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Abstract 

Breast cancer is the second leading cause of death for women worldwide. The heterogeneity of this disease presents 
a big challenge in its therapeutic management. However, recent advances in molecular biology and immunology 
enable to develop highly targeted therapies for many forms of breast cancer. The primary objective of targeted ther‑
apy is to inhibit a specific target/molecule that supports tumor progression. Ak strain transforming, cyclin‑dependent 
kinases, poly (ADP‑ribose) polymerase, and different growth factors have emerged as potential therapeutic targets for 
specific breast cancer subtypes. Many targeted drugs are currently undergoing clinical trials, and some have already 
received the FDA approval as monotherapy or in combination with other drugs for the treatment of different forms 
of breast cancer. However, the targeted drugs have yet to achieve therapeutic promise against triple‑negative breast 
cancer (TNBC). In this aspect, immune therapy has come up as a promising therapeutic approach specifically for TNBC 
patients. Different immunotherapeutic modalities including immune‑checkpoint blockade, vaccination, and adoptive 
cell transfer have been extensively studied in the clinical setting of breast cancer, especially in TNBC patients. The FDA 
has already approved some immune‑checkpoint blockers in combination with chemotherapeutic drugs to treat TNBC 
and several trials are ongoing. This review provides an overview of clinical developments and recent advancements in 
targeted therapies and immunotherapies for breast cancer treatment. The successes, challenges, and prospects were 
critically discussed to portray their profound prospects.
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Introduction
Despite ongoing medical advances, breast cancer remains 
the second most widespread and fatal malignancy in 
females [1]. During the past four decades, breast can-
cer incidences have risen alarmingly [2]. In 2020, there 
were approximately 2.3 million new cases of breast can-
cer worldwide, and there were also roughly 6,85,000 
deaths from this illness, with notable geographic varia-
tions between various countries and regions [3]. Notably, 
high-economic nations represent a greater percentage of 
breast cancer fatalities. By 2040, it has been anticipated 
that there will be more than 3 million new instances of 
breast cancer each year with more than 1 million annual 
deaths [4]. There are several different forms of breast car-
cinoma. It has been found that steroid hormone receptors 
(HRs) are significant prognostic factors for breast cancer 
[5]. Breast cancer cells with HRs expressing estrogen (ER), 
progesterone (PR), or both are referred to as ER-positive 
(ER +), PR-positive (PR +), or ER/PR positive (ER + /PR +) 
breast cancers, respectively. Most breast carcinomas are 
ER + and of those, more than half are both ER + /PR + ; 
while, only about 2% are solely PR + . Triple-negative 
breast cancer (TNBC) refers to the cancerous cells lack-
ing ER and PR as well as making too little or no expression 
of human epidermal growth receptor 2 (HER2). About 
10–15% of all breast carcinomas are TNBC. In recent 
years immunogenic prospects of breast tumor have been 
revealed. The discovery of tumor-infiltrating lymphocytes 
(TILs) within breast cancers demonstrated the immuno-
genic character of breast cancer [6, 7]. Analysis of breast 
tumor samples revealed that individuals with HER2-pos-
itive (HER2 +) and TNBC had a greater number of TILs 
than those of HR-positive (HR +) subtypes [8, 9].

After decades of endocrine and other therapies, an 
improved understanding of immune evasion by cancer-
ous cells and the creation of specific immune checkpoint 
antagonists have unveiled new therapeutic options [10–
14]. Immunotherapy involves the enhancement of host 
immunity and admits cancer as a foreign antigen, which 
leads to the destruction of cancer cells. However, some 
adverse events have been advocated in the patients who 
received immunotherapies, which include fatigue, nau-
sea, vomiting, dizziness, and pruritus [15]. Enterocol-
itis, endocrinopathies, liver anomalies, and uveitis are 
some additional immune-related side effects that can 
result from using immunotherapeutics like ipilimumab. 
Immune checkpoint blockers are being used in conjunc-
tion with chemotherapy, targeted therapy, and radia-
tion therapy under intense examination due to the low 
efficacy of previous immunotherapeutic drugs in treat-
ing many kinds of breast carcinoma. On the other hand, 
breast cancer-targeted therapies use substances or drugs 
to inhibit disease progression by obstructing certain 

components essential for cancer cell survival, prolif-
eration, and migration, as well as for angiogenesis [16]. 
Poly (ADP-ribose) polymerase (PARP), cyclin-dependent 
kinase (CDK) 4 and 6 (CDK4/6), Ak strain transform-
ing (AKT), and fibroblast growth factor receptor (FGFR) 
are well-established therapeutic targets that have been 
the main focus of drug development for the treatment of 
breast cancer [17–20]. Patients under targeted therapy 
also deal with some common side effects such as nausea, 
vomiting, diarrhea, tiredness, and rashes. Thus, adequate 
attention must be given to address the toxicity concerns 
of both the targeted and immune therapies. This review 
will give a concise overview of the different targeted and 
immunotherapies used to treat breast cancer. The effec-
tiveness and safety of immunotherapy in combination 
with chemotherapy and/or radiotherapy, HER2-targeted 
therapy, CDK4/6 inhibitors, angiogenesis inhibitors, 
PARP antagonists, and other treatments in the clinical 
setting were also covered in this review.

Crosstalk pathway in breast cancer
A growing body of evidence revealed that the activation 
of prolactin (PRL) receptor (PRLR) and erythroblastic 
leukemia viral oncogene homolog receptor (ErbBR) 
endorses oncogenesis in mammary glands, supports 
breast tumor growth, and induces chemoresistance 
[21, 22]. The amplification of the epidermal growth fac-
tor (EGF) receptor (EGFR), HER2, as well as PRLR in 
breast cancers, has been regarded to accelerate tumor 
growth by activating their downstream signaling path-
ways [23]. Secretion of PRL from breast cells leads to 
the activation of downstream PRLR signaling, involving 
the activation of Janus kinase (JAK)/signal transducer 
and activator of transcription (STAT), phosphoinositide 
3-kinase (PI3K)/Ak strain transforming (AKT), and 
mitogen-activated protein kinase (MAPK) pathways, 
which have been implicated in mammary tumorigenesis 
[24, 25]. When EGF is released, the complete pathway 
is covered, which aids in the formation of a complex 
with specificity protein 1 (Sp1) and enhancer binding 
protein (EBP) resulting in activation of STAT5. Further 
overexpression of EGFR2 activates the RAS/focal adhe-
sion kinase (FAK) signaling pathways, activating EGFR 
by cross-phosphorylation. Mitogen-activated protein 
kinase kinase  (MEK)/extracellular signal-regulated 
kinase 1/2 (ERK1/2) along with PI3K/AKT pathways 
are jointly induced by PRL and EGF through their cor-
responding receptors, promoting the proliferation, sur-
vival, and metastasis of breast cancer cells [26]. Thus, 
PRL factors as well as EGFR signaling pathways interact 
in breast cancer development and progression. In cell 
line-based assay involving breast cancer cells (MCF-7 
and T47D), it has been found that the PRL/PRLR 
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triggers EGFR2 phosphorylation (tyr1221 and 1222) 
via JAK2, activating the downstream PI3K/AKT sign-
aling [26]. Crosstalk between PRLR and HER2 signal-
ing allows the phosphorylation of ER, its attachment to 
the PRLR regulator, as well as a rise in PRLR dictation 
[21]. It has also been revealed that EGF/EGFR could 
phosphorylate ER (ser118 and 167) and initiate down-
stream MAPK signaling in breast cancer cells, as well as 
STAT5b and PRLR transcription [27]. Proto-oncogene 
tyrosine-protein kinase SRC (c-SRC) endorses EGFR 
phosphorylation (tyr845) and allows EGFR to indirectly 
bind to and activate STAT5b. This results in the acti-
vation of ER to the generic hPIII promoter and PRLR. 

It has been revealed that endogenous PRL is necessary 
for ER on PRLR activation [28]. EGFR can also endorse 
STAT5 activation directly via phosphorylation in an 
EGFR-dependent manner [21]. Activated STAT5 trans-
locate to the nucleus, which endorses the transcription 
of certain genes important for proliferation, diversi-
fication, as well as survival. Additionally, it has been 
revealed that EGFR and HER2 activation are related 
to STAT3 activation, which also encourages tumor 
survival and development [21, 28]. Fig.  1 explains the 
crosstalk between PRLR and EGFR/HER2 signaling to 
accelerate the growth of breast tumor.

Fig. 1 Crosstalk between PRLR and EGFR/HER2 signaling to promote breast cancer progression. PRL endorses PRLR activation, which recruits 
downstream pathways, such as JAK/STAT, MAPK/ERK, PI3K/AKT/mTOR, NEK3/VAV2/RhoA and TEC/VAV1/RAC1 involved in growth, survival, and 
migration of breast cancer. EGF/EGFR signaling somewhat overlaps with PRLR signaling to result in the activation of similar downstream events. 
PRLR/HER2 crosstalk endorses ER phosphorylation and promotes its attachment to the PRLR regulator and promotes PRLR transcription. EGF/EGFR 
can also trigger PRLR transcription in MAPK/PI3K‑dependent manner. In addition, PRL/PRLR activation recruits HRE2 via JAK2 resulting an activation 
of FAC signaling that promotes cell adherence and induces metastasis. Arrows represent downstream events. AKT, Ak strain transforming; EGF, 
Epidermal growth factor; EGFR, Epidermal growth factor receptor; ER, Estrogen receptor; ERK, Extracellular signal‑regulated kinase; GRB2, Growth 
factor receptor‑bound protein 2; HER2, Human epidermal growth factor‑2; JAK, Janus kinase, MAPK, Mitogen‑activated protein kinase; mTOR, 
Mammalian target of rapamycin; NEK3, NIMA‑related kinase 3; P, Phosphate; PI3K, Phosphoinositide 3‑kinase; PRL, Prolactin; PRLR: Prolactin receptor; 
RhoA, Ras homolog family member A; STAT, Signal transducer and activator of transcription; TEK, TEK receptor tyrosine kinase; VAV, Vav guanine 
nucleotide exchange factor 1
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Targeted therapy
Surgery followed by radiotherapy and chemotherapy is 
the standard treatment protocol for breast cancer man-
agement [29]. The aim of chemotherapy after surgery 
or radiotherapy is to reduce the likelihood of cancer 
recurrence. Targeted drug therapy aims at target pro-
teins on breast cancer cells that support their growth, 
spread, and ability to proliferate [30]. The most effec-
tive therapies for breast cancer are those that specifi-
cally target the ER and HER2 receptors [31]. A growing 
body of evidence has proposed some promising novel 
therapies for several forms of breast cancer, includ-
ing TNBC and HER2  + carcinomas [32]. Aromatase 
antagonists, endocrine treatment, selective ER modu-
lators (SERMs), and selective estrogen down regula-
tors (SERDs) are all well-known forms of personalized 
therapy for HER2 + breast cancer [33, 34]. The course 
of breast cancer is largely influenced by estrogen and 
ER [35, 36]. This is the rationale behind the long-
standing practice of inhibiting the estrogen signaling 
pathway in breast cancer patients that are ER + . The 
first approved drug for treating ER + advanced breast 
cancer was tamoxifen, which reduces tumor recur-
rence by roughly 40–50% [37]. SERMs have indeed 
been utilized to limit cancer growth in estrogen-reliant 
forms of breast cancer [38]. Inhibitors of any of the 
targets, such as PARP, HER2, PI3K, AKT, mammalian 
target of rapamycin (mTOR), fibroblast growth fac-
tor (FGF) receptors (FGFRs), and vascular endothe-
lial growth factor (VEGF), could potentially be used 
as therapeutic approaches to stop the progression of 
breast cancer due to their roles in various pathways of 
carcinogenesis, including the cell cycle, angiogenesis, 
metastasis, etc. [39, 40]. These inhibitors have already 
demonstrated clinical potential. An mTOR-inhibitor, 
zortress  (42-O-(2-hydroxyethyl)rapamycin) has been 
authorized for advanced or metastatic aromatase 
antagonist-resistant ER + breast carcinoma. There is 
presently no approved targeted therapy for TNBC so 
far. Given the variety of breast cancer, it is unavoidable 
that the treatments will be more carefully individual-
ized for each subtype, stage, and grade of breast cancer 
[41].

PARP inhibitors
PARP enzymes play crucial roles in many cellular events 
including the deoxyribonucleic acid (DNA) repairing 
process [42]. Two enzymes, PARP1 and PARP2, which 
are activated by DNA strand break, take a role in DNA 
repair. A growing body of evidence has highlighted PARP 
as a possible chemotherapeutic target [42]. Inhibition of 
PARP enzymes prevents DNA repair and causes DNA 

strands to break, posing a danger to cell survival [43]. 
Four PARP antagonists have been studied extensively in 
the clinical setting of breast cancers.

Olaparib, the first US Food and Drug Administration 
(FDA) approved PARP inhibitor, belongs to N-acyl pip-
erazine class [44]. Olaparib inhibits the activity of DNA 
topoisomerase 2-binding protein 1 (TOPBP1) and WEE1 
(nuclear kinase belonging to the ser/thr family). This 
results in the buildup of DNA damage that persists dur-
ing mitosis and resulting in mitotic catastrophe and cell 
death.. It is one of the PARP inhibitors, which does not 
cause transaminitis [45]. Importantly, this drug is deliv-
ered through the oral route. In the phase III OlympiAD 
trial (NCT02000622), olaparib (300  mg, twice daily) 
monotherapy was found to be more effective than stand-
ard therapy in patients with metastatic HER2 − breast 
cancer and germline breast cancer gene (gBRCA) muta-
tions in terms of prolonging progression-free survival 
(2.8  months) and reducing death (42%) [46]. However, 
olaparib has been mostly studied as an adjuvant or 
neoadjuvant in combination with other chemothera-
peutic drugs. Olaparib has been used in combination 
with carboplatin, cyclophosphamide, dacarbazine, dur-
valumab, eribulin, gemcitabine, paclitaxel, and prexa-
sertib in different clinical studies. In the phase I/II trial 
(NCT01445418), the olaparib/carboplatin combination 
is tolerable and exhibits moderate activity in women 
with sporadic TNBC with the maximum tolerated 
dose of olaparib was 400 mg, twice daily [47]. However, 
the majority of grade 3 and 4 adverse events in 36% of 
patients were neutropenia, followed by thrombocytope-
nia and anemia in 11% of patients. In another phase I/
II trial (UMIN00009498), olaparib (300 mg twice daily)/
eribulin combination exhibited antitumor activity against 
sporadic TNBC patients; though, caution has been rec-
ommended if febrile neutropenia is present [48]. 20.8% 
of patients in phase I and 33.3% of patients in phase II 
experienced febrile neutropenia. Importantly, PARP inhi-
bition was assured even at the lowest dose of olaparib 
(25  mg, twice daily). In another phase I/II basket study 
(NCT02734004), a combination of olaparib (300  mg, 
twice daily) and durvalumab (1·5  g) exhibited promis-
ing anticancer efficacy and was well tolerated in gBRCA-
mutated metastatic breast cancer patients [49]. Olaparib 
given to patients with high-risk, HER2 − early breast can-
cer and gGRCA-pathogenic or likely pathogenic breast 
cancer after completion of local treatment was associ-
ated with a significantly longer invasive disease-free 
endurance of patients, according to a phase III trial 
(NCT02032823) [50]. In a phase II trial (NCT02789332), 
it was found that individuals with primary HER2 − breast 
cancer and homologous recombination deficiency 
responded better to olaparib than carboplatinum as 
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neoadjuvant with paclitaxel in terms of pathologi-
cal complete response percentage, followed by epiru-
bicin/cyclophosphamide chemotherapy [51]. However, 
if another drug is being taken that is subject to hepatic 
metabolism, the use of olaparib must be avoided.

Another potential orally effective PARP inhibitor is 
talazoparib which is efficacious against gBRCA-mutated, 
HER2 − breast cancer with an average tolerated dose of 
0.60–1 mg/day [52]. In the phase I trial (NCT01286987) 
involving 18 gBRCA-mutated progressive breast can-
cer patients, talazoparib (1 mg once daily) monotherapy 
resulted in a significant therapeutic response rate of 
50% and an excellent clinical benefit rate of 86% after 
24  weeks of treatment with a good safety and tolerabil-
ity profile [53]. Talazoparib (1 mg/day) treatment showed 
promising antitumor activity in a two-stage phase II 
study (NCT02034916), with manageable adverse effects 
for gBRCA-mutated progressive breast cancer subjects 
who had previously undergone platinum-based or non-
platinum chemotherapy [54]. In an open-label, rand-
omized, phase III trial (NCT01945775), talazoparib 
monotherapy significantly outperformed standard single 
agent-chemotherapy in terms of progression-free endur-
ance among individuals with gBRCA-mutated advanced 
breast carcinoma [55]. Common side effects were mostly 
hematologic, rarely happened after medication with-
drawal, and could be negotiated with dose adjustments 
or supportive treatment. In other reports, talazoparib has 
been revealed to be well tolerated and statistically more 
effective than other chemotherapeutic drugs in phase III 
clinical settings [56, 57].

Rucaparib is another orally effective well-tolerated 
PARP antagonist that ensured sustained PARP inhibi-
tion in the surrogate tissues even at the lower doses 
[58, 59]. In a phase II trial, a lack of objective response 
rate was seen after intravenous or oral rucaparib treat-
ment within a 21-day cycle in the patients representing 
gBRCA-mutated locally advanced or metastatic breast 
tumor. In 39% of breast cancer patients, stable illness on/
after 12 weeks was the best outcome [59]. Patsouris and 
colleagues reported that only a small population of breast 
cancer patients without gBRCA1/2 mutation represented 
a significant loss of heterozygosity scores and could be 
benefited from PARP inhibition by rucaparib [60]. In a 
phase I clinical trial (NCT01009190), it has been found 
that oral rucaparib (240 mg/day) can be safely combined 
with a clinically applicable dose of carboplatin [61]. The 
clinical observation did not indicate favorable results 
with cisplatin and low-dose rucaparib combination in 
BRCA-mutated TNBC [62, 63].

Niraparib is an orally effective PARP inhibitor with 
effective PARP-trapping activity and has exhibited poten-
tial anticancer effects against ovarian and prostate cancer 

in clinical settings [64, 65]. Niraparib has demonstrated 
a strong PARP inhibitory impact and improved clini-
cal benefit rates and was well tolerated in patients with 
gBRAC-mutated locally advanced or metastatic breast 
cancer [59]. In a randomized, phase III trial (BRAVO), 
breast cancer patients representing gBRCA mutation 
were randomized 2:1 between niraparib and the phy-
sicians’ optimal chemotherapy [66]. Centrally meas-
ured progression-free survival served as the principal 
outcome. Global survival, progression-free survival by 
limited evaluation, and objective response rate were con-
sidered secondary goals in addition to safety assessment. 
Following the pre-planned interim investigation, enroll-
ment was stopped due to the occurrence of a significant 
discrepancy between the local and central progression-
free survival assessments in the control (physicians’ 
choice chemotherapy)  arm, which caused informative 
withholding of the trial [67]. Some trials are ongoing to 
evaluate the clinical potential of niraparib in breast can-
cer management.

CDK4/6 inhibitors
CDK4/6 play important role in the proliferation of can-
cer cells (Fig. 2). Activation of CDK4/6 by D-type cyclins 
(cyclin D1/CDK4 and cyclin D3/CDK6) endorses phos-
phorylation of retinoblastoma-associated protein (Rb) 
[68]. By turning on E2F transcription, phospho-Rb ena-
bles the cell to advance through the cell cycle and divide. 
Since cyclin D upregulation and restoration phospho-Rb 
expression is common in HR + breast cancer cells, the 
G1/S checkpoint is a prime therapeutic target to arrest 
cancer cell proliferation [69]. In addition, the transcrip-
tion factor Forkhead box M1 (FOXM1) is an important 
phosphorylation target of CDK4/6 (Fig.  2). CDK4 and 
CDK6 endorse the stabilization and activation of FOXM1 
via phosphorylation leading to the activation of the 
G1/S phase gene expressions, the suppression of ROS, 
and the prevention of senescence in cancer cells [69]. 
The CDK4/6 inhibitors arrest the cell cycle through this 
checkpoint (Fig. 2). CDK 4/6 inhibitors are prescription 
drugs that are clinically effective along with hormonal 
therapies to treat HR + and HER2 − progressive or meta-
static mammary cancer [69]. FDA-approved CDK4/6 
antagonists for the treatment of various types of breast 
cancer include palbociclib, abemaciclib, and ribociclib.

Palbociclib, the first selective orally effective CDK4/6 
inhibitor, has received approval for use in treating can-
cer [70]. It is effective against HR + and HER − breast 
cancer or metastatic breast carcinoma in pre- or post-
menopausal women. It is mainly used in combination 
with hormonal therapeutics, such as aromatase inhibi-
tor and estrogen receptor antagonist. In contrast, Mayer 
and colleagues reported that the inclusion of palbociclib 
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did not improve the likelihood of disease-free survival of 
adjuvant endocrine therapy in phase III clinical settings 
(NCT02513394) [71]. In phase I trial (NCT00141297), 
palbociclib exhibited slow absorption  (Tmax = 5.5  h) and 
elimination  (t1/2 = 25.9 h) profile with a high distribution 
volume of 2,793 L. At a dose of 125  mg/day, neutrope-
nia has been identified as the main toxicity [72]. In the 
phase II trial (UPCC03909; NCT01037790), endocrine-
resistant, HR + and Rb + advanced breast cancer patients 
responded favorably to single-agent palbociclib (125 mg/
day, 1–21  days of a 28-day cycle) [73]. Uncomplicated 
cytopenias have been identified as adverse effects, which 
are negotiable with dose reduction. In a phase II clini-
cal study (NCT00721409), the inclusion of palbociclib 
(125  mg/day) to letrozole (2.5  mg/day) showed signifi-
cant improvement in progression-free survival with pro-
gressive ER + and HER2 − breast cancer [74]. Pulmonary 
embolism, back pain, and diarrhea were recorded as the 
serious adverse effects of this combination therapy only 
in a limited number (8%) of patients. Palbociclib was 

given the FDA approval for the treatment of HR + meta-
static breast cancer when used in conjunction with letro-
zole; studies also indicated that fulvestrant could improve 
clinical outcomes [75]. In a double-blind, placebo-con-
trolled, randomized phase III trial (NCT01942135), 
the palbociclib-fulvestrant treatment led to a longer 
overall survival (though statistically insignificant) than 
treatment with placebo-fulvestrant among HR + and 
HER2 − advanced breast cancer patients who had shown 
sensitivity to prior endocrine therapy [76].

Ribociclib is a highly selective and orally effective 
CDK4/6 inhibitor used for the treatment of HR + and 
HER2 − breast cancers with manageable toxicity profiles. 
In general, ribociclib is administered along with a hor-
mone-blocking agent in breast cancer management [77]. 
In a phase III trial (NCT01958021), ribociclib (600  mg/
day; 1–21  days of a 28-day cycle) in combination with 
letrozole (2.5 mg/day, continuous treatment) significantly 
prolonged progression-free survival in postmenopausal 
women with HR + and HER2 − breast cancers compared 

Fig. 2 The mechanistic insight of CDK4/6 inhibitors in the management of breast cancer. CDK4/6 activation leads to Rb activation via 
phosphorylation. Activated Rb enables cell cycle progression by turning on E2F transcription. In addition, CDK4 and CDK6 endorse the stabilization 
and activation of FOXM1 via phosphorylation, which in turn promotes the upregulation of the G1/S phase genes and the avoidance of cell 
senescence. CDK4/6 inhibitors, such as palbociclib, ribociclib, or abemaciclib arrest the cell cycle by suppressing CDK4/6 downstream signaling 
event and arrest. Grey arrows represent downstream events and red lines represent inhibition. CDK, Cyclin‑dependent kinase; FOXM1, Forkhead box 
protein M1; Rb: Retinoblastoma‑associated protein
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with placebo plus letrozole (25.3 months vs. 16.0 months) 
treated patients [78]. According to a phase III clinical 
trial (NCT02278120),ribociclib + letrozole treatment 
improved progression-free survival for premenopausal 
women bearing HR + and HER2 − progressive breast car-
cinoma, while exhibited a tolerable safety profile [79].

Abemaciclib is the strongest of these three CDK4/6 
inhibitors in terms of CDK4/6 enzyme inhibition poten-
tial in  vitro. It also demonstrated inhibitory effects on 
other kinases, such as CDK9 and proto-oncogene ser-
ine/threonine-protein kinase (PIM1) [80]. Oral treat-
ment, continuous dosing, effective target inhibition, and 
manageable toxicities make abemaciclib a new thera-
peutic option for the most prevalent forms of breast can-
cer [81]. The highest tolerated dose of abemaciclib was 
established to be 200 mg, twice daily accordance with a 
phase I trial (NCT01394016) [82]. Single-agent abemaci-
clib exhibited a higher clinical benefit rate in HR + breast 
cancer compared with HR − cases. Compared to mono-
therapy, combination with fulvestrant slightly improved 
the clinical benefit rate in HR + breast cancer cases. In 
an open-label phase II trial (NCT02102490), abemaci-
clib exhibited potential clinical efficacy and tolerability 
in HR + and HER2 − metastatic breast cancer manage-
ment [83]. The FDA approved abemaciclib (200 mg, twice 
daily) monotherapy on September 28, 2017, for women 
with HR + progressive or metastatic breast cancer con-
tinuing on both hormone treatment and chemotherapy, 
despite substantial dose reduction or omission rates 
were seen in phase II trial at this dose range [81, 83]. 
Abemaciclib in combination with endocrine therapy 
with antiestrogenic drugs in breast cancer management 
has been found to be efficacious with manageable safety 
profile in clinical settings. In the phase III double-blind 
trial (NCT02107703), abemaciclib (150  mg, twice daily) 
in combination with fulvestrant was efficacious, dramati-
cally enhancing progression-free survival and objective 
response rate and exhibiting a tolerable safety profile in 
women with HR + and HGR2 − progressive breast cancer 
who proceeded while receiving hormone therapy [84]. 
A similar observation has been recorded with abemaci-
clib (150  mg, twice daily) in combination with a non-
steroidal aromatase inhibitor either anastrozole (1  mg/
day) or letrozole (2.5 mg/day) in a phase III clinical study 
(NCT02246621) involving postmenopausal women with 
HR + and HGR2 − progressive breast cancer [85]. Abe-
maciclib plus fulvestrant has been revealed to improve 
therapeutic outcomes in clinical settings (NCT02107703) 
for premenopausal women with HR + and HGR2 − pro-
gressive breast carcinoma who are resistant to hormone 
therapy [86].

The toxicity profiles of all three CDK4/6 inhibitors 
are comparable [81]. The FDA has warned that certain 

patients with advanced breast cancer who are being 
treated with CDK4/6 inhibitor, palbociclib, ribociclib, 
or abemaciclib may experience a rare but serious lung 
inflammation.

AKT Inhibitors
AKT is a crucial transducer in PI3K/AKT/mTOR signal-
ing pathway that promotes the growth, division, migra-
tion, survival, and senescence of cells as well as the 
progression of cancer (Fig.  3) [17, 87]. PI3K is the key 
component of AKT signaling, which is a heterodimer 
comprising two subunits, such as p85 (regulatory) and 
p110 (catalytic). PI3K is activated by different growth 
stimuli via phosphorylation of the p85 subunit. Upon 
activation, PI3K endorses PIP2 (phosphoinositol 4, 
5-biphosphate) phosphorylation to form PIP3 (phospho-
inositol 3, 4, 5-triphosphate) in the plasma membrane, 
which acts as a secondary messenger of AKT recruit-
ment [88, 89]. Phosphatase and tensin homolog is a phos-
phatase (PTEN) that acts as a negative regulator of PI3K/
AKT signaling. Activation of AKT via phosphorylation 
endorses phosphorylation of forkhead box O1 (FOXO1) 
resulting in transcriptional suppression of FOXO1 and 
inhibition of its proapoptotic role [89, 90]. In addi-
tion, activation of mTOR via TSC1/2 phosphorylation is 
endorsed by AKT resulting in suppression of cell death 
pathways and activation of cell proliferation. AKT acti-
vation is regarded to directly suppress the activation of 
pro-apoptotic factors like the Bcl-2-associated death pro-
moter (Bad). In addition, mutation of the PI3K catalytic 
alpha (PIK3CA) gene is known to activate PI3K. PIK3CA 
gene mutation is abandoned in HR + and HER + breast 
cancer; while it is less frequent in TNBC. On the other 
hand, TNBC has been found to be associated with PTEN 
loss [91]. Eventually, breast cancer cells are associated 
with activated PI3K/AKT signaling associated with 
either PIK3CA point mutations or PTEN suppression 
depending upon the type of breast cancer. Thus, inhibi-
tion of PI3K/AKT signaling could be attributed to arrest-
ing breast cancer recurrence and can aid a dimension in 
breast cancer management.

Different ATP-competitive and allosteric AKT inhibi-
tors have been discovered so far and tested in clini-
cal platforms [92]. Among allosteric inhibitors, only 
MK-2206 has been tested on breast cancer patients. 
In a phase I study (NCT00963547), a combination 
of MK-2206 and trastuzumab was well tolerated by 
patients with HER2 + tumors; however, MK-2206 treat-
ment has been observed to support HER3 activation via 
feedback mechanisms, reducing anticancer efficacy [93]. 
In early-phase clinical trials, MK-2206 in combination 
with other drugs did not show a potential therapeutic 
response [94, 95]. In the I-SPY 2 trial (NCT01042379), 
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MK-2206 (135 mg/week) and anthracycline- or taxane-
based neoadjuvant chemotherapy improved complete 
pathologic response in HER2 + and/or HR − breast can-
cer patients [96].

ATP-competitive AKT inhibitors provide a superior 
therapeutic window than allosteric inhibitors. Two ATP-
competitive AKT inhibitors, capivasertib and ipatasertib, 
were subjected to detailed phase I and II clinical trials as 
monotherapy or in combination with hormone thera-
peutics or chemotherapeutic drugs [97]. The first phase 
I open-label trial (NCT01226316) with capivasertib 

recommended the oral dose of 480 mg, twice daily (4/7 
intermittent) for phase II trial [98]. In this trial, capiva-
sertib showed a reduction in tumor size in PIK3CA-
mutant breast cancer patients. In another phase I study 
(NCT01090960), capivasertib showed effective suppres-
sion of AKT signaling and disease control efficacy against 
solid tumors including breast tumors [99]. In these phase 
I trials, capivasertib has been well tolerated. In another 
phase I trial (NCT01226316),  AKT1E17K-mutant and 
ER + metastatic breast cancer patients who had received 
extensive pretreatment with capivasertib alone or in 

Fig. 3 AKT signaling pathway in breast cancer development and progression. It is a major intracellular pathway which leads to cell survival and cell 
proliferation. Activation of PI3K catalyzes the phosphorylation of PIP2 to PIP3, which further endorses PDK1 activation. Phosphorylation of FOXO1 by 
AKT inhibits its transcriptional activities resulting in cell growth, proliferation and survival. In addition, AKT inhibits TSC1/2 resulting in an activation 
of mTOR which simultaneously suppress autophagy and apoptosis and triggers proliferation. Gray arrows represent downstream events, gray lines 
represent inhibition, green up arrowheads represent activation/upregulation, and red down arrowheads represent suppression/downregulation. 
AKT, Ak strain transforming; Bad, Bcl‑2‑associated death promoter; FOXO, Forkhead box transcription factors; GPCR, G protein‑coupled receptor; 
mTOR, Mammalian target of rapamycin; NO, Nitric oxide; PDK1, Phosphoinositide‑dependent kinase‑1; PI3K, Phosphoinositide 3‑kinase; PIP2, 
Phosphoinositol 4, 5‑biphosphate; PIP3, Phosphoinositol 3, 4, 5‑triphosphate; PTEN, Phosphatase and tensin homolog is a phosphatase; TSC, 
Tuberous sclerosis complex
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combination with fulvestrant, including those whose dis-
ease had previously progressed on fulvestrant, exhibited 
clinically significant therapeutic efficacy [100]. Moreover, 
the activity and tolerability seemed to be enhanced by 
this combination.

Capivasertib and fulvestrant combination has also 
ensured enhanced progression-free survival of patients 
with ER + metastatic breast cancer in the phase II clini-
cal setting (NCT01992952) [101]. In a randomized and 
double-blind phase II trial (NCT02423603), the inclusion 
of capivasertib with paclitaxel chemotherapy improved 
progression-free and overall survival of patients with 
metastatic TNBC [102]. In contrast, in a phase I/II trial 
(NCT01625286), a combination of capivasertib to pacli-
taxel failed to show improvement of the chemothera-
peutic potential of paclitaxel among the patients with 
PIK3CA-mutated or overall ER  +/HER2  − metastatic/
progressive breast cancer [103]. In the phase II trial 
(NCT02077569), capivasertib (480 mg, twice daily) effec-
tively suppressed primary end-point biomarkers of the 
AKT signaling pathway, such as phospho-GSK3β and 
phospho-PRAS40 as well as dropped Ki67, a proliferation 
marker after 4.5 days treatment in invasive breast cancer 
patients [104]. In addition, significant changes in the sec-
ondary biomarkers namely phospho-AKT, Forkhead box 
O3 and phospho-S6 were observed following capivasertib 
treatment. A few phase III trials (NCT03997123 and 
NCT04305496) to evaluate the clinical efficacy of capiva-
sertib along with chemotherapeutic or anti-estrogenic 
drugs in different forms of breast cancer are underway. 
In addition, capivasertib could aid in radiotherapy as a 
radiosensitizer [105].

Ipatasertib is another orally effective ATP-competitive 
AKT inhibitor, which has demonstrated potential anti-
cancer activity against solid tumors in both pre-clin-
ical and clinical studies [106]. In the phase II LOTUS 
trial (NCT02162719), adding ipatasertib to paclitaxel 
improved the progression-free survival of patients with 
metastatic TNBC [107]. In another randomized phase 
II trial (NCT02301988), the inclusion of ipatasertib co-
treatment with paclitaxel chemotherapy (12  weeks) did 
not cause a significant improvement in pathologic com-
plete response rate in early TNBC patients; however, 
showed a good overall response rate and antitumor effect 
evidenced by magnetic resonance imaging and biomarker 
analyses [108]. In contrast, in a double-blind, rand-
omized phase III trial (NCT03337724), the inclusion of 
ipatasertib to paclitaxel did not improvement of efficacy 
in terms of progression-free survival among HR + and 
HER2 − progressive breast cancer patients [109]. It is 
thought to be targeting ER along with AKT inhibition 
could offer a better therapeutic output in breast cancer 
management. Several phase III trials (NCT04650581, 

NCT04060862 and NCT04177108) are underway to 
evaluate the clinical efficacy of ipatasertib in combination 
with other drugs to treat different forms of breast cancer.

Angiogenesis inhibitors
Angiogenesis is the rapid increase in the formation of 
blood vessels to ensure sufficient oxygen supply to the 
tumor cells. The angiogenic switch in cancer cells is regu-
lated by several mechanisms which encourage the growth 
of new blood vessels and raise the possibility of distant 
metastasis [110]. A variety of angiogenesis inhibitors can 
be therapeutically used to treat various types of advanced 
solid tumors [111]. These inhibitors include monoclonal 
antibodies or small-molecule tyrosine kinase inhibitors 
(TKIs), which primarily target the traditional VEGF and 
its receptors (VEGFRs). In TNBC treatment, angiogen-
esis inhibitors like VEGFR targeting agents have been the 
focus of most research [110]. It is important to mention 
that around 15–20% of all breast cancer patients repre-
sent HER2 + malignancy [112]. Increased angiogenesis 
and the expression of VEGF are strongly correlated with 
HER2 activation in cancer cells [113]. Thus, HER2 inhi-
bition would serve as a potential treatment approach for 
the treatment of HER2 + tumors. Several anti-HER2 anti-
bodies and HER2 TKIs have shown therapeutic promise 
in the management of HER2 + breast cancer.

Anti-angiogenesis monotherapy has a minimum effect 
on complex TNBC; however, it has been found to have 
a workable antitumor impact when added to standard 
chemotherapy [114]. Bevacizumab, an anti-VEGF mon-
oclonal antibody has been studied in clinical settings 
to inhibit angiogenesis to treat metastatic and prolif-
erative breast cancer. The clinical study (phase III) data 
demonstrated that adding bevacizumab to capecitabine 
significantly improved response rates but did not cause 
improvement in overall survival or progression-free sur-
vival of metastatic breast cancer patients [115]. In a rand-
omized, open-label phase III E2100 trial (NCT00028990), 
the inclusion of bevacizumab along with paclitaxel 
chemotherapy improved progression-free survival but 
not overall survival of metastatic breast cancer patients 
compared to paclitaxel monotherapy [116]. Considering 
the outcome of this E2100 trial, the FDA approved beva-
cizumab for the treatment of breast cancer [117]. In the 
E2100 trial, Schneider and colleagues found a correla-
tion between the VEGF genotype and overall survival as 
well as grade 3/4 hypertension in patients with metastatic 
breast cancer using bevacizumab. The result of the E2100 
trail was further validated through several phase III 
clinical trials viz. AVADO (NCT00333775), RIBBON-1 
(NCT00262067), and RIBBON-2 (NCT00281697). Over-
all survival was not improved in breast cancer patients in 
any of them, and progression-free survival was shown to 
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be less than in the E2100 study. In the phase III AVEREL 
trial (NCT00391092), locally recurrent or metastatic 
HER2 + breast cancer patients treated with bevacizumab 
in conjunction with trastuzumab and docetaxel did not 
show significant improvement in progression-free sur-
vival [118]. Meta-analyses of randomized trials showed 
that the inclusion of bevacizumab with chemothera-
peutic drugs improves the overall and progression-free 
survival of progressive and metastatic breast cancer 
patients [119–121]. Ramucirumab, an anti-VEGFR2 
monoclonal antibody has been approved by the FDA in 
2014 for the treatment of metastatic gastric cancer. A 
few phase II (NCT01234402 and NCT01427933) and 
III (NCT00703326) trials have been undertaken, where 
ramucirumab alone or in combination with other thera-
peutic drugs did not show any promising therapeutic 
outcome in breast cancer management [122]. Moreover, 
adding ramucirumab to docetaxel treatment has been 
found to increase the risk of toxicity in patients with met-
astatic breast cancer [123].

TKIs are a class of compounds that target the catalytic 
roles of the VEGFRs and other growth factor receptors 
associated with angiogenesis [124]. Sunitinib, sorafenib, 
axitinib, pazopanib, cediranib and vandetanib are the 
TKIs that have been studied in the clinical setting of 
breast cancer. Among them, cediranib (NCT00454805) 
and vandetanib (NCT00880334) exhibited poor thera-
peutic efficacy in phase II trials when combined with 
fulvestrant and docetaxel, respectively [125, 126]. Axi-
tinib also did not show significant therapeutic output 
to metastatic breast cancer patients when combined 
with docetaxel in a double-blind, randomized phase II 
clinical trial (NCT00076024) [127]. Pazopanib, an orally 
effective multitarget TKI exhibited promising therapeu-
tic efficacy in terms of disease stability in recurrent or 
metastatic invasive breast cancer patients with allowable 
untoward effects in the phase II clinical setting [128]. 
However, combining pazopanib with other anticancer 
drugs either did not demonstrate a potential therapeu-
tic response or produced unacceptable toxicity [122]. 
Sorafenib, an orally effective multitarget kinase inhibi-
tor has been approved for the treatment of different 
types of cancer. However, sorafenib demonstrated mixed 
observations in the clinical setting of breast cancer when 
combined with other drugs. In a double-blind, rand-
omized phase II trial (NCT00493636), the combination 
of sorafenib with gemcitabine or capecitabin promoted 
progression-free survival moderately in HER2 − breast 
cancer patients with manageable toxicity [129]. In con-
trast, in some phase II (EudraCT ID 2007–000290-32) 
and phase III (NCT01234337) trials, the inclusion of 
sorafenib to capecitabin therapy did not improve survival 
advantage as well as imparted incidences of toxicities in 

HER2 − breast cancer patients [130, 131]. Similarly, other 
trials did not reveal any therapeutic benefit of sorafenib 
along with standard chemotherapy in the management 
of different forms of breast cancer [132]. Sunitinib is 
another multitarget kinase inhibitor that was approved 
by the FDA for the treatment of advanced renal cell car-
cinoma, pancreatic neuroendocrine, and gastrointestinal 
stromal cancers. Some clinical studies have been under-
taken to see the effect of sunitinib in breast cancer man-
agement. However, in the clinical setting of breast cancer, 
sunitinib monotherapy or combination with other drugs 
failed to establish any promising outcome.

FGFR inhibitors
FGF/FGFR constitute an important signaling network 
involved in the regulation of growth, survival, differen-
tiation, migration, and apoptosis of cancer cells (Fig.  4) 
[133]. When FGFs attach to FGFRs, the receptors 
become dimerized, which causes TGFR1 transphospho-
rylation through a kinase domain activation loop. Fol-
lowing this, FGFR substrate 2 (FRS2) and phospholipase 
C, two intracellular receptor substrates are activated via 
phosphorylation. Furthermore, active FRS2 encourages 
downstream signaling via the PI3K/AKT and/or RAS/
MAPK pathways, which control cell proliferation, dif-
ferentiation, as well as survival [134, 135]. Genetic shifts 
in FGFRs may lead to the development of tumors and 
unfavorable outcomes in women with breast carcinoma 
[19]. The FGFR system is frequently dysregulated in 
various cancers, however, most of the research focuses 
on FGFR1, 2, and 3. FGFR4 is also implicated in onco-
genesis, tumor growth, and resistance to anti-tumor 
treatment in different types of cancer. A cohort of 391 
tumor patients revealed that FGF/FGFR abnormalities 
are common in breast cancer (32.1%) and frequently co-
exist with other abnormalities [19]. For instance, specific 
anomalies linked to changes in FGF/FGFR were found in 
15 genes in a univariate analysis. Unusual activation FGF/
FGFR axis has been revealed in various clinical subtypes 
of breast cancer, thus inhibition of FGFR would serve as 
an approach to cancer management.

Among FGFR inhibitors, TKIs are important. The 
therapeutic roles of some important non-selective TKIs 
on breast cancer patients have been discussed in the ear-
lier section. Dovitinib, lucitanib, and lenvatinib are some 
additional members of non-selective TKIs, which have 
been subjected to clinical trials in breast cancer setting. 
Dovitinib in association with fulvestrant showed prom-
ising clinical efficacy to ER + or HER2 + breast cancer 
in postmenopausal women in a phase II clinical setting 
(NCT01528345); however, the trial was discontinued 
in response to the poor enrollment of FGF-expressing 
patients [136]. Lucitanib is another orally effective and 



Page 11 of 40Ye et al. Molecular Cancer          (2023) 22:105  

multitarget TKI that has been subjected to a phase II 
clinical study (NCT02202746) involving patients with/
without FGFR1-amplified metastatic breast cancer. Len-
vatinib is now being tested in a phase II clinical trial 
(NCT03168074) for the treatment of patients with early-
stage ER + breast cancer.

To understand the on-target FGFR inhibition in 
patients with FGF/FGFR anomalies, selective FGFR 
inhibitors have been developed. Among selective FGFR 
inhibitors, infigratinib, erdafitinib, AZD4547, Debio-
1347, and TAS-120 have been subjected to clinical 

trials in breast cancer settings. In the phase I clinical 
trial (NCT01928459), the combination of infigratinib 
(125  mg/day), a pan-FGFR inhibitor, with alpelisib, a 
PIK3CA inhibitor failed to reveal any conclusive evi-
dence of synergistic effect in the patients with PIK3CA-
mutant progressive solid tumors (including metastatic 
breast cancer), with/without FGFR/2/3 amplifications 
[137]. In the phase II trial (NCT01795768), AZD4547, 
an FGFR1/2/3 inhibitor exhibited a potential therapeu-
tic effect on FGFR1-amplified breast tumor patients 
[138]. A phase II clinical trial (NCT01791985) involving 

Fig. 4 FGFR signaling pathway in breast cancer as a potential therapeutic target. Attachment of FGFs to FGFRs causes their dimerization, which 
encourages TGFR1 activation through kinase domain activation loop with activation of FRS2, PLCγ and downstream transduction pathways, 
such as PI3K/AKT/mTOR, PKC, RAS/MAPK pathways, which potentiate proliferation, differentiation, migration, angiogenesis, and survival process. 
Arrows represent downstream events and the line represents inhibition. AKT, Ak strain transforming; ERK, Extracellular signal‑regulated kinase; 
FGF, Fibroblast growth factor; FGFR, Fibroblast growth factor receptor; FRS2, Fibroblast growth factor receptor substrate 2; GRB2, Growth factor 
receptor‑bound protein 2; JAK, Janus kinase; MEK, Mitogen‑activated protein kinase kinase; mTOR, Mammalian target of rapamycin; PI3K, 
Phosphoinositide 3‑kinase; PKC, Protein kinase C; RAF, Rapidly accelerated fibrosarcoma; RAS, Rat sarcoma; SOS, Son of sevenless; STAT, signal 
transducer and activator of transcription
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patients with ER + breast cancer has been carried out 
to assess the therapeutic potential of AZD4547 when 
combined with letrozole or anastrozole, however, the 
results are not yet available. The trials with Debio-1347 
(NCT03344536), TAS-120 (NCT04024436) and erdafi-
tinib (NCT03238196) on patients bearing different sub-
types of breast cancer are ongoing.

Although FGFR antagonists has received a lot of atten-
tion, evaluating the efficacy of monoclonal antibodies or 
ligand-trapping agents has been simultaneously taken 
into consideration to achieve anti-FGFR effect. GP369, 
FPA144, and MFGR1877S are a few monoclonal anti-
bodies that have been developed to block FGFR2-IIIb, 
FGFR2, and FGFR, respectively. FP-1039 (GSK3052230), 
a ligand trap has been developed to sequester FGFs 
and thus inhibits FGFR signaling. In a phase I trial 
(NCT00687505), FP-1039 exhibited good tolerability 
and acceptable safety profile on solid tumor (including 
breast tumor) patients. However, more clinical research 
is required to develop them as drug candidates for breast 
cancer management. Table  1 shows some important 
FDA-approved small molecules for targeted therapy of 
breast cancer.

Immunotherapy in breast cancer management
The typical management plan for breast cancer involves 
surgery, radiation, and chemotherapy [29]. However, 
no optimal chemotherapy has yet been discovered to 
treat all subtypes of breast cancer. Condensed chemo-
therapy looks to be more effective than standard thera-
pies; nonetheless, these chemotherapies demand the use 
of growth factors, which significantly increases the cost 
of treatment [148, 149]. In addition, the adverse effect 
of chemotherapeutic drugs is a big challenge in cancer 
management [150, 151]. Although hormone therapy is 
a popular non-targeted treatment for breast cancer, it is 
also associated with serious adverse effects [152]. Tar-
geted therapy, which focuses on specific pathophysiologi-
cal targets, offers new hope for a more effective and novel 
therapeutic approach to combat various breast cancer 
subtypes [152]. However, the efficacy and tolerance of 
target agents needed to be extensively evaluated in clini-
cal settings. Similarly, immunotherapy has recently been 
regarded as a potential therapeutic tool to target a par-
ticular protein expressed in cancer cells offering enor-
mous hopes for breast cancer treatment.

Despite the fact that breast cancer is not typically a 
highly immunogenic disease, strategies to modulate 
the immune system are being tested in clinical settings 
[153, 154]. Microarray-based investigations of immune-
related tumor gene expression showed that the immune 
signatures influence the clinical outcomes, particularly 
with HER2 + breast tumors and TNBC [155]. However, 

immune responses varied significantly according to the 
subtypes of breast cancer, and it is anticipated that not 
all breast cancer patients will benefit from the same 
immunotherapeutic strategy. Thus, beyond the known 
breast cancer subtypes, it is an important aspect to dis-
cover prognostic biomarkers to customize immuno-
therapies. Programmed death-ligand 1 (PD-L1)  is the 
most recurrently used biomarker even for TNBC. The 
tumor mutational burden (TMB) is a predictive marker 
for immunogenicity and foreignness [156]. Tumor-
infiltrating lymphocytes (TILs), interferon γ (IFN-γ), 
programmed cell death ligand-1 (PD-L1), and human 
leukocyte antigen-I (HLA-I) have also been regarded as 
predictive markers of immunotherapy.

The presence of negligible effector tumor-infiltrating 
lymphocytes in the tumor microenvironment forms an 
obstacle to T-cell-based therapy for certain subtypes 
of breast cancer. Thus, the development of strategies 
to improve the number of immune cell infiltration to 
tumor microenvironment may serve as a potential tool 
for breast cancer immunotherapy. Breast cancer patients 
respond well toward immunotherapy in the presence 
of breast calcifications that are mainly associated with 
immune dysregulation and Erb-B2 receptor tyrosine 
kinase 2 (ERBB2) hyperactivation. Induction of hyper-
thermia in the breast tumor milieu has been regarded 
as another potential immunotherapeutic approach to 
directly kill tumor cells [157, 158]. Hyperthermia sen-
sitizes cancer cells toward natural killer (NK) cells and 
CD8 + cells in a human leukocyte antigen-I (HLA-I) pol-
ypeptide-dependent manner. Since estrogen suppresses 
HLA-I, anti-estrogenic agents could potentiate the action 
of immunotherapeutic drugs. Thus, HLA-I expression 
is a key consideration in breast cancer immunotherapy. 
This section deals with the current developments in 
immunotherapy for breast cancer, counting immune 
checkpoint blockades, adoptive T-cell immunotherapy, 
anti-cancer vaccines, etc.

Immune checkpoint blockers
Immune checkpoints involve both T-cell activation and 
tolerance. Under normal physiological circumstances, 
they are essential for preserving immunological home-
ostasis and self-tolerance. Immune inhibitory signals 
from tumors may result in an immune escape of tumor 
antigens. PD-1 (programmed cell death protein-1)/
PD-L1 (programmed cell death ligand-1) axis and cyto-
toxic T-lymphocyte-associated antigen-4 (CTLA-4) are 
inhibitory signals suppressing the immune response 
of T-cells [159]. CTLA-4 signaling plays a greater role 
in preventing the commencement of T-cell response; 
while PD-1 plays a more significant role later on and 
serves to abstract T-cell activity in the immunological 
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setting of tumor microenvironment. CTLA-4 binds to 
CD80 (B7-1) and CD86 (B7-2) expressed on dendritic 
cells, thus attenuating T-cell-provoked immune reac-
tion. On the other hand, PD-1 activation by PD-L1 
persuades inhibition of T-cell immune activity, activa-
tion of T-cell death, suppression of pro-inflammatory 
cytokine production, and induction of antigen toler-
ance. Inhibiting immune checkpoints by impeding the 
CTLA-4 or PD-1/PD-L1 axis could therefore reduce the 
immune escaping of tumor cells and represent a poten-
tial immunotherapeutic approach (Fig.  5) [159, 160]. 
AntiPD-1, anti-PD-L1, or anti-CTLA-4 monoclonal 

antibodies are among the immune checkpoint block-
ers being used in clinical practice and some others are 
still under development. Anti-PD-1 antibodies, such 
as cemiplimab, pembrolizumab, and nivolumab; anti-
PD-L1 antibodies, such as avelumab, atezolizumab, 
and durvalumab; and anti-CTLA-4, such as tremeli-
mumab and ipilimumab have demonstrated therapeu-
tic potential and were approved for the treatment of 
various malignancies, including solid tumors [155]. The 
therapeutic roles of these immune checkpoint blockers 
based on monoclonal antibodies in breast cancer man-
agement have been described in the section below.

Fig. 5 Immune escape mechanism of breast cancer cells and therapeutic role of immune checkpoint blockers in breast cancer treatment. When 
cytotoxic T‑cells in the tumor microenvironment cannot be activated by immunological checkpoints or by the suppressive effect of Tregs, cancer 
cells are able to withstand the immune assault, survive, and proliferate. CTLA‑4 is able to endorse Treg activity leading to an immunosuppressive 
effect. CTLA‑4 binds to B7 (CD80 and CD86) expressed on APCs, such as DCs and inhibits T‑cell‑mediated immune response. In addition, the 
binding of CD28 with B7 on APCs suppresses T‑cell activity. PD‑1/PD‑L1 system plays an important role later on and serves to abstract T‑cell activity. 
When PD‑1 binds to PD‑L1, cytotoxic T‑cells become anergic, which further encourages inhibitory signals. APC, Antigen presenting cell; CTLA‑4, 
Cytotoxic T‑lymphocytic antigen‑4; DC, Dendritic cell; MHC, Major histocompatibility complex; PD‑1, Programmed cell death‑1; PD‑L1. Programmed 
cell death‑1 ligand; TCR: T‑cell receptor; Treg, Regulatory T‑cell
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PD‑1/PD‑L1 blockers as immunotherapeutic agents
Breast cancer cells especially TNBC cells are abundantly 
expressing PD-1 and the degree of PD-1 expression is 
connected to the extent of malignancy [161]. The activa-
tion of PD-1 is directly associated with PD-L1. Conven-
tional cancer therapies often endorse PD-L1 activation. A 
growing body of evidence revealed that blockades of the 
PD-1/PD-L1 axis stand as a potential therapeutic strategy 
mainly to treat TNBC. Cemiplimab, pembrolizumab, and 
nivolumab are some monoclonal antibodies that target 
PD-1; while avelumab, atezolizumab, and durvalumab 
target PD-L1.

Cemiplimab is an immunoglobulin G4 (IgG4) mono-
clonal antibody that targets PD-1 and has been approved 
by the FDA for the treatment of skin cancer. It has also 
been found to be efficacious and safe in the clinical setting 
(NCT03836105) of metastatic cutaneous squamous cell 
carcinoma [162]. A phase II clinical trial (NCT04243616) 
is ongoing to check therapeutic responses upon neoadju-
vant chemotherapy and cemiplimab treatment in patients 
with high-risk or progressive HR + and HER2 − breast 
cancer or TNBC. According to the phase II I-SPY2 trial 
(NCT01042379), the combination of cemiplimab and a 
lymphocyte activation gene-3 (LAG-3) inhibitor, fianli-
mab along with paclitaxel exhibited a significant patho-
logic complete response than paclitaxel alone in HR + and 
HER2 − breast cancer or TNBC patients [163].

Pembrolizumab, a humanized monoclonal IgG4 
antibody binds to the PD-1 receptor and prevents its 
communication with PD-L1/2. Pembrolizumab mono-
therapy (10 mg/kg every two weeks, i.v.) showed a tol-
erable safety profile in patients with advanced TNBC 
in the phase Ib KEYNOTE-012 (NCT01848834) 
study [164]. In the phase II KEYNOTE-086 trial 
(NCT02447003), pembrolizumab monotherapy also 
demonstrated potential antitumor efficacy with a man-
ageable safety profile against PD-L1-positive (PD-L1 +) 
metastatic TNBC [165]. However, the therapeutic 
response to pembrolizumab is largely dependent on 
the degree of PD-L1 expression. In the phase III KEY-
NOTE-119 trial (NCT02555657), even the patients 
with a PD-L1 combined positive score of ≥ 1 or ≥ 10, 
pembrolizumab monotherapy for previously treated 
metastatic TNBC did not increase overall survival sig-
nificantly in comparison to chemotherapy [166]. Only 
patients with significantly higher PD-L1 expression 
responded well to pembrolizumab treatment. Interest-
ingly, some findings proposed that chemotherapeutic 
drugs can endorse the anti-cancer effects of immune 
checkpoint blockers through their immunomodulatory 
responses. In agreement, a phase III KEYNOTE-355 
trial (NCT02819518) demonstrated that a combination 
of pembrolizumab with standard chemotherapy could 

improve progression-free survival in patients with met-
astatic TNBC compared to the patients who received 
only chemotherapy [167]. In the phase Ib/II trial 
(NCT02513472), combination of eribulin with pem-
brolizumab was mostly well-tolerated and displayed 
promising antitumor efficacy in metastatic TNBC 
patients; however, the effect was found to be largely 
associated with the presentation of PD-L1 expres-
sion [168]. In another phase II study (NCT03222856), 
the addition of pembrolizumab to eribulin confirmed 
promising therapeutic efficacy in patients with highly 
pre-treated, HR + and HER2 − metastatic or locally 
recurrent breast cancer [169]. In contrast, in an earlier 
phase II clinical trial (NCT03051659), pembrolizumab 
plus eribulin did not show any promising clinical out-
come in HR + or ERBB2 − metastatic breast cancer 
patients of either intention-to-treat or PD-L1 + groups 
compared to only eribulin-treated patients [170]. Fur-
thermore, pembrolizumab plus radiotherapy was found 
to be safe and efficacious in patients with metastatic 
TNBC in a phase II clinical setting (NCT02730130) 
[171]. An ongoing cTRACK-TN trial (NCT03145961) 
would enlighten the advantages of a watchful increase 
of pembrolizumab treatment for TNBC patients with 
measurable circulating tumor DNA.

Nivolumab, a humanized IgG4 monoclonal anti-
body, is an inhibitor of the PD-1 receptor located at the 
T-cell surface and prevents its interaction with PD-L1. 
Nivolumab received the FDA approval for the treatment 
of melanoma, lung cancer, and renal cell carcinoma [172]. 
In a phase II TONIC trial (NCT02499367), a significant 
portion of patients who received the induction treat-
ment with temporary chemotherapy or radiation fol-
lowed by nivolumab experienced a therapeutic effect that 
was higher than anticipated in metastatic TNBC patients 
[173]. In this trial, cisplatin and doxorubicin priming 
before nivolumab treatment showed a superior thera-
peutic response, which has been shown to be associated 
with the immunoregulatory features of these chemother-
apeutic drugs to develop favorable tumor microenviron-
ment for PD-1 blockers. Like other immune checkpoint 
blockers, the therapeutic effects seemed to be linked to 
PD-1 expression in TNBC despite only a small num-
ber of patients representing PD-1 + tumors. However, 
this finding motivates additional clinical research using 
nivolumab as a monotherapy or in conjunction with 
other drugs on breast cancer patients. In contrast, in a 
phase II study (NCT02834013) comprising 17 patients, 
a combination of nivolumab with ipilimumab (an anti-
CTLA-4 antibody) was found to be associated with 
extraordinary outcomes in a small subset of patients with 
chemotherapy-refractory rare metaplastic breast cancer 
versus no activity [174]. However, in another phase II 
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trial (NCT03316586), cabozantinib plus nivolumab did 
not demonstrate any promising clinical outcomes in met-
astatic TNBC patients [175].

Avelumab is a humanized monoclonal IgG1 antibody 
that targets PD-L1 and prevents PD-1/PD-L1 commu-
nication. It endorses NK cell-mediated cytotoxicity and 
cytokine production to kill tumor cells [176]. In the phase 
I (NCT01772004) trial, avelumab demonstrated accepta-
ble tolerability and modest therapeutic efficacy in a com-
prehensively pretreated group of metastatic breast cancer 
patients [177]. However, a higher possibility of clinical 
response to avelumab in could be achieved with a higher 
count of tumor-related immune cells with higher PD-L1 
expression specifically in TNBC. In randomized phase III 
A-BRAVE trial (NCT02926196) is ongoing, which would 
allow us to interpret the clinical benefits of avelumab 
among serious TNBC patients. Another phase II trial 
(NCT03971409) is underway to check the clinical effi-
cacy of avelumab plus liposomal doxorubicin with/with-
out binimetinib or avelumab plus sacituzumab govitecan 
on patients with stage 4 or inoperable, recurrent TNBC.

Atezolizumab is another ant-PD-L1 monoclonal IgG1 
antibody. Atezolizumab monotherapy exhibited accept-
able safety with durable therapeutic benefit in meta-
static TNBC patients in phase I study (NCT01375842) 
[178]. Among combination therapy, atezolizumab with 
nab-paclitaxel exhibited prolongation of recurrence-free 
survival of metastatic TNBC patients compared to only 
nab-paclitaxel-treated subgroup in a phase III IMpas-
sion130 clinical setting (NCT02425891) [179]. In the 
IMpassion130 trial, overall survival for the intention-to-
treat population was statistically insignificant, but the 
PD-L1 + subgroup demonstrated considerable thera-
peutic effects [180]. Based on IMpassion130 observa-
tion, FDA-approved atezolizumab plus paclitaxel therapy 
for adult patients with locally progressed or metastatic 
TNBC with tumor-infiltrating immune cells expressing 
PD-L1. Results from an ongoing trial (IMpassion131, 
NCT03125902) involving patients with inoperable, previ-
ously untreated, locally progressive, or metastatic TNBC 
may give confirmation of the therapeutic roles of the 
combination of atezolizumab and paclitaxel. However, 
the primary observation of the IMpassion131 trial has 
been disappointing in terms of overall or progression-
free survival [181]

Durvalumab, an IgG1 monoclonal antibody, exhibits a 
strong affinity for PD-L1 binding. In an open-label phase 
I/II trial (NCT02734004) comprising metastatic breast 
cancer patients carrying gBRCA mutation, durvalumab 
(1.5 g every 4 weeks, i.v. infusion) in combination with a 
PARP inhibitor, olaparib (300 mg, twice daily for 4 weeks) 
exhibited a favorable antitumor effect with an acceptable 
safety profile [49]. Durvalumab also exhibited clinical 

benefits in breast cancer patients when combined with 
chemotherapeutic drugs. In the phase II GeparNuevo 
trial (NCT02685059), the inclusion of durvalumab with 
anthracycline- or taxane-based neoadjuvant chemother-
apy to early TNBC patients slightly improved pathologi-
cal complete response compared to the placebo group; 
however, the effect was greater for the patients who 
received durvalumab monotherapy two weeks before the 
combination therapy [182]. The addition of durvalumab 
and olaparib to paclitaxel neoadjuvant chemotherapy 
exhibited better clinical efficacy in a phase II I-SPY2 trial 
(NCT01042379) over paclitaxel neoadjuvant chemother-
apy in HER2 − breast cancer, mainly in serious HR + and 
HER2 − patients [183]. For patients with stages 1–3 
TNBC, durvalumab combined with nab-paclitaxel and 
dose-dense cyclophosphamide/doxorubicin neoadjuvant 
chemotherapy led to a 44% pathologic complete response 
rate in a phase II trial (NCT02489448) [184]. However, 
the pathologic complete response rate remained higher 
in PD-L1 + patients. In the SAFIR02-BREAST IMMUNO 
(NCT02299999) substudy, durvalumab maintenance in 
metastatic breast cancer patients whose disease remained 
stable after 6–8 rounds of chemotherapy did not increase 
progression-free or overall survival in comparison to 
maintenance chemotherapy. However, maintenance ther-
apy with durvalumab as a single agent improved overall 
survival in both PD-L1 + and PD-L1 − TNBC patients. 
These findings support testing durvalumab monotherapy 
in TNBC patients as maintenance treatment following 
chemotherapy. The observation anticipated CD274 acti-
vation might identify a subset of individuals who would 
respond well to this anti-PD-L1 antibody; however, fur-
ther studies are required to reveal the exact reason.

CTLA‑4 blockers as immunotherapeutic agents
A key suppressive ligand, CTLA-4 is present on effec-
tor T-cells [185]. T-cell activation and growth are usually 
encouraged by CD28 binding, which results in CTLA-4 
translocation to and expression on the T-cell surface. 
Increased surface expression of CTLA-4 following T-cell 
activation suppresses the effector function of T-cells by 
inhibiting signaling through the CD28 receptor. The 
inhibitory signals of CTLA-4 are propagated through the 
binding of B7-1 (CD80) and B7-2 (CD86) on antigen-pre-
senting cells (APCs). It is worth mentioning that CTLA-4 
exhibits higher binding affinity with B7s than CD28. 
Apart from blocking co-stimulation, CTLA-4 binding 
blocks IL-2 transcription, which is essential for T-cell 
growth and NK-based cytotoxic effects. Thus, blocking 
CTLA-4 by monoclonal antibodies could increase the 
effector functions of T-cells to kill cancer cells.

Tremelimumab is a CTLA-4-targeted humanized IgG2 
monoclonal antibody, which inhibits tumor growth by 
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preventing the interaction between CTLA-4 and B7s 
and thereby allowing T-cell activation [186]. So far, its 
clinical efficacy and safety have been assessed in differ-
ent types of cancer. The FDA approved tremelimumab 
plus durvalumab combination therapy for inoperable 
hepatocellular carcinoma. Recently, it received approval 
from the FDA in combination with durvalumab and 
platinum-based chemotherapeutic drugs for the treat-
ment of non-small cell lung cancer (metastatic) without 
EGFR mutation [187]. Although clinical evidence is yet 
to be available about the effectiveness and safety of pem-
brolizumab monotherapy in the setting of breast cancer, 
these issues have been addressed in various combinations 
comprising pembrolizumab as a component of treat-
ment for breast cancer. In a phase I trial comprising 26 
HR + advanced breast cancer patients, pembrolizumab 
in combination with an aromatase inhibitor, exemestane 
was well-tolerated with an overall response of ≥ 12 weeks 
in 42% of patients [188]. Interestingly, CTLA-4 block-
ing caused immune activation by enhancing inducible 
co-stimulator activation on CD8 + and CD4 + T-cells. In 
a pilot study, the combination of tremelimumab with an 
anti-PD-L1 drug, durvalumab, exhibited poor outcomes 
in overall metastatic breast cancer patients; however, 
TNBC patients achieved better therapeutic responses 
[189]. Surprisingly, TNBC patients who received anti-
PD-L1 (durvalumab) monotherapy had a superior 
response. Pembrolizumab along with radiation therapy 
showed an acceptable safety profile in a phase I trial even 
after an extended period [190].

Ipilimumab is a CTLA-4 targeting humanized IgG1 
monoclonal antibody, which demonstrates significant 
anti-tumor activity against a variety of cancers. Preclini-
cal data revealed that ipilimumab promotes the release 
of IL-2 by TNBC cells to the tumor microenvironment, 
which endorses the immune response [191]. The FDA 
approved ipilimumab for the treatment of renal cell can-
cer, colorectal cancer, malignant pleural mesothelioma, 
hepatocellular carcinoma, melanoma, and colorectal 
cancer [172]. In a Phase I trial (NCT01502592), pre-
operative cryoablation or ipilimumab monotherapy, or 
their combination in initial stage/operable breast cancer 
patients exhibited an acceptable safety profile and no 
delay in surgery was experienced [192]. The outcomes 
anticipated the possibility of this approach to syner-
gize the antitumor effect through activating anti-tumor 
immunity. In an open-label and two-stage phase II trial 
(NCT02834013), nivolumab plus ipilumumab exhib-
ited remarkable responses in 3 out of 17 patients with 
chemotherapy-nonresponsive, metaplastic breast cancer 
[174]. This dichotomization with this combination might 
be associated with specific biomarker/s presented by 18% 
of patients who received excellent therapeutic benefits 

and this must be taken into account before executing fur-
ther trials. Ipilimumab plus nivolumab with neoadjuvant 
paclitaxel demonstrated prospective overall and patho-
logical complete responses in early-stage TNBC patients 
in the phase II clinical settings (ACTRN12617000651381) 
and the observed clinical response was not found to be 
linked with PD-L1 status [193].

Other immune checkpoint inhibitors
Some additional molecules exist that target immunologi-
cal checkpoints to stop T-cell suppression, such as LAG3, 
and T-cell immunoglobulin and ITIM domain (TIGIT), 
or to activate T-cells and boost their cytotoxic function, 
such as OX-40 (CD134) and 4-1BB [160]. LAG-3 is a 
novel inhibitory receptor that is exceedingly expressed 
in regulatory and disabled T-cells. Unlike PD-1/PD-L1 
and CTLA-1 blockers, LAG3 blockers can additionally 
inhibit regulatory T-cells (Tregs) along with endorsing 
effector T-cell activity. In a phase I trial (NCT00349934), 
combining the standard chemotherapeutic drug, pacli-
taxel with the recombinant LAG-3Ig fusion protein, 
IMP321 showed excellent improvement in objective 
response rate in patients with metastatic breast can-
cer in terms of boosting APC, NK cell, and CD8 T-cell 
counts  with excellent safety [194]. A phase IIb AIPAC 
study (NCT02614833) has been conducted to check the 
clinical efficacy and safety outcomes of immunotherapy 
with IMP321 in combination with adjunctive paclitaxel 
chemotherapy in patients with stage 4 breast adenocar-
cinoma. The overall outcomes are yet to be published. 
Several other immune checkpoint targets have been 
developed, such as B-cell maturation antigen (BCMA), 
CD19, CD20, CD47, colony-stimulating factor 1 receptor 
(CSF1R), indoleamine 2,3-dioxygenase (IDO), transmem-
brane glycoprotein mucin 1 (MUC1), New York esopha-
geal squamous cell carcinoma 1 (NY-ESO1), stimulator of 
interferon genes (STING), Wilms’ tumor gene 1 (WT1), 
human papillomavirus (HPV), T-cell immunoglobulin 
domain and mucin domain 3 (TIM3), etc.; however, no 
specific target is yet to be recognized with promising 
therapeutic effect in treating breast cancer [195]. Table 2 
represents some selected ongoing trials using different 
immune checkpoint blockers in the context of breast 
cancer.

Anticancer vaccines
Anticancer vaccines aim at endorsing antigen-specific 
T-cell-based activation of the immune system to target 
and eliminate cancer cells [196]. Among different types of 
vaccines, peptide, protein-based, recombinant DNA, car-
bohydrate antigen, granulocyte macrophage colony-stim-
ulating factor (GM-CSF)-secreting tumor cell, dendritic 
cell-based, and dendritic cell-tumor cell fusion vaccines 
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are important in the context of breast cancer [197]. 
Based on the target, breast cancer vaccines are broadly 
divided into two categories, such as the vaccines that tar-
get HER2 or HER2-associated antigens and the vaccines 
that target non-HER2-related antigens. The efficacy and 
safety issues of different HER2 and non-HER2 targeting 
vaccines in the context of breast cancer under different 
phases of clinical trials have been discussed in the subse-
quent section.

HER2 targeting breast cancer vaccines
Protein/peptide vaccines that precisely target HER2 are 
the main focus of developing breast cancer vaccines. E75 
(nelipepimut-S, HER2 369–377, or NeuVax), an immu-
nogenic peptide (human leukocyte antigen-A2/A3-con-
stricted) generated from the HER2 protein, can induce 
a potent anti-HER2 immune response when paired with 
the immunoadjuvant granulocyte–macrophage col-
ony-stimulating factor [198]. The E75 vaccine has been 
regarded as a safe and effective immunotherapeutic tool 
to elicit a peptide-based immune response. In a phase I 
trial (NCT00841399), it appeared to dramatically lower 
the risk of cancer recurrence in patients with lymph 
node-negative (LN–) and HER2 + advanced breast can-
cer [199]. United States Military Cancer Institute-based 
trials demonstrated that lymph node-positive (LN +) or 
LN- breast cancer patients who received an optimal dose 
of the E75 vaccine experienced similar safety issues to 
those vaccinated with suboptimal doses; however, exhib-
ited superior HER-2/neu-endorsed immunity to lessen 
the chance of breast tumor recurrence [200]. However, 
the study requires a substantially long follow-up to attain 
conclusive evidence. Final report of phase I/II clinical 
trials (NCT00841399 and NCT00584789) of the E75 
vaccine along with booster immunizations significantly 
mitigated cancer recurrence in 95.2% of participants with 
HER2-expressing high-risk breast cancer [201]. Inter-
estingly, the E75 vaccine appeared to be a safe and well-
tolerated immunotherapy. Only low-grade local and rare 
systemic (mild) toxicities were recorded. In a short-term 
study of a double-blind and randomized phase III trial 
(NCT01479244) involving patients with LN + and low 
HER2 + breast tumors, an interim study did not reveal 
any difference in disease-free survival between E75-vac-
cinated and placebo-vaccinated patients [202]. Therefore, 
the trial was suspended at an early phase. A meta-analysis 
of 24 clinical studies, added to the confusion by revealing 
that the E75 vaccine significantly reduced disease recur-
rence but had no meaningful impact on overall survival 
[203]. Additionally, those who received the E75 vaccine 
showed moderate variability in their disease-free survival 
rate.

GP2 (HER2 654–662) is another human leukocyte 
antigen-A2/3-restricted immunogenic peptide, which 
is derived from HER2 transmembrane domain. Despite 
GP2 exhibiting lower affinity toward HLA-A2 compared 
to E75, however, it could be more immunogenic than 
E75 [197]. In the United States Military Cancer Insti-
tute-based phase I trial, the GP2 vaccine appeared to be 
well-tolerated and safe, as well as capable of triggering 
GP2-induced T-cell responses and delayed-type hyper-
sensitivity responses when administered with GM-CSF 
in the patients with high-risk, LN– breast cancer [204]. 
This finding encourages additional investigation of the 
GP2 vaccine to reveal its therapeutic potential to prevent 
breast cancer recurrence. It has been reported that com-
pletion of primary immunization series with GP2 plus 
GM-CSF entirely stopped cancer recurrence through-
out a 5-year follow-up period in HER2/3 + patients, who 
received trastuzumab treatment following surgery. A 
phase IIb trial confirmed the outcomes of phase I regard-
ing the safety profile of GP2 plus GM-CSF immunization 
in women with HER2 + operable breast cancer [205]. This 
trial demonstrated that the inclusion of GM-CSF did not 
impart any additional adverse event.

Another peptide vaccine linked to HER2 called AE37 
(HER2 776–790) is used as an adjuvant immunotherapy 
for breast cancer. It is obtained from HER2’s intracellular 
domain. As a major histocompatibility complex (MHC) 
class-II epitope, AE37, in contrast to E75 and GP2, pri-
marily endorses CD4 + T cell activation [197]. In the 
phase I clinical settings, AE37 plus GM-CSF immuno-
therapy appeared to be well-tolerated and safe, as well 
as capable of eliciting adjuvant-independent HER-2/
neu-mediated immune reaction in disease-free, LN– 
breast cancer patients [206]. A single-blinded phase II 
trial (NCT00524277) has been undertaken to compare 
the efficacy of two HER2 vaccines, viz, GP2 and AE37 
in breast cancer patients representing HER2 expression 
[207]. Both vaccines were found to be safe but effective 
against only certain subtypes of breast cancer. AE37 vac-
cination only achieved therapeutic benefit in patients 
representing low HER2 expressing and TNBC patients; 
while GP2 vaccination imparted recurrence-free survival 
only to HER2 overexpressing subgroups. Thus, the extent 
of HER2 expression is an important marker in selecting 
peptide-based immunization.

Vaccination with HER2 protein (25, 150, and 900 µg) 
intracellular domain (amino acids 676–1255) with GM-
CSF has been found to elicit a sustained (9–12 months) 
and dose-dependent HER2-specific T-cell-based and 
antibody-based immunity in a phase I study involv-
ing 29 patients bearing stages 2–4 breast and ovarian 
cancers with high expression of HER2 [208]. Recom-
binant-HER2 protein vaccine (20, 100, and 500  µg) in 
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conjugation with an immunostimulant (AS15) also 
exhibited a satisfactory safety profile in HER2 + breast 
cancer patients in a phase I trial (NCT00058526). In 
addition, this vaccine can generate sustained HER2-
specific humoral immune responses and prolong overall 
and disease-free survival [209].

HER2-plasmid DNA vaccination in combination with 
IL-2, GM-CSF, and trastuzumab treatment exhibited 
a good safety profile among patients with metastatic 
HER2 + breast cancer. Although there were no T-cell 
responses against HER2 immediately following immu-
nization, a significant rise in MHC class-II-mediated 
T-cell responses against HER2 was found after a spe-
cific interval [210]. Vaccination with V930, a DNA 
vaccine containing plasmid DNA encoding trans-mem-
brane and extracellular domains of human HER2, alone 
(NCT00250419) or in combination (NCT00647114) with 
a viral vector vaccine encoding HER2, V932 demon-
strated acceptable safety in patients bearing solid tumors; 
however, cell-based immune response to carcinoembry-
onic antigen or HER2 was not detected [211]. A couple of 
trials (NCT00436254 and NCT00393783) with DNA vac-
cines encoding different forms of HER2-derived proteins 
are ongoing to measure efficacy and safety issues with 
them in breast cancer patients.

It has been found that almost one-half of the patients 
with metastatic TNBC and HER + breast cancers develop 
brain metastases. Loss of anti-HER2/3 immunity is 
thought to be associated with this disease progression. 
A HER2/3 targeting dendritic cell vaccine, alpha-DC1, 
has been subjected to a phase II trial (NCT04348747) on 
TNBC and HER2 + breast cancer patients who have brain 
metastases [212]. After surgery and adjuvant therapy, 
treatment with autologous dendritic cells pulsed with a 
HER2 intracellular domain peptide significantly reduced 
the risk of cancer recurrence in all seven patients in a 
small clinical setting (NCT00005956) with high HER2 
expressing breast cancer (stage II-IV) and six patients 
showed anti-HER2 antibody [213]. In addition, GM-CSF-
secreting HER2 + tumor cell vaccines have been evalu-
ated in clinical trials (NCT00399529 and NCT00093834). 
These tumor cell vaccines along with chemotherapeu-
tic drugs are safe and capable of imparting anti-HER2 
immunity [214, 215].

Non‑HER2 targeting breast cancer vaccines
Certain subtypes of breast cancer, such as TNBC which 
represents a lack of ER, PR, and HER2 expressions, 
provide clinical challenges with HER2-targeting breast 
cancer vaccines [197]. TNBC expresses a number of 
non-HER2 tumor-associated antigens, which could 
be successfully aimed at developing cancer vaccines 
for clinical applications specifically for TNBC. The 

cancer-testis antigens (CTAs) may be the most regu-
larly targeted non-HER2 tumor-associated antigens for 
cancer vaccination [155]. Some notable CTAs, such as 
New York esophageal squamous cell carcinoma 1 (NY-
ESO-1), Wilms’ tumor protein (WT1), folate recep-
tor alpha (FRα), melanoma antigen gene protein-12 
(MAGE-12), brachyury protein, and p53 could be tar-
geted for developing TNBC vaccines. However, the 
management of TNBC using the aforementioned CTAs 
as the targets have not yet shown the anticipated suc-
cess, and considerable clinical research is required to 
develop clinically effective CTA-targeting vaccines for 
TNBC.

Mucin 1 (MUC1) is a protein that is immunologically 
inaccessible and hyperglycosylated in several epithelial 
cells; however, an immunologically accessible hypo-
glycosylated form of this protein is expressed in differ-
ent malignancies including TNBC. It is thought to be 
an intriguing tumor-associated antigen for developing 
TNBC vaccines [216]. Synthetic MUC1 peptide vaccine 
carrying a toll-like receptor (TLR) 7 agonist has shown 
preclinical success and raised the prospect for further 
clinical translation [217]. PANVAC, a recombinant 
viral vaccine comprises a recombinant fowl pox vector, 
encoding tumor-associated antigens like carcinoembry-
onic antigen and MUC1 and another viral vector vac-
cine containing cancer-associated antigen transgenes 
as well as different co-stimulatory agent, TRICOM. In 
a phase II trial (NCT00179309), immunization with 
PANVAC along with docetaxel treatment to the patients 
with metastatic breast cancer  improved progression-
free survival to more than 2 folds over control [218]. 
Another breast cancer-associated antigen is mamma-
globin-A (MAM-A) which is abundantly expressed 
in 40–80% of breast cancer [197]. In the phase I clini-
cal trial (NCT00807781), the MAM-A DNA vaccine 
showed satisfactory safety and early signs of improved 
progression-free survival in metastatic breast cancer 
patients [219]. Moreover, MAM-A vaccination in breast 
cancer patients demonstrated activation of inducible 
co-stimulatory molecules on CD4 + T cells with a sub-
stantial reduction of Treg occurrence [220].

Human telomerase reverse transcriptase (hTERT) 
which plays a key role in oncogenesis, is almost always 
overexpressed in human malignancies, including breast 
cancer [221]. Cytotoxic CD8 + T cells can recognize them 
and endorse the lysis of tumor cells. Thus, hTERT can 
serve as a cellular immune surveillance target. In a study 
involving 19 breast cancer patients, the hTERT peptide 
vaccine was able to elicit CD8 + T cell-based immune 
response in about 47% of patients [222]. Some phase I tri-
als (NCT01660529, NCT01660529, and NCT02960594) 
with hTERT are underway.
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Tumor-associated carbohydrate antigens are generally 
regarded as poorly immunogenic, which can be aimed 
to employ mimicking peptides (mimotopes) to induce 
anti-human tumor-associated carbohydrate antibod-
ies [223]. Such a mimotope vaccine called P10s-PADRE 
was subjected to phase II clinical involving metastatic 
breast cancer patients; however, lack of funding com-
pelled to suspend the patient recruitment. In a phase Ib 
trial (NCT02229084), 3 weekly immunizations that pre-
ceded the first dose of chemotherapy were found to be 
safe and immunologically promising. However, more 
trial is required with this combination to address thera-
peutic benefits [224]. Sialyl-TN (STn) is a carbohydrate 
epitope, which has been coupled to the keyhole limpet 
hemocyanin (KLH) carrier protein to develop a vaccine. 
In a randomized phase II trial, low-dose cyclophospha-
mide followed for 3 days followed by STn-KLH (100 μg) 
plus an adjuvant, Enhanzyn™ (DETOX-B) vaccination 
(on day 0, 2, 5, and 9) to metastatic breast cancer patients 
exhibited a significantly higher antibody level compared 
to only vaccine treated group [225]. Even though STn-
KLH was well tolerated by patients with metastatic breast 
cancer, the overall improvement in survival or time to 
progression has been disappointing in phase III clinical 
settings. However, in a phase III trial (NCT00003638), 
STn-KLH in combination with endocrine therapy 
showed some therapeutic prospects in metastatic breast 
cancer patients [226]. Additionally, a vaccine that targets 
the Globo H glycosphingolipid antigen has been clinically 
studied in patients with different subtypes of breast can-
cer. In a phase II trial (NCT01516307), treatment with a 
synthetic Globo H vaccine conjugated with KHL, ada-
gloxad simolenin with adjuvant OBI-821 was well-toler-
ated and demonstrated anti-Globo H humoral immune 
responses in patients with Globo H-positive (Globo H +) 
metastatic overexpressing breast cancer patients. Ada-
gloxad simolenin plus OBI-821 has entered the phase 
III  clinical trial (NCT03562637) to find the efficacy, 
safety, and tolerability of the vaccine in Globo H + TNBC 
patients [227].

Even though a number of vaccines have been devel-
oped and trialed to improve immunogenicity to different 
breast cancer subtypes, clinical success has not yet been 
attained. Thus, substantial research is required to iden-
tify the precise target to develop a specific vaccine for the 
exact subtypes of breast cancer patients.

Adoptive T-cell therapy
The objective of adoptive T-cell therapy is to endorse 
cell-based anti-tumor immunity in cancer patients 
by transferring lymphocytes.  Adoptive T-cell therapy 
includes TIL-based, engineered T-cell receptor (TCR)-
based, chimeric antigen receptor (CAR)-based, dendritic 

cell-based, NK cell-based therapies [228, 229]. It has 
been regarded as an emerging anticancer immunother-
apy achieved by boosting host immunity, particularly 
in patients representing low immunity. Rosenberg and 
associates initially introduced the adoptive infusion of 
autologous TILs as a strategic therapy in 1987. Since 
then, adoptive TIL therapy has been used in the clinical 
setting of different types of cancers. However, the thera-
peutic responses have been heterogeneous based on the 
cancer types. It has been regarded that recognition of 
TIL-responsive tumor antigens can improve TIL therapy 
by endorsing tumor recognition and killing capacity. In 
the breast cancer setting, it has been revealed that TILs 
isolated from a specific subtype of tumor can recognize 
the immunogenic mutations in this tumor milieu and 
could serve as an immunotherapeutic agent for this spe-
cific tumor subtype [230]. In a case report, treatment 
with TILs reactive against mutant versions of KIAA0368, 
SLC3A2, CTSB, and CADPS2 proteins in combination 
with a PD1 blocker and IL-2 demonstrated a durable and 
complete cancer regression in a patient with chemoresist-
ant, HR + and HER2– metastatic breast cancer [231]. The 
safety and efficacy of TILs as a monotherapy or in combi-
nation with other therapies in the setting of breast cancer 
may be clarified by the findings of phase I (NCT04111510 
and NCT00301730) and phase II (NCT01174121) clinical 
trials.

CAR T  cell therapy is one of the most recent and effec-
tive adoptive T-cell therapy in cancers, which utilizes 
the specificity of an antibody to target a specific tumor 
antigen to regulate the cytotoxic capacity of T-cells 
[229, 232]. Several antigen targets for CAR-T therapy of 
breast cancer have been discovered through preclinical 
studies, which include FRα, EGFR, AXL receptor tyros-
ine kinase (AXL), NKG2D, integrin αvβ3, c-Met, HER2, 
MUC1, mesothelin, receptor tyrosine kinase-like orphan 
receptor 1 (ROR1), tumor endothelial marker 8 (TEM8), 
trophoblast cell-surface antigen 2 (TROP2), etc. [233]. 
Though TNBC lacks expressions of three major antigens 
associated with breast cancer, CAR-T therapy still exhib-
its promising outcomes against the disease. Antigens like 
MUC-1, NKG2D, AXL, ROR1, c-Met, FRα, mesothelin, 
etc. have been successfully targeted in various in  vitro 
and in vivo models of TNBC by engineered CAR-T cells 
[234]. In this context, an encouraging result in the phase 
I clinical trial (NCT01837602) has already been achieved 
with c-Met-CAR-T cells. Intratumoral injection of c-Met-
CAR-T cells demonstrated an acceptable safety profile 
in TNBC patients and was found to elicit intratumoral 
inflammatory response [235]. However, CAR-T cell ther-
apy has also experienced its ups and downs with regard 
to toxicities and efficacy shortcomings. MUC1-CAR-T 
cells were mostly studied in early-phase clinical trials 
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(NCT04020575, NCT02587689, and NCT04025216) 
in TNBC patients. Among them, MUC1-CAR-T 
cells were mostly studied in early-phase clinical trials 
(NCT04020575, NCT02587689, and NCT04025216) in 
TNBC patients. Among them, the NCT04025216 trial 
has been suspended and the recruitment status of the 
NCT02587689 trial is unknown. Only the phase I/II trial 
(NCT04020575) is still recruiting patients to evaluate the 
safety of MUC1-CAR-T cell therapy. A couple of phase I 
trials (NCT02580747 and NCT02792114) have been ini-
tiated to check the safety of mesothelin-CAR-T cell ther-
apy; however, the results have not been published yet. The 
phase I trial with NKG2D-CAR-T (NCT04107142) was 
initiated but the status is unknown, while the phase I trial 
(NCT02706392) with ROR1-CAR-T (NCT02706392) 
was terminated. In addition, a few clinical trials had to 
be abandoned due to unacceptable damage to healthy tis-
sues [236, 237]. In such cases, the target antigen has been 
observed to be expressed simultaneously by both tumor 
cells and healthy cells, thus attracting CAR-T cells to 
both types of tissues consequently resulting in toxicities. 
A very interesting development to prevent such possibili-
ties has come up in the form of targeting tumor-specific 
glycoforms of tumor-associated antigens. CAR-T cells 
have been designed to target aberrantly glycosylated gly-
coforms of tumor-associated antigens, in addition to the 
tumor antigens (also expressed by some healthy cells). 
Certain antigens e.g. Tn, T, and sialyl-Tn are involved 
in the progression and metastasis of different types of 
cancers including breast cancer. Underglycosylation of 
these antigens is a tumor-specific feature owing to the 
dysregulation of chaperone, Cosmc, and glycosyltrans-
ferases [238]. Hence, it is not surprising that targeting 
these tumor-associated, low-sugar antigens alongside 
the tumor-specific target antigens by CAR-T cells has 
expressed futuristic promise to overcome non-selective 
adverse events. Thus, overcoming the present shortcom-
ings of CAR-T cell therapy might potentially establish it 
as one of the prime modes of cancer treatment [239].

Additionally, newer prospects for adoptive cell ther-
apy are developing with the discovery of different neo-
antigens and the application of different immune cells, 
including NK cells and dendritic cells in cancer manage-
ment. The clinical results of dendritic cell-based vaccina-
tion therapy have been discussed in the earlier section. 
NK cell-based treatment has not been studied compre-
hensively in the clinical setting of breast cancer. In only 
one phase II trial, the adoptive transfer of allogeneic NK 
cells following lymphodepleting chemotherapy did not 
demonstrate clinical significance in recurrent breast can-
cer patients [240]. However, preclinical studies are con-
tinuing to develop a successful NK cell-based therapy 
for breast cancer management. Table 3 represents some 

selected ongoing trials using adoptive cell therapy in the 
context of breast cancer.

Immune-associated adverse effects with aforemen-
tioned immune therapies are mostly unpredictable. 
Severe endocrine irregularities and albeit rare are the 
most regular and consistently mentioned adverse reac-
tions with immune checkpoint inhibitors. Despite the 
toxicities associated with vaccines being acceptable and 
manageable; they are yet to achieve therapeutic suc-
cess in breast cancer management. Adoptive cell-based 
immunotherapy also demonstrated a diverse portrait of 
adverse events including multiorgan failure, neurotoxic-
ity, cardiac distress, bone marrow challenges and res-
piratory failure mainly associated with lymphodepletion, 
immune-mediated side effects including cytokine storm 
in the clinical setting of breast cancer. Thus, achieving 
therapeutic success largely depends on careful moni-
toring pathophysiological status of patients before the 
execution of immunotherapy or during the course of 
immune-directed treatment.

Perspectives
Breast cancer is a heterogeneous pool of diseases that 
can be divided into various subtypes based on the origin, 
course, and molecular markers. Protein-gene products 
that unswervingly influence the biological and clinical 
traits of cancer cells are prospective targets for the devel-
opment of novel treatments. Gene signatures have been 
thought to be the predictors of therapeutic response. 
Thus, to ascertain appropriate therapy, it is critical to con-
sider the aforementioned factors. In response to chem-
oresistance and recurrence, scientists have developed 
targeted drugs for the management of different forms 
of breast cancer. PARP inhibitors, PI3K/AKT/mTOR 
inhibitors, CDK4/6 inhibitors and HER2 TKIs emerged 
as potential targeted therapies of gBRCA-mutated, 
PIK3CA-mutated, ER + , and HER2 + subtypes of breast 
cancer, respectively. Some promising clinical outcomes 
with some of these targeted drugs as monotherapy or in 
combination with other drugs have been already accred-
ited by regulatory bodies through approval for the treat-
ment of specific subtypes of breast cancer. However, a 
target-specific therapy could not ensure complete clini-
cal success for a specific subtype of breast cancer. Drug 
resistance represents a key challenge with current tar-
geted agents. Inclusion of a co-drug that antagonizes 
drug resistance mechanism and minimizes escape path-
way would serve as a potential solution. In this aspect, 
it is important to ensure that the disease characteristics 
concerning specific clinical/genetic markers to achieve 
expected therapeutic success. Thus, it is imperative to 
ascertain the molecular, genetic, and immune signa-
tures of tumor cells as well as tumor microenvironments 
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Table 3 List of some selected ongoing trials of adoptive cell therapy in different subtypes of breast cancer

S. no Phases Breast cancer 
subtypes

Precondition Immuno-
therapeutic 
agents

Estimated 
participants

Co-adjuvants Recruitment 
status

Identifiers

Tumor-infiltrating lymphocyte (TIL) therapy
 1 II Metastatic TNBC Yes TIL LN‑145 6 ‑ Active, not recruit‑

ing
NCT04111510

 2 II Metastatic cancers 
including BC 
(mixed)

Yes Young TIL 332 Anti‑PD1 Recruiting NCT01174121

T-cell receptor (TCR) therapy
 3 II BC (mixed) Yes Sleeping Beauty 

Transposed PBL
‑ Recruiting NCT04102436

 4 II Metastatic cancers 
including BC 
(mixed)

Yes Autologous TCR‑
Transduced PBL

270 Anti‑PD1 Recruiting NCT03412877

CAR-T cell therapy
 5 I HER2 + solid tumors 

including BC
Yes CCT303‑406 

CAR‑modified 
autologous T cells 
(CCT303‑406)

15 ‑ Recruiting NCT04511871

 6 I Metastatic BC 
(mixed)

No huMNC2‑CAR44 T 
cells and huMNC2‑
CAR44 T cells @ 
RP2D

69 ‑ Recruiting NCT04020575

 7 I Brain or Leptome‑
ningeal metastases 
from HER2 + cancer 
including BC

No HER2‑CAR T cells 39 ‑ Recruiting NCT03696030

 8 I HER2 + cancer 
including BC

No HER2‑CAR T cells 45 CAdVEC oncolytic 
virus

Recruiting NCT03740256

 9 I Refractory neuro‑
blastoma and other 
GD2 + cancers 
including BC

Yes C7R‑GD2.CAR‑T cells 94 ‑ Recruiting NCT03635632

 10 I Advanced solid 
tumors including 
recurrant BC

No EpCAM CAR‑T cells 30 ‑ Recruiting NCT02915445

 11 I BC (mixed), 
metastatic HER2‑
negative BC

Yes Mesothelin‑tar‑
geted T cells

186 ‑ Active, not recruit‑
ing

NCT02792114

 12 I/II BC (mixed) No Multi‑4SCAR‑T cells 100 ‑ Recruiting NCT04430595

 13 I/II Relapsed/refrac‑
tory CEA + cancer 
including BC

No CEA CAR‑T cells 40 ‑ Recruiting NCT04348643

 14 I/II CD44v6 + cancer 
including BC

No CD44v6‑specific 
CAR‑T cells

100 ‑ Recruiting NCT04427449

 15 I/II CD70 expressing 
cancers includ‑
ing BC

Yes Anti‑hCD70 CAR‑
transduced PBL

124 ‑ Recruiting NCT02830724

 16 I/II Different types of 
cancer including BC 
(mixed)

Yes iCasp9M28z T cell 
infusions

113 Anti‑PD1 Active, not recruit‑
ing

NCT02414269

Dendritic cell (DC) therapy
 17 I HER2 + BC No HER‑2 pulsed DC 

vaccine
15 ‑ Active, not recruit‑

ing
NCT02063724

 18 I HER2 + BC No HER‑2 pulsed DC 
vaccine

7 ‑ Active, not recruit‑
ing

NCT02061423

 19 I HER2 + BC (mixed) No DC vaccine (DC1) 31 ‑ Active, not recruit‑
ing

NCT03387553
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before the execution of targeted therapy. Many small 
molecules have shown promising results in preclinical 
assays, which may be subjected to further clinical trans-
lation. The analyses of cutting-edge approaches, specifi-
cally those that prioritize gene/molecular-level analyses 
of breast cancer subtypes in clinical settings in response 
to treatment, must be the main focus of upcoming clini-
cal research to reveal a more accurate conclusion. In 
addition, the adverse reaction to targeted therapeutics 
must be critically scrutinized, specifically the serious 
toxicities associated with the treatment require thor-
ough critical interpretation. On the other hand, so far, 
chemotherapy is the only form of existing treatment for 
TNBC patients. Extensive clinical development in the 
field of immunotherapy would expectedly raise new hope 
in breast cancer management, specifically in TNBC. The 
introduction of immune-checkpoint blockers and other 
immunotherapeutic agents to conventional breast can-
cer therapies enables a higher therapeutic response in 
terms of progression-free and overall survival including 
for patients with TNBC. The regulatory body approval 
of immune-checkpoint blockers in combination with 
other therapies in TNBC would reveal the prospect of 
immunotherapy. Moreover, the increasing number of 
clinical trials demonstrates that the inclusion of immune-
checkpoint blockers with other therapeutic drugs would 
come up as an efficacious therapeutic strategy in breast 
cancer management especially for TNBC patients. 
Although the advancement of immune checkpoint block-
ers is a significant achievement in TNBC treatment, the 
scope is limited for PD-L1 overexpressing tumors. Thus, 
more research is required to address this issue. A thor-
ough understanding of tumor subtypes, as well as tumor 
microenvironments with respect to molecular, genetic, 
and immune standpoints, would enhance the scope of 

developing specific immunotherapy directed toward spe-
cific breast tumor subtypes to achieve better therapeutic 
efficacy.

Conclusion
The recent advancements in targeted therapy have pre-
sented a more specific and effective therapeutic option 
in breast cancer management. Inhibition of specific mol-
ecules that promote tumor growth and survival remains 
the main objective of targeted therapy. Some targeted 
drugs alone or in combination with other drugs have 
already got FDA approval for the treatment of differ-
ent breast cancer subtypes and many of them are under 
clinical trials. However, drug resistance is a big challenge 
associated with these drugs. Moreover, the majority of 
targeted therapy is yet to find clinical success in TNBC 
patients. On the other hand, immune therapies have 
emerged as promising targeted therapies specifically for 
TNBC patients. Some immune-checkpoint blockers in 
combination with other drugs have already received FDA 
approval for TNBC treatment. An increasing number 
of ongoing trials also demonstrates the interest in this 
field. However, considering the breast cancer heterogene-
ity, a complete understanding of the molecular, genetic, 
and immunological landscape of tumor cells as well as 
tumor microenvironment is the most important aspect 
to achieving desired therapeutic success with targeted 
or immune therapy. Thus, it is urgently required to dis-
cover/develop specific markers for a clear understanding 
of breast cancer subtypes to decide on an accurate thera-
peutic regime.

Abbreviations
AKT  Ak strain transforming
BRCA   Breast cancer gene
CD28  Cluster of differentiation 28

Table 3 (continued)

S. no Phases Breast cancer 
subtypes

Precondition Immuno-
therapeutic 
agents

Estimated 
participants

Co-adjuvants Recruitment 
status

Identifiers

 20 II HER2 + BC (mixed) No DC vaccine (DC1) 119 ‑ Active, not recruit‑
ing

NCT03384914

 21 II BC (mixed) No DC‑CIK immuno‑
therapy

400 CIK Active, not recruit‑
ing

NCT02491697

 22 II Asymptomatic brain 
metastasis from 
TNBC or HER2 + BC

No Anti‑HER2/HER3 DC 
vaccine

23 Anti‑PD1, IFNa2b Recruiting NCT04348747

Natural killer (NK) cell therapy
 23 I Advanced or 

metastatic HER2‑
expressing solid 
tumors including BC

Yes ACE1702 36 ‑ Recruiting NCT04319757

BC Breast cancer, CAR-T cell Chimeric antigen receptor T-cell, HER2 human epidermal growth factor receptor 2, PD-1 Programmed death receptor 1, TNBC Triple-
negative breast cancer
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CDK  Cyclin‑dependent kinase
CTLA‑4  Cytotoxic T‑lymphocyte‑associated antigen 4
DC  Dendritic cell; EGFR, Epidermal Growth Factor Receptor
ER  Estrogen Receptors
ERK  Extracellular signal‑related kinases
FDA  United States‑food and drug administration
FGFR  Fibroblast growth factor receptor
HER2  Human epidermal growth factor receptor‑2
JAK2  Janus kinase 2
MAPK  Mitogen‑activated protein kinase
MEK  Mitogen‑activated protein kinase kinase
ERK  Extracellular signal‑regulated kinase
mTOR  Mammalian target of rapamycin
NK  Natural killer
PARP  Poly (ADP‑ribose) polymerase
PD‑1  Programmed death‑1
PD‑L1  Programmed cell death ligand‑1
PI3K  Phosphoinositide 3‑kinase
PR  Progesterone receptors
PTEN  Phosphatase and tensin homolog
STAT   Signal transducer and activator of transcription
TILs  Tumor infiltrating lymphocytes
TNBC  Triple‑negative breast cancer
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