1/PD-L1 enhances antitumor immunity and improves treatment outcomes in various cancers in preclinical and clinical studies [22-24].

This review provides a comprehensive summary of the roles of TIGIT in cancer immunity, the mechanisms of co-inhibition of TIGIT and PD-1/PD-L1, and the current clinical trials of this combination therapy. Furthermore, we highlight the current challenges of the novel therapeutic strategies and discuss future efforts to make a breakthrough in anti-tumor treatment.

The central role of TIGIT in the cancer immunotherapy

TIGIT, initially identified in 2009, belongs to the type 1 poliovirus receptor (PVR) and is a member of the nectin family [21, 25]. Typically, TIGIT acts as a co-inhibitory receptor, widely expressed on CD4⁺ T cells, CD8⁺ T cells, and Tregs [1]. Its cytoplasmic region contains an immunoglobulin tyrosine tail (ITT)-like motif and a standard ITIM. The ligands of TIGIT comprise CD155 (PVR or Necl-5), CD113 (PVRL3 or Nectin-3), CD112 (PVRL2 or

Nectin-2), and PVRL4 (Nectin-4) [24, 25]. Functionally, TIGIT has been demonstrated to be crucial in inducing immunosuppressive effects in cancer immunotherapy, like CTLA-4 and PD-1/PD-L1 [26–28].

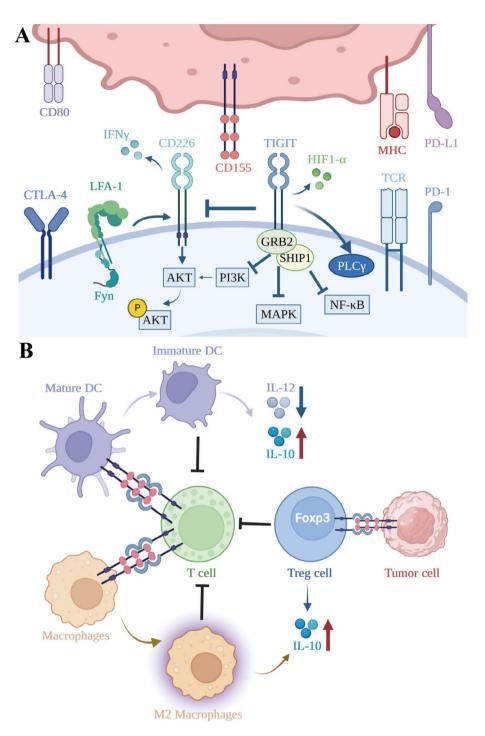
Direct inhibitory effects of TIGIT in T and NK cells

Natural killer (NK) cells are the main forces of anti-tumor innate immunity, while T cells are those of adaptive immunity, both of which are crucial components of anti-tumor immunity. Previous studies demonstrated that TIGIT was expressed on exhausted TOX^{high} TCF-1^{high} CD8⁺ T cell subsets in both mice and humans and was identified as a marker for T-cell exhaustion [29–31]. *Eomes*, a transcription factor with a key role in CD8⁺ T cell differentiation, by binding to the promoter of *TIGIT*, upregulate its expression [32]. Also, TIGIT⁺ NK cells display weaker anti-tumor cytotoxicity than TIGIT⁻ NK cells [33].

One of the mechanisms by which TIGIT lessens the toxicity of T/NK cells is its intracellular signaling domains. Upon CD155 binding to TIGIT, the ITT-like motif is phosphorylated and binds to Grb2, bringing about the recruitment of SH domain-containing inositol-5-phosphatase (SHIP1) and impeding multiple signaling pathways [28]. SHIP1 is a crucial inhibitor of the phosphatidylinositol 3-kinase (PI3K) signaling, as it hydrolyzes PI(3,4,5)P3, thereby inhibiting kinases containing pleckstrin homology (PH) structural domains, such as Akt, Btk, and phospholipase C-y [34]. Moreover, premature binding of TIGIT to CD155 hinders phosphorylation of Erk and MEK kinases, which are initiators of the MAPK signaling cascade. Blocking the TIGIT signaling rescues Erk phosphorylation following TIGIT/ CD155 binding, and silencing SHIP1 reverses TIGIT/ CD155-mediated inhibition, thus restoring cytotoxicity of NK cells [35]. The nuclear factor- κ B (NF- κ B) pathway also plays a crucial role in the TIGIT/CD155-mediated immunosuppression, as TIGIT inhibition increased p-Erk, p-I $\kappa B\alpha,$ and p-NF- $\kappa BP65$ levels, and decreased SHIP1 expression in activated T-cell culture [34]. Animal models also suggest that TIGIT, upon binding to and activation by CD155, suppresses PI3K, MAPK, and NF-KB pathways by recruiting SHIP1, resulting in depletion of T and NK cells and less production of interferon-y [34]. Significantly, either phosphorylation of ITIM (Y227) or ITT-like motif (Y233) triggers TIGIT inhibitory signaling in mice. However, TIGIT/CD155 binding initiates the primary inhibitory signal through the ITT-like motif, and the ITIM motif mediates the following inhibitory signaling in human cell lines [21, 34].

The principal immunosuppressive mechanism of TIGIT is competing with CD226 to regulate T and NK cell functions, which is reminiscent of the B7-CD28-CTLA-4 pathway. On the one hand, TIGIT exerts its

immunosuppressive effect by binding to CD155 and CD112 with a much higher affinity than that of CD226, thereby competitively inhibiting CD226 if both molecules are present on the same cell [21]. On the other hand, TIGIT directly interferes with the co-stimulatory function of CD226 by impeding its homodimerization [28]. By modulating CD226 activity, TIGIT can affect various T cell functions.CD226, also known as DNAX accessory molecule-1 (DNAM-1), was first identified by Shibuya as having a role in enhancing the cytotoxic function of T cells and NK cells [40]. CD226 mainly binds to and is activated by two cell surface ligands, CD155 and CD112, which are, like PD-1 ligands, typically over-expressed in tumors (Fig. 1A). Intracellularly, activated CD226 aggregates lymphocyte function-associated antigen 1 (LFA-1) to conformationally change intracellular adhesion molecule 1 (ICAM-1), which recruits Fyn and then drives activation of the Akt signaling pathway to promote NK/T cell-mediated tumor cytotoxicity [27, 41, 42]. In addition, CD226, by binding to CD155, triggers phosphorylation of FOXO1 [43], a transcription factor that negatively regulates homing and effector functions of NK cells [44]. Phosphorylated FOXO1 translocates from the nucleus to the cytoplasm for degradation by ubiquitination, which enables normal cell killing of NK cells [43]. Similarly, CD226-mediated inactivation of FOXO1 promotes T-cell survival, homing, proliferation, and differentiation [45]. Under the condition of IL-12-induced FOXO1 inactivation, CD8⁺ T cells acquire effector functions (KLRG1^{hi} phenotype) [44]. In addition, FOXO1 directly promotes Eomes transcription and differentiation into memory phenotypes of CD8⁺ T cells [45]. Moreover, CD226 assumes the role of an adhesion molecule that orchestrates the trans-endothelial migration of effector memory cells, enabling them to egress from circulation and infiltrate inflammatory foci, such as tumors [46]. CD226 also exerts a critical function in various stages of T cell activation by creating immune synapses with antigenpresenting cells (APCs) through interactions with CD155 [42]. Based on the data from CD226-deficient mice, Gilfillan concluded that CD226 plays an indispensable role in triggering the activation of CD8⁺ T cells in peripheral tissues, whereas it augments the ability of NK cells to execute cytotoxicity against tumor cells [47, 48]. Thus, by competing with CD226, TIGIT can inhibit the Akt signaling pathway and FOXO1 phosphorylation, suppress T/NK cell activation, migration, reduce cell toxicity, and promote T/NK cell exhaustion.


Lastly, overlay of genome-wide microarray data with T cell activation pathways showed that numerous molecules involved in T cell receptor (TCR) and CD28 signaling were significantly downregulated upon TIGIT binding [36]. The downregulation of TCR α chain, CD3 ε , and PLC γ was confirmed via RT-PCR, suggesting that TIGIT induces downregulation of molecules that comprise the TCR complex and interferes with upstream of the TCR-induced signaling cascade [36]. While, other co-inhibitory molecules such as PD-1, interfere with processes further downstream in the signaling cascade [37]. Furthermore, TIGIT appears to have the capability of altering T cell metabolism via the blockade of glycolysis [38] and work in conjunction with hypoxia-inducible factor 1- α (HIF1- α) to increase tumor cell invasion, colony formation, and angiogenesis [39].

Indirect inhibitory effects of TIGIT in tumor microenvironment

Dendritic cells (DCs) are sentinel antigen-presenting cells (APCs) that are responsible for capturing antigens, migrating, producing cytokines, and activating T cells and NK cells (Fig. 1B). However, it is only mature DCs that can activate T cells, while immature DCs can lead to unresponsiveness and/or tolerance to immunotherapy in T cells [49]. TIGIT could induce DCs to acquire an immature tolerogenic phenotype by triggering CD155, resulting in elevated IL-10 secretion and concomitant reduction in IL-12 production [25]. Since it prevents APCs from upregulating molecules involved in antigen presentation, IL-10 is critical for suppressing immune responses, thereby suppressing T cell proliferation and elaboration of immunostimulatory cytokines such as IFN-γ directly [50, 51].

Moreover, TIGIT is constitutively expressed on most Tregs and plays a vital role in their functioning and maintenance. First, TIGIT could promote naïve T cells to differentiate into Tregs more frequently and upregulate Foxp3 expression, which in turn confers superior suppressive function to Tregs [52]. Second, TIGIT⁺ Treg cells exhibit enhanced demethylation compared to their TIGIT⁻ Treg cell counterparts, resulting in higher lineage stability [53]. Third, TIGIT⁺ Treg cells express a highly immunosuppressive gene profile that restricts PI3K-AKT signaling, thereby inhibiting the acquisition of T helper 1 (Th1) and Th17 cell phenotypes [52]. In melanoma patients, Tregs that exhibit elevated levels of TIGIT expression are found to be enriched within tumor microenvironments and display a sustained immunosuppressive phenotype [54]. In a B16F10 melanoma model, transfer of TIGIT-deficient Tregs along with wild-type CD4⁺ and CD8⁺ T effector cells into tumor-bearing Rag mice has also been shown to markedly curtail tumor growth [55]. Hence, the therapeutic elimination of Tregs by means of anti-TIGIT antibody-dependent cytotoxicity may confer a considerable anti-tumor effect.

In addition to its effects on DCs and Tregs, activation of the TIGIT/CD155 pathway in macrophages could also increase IL-10 transcription and decrease IFN- γ through c-Maf nuclear translocation, while helping macrophages

Fig. 1 (**A**) Direct inhibitory effects of TIGIT. Firstly, TIGIT can directly inhibit the cytotoxic activity of T cells and NK cells by competitively antagonizing the stimulatory action of CD226. CD226 activation occurs upon binding with CD155 or CD112, which activates LFA-1, alters the conformation of ICAM-1, recruits Fyn, and drives the activation of the Akt signaling pathway, leading to the release of IFN-γ. Secondly, TIGIT can bind to CD155, and its ITT-like motif interacts with Grb2, which recruits SHIP1, thereby inhibiting PI3K, MAPK, and NF-κB signaling pathways. In addition, TIGIT also participates in the downregulation of the TCR complex itself and the central regulatory factors of TCR signaling cascades, such as PLCγ. TIGIT can also alter T cell metabolism by inhibiting glycolysis and synergizing with HIF1-α to enhance tumor cell invasion, colony formation, and angiogenesis. (**B**) Indirect inhibitory effects of TIGIT. Firstly, TIGIT exerts indirect inhibitory effects by triggering CD155 to induce DC acquisition of an immature tolerogenic phenotype, increasing IL-10 secretion, and decreasing IL-12 production. TIGIT can promote naive T cell differentiation into Treg cells more frequently and upregulate Foxp3 expression, which confers superior suppressive function to Treg cells. Finally, activation of the TIGIT/CD155 pathway can promote IL-10 transcription and induce macrophage polarization toward an anti-inflammatory M2 cytokine profile

switch to anti-inflammatory M2 cytokine profiles [56]. In contradistinction, the introduction of TIGIT inhibitors could reprogram TIGIT⁺ M2 macrophages to the M1 phenotype, leading to increased CD47-mediated phagocytosis and ultimately benefiting the prognosis of patients with acute myeloid leukemia (AML) [57].

Moreover, MDSCs in the tumor microenvironment also play a critical role in curtailing anti-tumor immune responses. These cells exhibit heightened levels of CD155 and PD-L1, implying that their suppressive effects may be amplified via reverse signaling triggered by the TIGIT/ CD155 and PD-1/PD-L1 pathways. Remarkably, anti-PD-L1 treatment augmented CD155 expression in MDSCs, whereas anti-TIGIT treatment upregulated PD-L1 expression [58].

TIGIT in solid tumors and hematological malignancies

TIGIT is upregulated by T cells in a wide range of human solid tumors, such as lung cancer, urologic cancer, and breast cancer compared with normal tissue [28]. Taking into account the immunosuppressive properties of TIGIT, high-level TIGIT expression generally indicates poor prognosis in solid tumors. A meta-analysis showed that high expression of TIGIT indicated worse overall survival (OS) [hazard ratio (HR) 1.73; 95% confidence interval (95% CI) 1.50-1.99], progression-free survival (PFS) (HR 1.53, 95% CI 1.25-1.88), recurrencefree survival (HR 2.40, 95% CI 1.97-2.93), and diseasefree survival (HR 6.57, 95% CI 0.73-59.16) in East Asian patients with solid tumors [59]. A study revealed high expression of CD155 in murine and human pancreatic adenocarcinoma cells and showed that the activation of the TIGIT/CD155 axis was critical in immune evasion [60]. Another study also showed that human gastric cancer cells interfered with CD8⁺ T-cell metabolism via the TIGIT/CD155 axis, impairing T-cell functionalities [61]. In patients with colorectal cancer, high TIGIT expression correlated with T cell exhaustion, advanced disease, early recurrence, and poor survival [62]. Contrarily, the study by Zhang et al. revealed that TIGIT inhibition prevented NK cell exhaustion and inhibited tumor growth in several tumor-bearing models, including those of colon cancer, breast cancer, and fibrosarcoma [63].

The expression of TIGIT is also typically upregulated and indicates poor clinical outcomes in several hematologic malignancies. First, in patients with chronic lymphocytic leukemia (CLL), AML, or adult acute lymphoblastic leukemia (ALL), TIGIT is commonly upregulated on CD4⁺ T cells, CD8⁺ T cells, Foxp3+ $\gamma\delta$ T cells, or NK cells compared with healthy individuals [64–70]. Notably, TIGIT leads to CLL anergy by downregulating B cell receptor signaling [71]. It correlates with T cell exhaustion, NK cell dysfunction, unfavorable responses after chemotherapy, and leukemia relapse after allogeneic hematopoietic stem cell transplantation in AML patients [66, 67, 69, 70]. Similarly, high TIGIT expression results in lower secretion levels of IL-2, TNF α , and IFN- γ from T cells in ALL patients [64]. On the contrary, silencing TIGIT can restore normal functions of CD8⁺ T cells to release cytokines, such as TNFa, IFN-y, IL-2, and IL-12, and decrease the susceptibility to apoptosis [64, 67]. Also, anti-TIGIT blockades can enhance NK cells' cvtotoxicity towards AML cells and repolarize M2 leukemiaassociated macrophages into M1 phenotype and restore their phagocytic capabilities [57, 69]. Second, TIGIT also plays a critical role in patients with lymphoma. In a study, among TIGIT, lymphocyte-activation gene 3 protein (LAG-3), and CD96, only TIGIT was significantly increased after CAR-T cell therapy relapse in patients with mantle cell lymphoma (MCL) or other non-Hodgkin's lymphomas, suggesting a central role of TIGIT in inhibiting normal T cell function in terms of MCL [72, 73]. Similarly, TIGIT expression was significantly higher in T cells from follicular lymphoma (FL) patients compared to healthy controls [74], and it correlated with dysfunctional TCR signaling and disease progression which can be restored by locking TIGIT [74, 75]. Third, TIGIT also has an impact on multiple myeloma (MM). TIGIT is upregulated on NK cells from MM patients and CD8⁺ T cells from mice or humans, playing a vital role in their exhaustion [76, 77]. Moreover, anti-TIGIT inhibitors could prevent T cell exhaustion [77], reduce tumor cell growth rate, prolong survival, and prevent myeloma escape after stem cell transplantation in mice with MM [78].

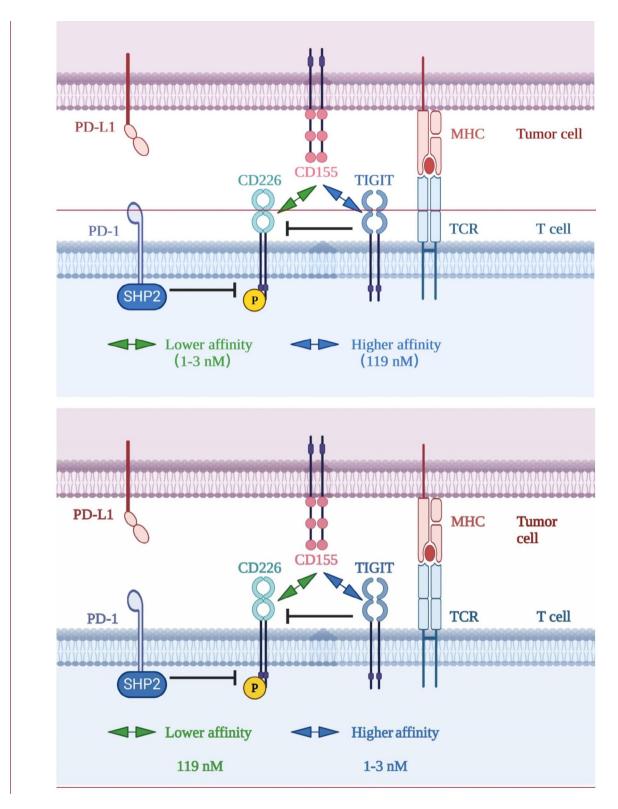
Synergy of TIGIT blockades with PD-1/PD-L1 blockades

Limitations of ICI monotherapy

PD-1, also known as CD279, is a transmembrane receptor expressed on activated immune cells, including T cells, NK cells, B cells, macrophages, DCs, and monocytes [79, 80]. Its cytoplasmic domains are involved in the formation of ITIMs and immunoreceptor tyrosinebased switch motifs (ITSMs), respectively [79, 81]. PD-1 interacts with two ligands, PD-L1 (also called B7-H1 or CD274) [82] and PD-L2 (also known as B7-H2 or CD273) [83]. PD-L1 is expressed on T cells, B cells, DCs, macrophages, and cancer cells, with high levels on cancer cell membranes [84]. The binding of cancer cell PD-L1 to PD-1 on T cells triggers negative signaling, inducing T cell apoptosis and impairing immunocompetence, thereby allowing cancer cells to evade immune surveillance and destruction [85]. Blocking the binding of PD-L1 to PD-1, which is the theoretical mechanism of PD-1/PD-L1 inhibitors, eliminates this negative feedback and restores the function of T cells, facilitating cancer cell killing [86].

Antibodies against the PD-1/PD-L1 pathway have been used in the treatment of several types of cancer, such as melanoma [87], lung cancer [88], lymphoma [89], and liver cancer [90]. However, despite the success in a small number of patients who experienced anti-cancer immunity recovery and long-term remission, the response rate of PD-1/PD-L1 blockades is low in general [91, 92]. This treatment is also limited by the lack of effective biomarkers [93], immune-related toxicity [94], and innate and acquired drug resistance [95, 96]. Numerous mechanisms contribute to resistance to anti-PD-1/PD-L1 therapy, such as T cell exclusion and exhaustion, local immune dysfunction, loss of neoantigens or PD-L1, signaling defects, as well as non-immune factors including metabolism, epigenetics, and microbiota [97]. Upregulations of coinhibitory molecules, such as TIGIT, LAG-3, and V domain immunoglobulin suppressor of T cell activation (VISTA), account for a significant factor for T cell dysfunction and subsequent resistance to anti-PD-1/ PD-L1 therapies for a number of patients [97]. TIGIT inhibition not only enhances CD8 T-cell cytotoxicity but also boosts NK cell anti-tumor responses. Consequently, blocking TIGIT is promising immunotherapy. However, Vibostolimab and Tiragolumab monotherapies show null objective response rates (ORR) [98, 99]. Fortunately, Tiragolumab combined with Atezolizumab achieves 37% ORR overall and 66% in PD-L1 TPS>50% subset, surpassing Atezolizumab monotherapy (21% and 24% response rates, respectively) [24].

Based on these findings, the use of dual checkpoint inhibition could potentially enhance the restoration of anti-tumor immunity and lead to improved efficacy of immunotherapy for a wider range of cancer patients.


Molecular basis of TIGIT and PD-1/PD-L1 co-inhibition

TIGIT is typically co-expressed with PD-1 on a wide variety of T cells. Moreover, PD-1 blockade could increase TIGIT expression on CD8⁺ T cells by 1.5 folds [22]. Using a gene signature-based approach, Johnston et al. investigated the gene expression data in lung cancer and found a strong correlation between TIGIT expression and the infiltration of CD8⁺ T cells, as well as the expression of PD-1 on these cells [28]. Among the inhibitor receptors that are co-expressed with TIGIT, PD-1 is preferentially co-expressed [100]. And TIGIT is also the most frequent co-expressed immune checkpoint receptor on PD-1⁺ CD8⁺ T cells [101]. Furthermore, the co-expression of TIGIT and PD-1 manifested immuno-suppressive phenotypes of exhausted T cells or Tregs [22]. Based on these observations, the monitoring of co-expression of TIGIT and PD-1 was proposed as a predictive biomarker for the clinical efficacy of ICIs in various cancers [102, 103].

Banta's study demonstrated that CD226 expression is necessary for the effectiveness of PD-(L)1 or TIGIT co-blockades [23]. Firstly, PD-1 and TIGIT can independently inhibit CD226 functionality. The mechanistic investigations further revealed that TIGIT inhibited CD226 by competitive binding to the shared ligands through its extracellular domain, while the intracellular domain of PD-1, following activation of PD-1, recruits Shp2 to dephosphorylate CD226 (Fig. 2) [23, 104]. Secondly, the study revealed that anti-PD-1 treatment appears to be more efficient than anti-TIGIT therapy in yielding CD226 activation. The ligand competition effect is less apparent when the ligands are overexpressed. Specifically, if CD155, a ligand of both TIGIT and CD226, is overexpressed, CD226 would also become activated extracellularly. However, the intracellular activation of CD226 is dependent on Shp2 without the involvement of CD155. Thirdly, when both PD-1 and TIGIT are coexpressed, far less phosphorylated CD226 is detected than when either is expressed alone. In other words, the presence of TIGIT prevents a stand-alone PD-1/PD-L1 inhibitor from fully activating CD226, demonstrating that only combining anti-TIGIT with PD-1/PD-L1 blockade may fully activate CD226 [23].

Further investigations suggest that dual blockade of TIGIT and PD-1 has the potential to serve as an effective anticancer therapy. Thibaudin et al. assessed the potential of combining atezolizumab (anti-PD-L1) and tiragolumab (anti-TIGIT) to reinvigorate the immune response of tumor-infiltrating lymphocytes in microsatellite-stable (MSS) colorectal cancer [106]. While atezolizumab alone only reinvigorates T cells in microsatellite-unstable tumors, the combined use of atezolizumab and tiragolumab can reinvigorate T cells in 46% of MSS colorectal cancer samples [106]. Hung's study, using a mouse model with intracranial GL261-luc tumors, showed a significant improvement in survival rate using dual therapy with anti-PD-1 and anti-TIGIT compared with control and single-agent groups [107]. Hansen evaluated the combined use of COM902, an anti-TIGIT antibody, and a PD-L1 inhibitor in CT26 colon cancer and renca renal cancer models and found that the combination therapy significantly improved overall survival compared to PD-L1 inhibitor monotherapy [108]. Besides, dual blockade of the TIGIT and PD-1/PD-L1 pathways has yielded favorable prognoses in various animal models, including the SGC7901 [61], MC38-CEA, TC1 [109], pancreatic cancer [105], and cervical cancer models [110].

In addition to solid tumors, similar investigations have been conducted on hematological malignancies [111]. Wang et al. conducted a study on patients with AML and found increased PD-1 and TIGIT expression as well as decreased CD226 expression in peripheral blood CD8⁺ T cells compared with those of healthy individuals, and these cells were crucial biomarkers of poor

Fig. 2 Mechanism of co-inhibition by TIGIT and PD-1. The TIGIT/CD226 pathway and the PD-1/PD-L1 pathway have an intersecting crossroad. On the one hand, upon activation by PD-L1, the intracellular domain of PD-1 recruits Shp2 to dephosphorylate CD226, inhibiting the immune activation function of CD226. On the other hand, TIGIT has a higher affinity (dissociation constant 1–3 nM) to CD155 than that of CD226 (dissociation constant 119 nM) [25], thus competitively antagonizes and blocks CD226 homodimerization through its extracellular domain, inhibiting the immune activation function of CD226.

clinical prognosis [112]. Furthermore, high PD-1 and TIGIT expression are closely associated with late leukemia relapse after CAR-T therapy [113]. Zhang's research revealed that a single TIGIT inhibitor upregulated only IFN- γ and TNF- α , but the combination of anti-TIGIT and anti-PD-1 inhibitors significantly upregulated IL-2, IFN- γ , and TNF- α in CD4⁺ or CD8⁺ T cells, which could enhance anti-leukemia immune response [64]. Among four different checkpoint combinations, PD-1/TIM-3, PD-1/LAG-3, PD-1/CTLA-4, and PD-1/TIGIT, Lee et al. discovered that CAR-T cells with downregulated PD-1 and TIGIT displayed strong anti-tumor activity and significantly improved the prognosis of diffuse large B-cell lymphoma patients [114]. Functional and phenotypic analysis showed that downregulation of PD-1 enhanced short-term effector function, while downregulation of TIGIT mainly led to a less exhausted cell state [113]. In conclusion, these studies support the co-inhibition of TIGIT and PD-1/PD-L1 in treating hematological malignancies.

Clinical studies on TIGIT and PD-1/PD-L1 co-inhibition

Currently, a variety of novel drugs or combination strategies targeting the co-inhibition of TIGIT and PD-1/ PD-L1 are under evaluation in clinical trials. A summary of these clinical trials registered on clinicaltrials. gov is provided in Table 1. Terminated or withdrawn clinical trials resulting from various factors are excluded from consideration. Generally, there are three types of these treatments in Table 2: (1) simultaneous administrations of anti-TIGIT and anti-PD-1/PD-L1 agents (for example, tiragolumab plus atezolizumab); (2) coformulation of anti-TIGIT and anti-PD-1/PD-L1 agents (e.g., MK-7684 A, which is a coformulation of pembrolizumab and vibostolimab); (3) bispecific antibodies binding both TIGIT and PD-1/PD-L1 (such as IBI321). The evaluations are taken on a wide range of solid tumors and hematological malignancies at various lines and distinct situations, such as neoadjuvant, adjuvant, and palliative treatments (Table 1). Some of the studies aim further to assess the combination of anti-TIGIT and anti-PD-1/PD-L1 treatments with other therapies, including chemotherapy, radiation therapy, concurrent chemoradiotherapy, and targeted therapies.

Although clinical trials on the efficacy and safety of this combination are being conducted on a large scale, a few results are currently available. A phase I study assessed the safety and efficacy of vibostolimab, an anti-TIGIT antibody, alone or combined with pembrolizumab for advanced solid tumors (part A) or NSCLC specifically (part B) [98]. No dose-limiting toxicities occurred at a maximum of 700 mg vibostolimab alone or combined with 200 mg pembrolizumab in 21-day cycles. Treatment-related adverse events (TRAEs) occurred in 56% of patients undergoing the monotherapy and 62% of patients taking the combination therapy in part A, and 56% and 70% of patients with anti-PD-1/PD-L1-refractory NSCLC in part B. Common TRAEs were pruritus, fatigue, rash, and hypoalbuminemia. In terms of efficacy, the ORRs were respectively 0% and 7% in the monotherapy group and combination therapy group in part A, and 26% in anti-PD-1/PD-L1-naïve patients receiving the combination therapy in part B. Another phase I trial evaluated the safety and tolerability of the anti-TIGIT antibody etigilimab alone (phase Ia) or in combination with nivolumab (phase Ib) for locally advanced or metastatic solid tumors [115]. The maximum tolerated dose (MTD) was not reached in both settings (20.0 mg/kg etigilimab or 20.0 mg/kg etigilimab plus 240 mg nivolumab given in 14-day cycles). Among 23 patients who received etigilimab alone, 16 (70%) had TRAEs and 4 (17%) had TRAEs of grade \geq 3, while 7 (70%) had TRAEs and 2 (20%) had TRAEs of grade≥3 in 10 patients receiving etigilimab plus nivolumab. Rash and pruritus were two of the most frequently observed immune-related AEs in both groups. As for the efficacy, 1 patient had a partial response and 1 patient had an approximately 8-month stable disease in the combination group, while no patient had a partial or complete response in the etigilimab alone setting. Cheng et al. reported that IBI939 plus sintilimab had a manageable safety profile and could improve PFS of patients with metastatic NSCLC and PD-L1 expression≥50% compared with sintilimab alone (median, not reached vs. 6.0 months) [116]. Besides, the phase I AdvanTIG-105 trial demonstrated good tolerance and preliminary antitumor activity in patients with ociperlimab combined tislelizumab group [117, 118]. The ORR of patients in the ociperlimab combined tislelizumab group was 57.5% and in the ociperlimab combined tislelizumab plus pemetrexed group was 54.8%. Patients with higher PD-L1 expression ($\geq 25\%$) had a higher ORR. In total, 77 patients experienced≥1 treatment-TRAEs and 53.6% of them were immune-mediated adverse events. Moreover, 41 patients had≥3 TRAEs and serious TRAEs occurred in 14 patients. Further, in phase I/II KEYMAKER-U02 sub-study 2 A, tri-combination of pembrolizumab plus quavonlimab (an anti-CTLA-4 agent) plus vibostolimab showed an acceptable safety profile as well [119]. Phase Ib/II basket research (ACTIVATE) is investigating the impact of the combination approach on biomarkers as an exploratory objective. There was a decrease in TIGIT⁺ Tregs overall and a rise in the CD8/Treg ratio. NK cells, PD-1⁺ T cells, proliferating CD4 and CD8 effector memory populations, as well as NK cells, were also seen to be on the rise. Moreover, it was observed that IL-2 and IFN-y production had increased. Additionally, 1 month after therapy, some patients' ctDNA levels decreased

registered on clinicaltrials.gov
ě,
D-1/PD-L1 n
\geq
Δ_
f TIGIT and
TIGIT
Ë
of,
Clinical trials on the bi-inhibitior
e
) t
s or
tria
 Clinical
-
Ð
ble 1

٩	NCT number		Sta- tus	Can- cer	Drug(s) of Intervention Arm(s)	Drug(s) of Control Arm(s)	Outcomes
	NCT04948697 2		Ac- tive, not re- cruit- ing	-bd	Ociperlimab plus Tislelizumab plus BAT1706	Tislelizumab plus BAT1 706	,
	NCT05724563 2		ى.	Ad-	Zimberelimab plus Domvanalimab	1	
	NCT04524871 1/2		J.	-bd-	Atezolizumab plus Bevacizumab plus Tiragolumab	Atezolizumab plus Bevacizumab Atezolizumab plus Bevacizumab plus Tocilizumab Atezolizumab plus Bevacizumab plus TPST-1120 RO7247669 plus Bevacizumab Atezolizumab plus Bevacizumab plus ADG126	
	NCT04911894		Com- plet- ed	-bA	IBI321	1	T
	NCT04911881	•	É.,	-bA	IBI321		ı
	NCT02913313 1/2		Ac- tive, not re- cruit- ing	-bd	BMS-986,207 plus nivolumab BMS-986,207 plus nivolumab plus ipilimumab BMS-986,207	1	,
	NCT02794571 2		. L	-bd	Atezolizumab plus Tiragolumab	1	ORR ^{4ual} : 46% (6/13) DCR ^{4ual} : 85% (11/13)
	NCT02964013		<u>ل</u>	-bd	Vibostolimab plus pembrolizumab Vibostolimab plus pembrolizumab plus chemotherapy MK-7684 A Vibostolimab plus chemotherapy Vibostolimab	1	ORR _{Jua} : 26% mPFS _{dua} : 8.4 months

Tabl	Table 1 (continued)		e to			5
0 2	NCI number		sta- tus	Can-	Urug(s) of Intervention Arm(s)	Drug(s) of Control Arm(s)
6	NCT04570839	1/2	Ac- tive, not re- cruit- ina	Ad-	COM701 plus BMS-986,207 plus Nivolumab	1
0	NCT03628677	-	Ac- tive, not re- ing	-bA	Domvanalimab plus Zimberelimab Domvanalimab	Υ,
1	NCT04457778	-	Ac- tive, not re- ing	-bA	M6223 plus Bintrafusp alfa M6223	
12	NCT04632992	0	Ac- tive, not cruit- ing	-bA	Atezolizumab plus Tiragolumab	Entrectinib Inavolisib Alectinib Ipatasertib Atezolizumab plus Investigator's Choice of Chemotherapy Trastuzumab plus Atezolizumab Pertuzumab plus Hyaluronidase-zzxf Pertuzumab plus Trastuzumab plus Hyaluronidase-zzxf Pertuzumab plus Trastuzumab plus Hyaluronidase-zzkf Pertuzumab plus Trastuzumab plus Hyaluronidase-tzkf Pertuzumab plus Trastuzumab plus Hyaluronidase-tzkf Pertuzumab plus Atezolizumab Trastuzumab Emtansine plus Atezolizumab Ipatasertib plus Atezolizumab Ipatasertib plus Paclitaxel Pralsetinib
<u>0</u>	NCT03260322	,	Com- plet- ed	-bA	ASP8374 plus Pembrolizumab ASP8374	
4	NCT04353830	—	Com- plet- ed	-bA	IBI939 plus Sintilimab IBI939	
15	NCT04335253	-	Com- plet- ed	-bA -	EOS-448	

1

ī

ORR_{dual}: 20% (4/20) DCR_{dual}: 45% (9/20)

Outcomes

ı.

. .

Tab	Table 1 (continued)						
No	NCT number		Sta- tus	Can- cer	Drug(s) of Intervention Arm(s)	Drug(s) of Control Arm(s)	Outcomes
16	NCT03945253	-	Com- plet- ed	-bA	ASP8374		1
17	NCT05172856		Not yet re- cruit- ind	-bA	IBI321		ı
8	NCT05483400	7	Not yet re- cruit-	-bA	Tiragolumab plus Atezolizumab		r
6	NCT05259319	-	Not yet re- cruit- ina	-bA	Atezolizumab plus Tiragolumab plus SBRT		r.
20	NCT05537051	. 	Not yet re- cruit- ina	Ad-	PM1021 plus PM8001 PM1021		,
21	NCT05715281	7	Not yet re- cruit-	Ad-	Atezolizumab plus Tiragolumab	Τ.	ı
22	NCT05661578	2	Re- cruit- ing	-bA	Tiragolumab plus Atezolizumab		
23	NCT05286801	1/2	Re- cruit- ing	-bA	Atezolizumab plus Tiragolumab		
24	NCT03977467	2	Re- cruit- ing	-bA	Atezolizumab plus Tiragolumab	Atezolizumab plus chemotherapy	I
25	NCT04047862	-	Re- cruit- ing	-bA	Ociperlimab plus Tislelizumab Ociperlimab plus Tislelizumab plus chemotherapy Ociperlimab	1	ORR _{dual} : 57.5% vs. ORR _{dual+C} : 54.8%

Tabl	Table 1 (continued)						
٩	NCT number		Sta- tus	Can- cer	Drug(s) of Intervention Arm(s)	Drug(s) of Control Arm(s)	Outcomes
26	NCT05417321	1/2	Re- cruit- ing	-bA	HB0036		1
27	NCT05026606	7	Re- cruit- ing	-bA	Etigilimab plus Nivolumab		ı
28	NCT04761198	1/2	Re- cruit- ing	-bA	Etigilimab plus Nivolumab		·
29	NCT04354246	-	Re- cruit- ing	-bA	COM902 plus COM701 plus Pembrolizumab COM902 plus COM701 COM902		T
30	NCT05120375	-	Re- cruit- ing	-bA	BAT6021		ı
	NCT05073484	-	Re- cruit- ing	-bA	BAT6021 plus BAT1308 BAT6021		ı
32	NCT05060432	1/2	Re- cruit- ing	-bd-	EOS-448 plus Pembrolizumab EOS-448 plus Inupadenant EOS-448 plus Dostarlimab EOS-448 plus Dostarlimab plus Inupadenant EOS-448 plus Dostarlimab plus chemotherapy	Inupadenant plus Dostarlimab	
с С	NCT05007106	γ	Re- cruit- ing	-bA	MK-7684 A MK-7684 A plus Lenvatinib MK-7684 A plus 5-Fluorouracil plus Cisplatin MK-7684 A plus Paclitaxel MK-7684 A plus Gemcitabine/Osilipatin MK-7684 A plus Carboplatin/Paclitaxel/ Bevacizumab MK-7684 A plus Cabecitabine/Oxaliplatin	Pembrolizumab	
34	NCT04446351	~	Re- cruit- ing	- Ad-	EOS-448 plus Dostarlimab EOS-448 plus Dostarlimab plus GSK6097608	GSK6097608 GSK6097608 plus Dostarlimab Dostarlimab Dostarlimab plus Cobolimab	1

0
Ð
Ē
÷Ξ
Ξ
5
ŭ
Ē
-
Ð
Ť.
-2
<u>_</u>

٩ ٧	NCT number		Sta- tus	Can- cer	Drug(s) of Intervention Arm(s)	Drug(s) of Control Arm(s)	Outcomes
35	NCT03869190	1/2	Re- cruit- ing	-bA	Atezolizumab plus Tiragolumab	Atezolizumab Atezolizumab plus Enfortumab Vedotin Atezolizumab plus Niraparib Atezolizumab plus Magrolimab Atezolizumab plus RO71 22290 Cisplatin	, ,
36	NCT05757492	1/2	Re- cruit- ing	-bA	JS006 plus Toripalimab		ı
37	NCT05394337	-	yet yet re- cruit- ina	-bA	Neoadjuvant atezolizumab plus Tiragolumab		
38	NCT05845814	1/2	yet yet re- cruit- ing	-bA	MK-7684 A plus EV	Coformulated Favezelimab/Pembrolizumab plus EV Pembrolizumab plus EV	
39	NCT05327530	7	Re- cruit- ing	-bA	Avelumab plus M6223	Avelumab Avelumab plus Sacituzumab Govitecan Avelumab plus NKTR-255	ı
40	NCT03547973	7	Re- cruit- ing	-bA	Sacituzumab Govitecan-hziy plus Zim- berelimab plus Domvanalimab	Sacituzumab Govitecan-hziy Sacituzumab Govitecan-hziy plus Pembrolizumab Sacituzumab Govitecan-hziy plus Cisplatin plus Avelumab Sacituzumab Govitecan-hziy plus Cisplatin plus Zimberelimab Sacituzumab Govitecan-hziy plus Zimberelimab Avelumab Zimberelimab Carboplatin plus Gemcitabine	
4	NCT05645692	2	Re- cruit- ing	-bA	Tiragolumab plus R07247669	RO7247669 Atezolizumab	·
42	NCT05023109	2	Re- cruit- ing	Bili- ary Tract Car- cino- ma	Tislelizumab plus Ociperlimab plus chemotherapy	1	,

Tab	Table 1 (continued)						
°N N	NCT number		Sta- tus	Can- cer	Drug(s) of Intervention Arm(s)	Drug(s) of Control Arm(s)	Outcomes
43	NCT02625961	7	Re- cruit- ing	Blad- der Can- cer	MK-7684 A	Pembrolizumab	 .
4	NCT04693234	7	Ac- tive, not re- cruit-	Cer- vical Can- cer	Tislelizumab plus Ociperlimab	Tislelizumab	
45	NCT04300647	5	Ac- Ac- not re- cruit- ina	Cer- vical Can- cer	Tiragolumab plus Atezolizumab	Atezolizumab	
46	NCT04895722	7	Re- cruit- ing		MK-7684 A	Pembrolizumab Co-formulated Pembrolizumab/Quavonlimab Co-formulated Pembrolizumab/Favezelimab Pembrolizumab Plus MK-4830	
47	NCT04929223	—	Re- cruit- ing		Atezolizumab plus Tiragolumab plus Bevacizumab Atezolizumab plus Tiragolumab	Inavolisib plus Cetuximab Inavolisib plus Bevacizumab Atezolizumab plus SY-5609 GDC-6036 plus Cetuximab plus FOLFOX GDC-6036 plus Cetuximab	
48	NCT04486352	1/2	Re- cruit- ing	En- do- trrial Can-	Atezolizumab plus Tiragolumab	Atezolizumab plus Bevacizumab Atezolizumab plus Ipatasertib Atezolizumab plus Talazoparib Atezolizumab plus Trastuzumab emtansine (TDM-1) Inavolisib plus Letrozole	
49	NCT04540211	m	Ac- tive, not re- cruit-	ESCC	Tiragolumab plus Atezolizumab plus chemotherapy	Placebo plus chemotherapy	1
20	NCT05743504	1/2	yet yet re- cruit- ing	ESCC	Tiragolumab plus Atezolizumab with CCRT before surgery		

Tab	Table 1 (continued)						
٩	NCT number		Sta- tus	Can- cer	Drug(s) of Intervention Arm(s)	Drug(s) of Control Arm(s)	Outcomes
51	NCT04732494	5	Re- cruit- ing	ESCC	Tislelizumab plus Ociperlimab	Tislelizumab plus Placebo	1
52	NCT04543617	m	Ļ	ESCC	Tiragolumab plus Atezolizumab Tiragolumab	Atezolizumab plus Placebo	
53	NCT03281369	1/2	لى ا	ESCC	Atezolizumab plus Tiragolumab plus chemotherapy Atezolizumab plus Tiragolumab	Atezolizumab	
54	NCT04933227	2	L.	Gas- tric Can- cer	Tiragolumab plus Atezolizumab plus chemotherapy		
55	NCT05251948	1/2	ب	Gas- trric Can- cer	Tiragolumab plus Atezolizumab plus chemotherapy	Atezolizumab plus chemotherapy	ı
56	NCT05568095	Μ	L.	Gas- trric Can-	Zimberelimab plus Domvanalimab plus chemotherapy	Nivolumab plus chemotherapy	
57	NCT05329766	7	Re- cruit- ing	Gas- trric Can-	Domvanalimab plus Zimberelimab plus chemotherapy Domvanalimab plus Zimberelimab	Zimberelimab plus chemotherapy Zimberelimab plus Quemliclustat	
5	NCT05702229	7	Re- cruit- ing	Gas- trric Can-	AZD2936 Plus XELOX/FOLFOX	MEDI5752 plus XELOX/FOLFOX	ı
59	NCT04826393	-	Ac- tive, not re- cruit- ina	colio- blas- toma	ASP8374 plus Cemiplimab		1
60	NCT04656535	-	<u>ب</u>	Glio- blas- toma	AB122 plus Domvanalimab plus surgery AB122 plus Domvanalimab Domvanalimab plus surgery	AB122 plus surgery surgery	1

Tabl	Table 1 (continued)						
٩	NCT number		Sta- tus	Can- cer	Drug(s) of Intervention Arm(s)	Drug(s) of Control Arm(s)	Outcomes
61	NCT05130177	2	Re- cruit-	Mela- no-	Zimberelimab plus Domvanalimab		
			ing	ma			
62	NCT05665595	m	Re- cruit-	Mela- no-	Pembrolizumab plus Vibostolimab	Pembrolizumab	
			ing	ma			
63	NCT05060003	2	Re-	Mela-	Atezolizumab plus Tiragolumab	Atezolizumab	ı
			cruit- ing	-on ma			
64	NCT04305041	1/2	Re-	Mela-	Pembrolizumab plus Quavonlimab plus	Pembrolizumab plus Quavonlimab plus Lenvatinib	I
			cruit- ing	-on ma	Vibostolimab	Pembrolizumab plus all-trans retinoic acid (ATRA)	
65	NCT04305054	1/2	Re-	Mela-	Pembrolizumab plus Vibostolimab	Pembrolizumab	ı
			cruit-	-ou		Coformulation Pembrolizumab/Quavonlimab	
			ing	ma	zumab plus Vibostolimab	Coformulation Pembrolizumab/Quavonlimab plus Lenvatinib Coformulation Favezelimab/Pembrolizumab	
						Coformulation Favezelimab/Pembrolizumab plus All-trans Retinoic Acid (ATRA)	
99	NCT04303169	1/2	Re-	Mela-	Pembrolizumab plus Vibostolimab	Pembrolizumab plus Gebasaxturev	pCR _{dual} :
			cruit-	-ou		Pembrolizumab	38% vs.
			bui	ma		Pembrolizumab plus MK-4830 Favoratimath alue Damhadianumah	рСКр: 40% 200
						ravezenniau pius Pennuolizuniau Pembrolizi imah nius ali-trans ratinoir ariid (ATRA)	PL ndual: 31% vs
						ו בווזסומודמות לאחים מון המוזם ובנוווסור מכומ לאוואלא	рРВь: 27%
							RFS _{dual}
							(18 m):
							95% vs.
							(18 m):
							73%
							ORR _{dual} :
							50% vs. Orr - 27%
							EFS
							(18 m):
							81% vs.
							EFS _P (18 m):
							79%
27		Ċ	c C	~ I ~ I ~	H H H	$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i$	

Φ
Ĵ.
Ē
÷Ξ.
F
5
ĸ
ت
-
đ
÷.
2

.

 \sim NCT03554083

67

Re- Mela- Atezolizumab plus Tiragolumab cruit- no-ing ma

Vemurafenib plus Cobimetinib plus Atezolizumab Cobimetinib plus Atezolizumab

Tabl							
٩	NCT number		Sta- tus	Can- cer	Drug(s) of Intervention Arm(s)	Drug(s) of Control Arm(s)	Outcomes
68	NCT05116202	1/2	Re- cruit- ing	Mela- no- ma	Atezolizumab plus Tiragolumab R07247669 plus Tiragolumab	Nivolumab plus Ipilimumab RO7247669	
69	NCT02861573	1/2	Re- cruit- ing	Meta- static Cas- tra- tion- Resis- tant tant tate Can- car	MK-7684 A	Pembrolizumab plus Olaparib Pembrolizumab plus Docetaxel plus Prednisone Pembrolizumab plus Enzalutamide Pembrolizumab plus Abiraterone plus Prednisone Pembrolizumab plus Lenvatinib Pembrolizumab plus Carboplatin plus Etoposide Garboplatin plus Etoposide Belzutifan Pembrolizumab plus Belzutifan	,
70	NCT04672356	-	Ac- tive, not cruit- ing	3	IBI939 plus Sintilimab		
71	NCT04672369	-	Ac- tive, not ccruit- ing		IBI939 plus Sintilimab	Sintilimab	ORR ^{dual} : 66.7% (18/27) vs. ORR _P : vs. ORR _P : (8/13) mPF5 _{dual} : NR vs. mPF5 _P : 6.0 m (HR = 0.43)
22	NCT03563716	Ν	Ac- tive, not re- cruit- ing		Atezolizumab plus Tiragolumab	Atezolizumab plus Placebo	ORRdual: 31.3% vs. ORR: vs. ORR: 16.2% mPFSdual: 5.4 m vs. 3.6 m (HR = 0.57)

٩	NCT number		Sta- tus	Can- cer	Drug(s) of Intervention Arm(s)	Drug(s) of Control Arm(s)	Outcomes
73	NCT04725188	~	Ac- tive, not re- cruit- ing		MK-7684 A plus chemotherapy MK-7684 A	chemotherapy	Did not reach statistical signifi- cance for PFS and was nu- merically less effec- tive than
74	NCT04262856	~	Ac- ttive, not re- ing		Zimberelimab plus Domvanalimab plus Etrumadenant Zimberelimab plus Domvanalimab	Zimberelimab	Docetaxel ORB _{dual+0} : 40% vs. ORP ₆ : 27% MPFS _{dual} : 10.9 m vs. mPFS _{dual+0} : 110.9 m vs. mPFS _{dual} : 12.0 m vs. mPFS _p : 5.4 m 5.4 m
75	NCT03819465	-	Ac- tive, not re- cruit- ing		AZD2936 AZD2936 plus chemotherapy	Durvalumab Durvalumab plus danvatirsen Durvalumab plus oleclumab MEDI5752 Durvalumab plus Investigator's choice of chemotherapy Durvalumab plus Investigator's choice of chemotherapy plus danvatirsen Durvalumab plus investigator's choice of chemotherapy plus danvatirsen	(cc:n=xL)
76	NCT04585815	7	Ac- tive, not cruit- ina		SEA-TGT plus sasanlimab plus Axitinib	Sasanlimab plus Encorafenib plus inimetinib	

Tab	Table 1 (continued)						
۶	NCT number		Sta- tus o	Can- cer	Drug(s) of Intervention Arm(s)	Drug(s) of Control Arm(s)	Outcomes
77	NCT05034055	7	Not yet re- cruit-		Atezolizumab plus Tiragolumab plus SBRT		
78	NCT05798663	7	Not yet re- cruit-		Atezolizumab plus Tiragolumab	Ateolizumab	
79	NCT05825625	7	Not yet re- ind		Tiragolumab plus Atezolizumab with chemotherapy		
80	NCT05746481	7	Not yet re- cruit-		Tiragolumab plus Atezolizumab plus Pemetrexed plus Carboplatin		
<u>~</u>	NCT05791097	m	yet yet re- cruit-		Ociperlimab + Tislelizumab + chemo- therapy	Placebo + Pembrolizumab + chemotherapy Placebo + Tislelizumab + chemotherapy	ī
83 83	NCT04995523 NCT04791839	1/2 2	Re- cruit- ing Re-		AZD2936 Zimberelimab plus Domvanalimab plus Etrumadenart		
84	NCT05211895	Ś	ing Re- cruit-		Durvalumab plus Domvanalimab	Durvalumab plus Placebo	ı
85	NCT04746924	ŝ	nng Re- cruit- ing		Tislelizumab plus Ociperlimab	Pembrolizumab plus Placebo Tislelizumab plus Placebo	,
86	NCT04294810	m	Re- cruit- ing		Atezolizumab plus Tiragolumab	Atezolizumab plus Placebo	1

Tab	Table 1 (continued)				
۶	NCT number		Sta-	Sta- Can- Drug(s) of Intervention Arm(s)	Drug(s) of (
			tus	cer	
87	NCT04958811	5	Re-	Tiragolumab plus Atezolizumab plus	
			cruit-	Bevacizumab	
			ing		
88	NCT04513925	m	Re-	Atezolizumab plus Tiragolumab	Durvalumab
			cruit-		
			ing		
89	NCT05014815	2	Re-	Ociperlimab plus Tislelizumab plus	Placebo plus Tis
			cruit-	chemotherapy	
			ing		

	Durvalumab	Placebo plus Tislelizumab plus chemotherapy	Placebo plus Pembrolizumab plus chemotherapy	Pembrolizumab plus chemotherapy Zimberelimab plus chemotherapy
Tiragolumab plus Atezolizumab plus	Atezolizumab plus Tiragolumab	Ociperlimab plus Tislelizumab plus	Tiragolumab plus Atezolizumab plus	Zimberelimab plus Domvanalimab plus
Bevacizumab		chemotherapy	chemotherapy	chemotherapy

plus Pembrolizumab plus chemother.	Zimberelimab plus chemotherap	
nvanalimab plus		

Pembrolizumab

MK-7684 A (Pembrolizumab/

Re-cruit-ing Re-cruit-ing Re-Re-Re-Re-Re-

 \sim

NCT04738487

92

 \sim

NCT05298423

63

 \sim

NCT04832854

2

 \sim

NCT05226598

95

 \sim

NCT04866017

96

 \sim

NCT05502237

6

2/3

NCT04619797

6

Vibostolimab)

	VIK-7684 A (Pembrolizumab/Vibostolim- Durvalumab plus chemotherapy plus radiotherapy			chemotherapy			Pembrolizumab plus chemotherapy			Tislelizumab plus chemoradiotherapy
	MK-7684 A (Pembrolizumab/Vibostolim-	ab) plus chemotherapy plus radiotherapy		Tiragolumab plus Atezolizumab	Tiragolumab plus Atezolizumab plus	chemotherapy	MK-7684 A plus chemotherapy			Ociperlimab plus Tislelizumab plus
6III	Re-	cruit-	ing	Re-	cruit-	ing	Re-	cruit-	ing	Re-

Durvalumab plus chemoradiotherapy chemoradiotherapy

Datopotamab deruxtecan plus Durvalumab Zimberelimab Datopotamab deruxtecan plus AZD2936 Datopotamab deruxtecan plus AZD2936 ke-cruit-ing Re-ing Re-Re-Re-ing re-ing

Datopotamab deruxtecan plus Durvalumab plus Carboplatin Datopotamab deruxtecan plus MEDI5752 Datopotamab deruxtecan plus MEDI5752 plus Carboplatin plus Carboplatin

Outcomes

Control Arm(s)

ī

ī.

ï

ī.

ī.

i.

ī

ī.

ī

Carboplatin plus paclitaxel or pemetrexed

Zimberelimab plus Domvanalimab

 \sim

NCT04736173

86

*.*____

NCT04612751

66

HLX301

1/2

NCT05102214

97

\sim
ð
ę
Ē
Ę
p
$\underline{\circ}$
_
5
Ť
ar
Ë,

Tabl€	Table 1 (continued)						
°N N	NCT number		Sta- tus	- Can-	 Drug(s) of Intervention Arm(s) 	Drug(s) of Control Arm(s) Outcomes	comes
100	NCT05676931	5	Re- cruit- ing		Domvanalimab plus Zimberelimab Domvanalimab plus Zimberelimab plus Platinum Doublet Chemotherapy Domvanalimab plus Quemliclustat plus Zimberelimab plus Platinum Doublet Chemotherapy Domvanalimab plus Zimberelimab plus Docetaxel	Quemliclustat plus Zimberelimab Quemliclustat plus Zimberelimab plus Platinum Doublet Chemotherapy Quemliclustat plus Zimberelimab plus Docetaxel	
101	NCT05633667	7	Re- cruit- ing		Sacituzumab Govitecan-hzjy plus Zim- berelimab plus Domvanalimab Etrumadenant plus Zimberelimab plus Domvanalimab	Etrumadenant plus Zimberelimab Zimberelimab plus Platinum Based Chemotherapy Etrumadenant plus Zimberelimab plus Sacituzumab Govitecan-hziy Either Docetaxel or Sacituzumab Govitecan-hziy monotherapy	
102	NCT05565378	2	Re- cruit- ing		EOS-448 plus Dostarlimab	Pembrolizumab Monotherapy Dostarlimab Monotherapy	
103	NCT03739710	2	Re- cruit- ing		EOS-448 plus Dostarlimab EOS-448 plus Dostarlimab plus GSK6097608	feladilimab plus ipilimumab Docetaxel Docetaxel plus Feladilimab	
104	NCT04165070	7	Re- cruit- ing		Pembrolizumab plus Vibostolimab plus Carboplatin plus Paclitaxel Pembrolizumab plus Vibostolimab plus Carboplatin plus Pemetrexed	Pembrolizumab plus Boserolimab plus Carboplatin plus Paclitaxel Pembrolizumab plus Boserolimab plus Carboplatin plus Pemetrexed Pembrolizumab plus MK-4830 plus Carboplatin plus Paclitaxel Pembrolizumab plus MK-4830 plus Carboplatin plus Pemetrexed Pembrolizumab plus MK-0482 plus Carboplatin plus Paclitaxel Pembrolizumab plus MK-0482 plus Carboplatin plus Paclitaxel	
105	NCT05577702	7	Re- cruit- ing		Tislelizumab and Ociperlimab	Tislelizumab Monotherapy Tislelizumab and LBL-007	
106	NCT05681039	7	<u>ل</u>	Oral	Tiragolumab Plus Atezolizumab	,	
107	NCT05715216	5	Re- cruit- i ing 0	۲. ۲	Etigilimab plus Nivolumab		

ed)
tinu
(con
e 1
Tabl

Tabl	Table 1 (continued)						
°N	NCT number		Sta- tus		Can- Drug(s) of Intervention Arm(s) cer	Drug(s) of Control Arm(s) Out	Outcomes
108	NCT05419479	1/2	Re- cruit- ing	Pan- cre- atic Can- cer	domvanalimab plus Zimberelimab plus APX005M	FOLFIRI	
109	NCT03193190	2/1	Re- cruit- ing	Pan- cre- atic Can- cer	Atezolizumab plus Chemotherapy plus Tiragolumab	Nab-Paclitaxel and Gemcitabine Atezolizumab plus Chemotherapy plus Selicrelumab Atezolizumab plus Chemotherapy plus Bevacizumab Atezolizumab plus Chemotherapy plus AB928 Atezolizumab plus PGPH20 Atezolizumab plus BL-8040 Atezolizumab plus RO6874281 Nab-Paclitaxel and Gemcitabine or mFOLFOX6 Atezolizumab plus Chemotherapy plus Tocilizumab	
110	NCT05009069	7	Re- cruit- ing	Rec- tal Can- cer	Tiragolumab plus Atezolizumab plus radiotherapy	- Atezolizumab	
111	NCT04626479	1/2	Re- cruit- ing	Renal Cell Car- cino- ma	MK-7684 A plus Belzutifan	- Coformulation Pembrolizumab/Quavonlimab plus Lenvatinib Coformulation Favezelimab/Pembrolizumabplus Lenvatinib Pembrolizumab plus Belzutifan plus Lenvatinib Pembrolizumab plus Lenvatinib	
112	NCT05805501	2	Re- cruit- ing	Renal Cell Car- cino- ma	R07247669 plus Tiragolumab plus Axitinib	R07247669 plus Axitinib Pembrolizumab plus Axitinib	
113	NCT04952597	7	Ac- tive, not re- cruit- ing	SCLC	Ociperlimab plus Tislelizumab plus chemoradiotherapy	Tislelizumab plus Concurrent Chemoradiotherapy Concurrent Chemoradiotherapy	

No NCT number	NCT number		Sta- tus	a- Can-	- Drug(s) of Intervention Arm(s)	Drug(s) of Control Arm(s)	Outcomes
114	NCT04256421	m	Ac- tive, not re- cruit- ing	SCLC	Tiragolumab plus Atezolizumab plus chemotherapy	Placebo plus Atezolizumab plus chemotherapy	mPFS _{dual+C} : 5.4 m vs. mPFS _{P+C} : 5.6 m (HR = 1.11) mOS _{dual+C} : 13.6 m vs. mOS _{P+C} : 13.6 m (HR = 1.04) DOR _{dual+C} : 4.2 m vs.
115	NCT04308785	7	Ac- tive, not re- cruit-	SCLC	SCLC Atezolizumab plus Tiragolumab	Atezolizumab plus Placebo	DoR _{P+C} : 5.1 m -
116	NCT04665856	m	Ac- tive, not cruit-	SCLC	Tiragolumab plus Atezolizumab plus chemotherapy	Placebo plus Atezolizumab plus chemotherapy	ſ
117	NCT05224141	m	Re- cruit-	SCLC	MK-7684 A plus chemotherapy	Atezolizumab plus chemotherapy	
118	NCT04665843	7	Ac- Ac- tive, not cruit- ing	Squa- / mous Cell Car- cino- ma of Head Neck	Atezolizumab plus Tiragolumab	Atezolizumab plus Placebo	,

~
Ξ O
ā
Ē
Ē
÷Ē
Ē
ō
0
\sim
-
Ð
q
a

Mot KT runnber Star Gr. Drugisj of christention Anniej Drugisj of christention Anniej 113 WCT startest 2 Res Assolitanteb (high fing dumb) Resolitanteb (high math) 123 WCT startest 2 Res Assolitanteb (high fing dumb) Resolitanteb (high math) 123 WCT startest 2 Res Assolitanteb (high math) Resolitanteb (high math) 123 WCT startest 2 Res Resolitanteb (high math) Resolitanteb (high math) 123 WCT startest 2 No Resolitanteb (high math) Resolitanteb (high math) 124 WCT startest 2 No Resolitanteb (high math) Resolitanteb (high math) 125 WCT startest 2 No Resolitanteb (high math) Resolitanteb (high math) 12 WCT startest 2 No Resolitanteb (high math) Resolitanteb (high math) 12 WCT startest 2 No Resolitanteb (high math) Resolitanteb (high math) 12 NCT startest 2 <t< th=""><th>Tabl</th><th>Table 1 (continued)</th><th></th><th></th><th></th><th></th><th></th></t<>	Tabl	Table 1 (continued)					
NCT033024 2 Res Staps Microbinably blis. Tragplumably NCT033024 2 Res Staps Microbinably blis. Tragplumably NCT0565118 1/2 Res Areadizmably blis. Tragplumably Areadizmably blis. Tragplumably NCT0565118 1/2 Res Staps Areadizmably blis. Tragplumably NCT0565118 1/2 Res Staps Areadizmably blis. Tragplumably NCT0565118 2 Not Staps Staps NCT0565118 1 Area Staps Staps NCT0565118 1 Area Staps Staps NCT0565118 1 Area Staps Staps NCT0565118 1 Area<	No	NCT number		Sta tus		Drug(s) of Control Arm(s)	Outcomes
NCT05459129 1/2 Re- cut: mode cut: cut: cut: cut: cut: cut: cut: cut:	119	NCT03708224			Atezolizumab plus Tiragolumab	Atezolizumab plus Tocilizumab Atezolizumab Monotherapy Atezolizumab (Adjuvant)	
NCT05661188 2 Not Squa- Arezolizumab plus Tiragolumab plus - re- cell cell cell cell cell cell cell re- cell cell <td>120</td> <td>NCT05459129</td> <td></td> <td></td> <td>Atezolizumab plus Tiragolumab Atezolizumab plus Tiragolumab plus Carboplatin plus Paclitaxel</td> <td>, ,</td> <td></td>	120	NCT05459129			Atezolizumab plus Tiragolumab Atezolizumab plus Tiragolumab plus Carboplatin plus Paclitaxel	, ,	
NCT04584112 1 Ac. Triple Tiagolumab plus Atezolizumab plus - tive, Neg- chemotherapy - - - not ative chemotherapy - - - not ative chemotherapy - - - NCT0580995 2 Not Triple ciperlimab+tislelizumab+themo- Placebo+pembrolizumab+themotherapy NCT05809895 2 Not Triple ciperlimab+tislelizumab+themo- Placebo+tislelizumab+themotherapy NCT05809895 2 Not Eve B-cell Ociperlimab plus Tislelizumab NCT05267054 1/2 Re- B-cell Ociperlimab plus Rituximab - NCT05267054 1/2 Re- B-cell Ociperlimab plus Rituximab - nig pho- - - - - - na - - - - - - na - - - - - - na - - - - - -	121	NCT05661188			Atezolizumab plus Tiraglolumab plus chemotherapy	·	
NCT0580995 2 Not Triple ociperlimab+tislelizumab+chemo- Placebo+pembrolizumab+chemotherapy yet Neg- therapy Placebo+tislelizumab+chemotherapy re- ative cruit- ing NCT05267054 1/2 Re- B-cell Ociperlimab plus Tislelizumab no	122	NCT04584112	-		Tiragolumab plus Atezolizumab plus chemotherapy		
NCT05267054 1/2 Re- B-cell Ociperlimab plus Tislelizumab cruit- Lym- Ociperlimab plus Rituximab ing pho- ma	123	NCT05809895			ociperlimab + tislelizumab + chemo- therapy	Placebo + pembrolizumab + chemotherapy Placebo + tislelizumab + chemotherapy	
	124	NCT05267054			Ociperlimab plus Tislelizumab Ociperlimab plus Rituximab	1 1	

Tablé	Table 1 (continued)						
8	NCT number		Sta- tus	a- Can- s cer	n- Drug(s) of Intervention Arm(s)	Drug(s) of Control Arm(s) Outcomes	comes
125	NCT05315713	1/2	Ac- tive, not re- cruit- ing	He- mato- cal Ma- lig- nan- cies	Mosunetuzumab SC plus Tiragolumab Mosunetuzumab SC plus Tiragolumab plus Atezolizumab		
126	NCT05005442	7	Re- cruit- ing	He- mato- cal Ma- lig- nan-	Pembrolizumab plus vibostolimab		
127	NCT041 50965	1/2	Re- cruit- ing	Mul- tiple My- elo- ma	BMS-986,207 BMS-986,207 plus Pomalidimide plus Dexamethasone	Elotuzumab plus pomalidomide plus dexamethasone Anti-LAG-3 Anti-LAG-3 plus Pomalidimide plus Dexamethasone	
128	NCT05289492	1/2	Re- cruit- ing	Mul- tiple elo- ma	EOS-448 EOS-448 plus Iberdomide EOS-448 plus Iberdomide plus Dexamethasone	,	
129	NCT05061628	, -	Re- cruit- ing		JS006 plus Toripalimab JS006		
130	NCT05390528	1/2	Re- cruit- ing		HLX301		
131	NCT04254107	-	Re- cruit- ing		SEA-TGT SEA-TGT plus sasanlimab SEA-TGT plus brentuximab vedotin		
132	NCT04772989	-	Re- cruit- ing		AB308 plus Zimberelimab		
Abbr. combin	NSCLC=non-small cell I ined with chemotherapy	lung cancer; v; P + C = PD-	SCLC=sr (L)1 inhibi	itor coml	ung cancer; ESCC =esophageal squamous ce bined with chemotherapy; dual + O = dual TIC	Abbr. NSCLC = non-small cell lung cancer; SCLC = small cell lung cancer; ESCC = esophageal squamous cell carcinoma; dual = dual TIGIT and PD-(L)1 inhibitors; P = PD-(L)1 inhibitor; dual + C = dual TIGIT and PD-(L)1 inhibitors combined with chemotherapy; P + C = PD-(L)1 inhibitor combined with chemotherapy; P + C = PD	inhibitors

Table 2 Anti-TIGIT antibody drugs in clinical development

Drug	Mechanism of action	Sponsor
AZD2936	A bispecific antibody that can target both PD-1 and TIGIT simultaneously	AstraZeneca
HLX301	A bispecific antibody that can target both PD-1 and TIGIT simultaneously	Henlius
HB0036	A bispecific antibody that can target both PD-1 and TIGIT simultaneously	Huaota
IBI321	A bispecific antibody that can target both PD-1 and TIGIT simultaneously	Innovent Biologics
MK-7684 A	A fixed-dose combination formulation composed of Vibostolimab and Pembrolizumab	Merck
Domvanalimab	A Fc-silent humanized IgG1 monoclonal antibody directed against TIGIT	Arcus Biosciences
BMS-986,207	A Fc-silent humanized IgG1 monoclonal antibody directed against TIGIT	Bristol Myers Squibb
BAT6021	An investigational humanized IgG1 monoclonal antibody directed against TIGIT	Bio-thera
PM1021	An investigational humanized IgG1 monoclonal antibody directed against TIGIT	Biotheus
M6223	An investigational humanized IgG1 monoclonal antibody directed against TIGIT	EMD Serono
EOS-448	An investigational humanized IgG1 monoclonal antibody directed against TIGIT	iTeos
Vibostolimab	An investigational humanized IgG1 monoclonal antibody directed against TIGIT	Merck
Etigilimab	An investigational humanized IgG1 monoclonal antibody directed against TIGIT	Mereo
Tiragolumab	An investigational humanized IgG1 monoclonal antibody directed against TIGIT	Roche
Ociperlimab	An investigational humanized IgG1 monoclonal antibody directed against TIGIT	BeiGene
ASP8374	An investigational humanized IgG4 monoclonal antibody directed against TIGIT	Astellas
COM902	An investigational humanized IgG4 monoclonal antibody directed against TIGIT	Compugen
IBI939	An investigational humanized IgG4ĸ monoclonal antibody directed against TIGIT	Innovent Biologics
JS006	An investigational humanized IgG4ĸ monoclonal antibody directed against TIGIT	Junshi
SEA-TGT	A nonfucosylated antibody that employs sugar engineered antibody against TIGIT	Seagen Inc
AB308	An investigational humanized IgG1 monoclonal antibody directed against TIGIT	Arcus Biosciences

Page 26 of 31

[120]. These results demonstrated that combination therapy of anti-TIGIT and anti-PD-1/PD-L1 treatments has acceptable toxicity and promising antitumor activity.

CITYSCAPE was the first phase II randomized controlled trial to report the efficacy and safety of combining anti-TIGIT and anti-PD-1/PD-L1 agents [24], while two previous phase I trials had reported favorable tolerance and anti-tumor activity of tiragolumab, an anti-TIGIT agent, plus atezolizumab in various cancers before [99]. In the CITYSCAPE trial, 135 patients with NSCLC were assigned to receive tiragolumab or placebo plus atezolizumab. The results revealed significantly prolonged progression-free survival of the tiragolumab plus atezolizumab arm in the total population (HR 0.62; 95% CI 0.42-0.91) and in patients with PD-L1 tumor proportion score (TPS)≥50% (HR 0.29; 95% CI 0.15–0.53). Significantly extended overall survival of the combination group was observed in patients with PD-L1 TPS≥50% (HR 0.23, 95% CI 0.10-0.53) but not in the total population (HR 0.69; 95% CI 0.44-1.07). TRAEs were observed in 82% and 71% of patients in the combination group and the monotherapy group, respectively, and serious TRAEs occurred in 21% and 18%, respectively. More immunerelated AEs occurred in the combination group compared with the monotherapy group (76% vs. 47%) but were mostly mild (grade 1-2). Likewise, pruritus, fatigue, asthenia, and rash were some of the common TRAEs. The phase II ARC-7 trial's [121] findings demonstrated that the combination is superior to zimberelimab alone in terms of ORR and PFS. The median PFS was 10.9 months, and the ORR was 40% among the 45 patients who received treatment with the three drugs (domvanalimab, zimberelimab, and etrumadenant). The median PFS for the 44 patients treated with the two drugs (domvanalimab and zimberelimab) was 12.0 months, however, the 44 patients treated with zimberelimab only had an ORR of 27%. Talking to safety, ≥grade 3 TRAEs occurred in 58% (zimberelimab monotherapy), 47% (two medications), and 52% of the safety population (three drugs). All incidences of rash were grade 1-2, treatable with topical corticosteroids, and more prevalent in patients using three medicines (60%) compared to those taking two drugs (48%) and zimberelimab monotherapy (47%). Nevertheless, the phase III SKYSCRAPER-02 study revealed that treatment of tiragolumab plus atezolizumab plus chemotherapy did not prolong the PFS (HR 1.08; 95% CI 0.89-1.31) and OS (HR 1.02; 95% CI 0.80-1.30) compared with placebo plus atezolizumab plus chemotherapy in patients with extensive-stage SCLC, suggesting that there may be heterogeneity of efficacy of anti-TIGIT plus anti-PD-1/PD-L1 in different cancers [122]. Present research predominantly lies in the recruitment phase whereby only several trials centering on solid tumors yield outcomes. Table 1 outlines 9 clinical trials concerning hematological malignancies, but there is currently no outcome on the TIGIT and PD-1 or PD-L1 combination therapy. We look forward to the findings of more prospective clinical studies.

Taken together, anti-TIGIT and anti-PD-1/PD-L1 combination therapy has shown a favorable safety profile and better antitumor activity along with better survival benefits compared with anti-PD-1/PD-L1 therapy alone, in line with preclinical evidence. Additionally, several new drugs based on the anti-TIGIT and anti-PD-1/PD-L1 combination, such as AZD2936 and MK-7684 A, and novel combination strategies, such as anti-TIGIT plus anti-PD-1/PD-L1 agents plus chemotherapy or chemoradiotherapy, are being evaluated clinically (Table 1). These advances are expected to expand the benefits of the anti-TIGIT and anti-PD-1/PD-L1 combination for cancer patients.

A prospective on TIGIT blockade therapeutic strategies

Recent studies suggest that TIGIT blockades and radiotherapy (RT) may have a synergistic relationship, although TIGIT and RT are mechanically two different approaches to cancer treatment.

RT can induce an immunogenic antitumor response, but it can also create some immunosuppressive barriers depending on the fractionation protocols employed. For example, 8 Gy*3f and 16.4 Gy*1f protocols induce a lymphoid response (CD8⁺ T cells, Tregs), while the 2 Gy*18f protocol induces a myeloid response (MDSCs, M2 phenotype tumor-associated macrophages) [123]. CD8 T cells secretion of granzyme B was found to be increased by the 8 Gy*3f protocol. And tumor cells showed moderately increased expression of PD-L1 across all fractionation protocols, but most durably with the 2 Gy*18f protocol. While TIGIT expression by CD8⁺ T-cells increased with the 8 Gy*3f protocol and decreased with 2 Gy*18f [123]. Grapin et al. proved that the combination of anti-TIGIT, anti-PD-L1, and 8 Gy*3f (9/10 Complete response, CR) protocol was the most effective treatment strategy [123]. Compared to the 2 Gy*18f radiotherapy alone group, mean tumor volume was significantly lower in the combination of 2 Gy*18f and dual ICI group (p=0.04). However, the combination of 2 Gy*18f and dual ICI group (7/12 CR) did not outperform than anti-PD-L1 monotherapy combined 2 Gy*18f group (8/12 CR).

Notably, when total radiation of 36 Gy is divided into 3*12Gy, the combination of radiotherapy and anti-TIGIT slowed down primary tumor growth and led to a favorable survival benefit, but this was not observed in secondary tumors [124]. However, low-dose radiation delivered to secondary tumors can reduce the expression of TIGIT receptors in the tumor microenvironment (TME) and contribute to the abscopal response [124].

Moreover, Zhao's work has demonstrated that combining radiotherapy with anti-TIGIT therapy could slow down primary tumor growth and provide survival benefits. They proved that this combination could stimulate CD8⁺ T cell responses and enhance local accumulation and modulate cytokine production of DCs by blocking the TIGIT/CD155 axis [125]. In addition, the therapeutic response of cancer patients to RT and anti-TIGIT treatment may be strengthened by using Flt3L to boost $CD103^+$ DCs at the tumor site.

The findings of Hu et al. provide significant support for the enhancement of effectiveness and validity of combining radiation with concurrent TIGIT and PD-1 inhibitors by nanoparticle [126]. In his investigation, 12 Gy of radiation was administered to the primary tumors. Additionally, in around 30% of the anti-PD1-resistant lung cancer model mice, this nanoparticle-mediated combination treatment may result in the elimination of primary and secondary tumors.

It should be noted that this area of research is still in the early stages, and further studies are needed to fully understand the potential synergistic relationship between TIGIT-targeted immunotherapy and radiotherapy. Nevertheless, the potential synergistic relationship between these two treatments represents a promising new avenue for cancer treatment, and ongoing research will shed lighter on this topic.

Conclusions

Co-inhibition of TIGIT and PD-1/PD-L1 could synergistically elicit tumor rejection and has been approved in clinical trials, offering a new option for cancer immunotherapy. Although the optimal combination strategy and patient selection criteria are still being investigated, this approach represents a promising avenue for developing more effective cancer immunotherapies. Future research should focus on optimizing treatment regimens to improve patient outcomes and identifying biomarkers to predict response to these therapies. Overall, TIGIT and PD-1/PD-L1 inhibitors hold great potential for enhancing the efficacy of cancer immunotherapies and improving patient outcomes.

Abbreviations

APCs	Antigen-presenting cells
ALL	Acute lymphoblastic leukemia
AML	Acute myeloid leukemia
CTLA-4	Cytotoxic T-lymphocyte-associated protein 4
CLL	Chronic lymphocytic leukemia
DC	Dendritic cell
DNAM-1	DNAX accessory molecule-1 (DNAM-1)
Grb2	Growth factor receptor-bound protein 2
HIF1-α	Hypoxia-inducible factor 1-α
ICAM-1	intracellular adhesion molecule 1
ICIs	Immune checkpoint inhibitors
ITIM	Immunoreceptor tyrosine-based inhibitory motifs
ITSMs	Immunoreceptor tyrosine-based switch motifs
LAG-3	Lymphocyte-activation gene 3 protein
LFA-1	Lymphocyte function-associated antigen 1
MCL	Mantle cell lymphoma
MTD	Maximum tolerated dose
MAPK	Mitogen-activated protein kinases
MDSCs	Myeloid-derived suppressor cells
MM	Multiple myeloma
MSS	Microsatellite-stable
NK	Natural killer

NSCLC	Non-small cell lung cancer
NF-ĸB	Nuclear factor kappa-light-chain-enhancer of activated B cells
ORRs	Objective response rates
OS	Overall survival
PI3K	Phosphoinositide 3-kinase
PVR	Poliovirus receptor
PD-1	Programmed cell death protein 1
PD-L1	Programmed Cell Death-Ligand 1
PFS	Progression free survival
Tregs	Regulatory T cells
SHIP1	SH domain-containing inositol-5-phosphatase
TCR	T cell receptor
TIGIT	T cell immunoreceptor with Ig and ITIM domains
TRAEs	Treatment-related adverse events
VISTA	V domain immunoglobulin suppressor of T cell activation

Acknowledgements

We appreciate Shi Wen's assistance with the image quality in biorender website.

Author contributions

XJC, WTT and ZQW collected the related studies and drafted the manuscript. XJC, WTT, ZQW, JZ, and RRZ participated in the design of the review. JZ and RRZ initiated the study and revised the manuscript. All authors read and approved the final manuscript.

Funding

Research was supported by the National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University (No. 2022LNJJ10), the Natural Science Foundation of Hunan (2022JJ30992), Advanced Lung Cancer Targeted Therapy Research Foundation of China (CTONG-YC20210303) and National Multidisciplinary Cooperative Diagnosis and Treatment Capacity (lung cancer z027002).

Data Availability

Not applicable.

Declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate Not applicable.

Consent for publication

Not applicable.

Received: 12 April 2023 / Accepted: 2 June 2023 Published online: 08 June 2023

References

- Kraehenbuehl L, Weng CH, Eghbali S, Wolchok JD, Merghoub T. Enhancing immunotherapy in cancer by targeting emerging immunomodulatory pathways. Nat Rev Clin Oncol. 2022;19:37–50.
- Boyer M, Şendur MAN, Rodríguez-Abreu D, Park K, Lee DH, Çiçin I, et al. Pembrolizumab Plus Ipilimumab or Placebo for metastatic non-small-cell lung Cancer with PD-L1 tumor proportion score ≥ 50%: Randomized, doubleblind phase III KEYNOTE-598 study. J Clin Oncol. 2021;39:2327–38.
- Doroshow DB, Sanmamed MF, Hastings K, Politi K, Rimm DL, Chen L, et al. Immunotherapy in Non-Small Cell Lung Cancer: facts and hopes. Clin Cancer Res. 2019;25:4592–602.
- Pang K, Shi ZD, Wei LY, Dong Y, Ma YY, Wang W, et al. Research progress of therapeutic effects and drug resistance of immunotherapy based on PD-1/ PD-L1 blockade. Drug Resist Updat. 2023;66:100907.
- Zhou K, Li S, Zhao Y, Cheng K. Mechanisms of drug resistance to immune checkpoint inhibitors in non-small cell lung cancer. Front Immunol. 2023;14:1127071.

- Tao S, Liang S, Zeng T, Yin D. Epigenetic modification-related mechanisms of hepatocellular carcinoma resistance to immune checkpoint inhibition. Front Immunol. 2022;13:1043667.
- Gettinger S, Choi J, Hastings K, Truini A, Datar I, Sowell R, et al. Impaired HLA Class I Antigen Processing and Presentation as a mechanism of Acquired Resistance to Immune checkpoint inhibitors in Lung Cancer. Cancer Discov. 2017;7:1420–35.
- Rouzbahani E, Majidpoor J, Najafi S, Mortezaee K. Cancer stem cells in immunoregulation and bypassing anti-checkpoint therapy. Biomed Pharmacother. 2022;156:113906.
- 9. Xiao G, Li L, Tanzhu G, Liu Z, Gao X, Wan X et al. Heterogeneity of tumor immune microenvironment of EGFR/ALK-positive tumors versus EGFR/ALKnegative tumors in resected brain metastases from lung adenocarcinoma. J Immunother Cancer. 2023;11.
- Li H, Zhao A, Li M, Shi L, Han Q, Hou Z. Targeting T-cell metabolism to boost immune checkpoint inhibitor therapy. Front Immunol. 2022;13:1046755.
- 11. Zhang E, Ding C, Li S, Zhou X, Aikemu B, Fan X, et al. Roles and mechanisms of tumour-infiltrating B cells in human cancer: a new force in immunotherapy. Biomark Res. 2023;11:28.
- 12. Wang D, Wang J, Zhou D, Wu Z, Liu W, Chen Y et al. SWI/SNF complex genomic alterations as a predictive biomarker for response to immune checkpoint inhibitors in multiple cancers. Cancer Immunol Res. 2023.
- Wildsmith S, Li W, Wu S, Stewart R, Morsli N, Raja R et al. Tumor Mutational Burden as a predictor of Survival with Durvalumab and/or Tremelimumab Treatment in recurrent or metastatic Head and Neck squamous cell carcinoma. Clin Cancer Res. 2023.
- Yi M, Zheng X, Niu M, Zhu S, Ge H, Wu K. Combination strategies with PD-1/PD-L1 blockade: current advances and future directions. Mol Cancer. 2022;21:28.
- Chu X, Niu L, Xiao G, Peng H, Deng F, Liu Z, et al. The long-term and shortterm efficacy of Immunotherapy in Non-Small Cell Lung Cancer patients with brain metastases: a systematic review and Meta-analysis. Front Immunol. 2022;13:875488.
- Scheiner B, Roessler D, Phen S, Lim M, Pomej K, Pressiani T, et al. Efficacy and safety of immune checkpoint inhibitor rechallenge in individuals with hepatocellular carcinoma. JHEP Rep. 2023;5:100620.
- Ziegler AE, Fittje P, Müller LM, Ahrenstorf AE, Hagemann K, Hagen SH, et al. The co-inhibitory receptor TIGIT regulates NK cell function and is upregulated in human intrahepatic CD56(bright) NK cells. Front Immunol. 2023;14:1117320.
- Wegrzyn AS, Kedzierska AE, Obojski A. Identification and classification of distinct surface markers of T regulatory cells. Front Immunol. 2022;13:1055805.
- Hartigan CR, Tong KP, Liu D, Laurie SJ, Ford ML. TIGIT agonism alleviates costimulation blockade-resistant rejection in a regulatory T cell-dependent manner. Am J Transplant. 2023;23:180–9.
- Zou Y, Ye F, Kong Y, Hu X, Deng X, Xie J, et al. The single-cell Landscape of Intratumoral Heterogeneity and the immunosuppressive microenvironment in liver and brain metastases of breast Cancer. Adv Sci (Weinh). 2023;10:e2203699.
- Stanietsky N, Simic H, Arapovic J, Toporik A, Levy O, Novik A, et al. The interaction of TIGIT with PVR and PVRL2 inhibits human NK cell cytotoxicity. Proc Natl Acad Sci U S A. 2009;106:17858–63.
- 22. Chauvin JM, Pagliano O, Fourcade J, Sun Z, Wang H, Sander C, et al. TIGIT and PD-1 impair tumor antigen-specific CD8⁺T cells in melanoma patients. J Clin Invest. 2015;125:2046–58.
- Banta KL, Xu X, Chitre AS, Au-Yeung A, Takahashi C, O'Gorman WE et al. Mechanistic convergence of the TIGIT and PD-1 inhibitory pathways necessitates co-blockade to optimize anti-tumor CD8(+) T cell responses. Immunity. 2022;55:512 – 26.e9.
- Cho BC, Abreu DR, Hussein M, Cobo M, Patel AJ, Secen N, et al. Tiragolumab plus atezolizumab versus placebo plus atezolizumab as a first-line treatment for PD-L1-selected non-small-cell lung cancer (CITYSCAPE): primary and follow-up analyses of a randomised, double-blind, phase 2 study. Lancet Oncol. 2022;23:781–92.
- Yu X, Harden K, Gonzalez LC, Francesco M, Chiang E, Irving B, et al. The surface protein TIGIT suppresses T cell activation by promoting the generation of mature immunoregulatory dendritic cells. Nat Immunol. 2009;10:48–57.
- 26. Yeo J, Ko M, Lee DH, Park Y, Jin HS. TIGIT/CD226 Axis regulates Anti-Tumor Immunity. Pharmaceuticals (Basel). 2021;14.
- 27. Chiang EY, Mellman I. TIGIT-CD226-PVR axis: advancing immune checkpoint blockade for cancer immunotherapy. J Immunother Cancer. 2022;10.

- Johnston RJ, Comps-Agrar L, Hackney J, Yu X, Huseni M, Yang Y, et al. The immunoreceptor TIGIT regulates antitumor and antiviral CD8(+) T cell effector function. Cancer Cell. 2014;26:923–37.
- Ostroumov D, Duong S, Wingerath J, Woller N, Manns MP, Timrott K, et al. Transcriptome profiling identifies TIGIT as a marker of T-Cell exhaustion in Liver Cancer. Hepatology. 2021;73:1399–418.
- Wherry EJ, Kurachi M. Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol. 15:486–99.
- Scott AC, Dundar F, Zumbo P, Chandran SS, Klebanoff CA, Shakiba M, et al. TOX is a critical regulator of tumour-specific T cell differentiation. Nature. 2019;571:270–4.
- Jia B, Zhao C, Rakszawski KL, Claxton DF, Ehmann WC, Rybka WB, et al. Eomes(+)T-bet(low) CD8(+) T cells are functionally impaired and are Associated with poor clinical outcome in patients with Acute myeloid leukemia. Cancer Res. 2019;79:1635–45.
- Wang F, Hou H, Wu S, Tang Q, Liu W, Huang M et al. TIGIT expression levels on human NK cells correlate with functional he terogeneity among healthy individuals. Eur J Immunol.45:2886–97.
- Liu S, Zhang H, Li M, Hu D, Li C, Ge B, et al. Recruitment of Grb2 and SHIP1 by the ITT-like motif of TIGIT suppresses granule polarization and cytotoxicity of NK cells. Cell Death Differ. 2013;20:456–64.
- 35. Li M, Xia P, Du Y, Liu S, Huang G, Chen J et al. T-cell immunoglobulin and ITIM domain (TIGIT) receptor/poliovirus rece ptor (PVR) ligand engagement suppresses interferon-γ production of nat ural killer cells via β-arrestin 2-mediated negative signaling. J Biol Chem.289:17647–57.
- Joller N, Hafler JP, Brynedal B, Kassam N, Spoerl S, Levin SD, et al. Cutting edge: TIGIT has T cell-intrinsic inhibitory functions. J Immunol. 2011;186:1338–42.
- Li K, Yuan Z, Lyu J, Ahn E, Davis SJ, Ahmed R, et al. PD-1 suppresses TCR-CD8 cooperativity during T-cell antigen recognition. Nat Commun. 2021;12:2746.
- Calvet-Mirabent M, Sánchez-Cerrillo I, Martín-Cófreces N, Martínez-Fleta P, de la Fuente H, Tsukalov I, et al. Antiretroviral therapy duration and immunometabolic state determine efficacy of ex vivo dendritic cell-based treatment restoring functional HIV-specific CD8 + T cells in people living with HIV. EBioMedicine. 2022;81:104090.
- 39. Fathi M, Bahmanpour S, Barshidi A, Rasouli H, Karoon Kiani F, Mahmoud Salehi Khesht A, et al. Simultaneous blockade of TIGIT and HIF-1α induces synergistic anti-tumor effect and decreases the growth and development of cancer cells. Int Immunopharmacol. 2021;101:108288.
- Shibuya A, Campbell D, Hannum C, Yssel H, Franz-Bacon K, McClanahan T, et al. DNAM-1, a novel adhesion molecule involved in the cytolytic function of T lymphocytes. Immunity. 1996;4:573–81.
- Ramsbottom KM, Hawkins ED, Shimoni R, McGrath M, Chan CJ, Russell SM, et al. Cutting edge: DNAX accessory molecule 1-deficient CD8 + T cells display immunological synapse defects that impair antitumor immunity. J Immunol. 2014;192:553–7.
- Shibuya K, Lanier LL, Phillips JH, Ochs HD, Shimizu K, Nakayama E, et al. Physical and functional association of LFA-1 with DNAM-1 adhesion molecule. Immunity. 1999;11:615–23.
- Du X, de Almeida P, Manieri N, de Almeida Nagata D, Wu TD, Harden Bowles K, et al. CD226 regulates natural killer cell antitumor responses via phosphorylation-mediated inactivation of transcription factor FOXO1. Proc Natl Acad Sci U S A. 2018;115:E11731–e40.
- Deng Y, Kerdiles Y, Chu J, Yuan S, Wang Y, Chen X, et al. Transcription factor Foxo1 is a negative regulator of natural killer cell maturation and function. Immunity. 2015;42:457–70.
- Hedrick SM, Hess Michelini R, Doedens AL, Goldrath AW, Stone EL. FOXO transcription factors throughout T cell biology. Nat Rev Immunol. 2012;12:649–61.
- Shibuya K, Shirakawa J, Kameyama T, Honda S, Tahara-Hanaoka S, Miyamoto A, et al. CD226 (DNAM-1) is involved in lymphocyte function-associated antigen 1 costimulatory signal for naive T cell differentiation and proliferation. J Exp Med. 2003;198:1829–39.
- Gilfillan S, Chan CJ, Cella M, Haynes NM, Rapaport AS, Boles KS, et al. DNAM-1 promotes activation of cytotoxic lymphocytes by nonprofessional antigenpresenting cells and tumors. J Exp Med. 2008;205:2965–73.
- Kerdiles YM, Stone EL, Beisner DR, McGargill MA, Ch' IL, Stockmann C, et al. Foxo transcription factors control regulatory T cell development and function. Immunity. 2010;33:890–904.
- 49. Li J, Zhou J, Huang H, Jiang J, Zhang T, Ni C. Mature dendritic cells enriched in immunoregulatory molecules (mregDCs): a novel population in the

tumour microenvironment and immunotherapy target. Clin Transl Med. 2023;13:e1199.

- 50. de Waal Malefyt R, Haanen J, Spits H, Roncarolo MG, te Velde A, Figdor C, et al. Interleukin 10 (IL-10) and viral IL-10 strongly reduce antigen-specific human T cell proliferation by diminishing the antigen-presenting capacity of monocytes via downregulation of class II major histocompatibility complex expression. J Exp Med. 1991;174:915–24.
- Mao XC, Yang CC, Yang YF, Yan LJ, Ding ZN, Liu H, et al. Peripheral cytokine levels as novel predictors of survival in cancer patients treated with immune checkpoint inhibitors: a systematic review and meta-analysis. Front Immunol. 2022;13:884592.
- Joller N, Lozano E, Burkett PR, Patel B, Xiao S, Zhu C, et al. Treg cells expressing the coinhibitory molecule TIGIT selectively inhibit proinflammatory Th1 and Th17 cell responses. Immunity. 2014;40:569–81.
- Zhang Y, Maksimovic J, Naselli G, Qian J, Chopin M, Blewitt ME, et al. Genomewide DNA methylation analysis identifies hypomethylated genes regulated by FOXP3 in human regulatory T cells. Blood. 2013;122:2823–36.
- Fourcade J, Sun Z, Chauvin JM, Ka M, Davar D, Pagliano O et al. CD226 opposes TIGIT to disrupt Treqs in melanoma. JCI Insight. 2018;3.
- Kurtulus S, Sakuishi K, Ngiow SF, Joller N, Tan DJ, Teng MW, et al. TIGIT predominantly regulates the immune response via regulatory T cells. J Clin Invest. 2015;125:4053–62.
- Noguchi Y, Maeda A, Lo PC, Takakura C, Haneda T, Kodama T, et al. Human TIGIT on porcine aortic endothelial cells suppresses xenogeneic macrophage-mediated cytotoxicity. Immunobiology. 2019;224:605–13.
- Brauneck F, Fischer B, Witt M, Muschhammer J, Oelrich J, da Costa Avelar PH et al. TIGIT blockade repolarizes AML-associated TIGIT(+) M2 macrophages to an M1 phenotype and increases CD47-mediated phagocytosis. J Immunother Cancer. 2022;10.
- Mao L, Xiao Y, Yang QC, Yang SC, Yang LL, Sun ZJ. TIGIT/CD155 blockade enhances anti-PD-L1 therapy in head and neck squamous cell carcinoma by targeting myeloid-derived suppressor cells. Oral Oncol. 2021;121:105472.
- Li S, Li L, Pan T, Li X, Tong Y, Jin Y. Prognostic value of TIGIT in East Asian patients with solid cancers: a systematic review, meta-analysis and pancancer analysis. Front Immunol. 2022;13:977016.
- 60. Freed-Pastor WA, Lambert LJ, Ely ZA, Pattada NB, Bhutkar A, Eng G, et al. The CD155/TIGIT axis promotes and maintains immune evasion in neoantigenexpressing pancreatic cancer. Cancer Cell. 2021;39:1342–60e14.
- He W, Zhang H, Han F, Chen X, Lin R, Wang W, et al. CD155T/TIGIT signaling regulates CD8(+) T-cell metabolism and promotes Tumor Progression in Human gastric Cancer. Cancer Res. 2017;77:6375–88.
- Liang R, Zhu X, Lan T, Ding D, Zheng Z, Chen T, et al. TIGIT promotes CD8(+) T cells exhaustion and predicts poor prognosis of colorectal cancer. Cancer Immunol Immunother. 2021;70:2781–93.
- Zhang Q, Bi J, Zheng X, Chen Y, Wang H, Wu W, et al. Blockade of the checkpoint receptor TIGIT prevents NK cell exhaustion and elicits potent antitumor immunity. Nat Immunol. 2018;19:723–32.
- Zhang X, Zhang H, Chen L, Feng Z, Gao L, Li Q. TIGIT expression is upregulated in T cells and causes T cell dysfunction independent of PD-1 and Tim-3 in adult B lineage acute lymphoblastic leukemia. Cell Immunol. 2019;344:103958.
- Catakovic K, Gassner FJ, Ratswohl C, Zaborsky N, Rebhandl S, Schubert M, et al. TIGIT expressing CD4 + T cells represent a tumor-supportive T cell subset in chronic lymphocytic leukemia. Oncoimmunology. 2017;7:e1371399.
- Gournay V, Vallet N, Peux V, Vera K, Bordenave J, Lambert M, et al. Immune landscape after allo-HSCT: TIGIT- and CD161-expressing CD4 T cells are associated with subsequent leukemia relapse. Blood. 2022;140:1305–21.
- Kong Y, Zhu L, Schell TD, Zhang J, Claxton DF, Ehmann WC, et al. T-Cell immunoglobulin and ITIM Domain (TIGIT) Associates with CD8 + T-Cell exhaustion and poor clinical outcome in AML Patients. Clin Cancer Res. 2016;22:3057–66.
- Zeng X, Yao D, Liu L, Zhang Y, Lai J, Zhong J, et al. Terminal differentiation of bone marrow NK cells and increased circulation of TIGIT(+) NK cells may be related to poor outcome in acute myeloid leukemia. Asia Pac J Clin Oncol. 2022;18:456–64.
- Liu G, Zhang Q, Yang J, Li X, Xian L, Li W, et al. Increased TIGIT expressing NK cells with dysfunctional phenotype in AML patients correlated with poor prognosis. Cancer Immunol Immunother. 2022;71:277–87.
- Jin Z, Lan T, Zhao Y, Du J, Chen J, Lai J, et al. Higher TIGIT(+)CD226(-) gammadelta T cells in patients with Acute myeloid leukemia. Immunol Invest. 2022;51:40–50.

- Arruga F, Rubin M, Papazoglou D, Iannello A, Ioannou N, Moia R et al. The immunomodulatory molecule TIGIT is expressed by chronic lymphocytic leukemia cells and contributes to anergy. Haematologica. 2023.
- Jiang VC, Hao D, Jain P, Li Y, Cai Q, Yao Y, et al. TIGIT is the central player in T-cell suppression associated with CAR T-cell relapse in mantle cell lymphoma. Mol Cancer. 2022;21:185.
- Jackson Z, Hong C, Schauner R, Dropulic B, Caimi PF, de Lima M, et al. Sequential single-cell transcriptional and protein marker profiling reveals TIGIT as a marker of CD19 CAR-T cell dysfunction in patients with Non-Hodgkin Lymphoma. Cancer Discov. 2022;12:1886–903.
- Josefsson SE, Huse K, Kolstad A, Beiske K, Pende D, Steen CB, et al. T cells expressing checkpoint receptor TIGIT are enriched in follicular lymphoma tumors and characterized by reversible suppression of T-cell receptor signaling. Clin Cancer Res. 2018;24:870–81.
- Yang ZZ, Kim HJ, Wu H, Jalali S, Tang X, Krull JE, et al. TIGIT expression is Associated with T-cell suppression and exhaustion and predicts clinical outcome and Anti-PD-1 response in follicular lymphoma. Clin Cancer Res. 2020;26:5217–31.
- Liu ZY, Deng L, Jia Y, Liu H, Ding K, Wang W, et al. CD155/TIGIT signalling plays a vital role in the regulation of bone marrow mesenchymal stem cellinduced natural killer-cell exhaustion in multiple myeloma. Clin Transl Med. 2022;12:e861.
- Guillerey C, Harjunpaa H, Carrie N, Kassem S, Teo T, Miles K, et al. TIGIT immune checkpoint blockade restores CD8(+) T-cell immunity against multiple myeloma. Blood. 2018;132:1689–94.
- Minnie SA, Kuns RD, Gartlan KH, Zhang P, Wilkinson AN, Samson L, et al. Myeloma escape after stem cell transplantation is a consequence of T-cell exhaustion and is prevented by TIGIT blockade. Blood. 2018;132:1675–88.
- Ishida Y, Agata Y, Shibahara K, Honjo T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. Embo j. 1992;11:3887–95.
- Sharpe AH, Wherry EJ, Ahmed R, Freeman GJ. The function of programmed cell death 1 and its ligands in regulating autoimmunity and infection. Nat Immunol. 2007;8:239–45.
- 81. Francisco LM, Sage PT, Sharpe AH. The PD-1 pathway in tolerance and autoimmunity. Immunol Rev. 2010;236:219–42.
- Dong H, Zhu G, Tamada K, Chen L. B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat Med. 1999;5:1365–9.
- Tseng SY, Otsuji M, Gorski K, Huang X, Slansky JE, Pai SI, et al. B7-DC, a new dendritic cell molecule with potent costimulatory properties for T cells. J Exp Med. 2001;193:839–46.
- 84. Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol. 2008;26:677–704.
- Efremova M, Rieder D, Klepsch V, Charoentong P, Finotello F, Hackl H, et al. Targeting immune checkpoints potentiates immunoediting and changes the dynamics of tumor evolution. Nat Commun. 2018;9:32.
- Topalian SL. Targeting Immune Checkpoints in Cancer Therapy. JAMA. 2017;318:1647–8.
- Luke JJ, Flaherty KT, Ribas A, Long GV. Targeted agents and immunotherapies: optimizing outcomes in melanoma. Nat Rev Clin Oncol. 2017;14:463–82.
- Huang MY, Jiang XM, Wang BL, Sun Y, Lu JJ. Combination therapy with PD-1/ PD-L1 blockade in non-small cell lung cancer: strategies and mechanisms. Pharmacol Ther. 2021;219:107694.
- Xu-Monette ZY, Zhou J, Young KH. PD-1 expression and clinical PD-1 blockade in B-cell lymphomas. Blood. 2018;131:68–83.
- Hossain MA, Liu G, Dai B, Si Y, Yang Q, Wazir J, et al. Reinvigorating exhausted CD8(+) cytotoxic T lymphocytes in the tumor microenvironment and current strategies in cancer immunotherapy. Med Res Rev. 2021;41:156–201.
- Villanueva MT, Immunotherapy. Searching in the immune checkpoint black box. Nat Rev Cancer. 2017;17:511.
- Nishino M, Ramaiya NH, Hatabu H, Hodi FS. Monitoring immune-checkpoint blockade: response evaluation and biomarker development. Nat Rev Clin Oncol. 2017;14:655–68.
- Sun S, Xu L, Zhang X, Pang L, Long Z, Deng C et al. Systematic Assessment of Transcriptomic biomarkers for Immune Checkpoint Blockade Response in Cancer Immunotherapy. Cancers (Basel). 2021;13.
- 94. Sehrawat N, Yadav M, Singh M, Kumar V, Sharma VR, Sharma AK. Probiotics in microbiome ecological balance providing a therapeutic window against cancer. Semin Cancer Biol. 2021;70:24–36.
- 95. Budhu S, Giese R, Gupta A, Fitzgerald K, Zappasodi R, Schad S, et al. Targeting phosphatidylserine enhances the anti-tumor response to Tumor-Directed

Radiation Therapy in a preclinical model of Melanoma. Cell Rep. 2021;34:108620.

- Kim HJ, Cantor H, Cosmopoulos K. Overcoming Immune Checkpoint Blockade Resistance via EZH2 Inhibition. Trends Immunol. 2020;41:948–63.
- Vesely MD, Zhang T, Chen L. Resistance mechanisms to Anti-PD Cancer Immunotherapy. Annu Rev Immunol. 2022;40:45–74.
- Niu J, Maurice-Dror C, Lee DH, Kim DW, Nagrial A, Voskoboynik M, et al. First-in-human phase 1 study of the anti-TIGIT antibody vibostolimab as monotherapy or with pembrolizumab for advanced solid tumors, including non-small-cell lung cancer(☆). Ann Oncol. 2022;33:169–80.
- 99. Italiano M-J Ahn, Andres Cervantes; Zev Wainberg, Namrata S, Patil.; Jane Grogan; Raymond Meng; Byoung Cho; Tae Won Kim JCBPBY-JBPLSHMGS-DASDAJDEGA. Abstract CT302: phase Ia/lb dose-escalation study of the anti-TIGIT antibody tiragolumab as a single agent and in combination with atezolizumab in patients with advanced solid tumors. Cancer Res. 2020;80.
- 100. Li X, Wang R, Fan P, Yao X, Qin L, Peng Y, et al. A Comprehensive Analysis of Key Immune Checkpoint Receptors on Tumor-Infiltrating T cells from multiple types of Cancer. Front Oncol. 2019;9:1066.
- 101. Han HS, Jeong S, Kim H, Kim HD, Kim AR, Kwon M, et al. TOX-expressing terminally exhausted tumor-infiltrating CD8(+) T cells are reinvigorated by coblockade of PD-1 and TIGIT in bladder cancer. Cancer Lett. 2021;499:137–47.
- 102. Simon S, Voillet V, Vignard V, Wu Z, Dabrowski C, Jouand N et al. PD-1 and TIGIT coexpression identifies a circulating CD8 T cell subset predictive of response to anti-PD-1 therapy. J Immunother Cancer. 2020;8.
- 103. Liu Z, Zeng H, Jin K, Yu Y, You R, Zhang H, et al. TIGIT and PD-1 expression atlas predicts response to adjuvant chemotherapy and PD-L1 blockade in muscleinvasive bladder cancer. Br J Cancer. 2022;126:1310–7.
- Hui E, Cheung J, Zhu J, Su X, Taylor MJ, Wallweber HA, et al. T cell costimulatory receptor CD28 is a primary target for PD-1-mediated inhibition. Science. 2017;355:1428–33.
- 105. Freed-Pastor WA, Lambert LJ, Ely ZA, Pattada NB, Bhutkar A, Eng G, et al. The CD155/TIGIT axis promotes and maintains immune evasion in neoantigenexpressing pancreatic cancer. Cancer Cell. 2021;39:1342–60e14.
- Thibaudin M, Limagne E, Hampe L, Ballot E, Truntzer C, Ghiringhelli F. Targeting PD-L1 and TIGIT could restore intratumoral CD8 T cell function in human colorectal cancer. Cancer Immunol Immunother. 2022;71:2549–63.
- Hung AL, Maxwell R, Theodros D, Belcaid Z, Mathios D, Luksik AS, et al. TIGIT and PD-1 dual checkpoint blockade enhances antitumor immunity and survival in GBM. Oncoimmunology. 2018;7:e1466769.
- Hansen K, Kumar S, Logronio K, Whelan S, Qurashi S, Cheng HY, et al. COM902, a novel therapeutic antibody targeting TIGIT augments anti-tumor T cell function in combination with PVRIG or PD-1 pathway blockade. Cancer Immunol Immunother. 2021;70:3525–40.
- 109. Franks SE, Fabian KP, Santiago-Sánchez G, Wolfson B, Hodge JW. Immune targeting of three independent suppressive pathways (TIGIT, PD-L1, TGFβ) provides significant antitumor efficacy in immune checkpoint resistant models. Oncoimmunology. 2022;11:2124666.
- 110. Liu L, Wang A, Liu X, Han S, Sun Y, Zhang J, et al. Blocking TIGIT/CD155 signalling reverses CD8(+) T cell exhaustion and enhances the antitumor activity in cervical cancer. J Transl Med. 2022;20:280.
- 111. Wang M, Bu J, Zhou M, Sido J, Lin Y, Liu G, et al. CD8(+)T cells expressing both PD-1 and TIGIT but not CD226 are dysfunctional in acute myeloid leukemia (AML) patients. Clin Immunol. 2018;190:64–73.
- Josefsson SE, Beiske K, Blaker YN, Førsund MS, Holte H, Østenstad B, et al. TIGIT and PD-1 Mark Intratumoral T cells with reduced effector function in B-cell Non-Hodgkin Lymphoma. Cancer Immunol Res. 2019;7:355–62.
- 113. Zhao K, Ren C, Tang D, Zhao L, Chen X, Wang Y, et al. The altering cellular components and function in tumor microenvironment during remissive and relapsed stages of anti-CD19 CAR T-cell treated lymphoma mice. Front Immunol. 2023;14:1101769.
- 114. Lee YH, Lee HJ, Kim HC, Lee Y, Nam SK, Hupperetz C, et al. PD-1 and TIGIT downregulation distinctly affect the effector and early memory phenotypes of CD19-targeting CART cells. Mol Ther. 2022;30:579–92.
- 115. Mettu NB, Ulahannan SV, Bendell JC, Garrido-Laguna I, Strickler JH, Moore KN, et al. A phase 1a/b Open-Label, dose-escalation study of Etigilimab alone or in combination with Nivolumab in patients with locally advanced or metastatic solid tumors. Clin Cancer Res. 2022;28:882–92.
- 116. Cheng Y, Liu B, Wu L, Zhang T, Wang K, Miao L, et al. 77P A study to evaluate the safety, tolerability and efficacy of IBI939 in Combination with Sintilimab in patients with previously untreated locally Advanced Unresectable or metastatic PD-L1-Selected Non-Small Cell Lung Cancer (NSCLC). Ann Oncol. 2022;16(suppl1):100102.

- 117. Kumar R, Zhong SHKD, Lu S, Cheng Y, Chen M, Cho E, Clay T, Kang J-H, Lee G-W, Sun M, Shim B-Y, Spigel DR, Yang T-Y, Wang Q, Chang G-C, Yu G, Wang R, Luo X, Zheng H. Kim EP08.01-073 AdvanTIG-105: phase 1b dose-expansion study of Ociperlimab plus Tislelizumab in patients with metastatic NSCLC. J Thorac Oncol. 2022;17:375–S6.
- 118. Zhang J, Hussein M, Kao SC-H, Clay TD, Singhal N, Kim HR et al. 148P -AdvanTIG-105: phase 1b dose-expansion study of Ociperlimab (OCI) + Tislelizumab (TIS) with chemotherapy in patients (pts) with extensive-stage small cell Lung Cancer (ES-SCLC) IMMUNO-ONCOLOGY AND TECHNOLOGY. 2022;16:100260.
- 119. Grob JJ. KEYMAKER-U02 substudy 2A: Pembrolizumab (pembro) plus quavonlimab (qmab) and vibostolimab (vibo) or lenvatinib (len) in anti-PD- 1/ L1-refractory advanced melanoma. Pigment Cell Melanoma Res. 2022.
- 120. Sarikonda G, Wallace BK, Wiesner C, Krishnan S, Lewicki JA, Kapoun AM. 111P interim biomarker analysis of a phase lb/ll study of anti-TIGIT e tigilimab (MPH313) and nivolumab in subjects with select locally advan ced or metastatic solid tumors (ACTIVATE). Ann Oncol.33:S589.
- 121. Johnson ML, Fox W, Lee Y-G, Lee KH, Ahn HK, Kim Y-C et al. ARC-7: randomized phase 2 study of domvanalimab + zimberelimab ± etrum adenant versus zimberelimab in first-line, metastatic, PD-L1-high non- small cell lung cancer (NSCLC). J Clin Oncol.40:397600-.
- 122. Charles M, Rudin SVL, Lu S, Soo RA, Hong MH, Lee J-S, Bryl M, Dumoulin D, Chiu ARChao-Hua. Ozgur Ozyilkan, Alejandro Navarro, Silvia Novello, Yuichi Ozawa AL, Meilin Huang, Xiaohui Wen, Tien Hoang, Raymond Meng, Martin

- Grapin M, Richard C, Limagne E, Boidot R, Morgand V, Bertaut A, et al. Optimized fractionated radiotherapy with anti-PD-L1 and anti-TIGIT: a promising new combination. J Immunother Cancer. 2019;7:160.
- 124. Barsoumian HB, Sezen D, Menon H, Younes AI, Hu Y, He K et al. High plus low dose Radiation Strategy in Combination with TIGIT and PD 1 blockade to promote systemic antitumor responses. Cancers.14:221.
- 125. Zhao K, Jiang L, Si Y, Zhou S, Huang Z, Meng X. TIGIT blockade enhances tumor response to radiotherapy via a CD103 + dendritic cell-dependent mechanism. Cancer Immunol Immunother. 2023;72:193–209.
- 126. Hu Y, Paris S, Bertolet G, Barsoumian HB, He K, Sezen D et al. Combining a nanoparticle-mediated immunoradiotherapy with dual blockad e of LAG3 and TIGIT improves the treatment efficacy in anti-PD1 resist ant lung cancer. J Nanobiotechnol.20:417.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.