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Abstract 

Over the past several decades, mRNA vaccines have evolved from a theoretical concept to a clinical reality. These 
vaccines offer several advantages over traditional vaccine techniques, including their high potency, rapid develop-
ment, low-cost manufacturing, and safe administration. However, until recently, concerns over the instability and inef-
ficient distribution of mRNA in vivo have limited their utility. Fortunately, recent technological advancements have 
mostly resolved these concerns, resulting in the development of numerous mRNA vaccination platforms for infec-
tious diseases and various types of cancer. These platforms have shown promising outcomes in both animal models 
and humans. This study highlights the potential of mRNA vaccines as a promising alternative approach to conven-
tional vaccine techniques and cancer treatment. This review article aims to provide a thorough and detailed examina-
tion of mRNA vaccines, including their mechanisms of action and potential applications in cancer immunotherapy. 
Additionally, the article will analyze the current state of mRNA vaccine technology and highlight future directions 
for the development and implementation of this promising vaccine platform as a mainstream therapeutic option. 
The review will also discuss potential challenges and limitations of mRNA vaccines, such as their stability and in vivo 
distribution, and suggest ways to overcome these issues. By providing a comprehensive overview and critical 
analysis of mRNA vaccines, this review aims to contribute to the advancement of this innovative approach to cancer 
treatment.
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Introduction
Cancer immunotherapies have gained significant atten-
tion and popularity in recent years, significant advance-
ments have been made in cancer immunotherapies 
with the FDA approval of checkpoint blockade modula-
tors (such as pembrolizumab in 2014 and nivolumab in 
2015) and CAR-T cell immunotherapies (like tisagenle-
cleucel in 2017 and axicabtagene ciloleucel in 2018) [1]. 

These immunotherapies work by enhancing the immune 
system’s ability to recognize and destroy cancer cells, 
offering a promising alternative to traditional cancer 
treatments. The approval of these treatments highlights 
the potential of cancer immunotherapy as a novel and 
effective approach to cancer treatment [2].

The primary goal of cancer immunotherapies is to 
enhance the host’s anti-tumor immunity and modify 
the tumor’s suppressive microenvironment. By doing so, 
these therapies aim to inhibit the growth of the patient’s 
tumor and prolong their lifespan [2]. Through the stimu-
lation of the immune system, cancer immunotherapies 
have shown potential to induce long-term remission 
and offer a durable treatment option for cancer patients. 
Additionally, cancer immunotherapy may also have fewer 

*Correspondence:
Mohammad Chehelgerdi
Chehelgerdi1992@gmail.com
1 Novin Genome (NG) Lab, Research and Development Center 
for Biotechnology, Shahrekord, Iran
2 Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad 
University, Shahrekord, Iran

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12943-023-01807-w&domain=pdf


Page 2 of 106Chehelgerdi and Chehelgerdi  Molecular Cancer          (2023) 22:106 

side effects than traditional cancer treatments, which can 
lead to an improved quality of life for patients [3].

Cancer vaccines have emerged as a promising alterna-
tive approach to cancer immunotherapy, with potential 
applications in cancer prevention and therapy. Unlike 
traditional vaccines that are used to prevent infectious 
diseases, cancer vaccines are designed to stimulate the 
immune system to recognize and attack cancer cells. 
Cancer vaccines may be used as a preventative measure 
in individuals at high risk for developing certain types of 
cancer, or as a therapeutic option to treat existing can-
cer. The development of cancer vaccines has the poten-
tial to revolutionize cancer treatment by offering a more 
targeted and personalized approach, with fewer side 
effects than conventional cancer treatments. The appli-
cation of cancer vaccines in both cancer prevention and 
therapy highlights their potential as a promising tool in 
the fight against cancer [2]. Vaccinations against tumor-
associated or tumor-specific antigens (TAAs or TSAs) 
have shown promise in targeting and destroying can-
cer cells that overexpress certain antigens, leading to a 
long-lasting therapeutic response. TAAs and TSAs are 
specific molecules expressed by cancer cells that are not 
found on normal cells, making them a unique and attrac-
tive target for cancer immunotherapy. By vaccinating 
individuals with cancer-specific antigens, the immune 
system can be trained to recognize and destroy cancer 
cells. This targeted approach has the potential to induce 
a long-lasting immune response, providing a durable and 
effective treatment option for cancer patients. The ability 
to specifically target cancer cells that overexpress certain 
antigens highlights the potential of vaccinations against 
TAAs or TSAs in cancer immunotherapy [4].

Immunologic memory, a property of the immune 
system, plays a crucial role in the effectiveness of can-
cer vaccines. This memory allows the immune system 
to recognize and attack cancer cells even after the ini-
tial exposure to a cancer vaccine. Unlike other types of 
immunotherapies, cancer vaccines offer a specific, non-
toxic, and well-tolerated therapy option. By targeting 
cancer-specific antigens, cancer vaccines have the poten-
tial to induce a targeted immune response, reducing the 
risk of adverse effects and toxicities associated with tra-
ditional cancer treatments. The specific nature of cancer 
vaccines allows for a personalized approach to cancer 
treatment, targeting the specific antigens expressed by 
a patient’s cancer cells. This personalized approach, 
along with the non-toxic and well-tolerated nature of 
cancer vaccines, highlights their potential as a valuable 
tool in cancer immunotherapy [3]. Despite significant 
research efforts, the clinical translation of cancer vac-
cines into effective medicines has been challenging for 
decades. One of the primary reasons for this challenge 

is the highly variable nature of tumor antigens, mak-
ing it difficult to identify specific targets for cancer vac-
cines. Additionally, the immune response generated by 
cancer vaccines has often been insufficient to produce a 
therapeutic effect. These factors have hindered the devel-
opment of effective cancer vaccines and limited their 
potential impact on cancer treatment. Despite these chal-
lenges, ongoing research and advancements in cancer 
immunotherapy hold promise for the future development 
of effective cancer vaccines. By identifying more specific 
targets for cancer vaccines and developing more potent 
immune responses, researchers may be able to overcome 
these hurdles and harness the full potential of cancer vac-
cines in cancer treatment [5].

This is the case despite the fact that there have been 
significant attempts to generate cancer vaccines. Despite 
the fact that the human papillomavirus (HPV) is respon-
sible for 70% of cervical cancers and the hepatitis B virus 
may cause liver cancer, the Food and Drug Administra-
tion in the United States has only recently licenced two 
prophylactic vaccines. More encouragingly, the first ther-
apeutic cancer vaccine, PROVENGE (sipuleucel-T), was 
licensed by the U.S. FDA [3] which was designed to treat 
hormone-resistant prostate cancer. In the treatment of a 
broad range of solid and metastatic cancers, clinical tri-
als are now examining a wide variety of customised can-
cer vaccines in conjunction with checkpoint blockade 
modulators or cytokine therapies, with positive results 
[3, 5]. Cancer vaccines may be classified into the follow-
ing four groups: those that are based on tumour cells or 
immune cells; those that are based on peptides; those 
that are based on viral vectors; and those that are based 
on nucleic acids [5]. There are several reasons why vac-
cines that are constructed using nucleic acids (DNA or 
RNA) have a great deal of potential. The first advantage 
of nucleic acid vaccines is that they can deliver multiple 
antigens all at once, covering a wider range of TAAs or 
somatic tumour alterations, and increasing the possibility 
of overcoming vaccine resistance by inducing a humoral 
and cell-mediated immune response [1]. Covering a 
wider range of TAAs or somatic tumour alterations is the 
second advantage of nucleic acid vaccines [6]. Second, 
nucleic acid vaccines are less constrained by the human 
HLA types and are more likely to induce a larger T cell 
response because they may encode full-length tumour 
antigens and enable antigen presenting cells (APCs) to 
present or cross-present several epitopes with both class 
I and II patient-specific HLA [7]. This is because nucleic 
acid vaccines can encode full-length tumour antigens and 
enable APCs to present or cross-present several epitopes 
[8]. Nucleic acid vaccines, such as mRNA or DNA vac-
cines, have the potential to encode a broad range of 
tumor antigens [5]. Unlike traditional protein-based 
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vaccines, which typically target a limited number of spe-
cific antigens, nucleic acid vaccines can be designed to 
produce a variety of antigens simultaneously. This char-
acteristic allows for a broader immune response against 
diverse tumor-associated antigens [6]. For example, in 
preclinical studies, researchers have developed mRNA 
vaccines encoding multiple tumor antigens, including 
neoantigens specific to individual patients, resulting in 
enhanced antitumor immune responses [5].

HLA (human leukocyte antigen) molecules play a criti-
cal role in presenting antigens to the immune system [9]. 
However, the genetic diversity of HLA types across indi-
viduals can pose a challenge for vaccine development, as 
a vaccine targeting one HLA type may not be effective for 
individuals with different HLA types [10]. Nucleic acid 
vaccines offer advantages in this regard. By encoding the 
antigen directly in the mRNA or DNA sequence, nucleic 
acid vaccines can bypass the need for HLA matching. 
The produced antigen is processed by the recipient’s cells, 
leading to the presentation of peptides on the cell sur-
face in a manner that is independent of the individual’s 
HLA type [8]. This ability to generate a broader immune 
response regardless of HLA type has been demonstrated 
in several studies [10]. For instance, in a clinical trial 
evaluating an mRNA-based cancer vaccine, personalized 
neoantigens were shown to induce immune responses 
across various HLA types, suggesting the potential for 
broad applicability [9].

Nucleic acid vaccines are risk-free for use in both pre-
ventive and therapeutic contexts since they do not trans-
mit infections and their production does not include any 
protein or virus-derived contaminations [6]. In recent 
years, mRNA vaccine has emerged as a potentially use-
ful alternative to DNA vaccine for using in the preven-
tion of infectious illnesses and the treatment of cancer 
[11]. As contrast to DNA, the use of mRNA as a cancer 
vaccine approach has a number of advantages, includ-
ing the following: Once RNA has been taken up into 
the cytoplasm, the antigen (or antigens) of interest may 
be translated from mRNA in a single step in cells that 
are dividing as well as in cells that are not dividing [5]. 
mRNA vaccines, in contrast to DNA vaccines, often have 
higher rates and levels of protein synthesis [2]. This is due 
to the fact that mRNA vaccines cannot integrate into the 
genome sequence, meaning that they are not susceptible 
to insertional mutagenesis [1]. The feasibility of creating 
an mRNA vaccine was first reported in the year 1990, 
when it was discovered that in vitro transcription (IVT) 
mRNA could be effectively generated in mouse skeletal 
muscle cells by the process of direct injection into ani-
mals [6]. It is possible that worries over mRNA instability, 
poor in vivo transport, and highly intrinsic innate immu-
nogenicity contributed to the fact that this first attempt 

did not result in extensive study on the production of 
mRNA vaccines [7]. mRNA vaccination has become a 
more practical choice as a result of significant techno-
logical developments that have taken place over the last 
several decades [11]. The RNA may be made more resist-
ant to RNases, more stable, and more translation-friendly 
by making various modifications to the mRNA backbone 
and the untranslated regions [12]. mRNA products are 
now accessible without double-stranded contaminations 
as a result of developments in purifying procedures [13]. 
This helps to reduce the non-specific activation of the 
body’s innate immune system [7]. The incorporation of 
messenger RNA (mRNA) into delivery vehicles, includ-
ing as lipid nanoparticles (LNPs), polymers, and peptides, 
has led to an improvement in the distribution of mRNA 
in living organisms [8]. Finally, mRNAs have been discov-
ered to be useful in IVT procedures in a broad manner 
[6]. Scale-up manufacturing has progressed to the point 
where mRNA vaccines provide substantial advantages 
over traditional immunisation approaches [4].

These advantages include decreased production costs 
and the possibility for wider use. In terms of cancer 
treatment, clinical trials have mostly concentrated on 
non-replicating mRNAs up to this point [1]. Self-ampli-
fying mRNAs, also known as SAM, have garnered a lot 
of attention and are now being investigated for potential 
use in the treatment of cancer and infectious illnesses 
[6]. This is due to the fact that SAM are more cost-effec-
tive in the long term and have a lower impact per dos-
age [7]. More than twenty immunotherapies based on 
mRNA have progressed to the clinical trial stage, and 
the outcomes of these trials have been promising in the 
treatment of solid tumours [6, 7]. Furthermore, mRNA 
vaccines provide a considerable edge over anti-can-
cer immunotherapies when it comes to preventing the 
spread of the coronavirus infection over the globe [6]. 
Since the FDA in the United States has given its approval 
to two mRNA-based vaccines, one from Pfizer-BioNTech 
and one from Moderna, for emergency use in prevent-
ing COVID-19, the mRNA vaccine field will encompass a 
dramatic increase in market value and attract widespread 
interest in both cancer and infectious disease applica-
tions [2, 6, 8]. According to the findings, cancer immuno-
therapies might benefit from the use of mRNA vaccines 
in order to overcome certain obstacles.

This review article covers a range of topics related to 
mRNA vaccines in cancer immunotherapy. It begins with 
a discussion of basic mRNA vaccine pharmacology and 
recent advances in mRNA vaccine technology. The article 
then examines the optimization of mRNA translation and 
stability, modulation of immunogenicity, and progress in 
mRNA vaccine delivery. Various delivery methods are 
discussed, including ex vivo loading of DCs, injection of 
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naked mRNA in vivo, physical delivery methods in vivo, 
protamine, and cationic lipid and polymer-based deliv-
ery. The review covers the development of mRNA cancer 
vaccines, including DC mRNA cancer vaccines and direct 
injection of mRNA cancer vaccines. It also highlights 
therapeutic considerations and challenges, good manu-
facturing practice production, and regulatory aspects of 
mRNA vaccines. Strategies to improve mRNA transla-
tion efficiency and overcome innate immunogenicity are 
examined, including the modification of the five-prime 
cap, optimization of untranslated regions, codon opti-
mization of open reading frames, poly(a) tail modifica-
tion, nucleoside modified mRNA, and purification of 
IVT-mRNA. The article also discusses the immunogenic-
ity of mRNA and paradoxical effects in cancer immuno-
therapy, as well as self-amplifying mRNA vaccines, their 
structure, advantages, and deliveries. The review covers 
the delivery of mRNA cancer vaccines, including the 
rationale for lipid nanoparticles to maximize delivery 
efficiency and immunogenicity, mechanistic studies, and 
additional functional modifications of LNPs, LNP mRNA 
vaccine from formulation to manufacturing, polymer-
based mRNA delivery systems, peptide-based mRNA 
delivery systems, and other formulations used in mRNA 
delivery. The article also examines the injection routes of 
mRNA cancer vaccines and provides a clinical overview 
of mRNA cancer vaccines. Finally, the review discusses 
mRNA encoding immunostimulants, mRNA vaccine 
encoding tumor-associated antigens, mRNA vaccine 
encoding neoantigen, personalized vaccines, and con-
cludes with future perspectives on the development of 
RNA-based treatments in cancer immunotherapy.

Cancer immunotherapies
Cancer immunotherapy is a revolutionary approach to 
treating cancer that harnesses the power of the immune 
system to recognize and destroy cancer cells [14]. The 
immune system plays a crucial role in detecting and elim-
inating abnormal cells in the body, including cancer cells 
[15]. However, cancer cells have developed various mech-
anisms to evade the immune system and continue to 
grow unchecked [14]. Immunotherapy aims to enhance 
and activate the body’s immune response against cancer 
cells, helping the immune system to recognize and elimi-
nate them effectively [16].

Immune checkpoint inhibitors
Immune checkpoint inhibitors are a type of cancer 
immunotherapy that target molecules known as check-
points on immune cells [17]. These checkpoints act as 
regulators or "brakes" on the immune system, prevent-
ing excessive immune responses that can lead to autoim-
mune reactions [16]. One of the well-known checkpoint 

molecules is called programmed cell death protein 1 (PD-
1). It is expressed on the surface of certain immune cells, 
including T cells, which play a crucial role in recogniz-
ing and eliminating cancer cells [18]. Another checkpoint 
molecule is cytotoxic T-lymphocyte-associated protein 
4 (CTLA-4), which is primarily found on the surface of 
regulatory T cells [19]. Cancer cells often exploit these 
checkpoint molecules to evade immune detection and 
attack. They can express ligands (such as PD-L1) that 
bind to the checkpoints on immune cells, sending inhibi-
tory signals that dampen the immune response. By doing 
so, cancer cells can avoid being targeted and destroyed by 
the immune system [19].

Immune checkpoint inhibitors work by blocking these 
inhibitory signals, thereby unleashing the immune sys-
tem’s ability to recognize and attack cancer cells. Spe-
cifically, these inhibitors bind to either PD-1 or CTLA-4, 
preventing the cancer cell’s ligands from interacting with 
the checkpoint molecules [20]. As a result, the immune 
response is reinvigorated, and immune cells, particu-
larly T cells, can better recognize and eliminate cancer 
cells. By removing these "brakes" on the immune sys-
tem, checkpoint inhibitors enhance the host’s anti-tumor 
immunity. They allow immune cells to infiltrate tumors 
more effectively, recognize cancer-specific antigens, and 
mount a robust immune response against the tumor [19]. 
This can lead to tumor shrinkage and improved outcomes 
for cancer patients. It’s important to note that checkpoint 
inhibitors are used in the treatment of various types of 
cancer, including melanoma, lung cancer, kidney cancer, 
bladder cancer, and others. They have shown significant 
success in some patients, with durable responses and 
improved survival rates. However, their effectiveness 
can vary depending on the type of cancer and individual 
patient factors [20].

CAR‑T cell therapy
CAR-T cell therapy is an innovative form of cancer 
immunotherapy that involves modifying a patient’s 
own T cells to enhance their ability to recognize and 
attack cancer cells [21]. The process begins by collect-
ing the patient’s T cells from their blood. These T cells 
are then genetically engineered to express a CAR on 
their surface. The CAR is designed to recognize a spe-
cific antigen present on the surface of cancer cells [22]. 
Once the CAR-T cells are generated in the laboratory, 
they are infused back into the patient’s body. The modi-
fied CAR-T cells can now specifically target and bind to 
cancer cells expressing the targeted antigen, initiating a 
potent immune response against the tumor. This therapy 
has shown remarkable success in treating certain types of 
blood cancers, such as leukemia and lymphoma, where 
the targeted antigen is abundantly expressed [23].
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CAR-T cell therapy represents a personalized and 
highly targeted approach that harnesses the power of the 
patient’s immune system to fight cancer. Once infused 
back into the patient, the CAR-T cells multiply and 
persist in the body, allowing for a sustained anti-tumor 
response [24]. The CAR-T cells have the ability to rec-
ognize and eliminate cancer cells throughout the body, 
including in hard-to-reach areas. This makes CAR-T cell 
therapy particularly effective against cancers that have 
spread or have been resistant to other treatments. One of 
the key advantages of CAR-T cell therapy is its specific-
ity [24]. The CAR is designed to target a specific antigen 
present on cancer cells, minimizing damage to healthy 
cells. This targeted approach reduces the risk of off-target 
side effects commonly associated with traditional cancer 
treatments like chemotherapy and radiation [25]. Despite 
its success, CAR-T cell therapy does have potential side 
effects. The activation of the immune system can lead to 
an excessive immune response, known as cytokine release 
syndrome (CRS). CRS can cause flu-like symptoms, fever, 
low blood pressure, and in severe cases, organ damage. 
Another potential side effect is neurotoxicity, which can 
lead to confusion, seizures, and other neurological symp-
toms [26]. However, medical professionals closely moni-
tor patients receiving CAR-T cell therapy to manage and 
mitigate these potential side effects.

CAR-T cell therapy has revolutionized the field of 
cancer treatment, particularly for certain types of blood 
cancers [27]. It has demonstrated remarkable efficacy in 
inducing long-term remissions and even cures in some 
patients. Ongoing research and clinical trials are explor-
ing the application of CAR-T cell therapy to other types 
of cancer, with the hope of expanding its benefits to a 
wider range of patients [25]. Additionally, CAR-T cell 
therapy has shown promising results in pediatric patients 
with relapsed or refractory cancers [24]. Children with 
acute lymphoblastic leukemia who have not responded to 
standard treatments have achieved significant remissions 
with CAR-T cell therapy. This breakthrough therapy has 
provided a new treatment option for young patients who 
previously had limited options [21].

CAR-T cell therapy is continually evolving and improv-
ing. Researchers are exploring ways to enhance its effec-
tiveness and reduce side effects. One area of focus is the 
development of "second-generation" and "third-genera-
tion" CARs that incorporate additional signaling domains 
to enhance CAR-T cell activation and persistence [27]. 
These advancements aim to further improve the anti-
tumor response and potentially broaden the applicability 
of CAR-T cell therapy to other types of cancer. Moreo-
ver, efforts are underway to overcome challenges related 
to solid tumors, which have proven more complex to tar-
get with CAR-T cell therapy compared to blood cancers. 

Strategies such as combining CAR-T cell therapy with 
other treatments, including immune checkpoint inhibi-
tors or CAR-T cells targeting multiple antigens, are being 
explored to improve outcomes in solid tumors [26].

Tumor‑infiltrating lymphocyte (TIL) therapy
Tumor-infiltrating lymphocyte (TIL) therapy is a form 
of cancer immunotherapy that harnesses the power of 
a patient’s own immune system to fight against cancer 
[28]. In TIL therapy, immune cells called lymphocytes are 
isolated from a tumor sample obtained from the patient. 
These lymphocytes, which have infiltrated the tumor, are 
then expanded and activated in the laboratory [29]. Once 
a sufficient number of TILs have been generated, they 
are infused back into the patient’s body [30]. The goal of 
TIL therapy is to enhance the host’s anti-tumor immune 
response by providing a larger population of activated 
T cells that can specifically recognize and target cancer 
cells. By reintroducing these modified TILs, the therapy 
aims to create a more potent immune response against 
the tumor [29].

TIL therapy also has the potential to modify the 
tumor microenvironment by increasing the infiltra-
tion of immune cells into the tumor, thereby creating a 
more hostile environment for cancer cells and improv-
ing the overall anti-tumor immune response [31]. TIL 
therapy offers a promising approach to treating can-
cer by leveraging the patient’s own immune system to 
specifically target and eliminate cancer cells [32]. Upon 
infusion, the expanded TILs migrate to the tumor site, 
where they engage with cancer cells through the recogni-
tion of tumor-specific antigens. This interaction activates 
the TILs, leading to the release of cytotoxic molecules 
and the secretion of immune-stimulating cytokines. The 
cytotoxic molecules, such as perforin and granzymes, 
enable the TILs to directly attack and kill cancer cells 
[32]. Additionally, the secreted cytokines help recruit and 
activate other immune cells, further enhancing the anti-
tumor immune response.

TIL therapy not only focuses on the direct elimination 
of cancer cells but also aims to modify the tumor micro-
environment [33]. Tumors often create an immunosup-
pressive environment that inhibits immune cell function 
and allows the cancer cells to evade immune detection. 
However, the introduction of activated TILs can disrupt 
this immune suppression by promoting immune cell 
infiltration and altering the balance of immune cell types 
within the tumor [32]. This shift in the tumor microen-
vironment can create a more favorable setting for anti-
tumor immune responses to occur. It’s important to 
note that TIL therapy is still an area of active research, 
and its effectiveness can vary depending on several fac-
tors, including the type and stage of cancer, the quality 
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and quantity of TILs, and the overall immune status of 
the patient [32].

Ongoing studies are focused on optimizing TIL expan-
sion techniques, improving the selection of tumor-
specific TILs, and exploring combination therapies to 
enhance the efficacy of TIL-based treatments. In addi-
tion to its potential as a standalone therapy, TIL therapy 
is also being investigated in combination with other can-
cer treatments [32]. For example, researchers are explor-
ing the use of TIL therapy alongside immune checkpoint 
inhibitors to further enhance the anti-tumor immune 
response. Immune checkpoint inhibitors can alleviate 
the brakes on the immune system, allowing TILs to exert 
their full potential in targeting cancer cells [34]. Moreo-
ver, ongoing efforts are being made to overcome some of 
the challenges associated with TIL therapy [32].

One such challenge is the limited availability of TILs 
from some tumor types or patients with low TIL infiltra-
tion. Researchers are exploring strategies to generate and 
expand TILs from small tumor samples or using tech-
niques such as genetic engineering to improve TIL func-
tionality [32]. Another area of interest is the development 
of personalized TIL therapy, where TILs are specifically 
tailored to target the unique antigens present in an indi-
vidual patient’s tumor. This approach involves identify-
ing the specific antigens expressed by the patient’s tumor 
and selecting or engineering TILs that can recognize and 
attack those antigens [32]. Personalized TIL therapy has 
shown promising results in early clinical trials and may 
improve treatment efficacy by targeting tumor-specific 
antigens.

As research in TIL therapy progresses, it holds the 
potential to become an integral part of the cancer treat-
ment landscape [32]. By harnessing the power of the 
immune system, TIL therapy offers a targeted and per-
sonalized approach to combat cancer, potentially lead-
ing to improved outcomes and better quality of life for 
patients. Continued advancements and clinical studies 
will provide further insights into the optimal use and 
potential of TIL therapy in the fight against cancer [31].

Therapeutic vaccines
Therapeutic vaccines can be developed using different 
strategies. One approach is to use tumor-specific anti-
gens derived from the patient’s own tumor cells [35]. 
These antigens are unique to the cancer cells and not 
present in healthy cells, making them ideal targets for 
the immune system. By presenting these tumor-specific 
antigens to the immune system, the therapeutic vac-
cine helps train immune cells to recognize and attack 
cancer cells specifically. Another strategy involves 
using immune-stimulating molecules called adjuvants 
[36]. Adjuvants are included in the vaccine formulation 

to enhance the immune response. They can activate 
immune cells, promote antigen presentation, and 
improve the overall effectiveness of the vaccine [37]. 
Adjuvants can be designed to trigger specific immune 
pathways or amplify immune responses against cancer 
cells [37].

Therapeutic vaccines are typically administered 
through injections, either subcutaneously or intramuscu-
larly. The vaccination process may involve multiple doses 
over a period of time to optimize the immune response 
[38]. In some cases, the vaccines may be combined with 
other immunotherapies or conventional treatments like 
chemotherapy or radiation therapy to enhance their 
effectiveness.

Therapeutic vaccines offer several advantages in the 
field of cancer immunotherapy [39]. One major advan-
tage is their potential for personalized medicine. Each 
patient’s tumor is unique, and therapeutic vaccines can be 
tailored to target specific antigens present in their cancer 
cells. This personalized approach can enhance the vac-
cine’s effectiveness by focusing on the individual’s specific 
tumor characteristics [40]. Furthermore, therapeutic vac-
cines have the potential to induce immune memory. This 
means that even after the initial treatment, the immune 
system may retain the ability to recognize and respond to 
cancer cells if they reappear. This immune memory could 
provide long-term protection against cancer recurrence, 
offering a durable and sustained therapeutic effect [38]. 
Additionally, therapeutic vaccines are generally well-tol-
erated with manageable side effects. They do not typically 
cause the severe adverse reactions associated with tradi-
tional cancer treatments such as chemotherapy or radia-
tion therapy [41]. This makes therapeutic vaccines an 
attractive option for patients who are unable to tolerate 
or have completed standard treatments and are seeking 
alternative therapies [38]. However, challenges remain 
in the development and implementation of therapeutic 
vaccines. One hurdle is identifying the most appropri-
ate tumor antigens to target, as cancer cells can have a 
complex and heterogeneous antigen profile [37]. Addi-
tionally, tumors employ various mechanisms to evade 
immune detection and suppress the immune response, 
which can limit the effectiveness of therapeutic vaccines 
[36]. Overcoming these immunosuppressive mechanisms 
is an active area of research to improve the efficacy of 
therapeutic vaccines. Therapeutic vaccines hold great 
promise in harnessing the power of the immune system 
to target and eliminate cancer cells [35]. Their personal-
ized nature, potential for immune memory, and relatively 
favorable side effect profile make them a compelling ave-
nue for cancer treatment. As research advances and our 
understanding of the immune response to cancer deep-
ens, therapeutic vaccines are likely to play an increasingly 
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important role in the broader landscape of cancer immu-
notherapy [38].

Adoptive cell transfer
Adoptive cell transfer is a cancer immunotherapy 
approach that involves transferring immune cells, such 
as TILs or genetically modified T cells, into the patient 
[42]. The process begins by isolating immune cells from 
the patient’s tumor, which often contains TILs that have 
already recognized the cancer cells [43]. These TILs are 
then expanded and activated in the laboratory to enhance 
their anti-tumor capabilities. In some cases, genetic 
modifications may be made to these cells to improve their 
effectiveness or to introduce specific receptors that rec-
ognize tumor antigens [44]. Once the cells have been pre-
pared, they are infused back into the patient, where they 
can seek out and attack cancer cells more effectively than 
the patient’s own immune system alone [45]. By transfer-
ring these highly specialized immune cells, adoptive cell 
transfer aims to bolster the host’s anti-tumor immunity 
and modify the tumor microenvironment [46]. The trans-
ferred cells can infiltrate the tumor, recognize cancer cells 
more efficiently, and mount a targeted immune response, 
leading to tumor regression. Additionally, the presence 
of these activated immune cells can influence the tumor 
microenvironment by promoting immune cell infiltration 
and altering the balance of immune cell types within the 
tumor, creating a more hostile environment for cancer 
cells [47].

Adoptive cell transfer holds promise as a powerful 
tool in cancer treatment, harnessing the potential of the 
immune system to fight against cancer. Through adop-
tive cell transfer, the immune cells that are transferred 
into the patient are specifically selected and engineered 
to recognize and target cancer cells [48]. This approach 
can overcome some of the limitations of the patient’s 
own immune system, which may not have been able to 
effectively recognize or eliminate the cancer cells on its 
own. One example of adoptive cell transfer is CAR-T cell 
therapy, where T cells are genetically modified to express 
chimeric antigen receptors (CARs) on their surface [49]. 
These CARs are designed to recognize specific tumor 
antigens, enabling the T cells to specifically target cancer 
cells [50]. Once infused into the patient, these engineered 
CAR-T cells can multiply and persist in the body, contin-
uously searching for and attacking cancer cells. Another 
example is the use of TILs, which are immune cells that 
have naturally infiltrated the tumor [49]. TILs are iso-
lated from the tumor, expanded in the laboratory, and 
then reinfused back into the patient. These TILs, already 
primed to recognize cancer cells, can exert a potent anti-
tumor immune response [48]. By transferring a large 
number of activated TILs, the immune response against 

the tumor is enhanced, leading to tumor regression. 
Adoptive cell transfer not only enhances the host’s anti-
tumor immunity but also has the potential to modify the 
tumor microenvironment [50]. The transferred immune 
cells can secrete cytokines and other signaling molecules 
that can recruit additional immune cells to the tumor site 
[49]. This immune cell infiltration can lead to changes in 
the tumor microenvironment, such as increased presence 
of effector immune cells and reduced suppressive factors. 
These modifications create a more immune-favorable 
environment, allowing for better immune surveillance 
and targeting of the cancer cells [45]. Adoptive cell trans-
fer is a promising cancer immunotherapy that leverages 
the power of engineered or expanded immune cells to 
enhance the host’s immune response against cancer [44]. 
By specifically targeting cancer cells and modifying the 
tumor microenvironment, adoptive cell transfer holds 
great potential in improving outcomes for patients with 
various types of cancer. Ongoing research and advance-
ments in this field are continually refining and expanding 
the applications of adoptive cell transfer in cancer treat-
ment [48].

Basic mRNA vaccine pharmacology
The translation of protein-encoding DNA into mRNA is 
the first step in the synthesis of proteins by ribosomes 
in the cytoplasm. Figure  1-A illustrates the process of 
adjusting mRNA medicine dosage pharmacokinetics 
through the manipulation of crucial structural compo-
nents in IVT mRNA. By altering elements such as the 
cap structure, untranslated regions (UTRs), and polyade-
nylated (poly(A)) tails, researchers can effectively control 
and optimize the expression duration and kinetic profile 
of the protein product. This approach involves modulat-
ing the interaction of eukaryotic translation initiation 
factor 4E (eIF4E) with the mRNA cap, leveraging the 
internal ribosome entry site (IRES) for alternative trans-
lation initiation, and adjusting the open reading frame 
(ORF) to fine-tune protein production. As a result, this 
method offers a promising avenue for the development 
of personalized mRNA medicine with enhanced efficacy 
and reduced side effects.

Both non-replicating and virally produced, self-
amplifying RNA are now being investigated as vaccine 
candidates: non-replicating RNA and self-amplifying 
RNA. The antigen of interest and the 5′ and 3′ UTRs are 
encoded by conventional mRNA-based vaccines, whereas 
self-amplifying RNAs encode not only the antigen of 
interest but also the viral replication machinery, which 
allows for intracellular RNA amplification and abundant 
protein expression. RNA polymerase (T7, T3, or Sp6) is 
used to transcribe the linear DNA template into mRNA, 
which is then used to transcribe the mRNA in vitro. The 
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final product should include an open reading frame that 
encodes the protein of interest, flanking UTRs, a 5′ cap, 
and a poly(A) tail, if possible. As a result, the mRNA has 
been made to look and behave like fully processed mature 
mRNA molecules seen in the cytoplasm of eukaryotic 
cells in the natural world. Unprocessed mRNA is rapidly 
destroyed by extracellular RNases and does not undergo 
effective internalization. The result has been the develop-
ment of a large number of different in vitro and in vivo 
transfection agents that aid in the absorption of mRNA 
into cells while also protecting it from destruction.

Once the mRNA reaches the cytosol, the cellular trans-
lation machinery begins to generate protein, which is 
then subjected to post-translational modifications, cul-
minating in a correctly folded and completely function-
ing protein. As previously stated, this aspect of mRNA 
pharmacology is especially helpful for vaccinations and 
protein replacement treatments that need the delivery 
of cytosolic or transmembrane proteins to the appro-
priate cellular compartments in order to be effective. 
In the end, IVT mRNA is destroyed by natural physi-
ological processes, lowering the risk of toxicity from 
metabolites. Figure  1-B illustrates the fundamentals of 

Fig. 1 A Adjusting mRNA Medicine Dosage Pharmacokinetics. a) Crucial structural components of in vitro transcribed (IVT) mRNA and approaches 
for their alterations. b) Based on the individual or combined use of these elements (such as modification of caps, UTRs, or poly(A) tails), the protein 
product’s expression duration and kinetic profile can be controlled and optimized. eIF4E represents eukaryotic translation initiation factor 4E; 
IRES refers to the internal ribosome entry site; and ORF denotes open reading frame. Reprinted from [51] with permission from Springer Nature. B 
Fundamentals of mRNA-based antigen pharmacology. a) A linear DNA plasmid containing the antigen-encoding sequence is employed for in vitro 
transcription. The transcribed mRNA consists of the cap, 5′ and 3′ UTRs, the open reading frame (ORF), and the poly(A) tail, which influence 
the mRNA’s translational activity and stability once introduced into cells. b) Step 1: A portion of the foreign mRNA avoids degradation by common 
RNases and is taken up by cell-specific mechanisms (such as macropinocytosis in immature dendritic cells) into endosomal pathways. Step 2: 
The release of mRNA into the cytoplasm is not entirely understood. Step 3: Host cell protein synthesis machinery translates the mRNA. mRNA 
translation’s rate-limiting step involves eukaryotic eIF4E binding to the cap structure. The formation of circular structures and active translation result 
from mRNA binding to ribosomes, eIF4E, eIF4G, and poly(A)-binding protein. Step 4: Exonucleases catalyze the termination of translation via mRNA 
degradation. Decapping enzymes D CP1, DCP2, and DCPS hydrolyze the cap, followed by the digestion of residual mRNA by 5′–3′ exoribonuclease 
1 (XRN1). Degradation might be delayed if mRNA is silenced and located within cytoplasmic processing bodies. Alternatively, exosomal 
endonucleolytic cleavage of mRNA may take place. Various mechanisms control the breakdown of aberrant mRNA (such as mRNA with a premature 
stop codon). Step 5: The translated protein undergoes post-translational modifications based on the host cell’s characteristics. The synthesized 
protein can then function within the cell it was produced in. Step 6: Alternatively, the protein is secreted and can function through autocrine, 
paracrine, or endocrine pathways. Step 7: For immunotherapeutic mRNA application, the protein must be broken down into antigenic peptide 
epitopes. These peptides are loaded onto major MHC molecules, which present the antigens to immune effector cells. Proteasomes degrade 
cytoplasmic proteins, which are then transported to the endoplasmic reticulum and loaded onto MHC class I molecules for presentation 
to CD8 + cytotoxic T lymphocytes. Almost all cells express MHC class I molecules. Step 8: In antigen-presenting cells, the protein must be directed 
to MHC class II loading compartments to obtain T cell assistance for a stronger, lasting immune response. This can be achieved by incorporating 
routing signal-encoding sequences into the mRNA. Additionally, DCs can process and load exogenous antigens onto MHC class I molecules 
through a mechanism called cross-priming. Step 9: Antigens derived from the protein can be displayed on the cell surface by both MHC class I 
and MHC class II molecules, enabling the immune system to recognize and respond to them accordingly. Reprinted from [51] with permission 
from Springer Nature
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mRNA-based antigen pharmacology. The process begins 
with in vitro transcription of a linear DNA plasmid con-
taining the antigen-encoding sequence, producing an 
mRNA molecule with various components influencing 
its translational activity and stability. The foreign mRNA 
then enters cells through specific mechanisms, such 
as macropinocytosis in immature dendritic cells, and 
undergoes several steps, including cytoplasmic release, 
translation by host cell machinery, and degradation. The 
rate-limiting step of mRNA translation involves eukary-
otic translation initiation factors (eIF4E and eIF4G) and 
poly(A)-binding protein, which facilitate the formation of 
circular structures for active translation.

Following translation, the synthesized protein under-
goes post-translational modifications and may either 
function within the producing cell or be secreted to act 
through autocrine, paracrine, or endocrine pathways. In 
immunotherapeutic applications, the protein is degraded 
into antigenic peptide epitopes and loaded onto major 
MHC molecules to elicit immune responses. MHC class I 
and class II molecules present antigens to immune effec-
tor cells, with class II molecules typically requiring addi-
tional routing signals encoded into the mRNA. Dendritic 
cells (DCs) play a crucial role in this process by process-
ing exogenous antigens and cross-priming. Ultimately, 
the immune system recognizes and responds to the anti-
gens presented on the cell surface by both MHC class I 
and II molecules.

Recent advances in mRNA vaccine technology
In recent years, a number of mRNA vaccine platforms 
have been generated and confirmed in investigations 
of immunogenicity and effectiveness [53]. Through the 
use of genetic engineering, synthesized mRNA is more 
readily translated than ever before [54]. Table 1 provides 
a summary of the different types of mRNA cancer vac-
cines and mentioned several categories of mRNA cancer 
vaccines. There is a wide array of mRNA cancer vaccines 
under development, each with distinct mechanisms of 
action and unique advantages and disadvantages [55]. 
These vaccines range from DC mRNA cancer vaccines, 
which involve the ex vivo loading of patient-derived DCs, 
to direct injection of mRNA into the tumor or surround-
ing tissue [56]. Some mRNA cancer vaccines encode for 
specific tumor-associated antigens or neoantigens, while 
others utilize self-amplifying RNA vectors or lipid nano-
particles for improved delivery. Other strategies include 
combining mRNA with adjuvants, immune checkpoint 
inhibitors, gene editing tools, or novel delivery systems 
to enhance the immune response against cancer cells 
[11]. Despite the diversity of approaches, mRNA can-
cer vaccines generally face challenges in terms of stabil-
ity, immunogenicity, and manufacturing complexity. 

Additionally, while many of these vaccines have shown 
promise in preclinical studies, their efficacy in early clini-
cal trials remains limited. Nonetheless, these innovative 
treatments hold great potential in the fight against cancer 
and warrant further research and development.

The development of highly effective and non-toxic 
RNA carriers has allowed for the expression of antigens 
in  vivo to be extended in certain circumstances [75]. 
Novel adjuvants are used in certain vaccination formula-
tions, whereas others produce robust immune responses 
even in the absence of well-established adjuvants [76]. 
The significant advancements in these areas of mRNA 
engineering, as well as their implications for vaccination 
effectiveness, are summarized in the following section 
[53]. Figure 2 highlights the essential breakthroughs and 
progress in mRNA-based treatment development, which 
can be divided into three main phases.

Optimization of mRNA translation and stability
Stability and translation of mRNA are significantly influ-
enced by the 5′ and 3′ UTRs that surround the coding 
sequence, both of which are key issues for vaccine devel-
opment [77]. Regulation sequences may be obtained 
from viral or Eukaryotic genes, and they have been 
shown to significantly prolong the half-life and boost the 
production of therapeutic mRNAs [78]. A 5′ cap struc-
ture is necessary for effective protein synthesis from 
mRNA [79]. A 5′ cap structure is required to successfully 
generate protein from mRNA [79]. Depending on the 
application, 5′ caps may be inserted during or after tran-
scription using a vaccinia virus capping enzyme or syn-
thetic cap or anti-reverse cap analogues [80]. To ensure 
that mRNA is translated and stable, a suitable length 
of poly(A) must be added to it, either directly from the 
encoding DNA template or by using poly(A) polymer-
ase [81]. The codons utilized also affect protein transla-
tion [82]. It is typical practice to replace unusual codons 
with common synonymous codons that have abundant 
cognate tRNA in the cytosol to increase protein synthe-
sis from mRNA, although this paradigm has been ques-
tioned [83]. Enriching G:C composition in sequences has 
been shown to increase steady-state mRNA levels in vitro 
and protein expression in  vivo [84]. While it is possible 
to positively modulate protein expression by modifying 
codon composition or nucleosides, it is also possible to 
negatively modulate mRNA secondary structure, transla-
tion kinetics and accuracy, simultaneous protein folding 
kinetics and accuracy, and expression of cryptic T cell 
epitopes present in alternative reading frames30 [85]. 
These factors may all affect the magnitude and specificity 
of the immune response [86]. Figure  3 presents a com-
prehensive summary of the PERSIST-seq approach, as 
well as key findings on ribosome load for various mRNA 
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designs. The process begins with a schematic represen-
tation of mRNA optimization (Fig. 3-a), where 5′ and 3′ 
UTRs are combined with Eterna-based and algorithmi-
cally generated coding sequences. All mRNA sequences 
are experimentally evaluated for in-solution and in-cell 
stability, along with ribosome load, using unique 6–9 nt 
barcodes for tag counting through short-read sequenc-
ing. The experimental layout (Fig. 3-b) demonstrates the 
parallel assessment of in-solution and in-cell stability and 
ribosome load, with mRNAs synthesized and prepared 
in a pooled format before HEK293T cell transfection or 
in-solution degradation exposure. Polysome traces from 
a 233-mRNA pool (Fig. 3-c) show the effect of UTR vari-
ations on ribosome load, revealing greater variability in 
average load per construct for 5′ UTR variations (Fig. 3-
d). The ribosome load formula is provided alongside box 
hinges and whiskers illustrating data distribution. Heat-
maps (Fig.  3-e) display polysome profiles for the top, 
middle, and bottom five mRNA designs across design 

categories, while the SARS-CoV-2 5′ UTR secondary 
structure model (Fig. 3-f ) highlights mutations and sub-
stitutions. Finally, heatmaps of SARS-CoV-2 5′ UTR vari-
ant polysome profiles (Fig.  3-g) are sorted by ribosome 
load, offering valuable insight into the impact of design 
optimization on ribosome efficiency.

Modulation of immunogenicity
Exogenous mRNA may be recognized by the innate 
immune system at several levels, including the cell sur-
face, the endosome, and the cytosol [88]; as a result, the 
innate immune system is extremely immunostimulatory 
[88]. This characteristic of mRNA might either be help-
ful or detrimental to therapeutic endeavors, depending 
on the circumstances [89]. Because it may increase DC 
maturation, which in turn enhances T and B cell immu-
nological responses, it has the potential to be effective 
as an adjuvant for vaccination [90]. On the other hand, 
the reduction of antigen expression could be a collateral 

Fig. 2 Essential breakthroughs and progress in mRNA-based treatment development. The creation of mRNA-based treatments can be split 
into three primary phases. Phase 1 (1961–1990) involves mRNA discovery, in vitro synthesis, and the construction of nucleic acid delivery systems, 
including mRNA identification, protamine uses for RNA delivery, in vitro mRNA translation, mRNA cap discovery, liposome-trapped mRNA 
delivery, commercialization of cap analogs and T7 RNA polymerases, cationic lipid-mediated mRNA delivery, and in vivo translation of naked 
mRNA through direct injection. Phase 2 (1990–2019) encompasses the accumulation of knowledge through numerous attempts and diverse 
applications, particularly protein replacement therapies and vaccination strategies for cancer and infectious diseases, such as mRNA-based cancer 
immunotherapy, founding of an mRNA-based company, 3′-UTR regulation of mRNA localization, antitumor T cell response triggered by mRNA, 
first clinical trial with mRNA using ex vivo transfected DCs, mRNA-based immunotherapy for human cancer, preclinical study with intranodally 
injected DC-targeted mRNA, protective mRNA vaccinations for influenza and respiratory syncytial virus, CRISPR-Cas9 mRNA for gene editing, 
and personalized mRNA cancer vaccines for clinical trials. Phase 3 (2019-present) sees mRNA-based therapeutics emerging as a disruptive 
technology, providing powerful and versatile tools for treating diseases, including clinical trials of mRNA vaccines for cancer and infectious diseases, 
as well as the emergency use of mRNA-1273 and BNT162b for the SARS-CoV-2 pandemic. Reprinted from [52] with permission from Springer Nature
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consequence of the innate immune system detecting 
mRNA [91]. In recent years, more clarity has been given 
to the seemingly contradicting effects of innate immune 
sensing on distinct mRNA vaccination types [91]; none-
theless, there is still a great deal of work to be done in this 
area.

Purifying IVT mRNA, adding various nucleosides, and 
complexing the mRNA with other carrier molecules are 
all possible ways to modify the immunostimulatory pro-
file of the mRNA, as was discovered in recent study [65]. 
It is possible for enzymatically generated mRNA sam-
ples to include double-stranded RNA contaminants, also 
known as dsRNA [92]. These contaminants are by-prod-
ucts of the IVT process [65]. Pathogen-associated molec-
ular patterns, or pathogen-associated molecular patterns 
(PAMPs), such as double-stranded RNA (dsRNA), mimic 
viral genomes and replication intermediates [93]. Pat-
tern recognition receptors, which are located in a variety 
of different cellular sites, are responsible for detecting 
PAMPs [94]. In response to the detection of IVT mRNA 
that is contaminated with dsRNA, both protein kinase 
R (also known as EIF2AK2) and 2′-5′-oligoadenylate 
synthetase (OAS) are activated [95]. This results in the 
inhibition of translation as well as the destruction of cel-
lular mRNA and ribosomal RNA [96]. Some researchers 
demonstrated, with the use of chromatographic methods 
such as reverse-phase fast protein liquid chromatogra-
phy (FPLC) or high-performance liquid chromatography, 
that contaminating dsRNA could be efficiently removed 
from IVT mRNA [97]. It has been proven that purifica-
tion by FPLC may significantly increase the amount of 
protein that can be synthesized from IVT mRNA in pri-
mary human DCs by as much as a factor of 1,000 [98]. 
Therefore, it would seem that proper purification of IVT 
mRNA is necessary for adequate protein (immunogen) 
production in DCs in order to avoid unnecessary acti-
vation of the innate immune system [99]. When exog-
enous single-stranded mRNA molecules are introduced 
into cells, they function as a PAMP in a manner similar 

to that of dsRNA contaminants [100]. Endosomal sen-
sors known as Toll-like receptor 7 (TLR7) and TLR8 
are responsible for the generation of type I interferon 
when they detect single-stranded oligoribonucleotides 
and the products of their breakdown [101]. Importantly, 
it was revealed that type I interferon signaling48 may 
be inhibited by integrating naturally occurring chemi-
cally modified nucleosides such as pseudouridine and 
1-methylpseudouridine [87]. This was a significant find-
ing. Nucleoside modification is another factor that may, 
to a certain degree, impede dsRNA species recognition. 
According to the findings of some researchers, the trans-
lation efficiency of nucleoside-modified mRNA is much 
higher than that of unmodified mRNA both in vitro, par-
ticularly in primary DCs, and in vivo in mice [102]. It is 
important to highlight that DCs were only able to create 
the highest quantities of protein when the mRNA had 
been FPLC-purified as well as nucleoside-modified [103]. 
Recent research into the mechanisms behind innate 
immune sensing and methods for mitigating the poten-
tially detrimental effects it may have may be responsible, 
at least in part, for the surge in interest in mRNA-based 
immunizations and protein replacement therapies [104].

According to the findings of a study that was car-
ried out by some researchers, sequence-optimized, 
HPLC-purified, unmodified mRNA produced greater 
amounts of protein in HeLa cells and in mice than its 
nucleoside-modified counterpart did [105]. In addi-
tion, some researchers demonstrated that nucleo-
side-modified mRNA leads to far less robust protein 
synthesis than unmodified, non-HPLC-purified mRNA 
does in HeLa cells, yet both types of mRNA lead to a 
similar quantity of protein creation in mice [106]. Dif-
ferences in RNA sequence optimization, the stringency 
of mRNA purification to exclude dsRNA contami-
nants, and the degree of innate immune sensing in the 
targeted cell types may be to blame for the unresolved 
discrepancies between the findings obtained by some 
researchers [107]. It is possible that the inclusion of 

(See figure on next page.)
Fig. 3 PERSIST-seq summary and representative ribosome load findings. a Schematic representation of the mRNA optimization process. 5′ 
and 3′ UTRs sourced from literature and rational design were merged with Eterna and algorithmically created coding sequences. All sequences 
underwent simultaneous experimental evaluation for in-solution and in-cell stability, as well as ribosome load. Unique 6–9 nt barcodes in the 3′ 
UTR of the mRNA design enabled tag counting via short-read sequencing. b Experimental layout for assessing in-solution and in-cell stability 
and ribosome load concurrently. mRNAs were in vitro transcribed, 5′ capped, and polyadenylated in a pooled format prior to HEK293T cell 
transfection or in-solution degradation exposure. Cells were then collected for sucrose gradient fractionation or in-cell degradation examination. 
c Polysome trace from a 233-mRNA pool transfected into HEK293T cells. d 5′ UTR variations exhibit greater variability in average ribosome load 
per construct, as determined by polysome sequencing. The ribosome load formula is provided. Box hinges display 25% quantile, median, and 75% 
quantile from left to right, while whiskers indicate lower or upper hinge ± 1.5 × interquartile range. e Heatmaps of polysome profiles for top, 
middle, and bottom five mRNA designs (based on ribosome load) from each design category. f SARS-CoV-2 5′ UTR secondary structure model, 
with highlighted mutations and substitutions. g Heatmaps of SARS-CoV-2 5′ UTR variant polysome profiles, sorted by ribosome load. Reprinted 
from [87] with permission from Springer Nature
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Fig. 3 (See legend on previous page.)
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an adjuvant, which increases the immunostimulatory 
properties of mRNA, might improve the efficiency of 
some kinds of mRNA vaccination [108]. Some of these 
approaches make use of traditional adjuvants, while 
others are considered to be more cutting-edge and lev-
erage on the immunogenicity of mRNA or its potential 
to encode immune-modulatory proteins [109]. It has 
been shown that the incorporation of self-replicating 
RNA vaccines into cationic nanoemulsions, using as 
their foundation the FDA-approved MF59 (Novartis) 
adjuvant, results in increased immunogenicity and 
effectiveness [110]. CD70, CD40 ligand (CD40L), and 
constitutively active TLR4 are the three immune acti-
vator proteins that are combined in the TriMix tech-
nique, a powerful adjuvant that mixes the mRNAs 
that code for them [111]. TriMix mRNA was proven 
to be more immunogenic than unmodified, unpuri-
fied mRNA in several cancer vaccination tests, and 
this effect was most clearly associated to improved 
DC maturation and cytotoxic T lymphocyte (CTL) 
responses [112]. It has been proven that the kind of 
mRNA carrier utilized and the size of the mRNA-
carrier complex both have an effect on the cytokine 
profile that is produced as a result of the injection of 
mRNA [113]. For example, the carrier is what provides 
the adjuvant effect for the RNActive (CureVac AG) 
immunization platform [113]. RNA complexed with 
protamine, which is a polycationic peptide, works as 
an adjuvant by increasing TLR7 signaling and is uti-
lized to make the antigen [114]. The naked, sequence-
optimized mRNA is used to produce the antigen [114]. 
Positive immune responses have been shown in a 
number of different preclinical animal investigations 
that used this vaccine formulation to protect against 
viral diseases as well as cancer [115]. A newly pub-
lished piece of study has provided mechanistic insight 
into the adjuvanticity of RNActive vaccines in mice 
in  vivo and human cells in  vitro, respectively [116]. 
The intradermal vaccination led to a high activation 

of TLR7 in both mice and humans, as well as TLR8 in 
humans[117]. This immunization also led to the pro-
duction of type I interferon, as well as pro-inflamma-
tory cytokines and chemokines [118]. In a similar vein, 
it was shown that RNAdjuvant (CureVac AG), which is 
an unmodified, single-stranded RNA that is stabilized 
by a cationic carrier peptide, had adjuvant effect in 
the context of vaccines that do not include messenger 
RNA [119].

Progress in mRNA vaccine delivery
In order to achieve therapeutic relevance, effective 
mRNA distribution in living organisms is required [120]. 
It is necessary for the mRNA to pass through the lipid 
barrier that separates the cytoplasm from the rest of the 
cell in order for the translation of exogenous mRNA into 
a functional protein to take place [121]. The mechanisms 
by which cells appear to take up mRNA appear to dif-
fer depending on the lineage of the cells, and the phys-
icochemical properties of mRNA complexes can have a 
significant impact on the transport of the complexes into 
cells as well as their subsequent location within tissues 
[122]. There have, up until this point, been documented 
two basic strategies for the administration of mRNA vac-
cines [123]. Direct parenteral injection of mRNA with 
or without a carrier, followed by first ex vivo loading of 
mRNA into DCs and then subsequent re-infusion of 
the transfected cells [55]. Figure 4 illustrates a variety of 
delivery methods and carrier molecules for mRNA vac-
cines, each with distinct particulate complex diameters. 
Naked mRNA (Fig. 4-a) lacks a carrier or delivery system, 
while in  vivo electroporation (Fig.  4-b) uses an electric 
field to facilitate cellular uptake of naked mRNA. Prota-
mine-complexed mRNA (Fig. 4-c) combines mRNA with 
the cationic peptide protamine for increased stability 
and uptake. Cationic nanoemulsion (Fig. 4-d) associates 
mRNA with a positively charged oil-in-water emulsion, 
while dendrimer and PEG-lipid complexes (Fig. 4-e) pro-
vide improved delivery and reduced immunogenicity. 

Fig. 4 Various delivery methods and carrier molecules for mRNA vaccines, along with the typical diameters of the particulate complexes: a Naked 
mRNA: mRNA without any carrier or delivery system. b) Naked mRNA with in vivo electroporation: mRNA is introduced into cells by applying 
an electric field to facilitate uptake. c Protamine-complexed mRNA: mRNA is complexed with protamine, a cationic peptide, to improve stability 
and cellular uptake. d mRNA in cationic nanoemulsion: mRNA is associated with a positively charged oil-in-water cationic nanoemulsion to enhance 
delivery. e mRNA with dendrimer and PEG-lipid: mRNA is associated with a chemically modified dendrimer and complexed with polyethylene 
glycol (PEG)-lipid for improved delivery and reduced immunogenicity. f Protamine-complexed mRNA in a PEG-lipid nanoparticle: mRNA 
is complexed with protamine and encapsulated in a PEG-lipid nanoparticle for enhanced stability and delivery. g mRNA with polyethylenimine 
(PEI): mRNA is associated with a cationic polymer like PEI to improve delivery and transfection efficiency. h mRNA with PEI and lipid component: 
mRNA is associated with PEI and a lipid component for improved delivery and reduced immunogenicity. i mRNA in a polysaccharide particle or gel: 
mRNA is associated with a polysaccharide, such as chitosan, to form a particle or gel for improved stability and delivery. j mRNA in cationic lipid 
nanoparticle: mRNA is encapsulated in a cationic lipid nanoparticle (e.g., DOTAP or DOPE lipids) for enhanced stability and cellular uptake. k mRNA 
complexed with cationic lipids and cholesterol: mRNA is complexed with cationic lipids and cholesterol for improved stability and delivery. l mRNA 
complexed with cationic lipids, cholesterol, and PEG-lipid: mRNA is complexed with cationic lipids, cholesterol, and PEG-lipid for enhanced stability, 
delivery, and reduced immunogenicity. Reprinted from [126] with permission from Springer Nature

(See figure on next page.)
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Protamine-complexed mRNA in PEG-lipid nanoparticles 
(Fig.  4-f ) offer enhanced stability and delivery. Polyeth-
ylenimine (PEI) (Fig. 4-g) and PEI with lipid component 
(Fig.  4-h) improve delivery and transfection efficiency. 

Polysaccharide particles or gels (Fig.  4-i) use materi-
als like chitosan for stability and delivery. Cationic lipid 
nanoparticles (Fig.  4-j), cationic lipids and cholesterol 
complexes (Fig. 4-k), and cationic lipids, cholesterol, and 

Fig. 4 (See legend on previous page.)
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PEG-lipid complexes (Fig.  4-l) all serve to optimize sta-
bility, delivery, and reduced immunogenicity. Ex vivo DC 
loading is an expensive and time-consuming way of vac-
cination that enables precise control of the cellular target, 
transfection effectiveness, and other cellular properties 
[124]. Figure 5 demonstrates the impact of different intra-
cellular delivery methods, specifically electroporation 
and cell squeezing, on the in vitro and in vivo functional-
ity of cells. In an in vitro colony-forming assay (Fig. 5-A), 
the differentiation potential of human CD34 + hemat-
opoietic stem cells (HSCs) subjected to these methods 
was assessed by comparing the growth of CFU-GM and 
BFU-E colonies over a two-week period. Moreover, the 
viability of mouse T cells following both delivery meth-
ods was analyzed (Fig.  5-B). In panels Fig.  5-C and D, 
the proportion of CD3 + mouse T cells expressing PD-1 
or CD69 activation markers after electroporation, cell 
squeezing, or no treatment (control) was monitored over 
time. To evaluate the effects of these delivery methods 
on T cell activation, an experimental method is illus-
trated in panel Fig.  5-E. On day 4 post-re-exposure to 
the OVA antigen, CD45.2 + /CD8 + /IFN-γ + T cells were 

stained intracellularly for IFN-γ, as shown in panels Fig-F 
and G. Overall, this figure highlights the potential con-
sequences of different intracellular delivery methods 
on cell functionality and responsiveness. However, this 
method has the advantage of being able to manage these 
cellular factors [124]. Even though considerable progress 
has been made in the field, cell-type-specific delivery 
that is accurate and efficient cannot yet be achieved with 
direct injection of mRNA [125]. Table  2 highlights the 
various characteristics of mRNA cancer vaccine deliv-
ery methods. In vivo injection of naked mRNA involves 
direct injection into the patient, with the antigen being 
expressed by host cells.

Ex vivo loading of DCs
DCs are unparalleled in their ability to deliver antigens to 
T cells [166]. Adaptive immunity is initiated when APCs 
take in and proteolytically digest antigens, then present 
them on major histocompatibility complexes (MHCs) of 
the class I and class II kind to helper T cells (CD8 + and 
CD4 + T cells) [167]. The DCs’ ability to transmit intact 
antigen to B cells and so stimulate an antibody response 

Fig. 5 The impact of different intracellular delivery methods on in vitro and in vivo functionality. a In vitro colony-forming assays are used 
to compare the differentiation potential of electroporated and squeezed human CD34 + HSCs into CFU-GM and BFU-E colonies over a 2-week 
period. b The viability of mouse T cells after undergoing squeeze and electroporation is displayed. c and d The proportion of CD3 + mouse T 
cells expressing PD-1 or CD69 activation after squeeze, electroporation, or no treatment (control) is presented over time. e A diagram illustrates 
the experimental method for evaluating the effects of delivery methods on T cell activation. f and g On day 4, after re-exposure to OVA, CD45.2 + /
CD8 + /IFN-γ + T cells were stained intracellularly for IFN-γ. Reprinted from [127] with permission from the Proceedings of the National Academy 
of Sciences
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is another important function [168]. DCs also respond 
well to mRNA transfection [168].

Considering these characteristics, DCs are a poten-
tially effective in vivo and ex vivo target for mRNA vac-
cine transfection [169]. While it has been established that 
DCs ingest naked mRNA through a number of endocytic 
mechanisms, electroporation is routinely employed to 
boost transfection effectiveness ex vivo by forcing mRNA 
molecules through membrane pores generated by a high-
voltage pulse and into the cytoplasm [170]. This method 
of mRNA administration has become widely used due 
to its high transfection effectiveness and lack of a carrier 
molecule [171]. DCs are re-infused into a patient under-
going autologous immunization after being pre-activated 
with mRNA in  vitro [172]. Because they induce a cell-
mediated immune response, most DC vaccines that have 
been loaded ex vivo have been used to treat cancer [172].

Injection of naked mRNA in vivo
In vivo vaccines using naked mRNA have been shown 
to be effective, particularly when administered by intra-
dermal or intranodal injections, both of which preferen-
tially target antigen-presenting cells [173]. Recent study 
has revealed that immunizing patient’s numerous times 
with unmodified mRNA encoding tumor-associated neo-
antigens boosts progression-free survival and generates 
robust T cell responses [174]. Some researchers were the 
first to use tailored cancer vaccines including neoepitope 
mRNA [175].

High-throughput sequencing is used to identify each 
somatic mutation in a patient’s tumor sample [176]. The 
term "mutanome" is used to describe this phenomenon 
[177]. In addition to allowing for the rational construc-
tion of neoepitope cancer vaccines on an individual 
basis, this approach has the added benefit of focusing 
on non-self-antigen specificities that central tolerance 
mechanisms shouldn’t destroy [178]. Recent advances 
have established proof of concept in the following fields: 
Scientists found that a sizable fraction of non-synony-
mous cancer mutations were immunogenic when deliv-
ered by messenger RNA, and that CD4 + T cells were 
the preeminent population capable of recognizing these 
abnormalities [179]. Using this information, they devised 
a computational method for predicting vaccine immuno-
gens that are confined to major MHC class II [180].

Tumor growth was inhibited in animal models of B16-
F10 melanoma and CT26 colon cancer when mRNA 
vaccines encoding these neoepitopes were administered 
[58]. Some researchers recently conducted a clinical trial 
in which 13 patients with metastatic melanoma were 
given customized neoepitope-based mRNA vaccinations 
[30]. The high rate of somatic mutations and subsequent 
neoepitopes in melanoma makes it a distinct subtype of 

the malignancy [181]. They immunized people against 
10 different neoepitopes by injecting naked mRNA 
into their noses [182]. After several months of follow-
up, a low incidence of metastatic disease was seen, and 
CD4 + T cell responses were found against the bulk of the 
neoepitopes [183]. It is worth noting that a study with 
a similar methodology, but using synthetic peptides as 
the immunogens instead of mRNA, also yielded similar 
results [183]. All of these recent clinical trials support the 
idea that the personalized vaccine technique may have 
some application [184].

Physical delivery methods in vivo
On occasion, the breaching of the cell membrane and 
the enhancement of the efficient uptake of mRNA in vivo 
have been accomplished through the use of physical 
methods [185]. In order to express mRNA in tissues that 
is complexed with gold particles, microprojectile technol-
ogy, also known as a "gene gun," has been utilized [186]. 
The gene gun has been shown to be an efficient method of 
RNA delivery and immunization in mouse models; how-
ever, there is a dearth of data about the gene gun’s useful-
ness in either large animals or people at this time [187]. 
The immunogenicity of a vaccination that was based on 
non-replicating mRNA was not improved by in vivo elec-
troporation [188]; nevertheless, one research found that 
the absorption of therapeutic RNA was improved [188]. 
When adopting physical methods, there is a possibility 
of increased cell death and decreased access to the cells 
or tissues of interest [189]. However, lipid or polymer-
based nanoparticles have recently acquired favor as effec-
tive and adaptable delivery vehicles [190]. This trend is 
expected to continue in the near future.

Protamine
In spite of the fact that protamine, a cationic peptide, has 
been demonstrated to protect mRNA from degradation 
by serum RNases, protamine-complexed mRNA alone 
demonstrated limited protein expression and efficacy in 
a cancer vaccine model [191]. This could have been the 
result of an overly tight association between protamine 
and mRNA [191]. This issue was the impetus behind 
the development of the RNActive vaccination platform, 
which employs RNA that has been modified with prota-
mine purely for the purpose of acting as an immune acti-
vator and not as an expression vector [192].

Cationic lipid and polymer‑based delivery
Although there are commercially available highly effi-
cient mRNA transfection reagents that are based on 
cationic lipids or polymers and work effectively in a large 
number of primary cells and cancer cell lines, these rea-
gents frequently exhibit either limited efficacy in  vivo 
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or a high level of toxicity [56]. TransIT-mRNA (manu-
factured by Mirus Bio LLC) and Lipofectamine are two 
examples (Invitrogen) [193]. In a number of recent stud-
ies, the tremendous progress that has been made in the 
development of complexing reagents that are similarly 
designed for use in vivo that is both safe and successful 
has been discussed [194]. In recent years, dendrimers 
and other cationic lipids and polymers have emerged as 
preferred techniques for the delivery of mRNA [133]. For 
almost a decade, researchers have used small interfering 
RNA (siRNA) as a delivery vehicle in the mRNA region, 
and their efforts have undoubtedly paid off [195].mRNA 
distribution using lipid nanoparticles is quickly becom-
ing one of the most promising and widely used technolo-
gies of LNPs [196]. LNPs are composed of four primary 
components [197]: an ionizable cationic lipid that pro-
motes self-assembly into virus-sized (100  nm) particles 
and allows endosomal release of mRNA to the cyto-
plasm [197]; lipid-linked polyethylene glycol (PEG) that 
increases the half-life of formulations [198]; cholesterol, 
which acts as a stabilizing agent; and naturally occur-
ring phospholipids that support lipid bilayer structure 
[199]. All of these components work together Although 
LNPs have been found to be effective instruments for the 
in vivo administration of siRNAs in a number of studies, 
it was not until recently that it was discovered that they 
may also be used to deliver larger RNAs as well as tra-
ditional, non-replicating mRNA21 [199]. This discovery 
was made despite the fact that LNPs have been found to 
be effective instruments for the in vivo administration of 
siRNA. Although it has been demonstrated that intra-
dermal, intramuscular, and subcutaneous administration 
can produce prolonged protein expression at the site of 
injection, systemically delivered mRNA-LNP complexes 
primarily target the liver due to the binding of apolipo-
protein E and the subsequent receptor-mediated uptake 
by hepatocytes [200]. This is the case even though these 
administration routes have been shown to produce pro-
longed protein expression at the site of injection. Neither 
artificial liposomes nor exosomes that occur naturally 
have had their processes for mRNA escape into the cyto-
plasm completely deciphered [156]. More research into 
this subject area is likely to be very beneficial to the field 
of therapeutic RNA delivery.

One strategy to vary the amount of in  vivo protein 
synthesis as well as its duration is by changing the route 
through which mRNA-LNP vaccines are delivered to the 
body [201]. In the experiment, the half-life of mRNA-
encoded firefly luciferase was roughly threefold longer 
after intradermal injection than after intravenous deliv-
ery, demonstrating that intramuscular and intradermal 
delivery of mRNA-LNPs result in more persistent protein 
expression than systemic delivery routes [202]. It is likely 

that the rapidity with which mRNA-LNPs are generated 
can be advantageous for inducing immune responses 
[202]. Recent research has found that high levels of anti-
body titers, as well as B cells from the germinal center 
(GC) and TFH cells, are driven by prolonged antigen 
availability during vaccination [203]. This process may 
have contributed to the efficiency of intramuscular and 
intradermally given nucleoside-modified mRNA-LNP 
vaccines [203]. Vaccines have been proven to be success-
ful only if they stimulate a specific population of immune 
cells termed TFH cells, which are necessary for eliciting 
powerful and lasting neutralizing antibody responses, 
especially against viruses that escape humoral immunity 
[204]. Any advancement in our knowledge of the kinetics 
of the GC reaction and the differentiation of the TFH cell 
will undoubtedly assist the design of future vaccines.

mRNA cancer vaccines
Cancer vaccines based on messenger RNA have been the 
subject of recent, in-depth last investigations [2]. Figure 6 
illustrates the process of how mRNA vaccines work to 
activate the immune system. When the mRNA vaccine is 
introduced into the body, it is taken up by cells through 
endocytosis and released from the endosome. Ribosomes 
then convert the mRNA into proteins that stimulate the 
immune system in two main ways: i) proteasomes break 
down the proteins into peptides, which are displayed as 
antigens on the cell surface by MHC class I molecules, 
subsequently activating CD8 + T cells that release per-
forin and granzyme to destroy infected cells; ii) proteins 
secreted externally are absorbed by APCs and broken 
down into peptides, which are displayed on the cell sur-
face by MHC class II molecules, allowing recognition by 
CD4 + T cells, which in turn activate cellular immune 
responses by producing cytokines and humoral immune 
responses by co-activating B cells. Furthermore, single-
stranded RNA and double-stranded RNA in mRNA 
vaccines bind to TLR in the endosome, initiating antivi-
ral innate immune responses through the production of 
type-I interferon (IFN-I). This leads to the induction of 
numerous IFN-I-stimulated genes involved in antiviral 
innate immunity, a phenomenon referred to as the self-
adjuvant effect of sequence-engineered mRNA.

Cancer vaccines and other forms of immunother-
apy represent promising new approaches in the war 
against the disease [206]. Tumor-associated antigens, 
such as growth-associated factors or antigens that 
are unique to malignant cells as a result of somatic 
mutation, can be used in the development of cancer 
vaccines [207]. Targeting either these neoantigens 
or the neoepitopes they are composed of, human 
mRNA vaccines have been created [58]. Most cancer 
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vaccines are designed for therapeutic use rather than 
prevention [2]; they function by eliciting cell-medi-
ated responses (such as CTLs) that can remove or 
greatly reduce tumor burden [208]. The earliest 
proof-of-concept studies proposing and presenting 
evidence for the feasibility of RNA cancer vaccines 
were published more than two decades ago [209]. 
Numerous studies on both animals and humans have 
since confirmed that mRNA vaccinations are highly 
effective against cancer [2].

Tumor cell‑based vaccines
Tumor cell-based vaccines are a type of cancer vaccine 
that involves using whole tumor cells to stimulate an 
immune response against cancer [210]. These vaccines 
are designed to target the unique antigens expressed by 
tumor cells, which can elicit an immune response specifi-
cally directed against the cancer cells [211].

Autologous Tumor Cell-Based Vaccines: Autolo-
gous tumor cell-based vaccines are personalized vac-
cines created from the patient’s own tumor cells [210]. 
A small sample of the patient’s tumor is obtained, and 

Fig. 6 In an mRNA vaccine, the mRNA is taken up by cells through endocytosis and subsequently released from the endosome to be converted 
into proteins by ribosomes. These proteins can activate the immune system in two primary ways: i) the proteins are broken down by proteasomes 
into peptides that are then displayed as antigens on the cell surface by MHC class I molecules, which bind to the TCR and activate CD8 + T cells 
to destroy infected cells by releasing perforin and granzyme; ii) proteins secreted externally are taken up by APCs and broken down into peptides 
that are then displayed on the cell surface by MHC class II molecules for recognition by CD4 + T cells, which can activate both cellular immune 
responses by producing cytokines and humoral immune responses by co-activating B cells. Additionally, single-stranded RNA and double-stranded 
RNA in mRNA vaccines bind to TLR in the endosome to activate antiviral innate immune responses through the production of type-I interferon 
(IFN-I), which leads to the induction of numerous IFN-1-stimulated genes involved in antiviral innate immunity, a process known as the self-adjuvant 
effect of sequence-engineered mRNA. Reprinted from [205] with permission from Springer Nature
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tumor cells are isolated and processed in the laboratory 
[178]. These tumor cells may be modified or treated to 
enhance their immunogenicity and ability to trigger 
an immune response [210]. For example, they can be 
genetically engineered to express molecules that stim-
ulate the immune system or fused with immune-stim-
ulating substances [212]. The modified tumor cells are 
then reintroduced into the patient through vaccination. 
The idea behind autologous tumor cell-based vaccines 
is to create a vaccine that contains a broad spectrum of 
antigens unique to the patient’s tumor [213]. By using 
the patient’s own tumor cells, the vaccine aims to acti-
vate the patient’s immune system against the specific 
antigens present in their cancer cells, potentially lead-
ing to a targeted immune response against the tumor 
[214].

Allogeneic tumor cell-based vaccines are developed 
using tumor cells obtained from a donor or cell lines 
derived from tumor tissues. These cells are not specific 
to the patient receiving the vaccine [213]. Allogeneic vac-
cines may contain a mixture of tumor cell lines from dif-
ferent patients or may be derived from well-characterized 
tumor cell lines established in the laboratory. Allogeneic 
vaccines offer the advantage of being readily available, 
as they can be produced in large quantities and stored 
for future use [215]. They can also provide a broader 
range of tumor antigens compared to autologous vac-
cines since they may represent a variety of tumor types 
and genetic variations [212]. However, there is a risk of 
immune rejection or immune tolerance to the allogeneic 
tumor cells, which may limit their effectiveness [215]. 
Both autologous and allogeneic tumor cell-based vac-
cines are being investigated in clinical trials and research 
studies [213]. These vaccines represent an approach that 
harnesses the patient’s immune system to recognize and 
attack the unique antigens present on their tumor cells 
[212]. By stimulating an immune response against these 
antigens, tumor cell-based vaccines aim to target and 
destroy cancer cells while sparing healthy cells [215].

Peptide‑based vaccines
Peptide-based vaccines are a type of cancer vaccine that 
utilizes small protein fragments called peptides to trig-
ger an immune response against cancer cells [210]. These 
peptides are derived from tumor-specific antigens, which 
are unique proteins expressed by cancer cells [216]. The 
process of developing a peptide-based vaccine begins 
with identifying specific antigens that are associated with 
the tumor cells of interest. These antigens can be identi-
fied through various methods, such as analyzing the pro-
teins expressed by cancer cells or studying the immune 
response of cancer patients [217]. Once the tumor-spe-
cific antigens are identified, the corresponding peptides 

are synthesized or produced using recombinant DNA 
technology. These peptides are designed to mimic the 
antigens and contain specific regions that can stimulate 
an immune response [216].

Peptide-based vaccines are typically administered 
through injection, either subcutaneously or intramus-
cularly. Upon injection, the peptides are presented to 
immune cells called antigen-presenting cells (APCs) such 
as dendritic cells. APCs engulf the peptides and process 
them internally [218]. The processed peptides are then 
presented on the surface of APCs in complex with major 
histocompatibility complex (MHC) molecules, forming 
MHC-peptide complexes [216]. The MHC-peptide com-
plexes on the surface of APCs act as signals to alert and 
activate immune cells, especially CTLs or CD8 + T cells, 
which are crucial for eliminating cancer cells [210].

CTLs recognize the MHC-peptide complexes as for-
eign or abnormal, indicating the presence of cancer 
cells displaying those specific antigens. This triggers the 
activation of CTLs, leading to their proliferation and 
the release of immune molecules such as cytokines and 
perforins [217]. The activated CTLs can then migrate to 
tumor sites, recognize cancer cells expressing the tar-
geted antigens, and eliminate them through various 
mechanisms, including inducing cell death (apoptosis) 
or activating other components of the immune system to 
attack the cancer cells [212].

Peptide-based vaccines offer several advantages. They 
are highly specific because they target tumor-specific 
antigens, minimizing the risk of off-target effects. Pep-
tides can be synthesized relatively easily and can be mod-
ified to enhance their stability and immunogenicity [210]. 
Additionally, peptide-based vaccines are generally well-
tolerated and have a favorable safety profile [216]. How-
ever, there are challenges associated with peptide-based 
vaccines [219]. Peptides alone may not efficiently stimu-
late a strong immune response, so adjuvants or immune-
stimulating molecules are often included to enhance the 
vaccine’s efficacy [216]. Another challenge is the poten-
tial for tumor cells to escape immune recognition by 
downregulating the expression of targeted antigens or 
undergoing genetic mutations that alter the antigenic 
profile [220]. Ongoing research and advancements in 
peptide synthesis, adjuvant design, and personalized 
medicine are continuously improving the effectiveness 
of peptide-based vaccines. They are being investigated as 
both standalone therapies and in combination with other 
immunotherapeutic approaches to enhance immune 
responses against cancer cells and improve patient out-
comes [221].
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Viral vector‑based vaccines
Viral vector-based vaccines are a type of vaccine that 
uses modified viruses as carriers or vectors to deliver 
specific antigens into the body [222]. These viruses are 
typically genetically engineered to be safe and non-rep-
licative, meaning they cannot cause disease in the vacci-
nated individual. Instead, they serve as delivery vehicles 
to introduce selected antigens to the immune system and 
stimulate an immune response [222].

The viral vectors used in these vaccines are often 
derived from naturally occurring viruses, such as ade-
noviruses or lentiviruses. These viruses have the ability 
to infect cells and deliver their genetic material [223]. 
However, in viral vector-based vaccines, the viral genes 
responsible for replication and causing disease are 
removed or inactivated, ensuring that the vector can-
not replicate in the body and cause harm [223]. To cre-
ate a viral vector-based vaccine, scientists modify the 
viral vector by inserting a gene that encodes the desired 
antigen. This antigen is typically a protein or a part of a 
pathogen, such as a viral protein or a tumor-specific anti-
gen [224]. Once the modified viral vector is administered 
to a person, it enters cells and releases the genetic mate-
rial encoding the antigen. The cells then use this genetic 
information to produce the antigen, which is presented 
to the immune system [224].

The immune system recognizes the antigen as for-
eign and mounts an immune response against it. This 
response includes the activation of immune cells, such as 
T cells and B cells, which are essential for eliminating the 
targeted antigen [225]. The immune system also gener-
ates memory cells that remember the antigen, providing 
long-term protection against future encounters with the 
actual pathogen or cancer cells expressing the specific 
antigen.

Viral vector-based vaccines offer several advantages 
[226]. They have the ability to deliver genetic material 
encoding complex antigens, making them suitable for 
generating robust immune responses [223]. These vac-
cines can also be designed to target specific cell types 
or tissues, further enhancing their effectiveness [222]. 
Additionally, viral vectors can stimulate both cellular and 
humoral immune responses, involving different compo-
nents of the immune system [223]. Viral vector-based 
vaccines have been successfully utilized in various vac-
cine development efforts, including the development of 
COVID-19 vaccines [226]. These vaccines have shown 
promising results in stimulating immune responses 
and providing protection against targeted pathogens or 
tumor cells. Ongoing research continues to explore and 
optimize viral vector-based vaccines for a wide range 
of diseases, including cancer, infectious diseases, and 
genetic disorders [223].

Nucleic acid‑based vaccines
Nucleic acid-based vaccines represent a promising 
approach in the field of immunization, offering a unique 
strategy to induce protective immune responses against 
various diseases, including cancer [227]. These vaccines 
utilize genetic material, either in the form of DNA or 
RNA, to encode specific antigens that are targeted for 
immune recognition [228]. Nucleic acid-based vaccines 
have garnered significant attention due to their ability to 
mimic natural infection processes and stimulate robust 
and long-lasting immune responses [229].

DNA-based vaccines are designed by inserting the gene 
encoding the desired antigen into a circular DNA plas-
mid. This plasmid is then administered directly into the 
body through intramuscular or intradermal injection 
[230]. Once inside the cells, the DNA plasmid is taken 
up by the nucleus, where the antigen gene is transcribed 
into mRNA. The mRNA then undergoes translation in 
the cytoplasm, leading to the synthesis of the target anti-
gen within the host cells. This process mimics the natural 
viral infection cycle, but without causing disease [231]. 
The newly produced antigen is subsequently presented 
on the surface of the host cells, triggering an immune 
response that includes the activation of APCs, such as 
dendritic cells [232]. These APCs process and present the 
antigen to T cells, thereby initiating a specific immune 
response against the antigen-expressing cells.

RNA-based vaccines, on the other hand, directly uti-
lize mRNA molecules encoding the desired antigens 
[231]. These mRNA vaccines can be synthesized in the 
laboratory and then encapsulated within lipid nanopar-
ticles for efficient delivery into the cells. Upon admin-
istration, the lipid nanoparticles protect the mRNA 
from degradation and facilitate its entry into host 
cells [227]. Once inside the cells, the mRNA is trans-
lated into the target antigen, triggering an immune 
response similar to DNA-based vaccines [228]. RNA-
based vaccines offer several advantages, such as ease of 
design and production, rapid manufacturing process, 
and flexibility to incorporate modifications to enhance 
antigen expression or stability [231]. Both DNA-based 
and RNA-based vaccines have shown great potential 
in cancer immunotherapy. They enable the expres-
sion of tumor-specific antigens within the patient’s 
own cells, leading to the presentation of these antigens 
to the immune system [230]. This process activates 
immune cells, including cytotoxic T cells, NK cells, 
and B cells, which work together to target and destroy 
cancer cells expressing the specific antigen [228]. In 
addition to directly targeting tumor cells, nucleic acid-
based vaccines can also stimulate an immune response 
against other components of the tumor microenviron-
ment, such as stromal cells or immune-suppressive 
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cells, thereby promoting a comprehensive anti-tumor 
response [231]. Moreover, nucleic acid-based vac-
cines offer several advantages over traditional vaccine 
approaches. Firstly, they have the potential to elicit 
both humoral (antibody-mediated) and cellular (T cell-
mediated) immune responses, making them suitable for 
combating various pathogens and diseases, including 
those that require both arms of the immune system for 
protection [227]. Secondly, nucleic acid-based vaccines 
can be rapidly developed and manufactured, as they 
do not rely on the time-consuming process of growing 
live attenuated pathogens or producing recombinant 
proteins. This characteristic makes them particularly 
valuable in the context of emerging infectious diseases 
or rapidly evolving pathogens [230]. Thirdly, nucleic 
acid-based vaccines are highly flexible and adaptable, 
allowing for the incorporation of multiple antigens or 
modifications to optimize their efficacy. This flexibility 
is particularly advantageous in the case of cancer vac-
cines, where targeting multiple tumor-specific antigens 
or incorporating immune-stimulating adjuvants can 
enhance therapeutic outcomes [223].

DC mRNA cancer vaccines
The use of DCs in cancer immunotherapy made sense 
because of their pivotal function in initiating antigen-
specific immune responses [233]. Some researchers 
described how DCs electroporated with mRNA might 
trigger strong immune responses against tumor antigens 
[234]. Stimulating DCs with ovalbumin (OVA)-encoding 
mRNA or tumor-derived RNAs dampened the immune 
response in OVA-expressing and other mice models of 
melanoma [235].

Immune regulatory proteins can be found in abun-
dance in mRNA-encoded adjuvants, which can increase 
the potency of DC cancer vaccines [236]. Multiple studies 
have revealed that electroporation of DCs with mRNAs 
expressing co-stimulatory molecules like CD83, tumour 
necrosis factor receptor superfamily member 4, greatly 
increases their immune stimulating activity [237]. How-
ever, DC activity can also be modulated by a variety of 
substances linked with trafficking and by pro-inflamma-
tory cytokines encoded on messenger RNA [237].

Electroporation of antigen-encoding mRNA or mRNAs 
is possible in conjunction with the adjuvant cocktail Tri-
Mix, which includes mRNA-encoded CD70, CD40L, 
and constitutively active TLR4 [111]. This formulation 
has been shown to be effective in a number of preclini-
cal studies by increasing DC activation and altering the 
phenotype of CD4 + T cells to make them more like TH1 
cells rather than T regulatory cells [238]. A total of 27% of 
patients with stages III or IV melanoma who were treated 

with DCs loaded with mRNA expressing melanoma-
associated antigens and TriMix adjuvant experienced 
tumor regression [239].

Trials using DC immunization have been conducted for 
a variety of cancers, including prostate, lung, brain, and 
pancreatic cancers [239]. It is a new approach to combine 
mRNA electroporation of DCs with standard chemo-
therapeutic medicines or immune checkpoint inhibitors 
[240]. Patients in stages III and IV of the disease were 
given a combination of the monoclonal antibody ipili-
mumab, which targets CTL antigen 4, and DCs loaded 
with mRNA encoding melanoma-associated antigens and 
TriMix [239]. After receiving this treatment, the major-
ity of patients with recurrent or refractory melanoma 
reported a substantial reduction in tumour size [239].

Direct injection of mRNA cancer vaccines
The manner in which messenger RNA vaccines are 
delivered can have a substantial impact on the degree to 
which they are successful [69]. Figure 7-A illustrates the 
key elements and processes of an effective cancer vac-
cine, focusing on the tumor antigen presentation process 
and the vaccine components.

In the antigen presentation process, APCs like DCs 
encounter or receive externally-loaded antigens before 
injection. These antigen-loaded APCs travel through 
the lymphatic system to draining lymph nodes, where 
T cell activation primarily occurs. Mature DCs present 
tumor-derived peptides on MHC class I and II molecules 
to CD8 + and CD4 + T cells, with costimulatory "signal 
2" interactions enhancing the development of tumor-
specific T cell responses. IL-12 and type I interferons 
produced by DCs further augment costimulation. These 
interactions result in the generation and expansion of 
activated tumor-specific CD4 + and CD8 + T cell popu-
lations, which can then migrate to the tumor site and 
destroy tumor cells.

The lysed tumor cells release antigens that induce 
polyclonal T cell responses, increasing the antigenic 
variety of the anti-tumor immune response and lead-
ing to epitope spreading. Cancer vaccines are composed 
of four main components: tumor antigens, formula-
tions, immune adjuvants, and delivery vehicles. These 
components work together to facilitate a robust and 
targeted immune response against cancer cells. In the 
process of developing mRNA cancer vaccines, both 
conventional and nonconventional administration sys-
tems (intralipid) have been utilized [242]. Conventional 
administration systems include intradermal, intramuscu-
lar, subcutaneous, and intranasal [242]. Nonconventional 
administration systems include intralipid (intranodal, 
intravenous, intrasplenic or intratumoural) [243]. Table 3 
outlines the different types of mRNA vaccines for direct 
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injection, each with their own unique set of advantages 
and disadvantages.

Naked mRNA vaccines are easy to manufacture and 
administer, and are relatively low-cost. However, they 
suffer from inefficient delivery and translation, leading 
to low immunogenicity. These vaccines have moderate 
efficacy and good safety, but their stability is hindered 
by a short half-life and susceptibility to degradation by 
RNases. Naked mRNA vaccines require a high dosage 
and have low manufacturing complexity, with Phase I/II 
clinical trials serving as references. An unconventional 
technique of delivering vaccines that uses intranasal 
administration of naked mRNA has been shown to be 

successful [41]. If mRNA is injected directly into second-
ary lymphoid tissue, antigen-presenting cells are able 
to skip the necessity for DC migration and be directed 
straight to the site of T cell activation [248]. Numerous 
studies have demonstrated that naked mRNA delivered 
via intranasal injection is selectively taken up by DCs 
and has the ability to generate potent antitumor T cell 
responses, either for therapeutic or preventative pur-
poses [249]. Results from an earlier trial were found to 
be comparable when intrasplenic administration was 
used [249]. It was discovered in a number of trials that it 
was possible to increase immune responses to intranasal 
mRNA vaccination by coadministering the DC-activating 

Fig. 7 A Key elements and processes of an effective cancer vaccine. a The tumor antigen presentation process involves several steps. Initially, 
APCs such as DCs encounter antigens at the injection site or have antigens externally loaded onto them before injection, as in the case of DC 
vaccines. Antigen-loaded APCs then travel through the lymphatic system to the draining lymph nodes, where T cell activation primarily takes 
place. In the lymph node, mature DCs present tumor-derived peptides on MHC class I and II molecules to CD8 + and CD4 + T cells, both of naïve 
and memory types. The development of tumor-specific T cell responses is facilitated by delivering a costimulatory "signal 2" to T cells 
through interactions like CD80-CD28, CD86-CD28, CD70-CD27, and CD40-CD40 ligand (CD40L). Costimulation is enhanced by IL-12 and type I 
interferons (IFNs) produced by DCs. These interactions collectively support the generation and expansion of activated tumor-specific CD4 + and 
CD8 + T cell populations. CD4 + and CD8 + T cells migrate to the tumor site, and upon recognizing their specific antigens, they can destroy tumor 
cells through cytotoxicity and effector cytokine production, such as IFNγ and tumor necrosis factor (TNF). Consequently, lysed tumor cells release 
tumor antigens, which can be captured, processed, and presented by APCs to induce polyclonal T cell responses, thus increasing the antigenic 
variety of the anti-tumor immune response and leading to epitope spreading. b Cancer vaccines consist of four main components: tumor antigens, 
formulations, immune adjuvants, and delivery vehicles. Abbreviations: CpG ODN, CpG oligodeoxynucleotide; GM-CSF, granulocyte–macrophage 
colony-stimulating factor; MPL, monophosphoryl lipid A; poly-ICLC, polyinosinic–polycytidylic acid with polylysine and carboxymethylcellulose; 
STING, stimulator of interferon genes protein; TCR, T cell receptor; TLR, Toll-like receptor. Reprinted from [241] with permission from Springer 
Nature. B Key factors in the efficacy of directly injected mRNA vaccines. The effectiveness of an injected mRNA vaccine depends on several factors: 
the amount of antigen expression in professional APCs, which is affected by the carrier’s efficiency, the presence of PAMPs such as double-stranded 
RNA (dsRNA) or unmodified nucleosides, and the optimization of the RNA sequence (including codon usage, G:C content, and 5’ and 3’ UTRs); 
the maturation and migration of DCs to secondary lymphoid tissues, which is enhanced by PAMPs; and the vaccine’s capacity to stimulate strong T 
follicular helper (TFH) cell and germinal center (GC) B cell responses, an aspect that is not yet well-understood. An intradermal injection is provided 
as an illustration. EC refers to extracellular. Reprinted from [126] with permission from Springer Nature
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protein FMS-related tyrosine kinase 3 ligand, also known 
as FLT3L [250]. This was accomplished by giving the vac-
cine at the same time [250].

In mice, mRNAs encoding tumor-associated anti-
gens were delivered intranasally using the TriMix 
adjuvant [56]. This resulted in powerful antigen-spe-
cific CTL responses and the suppression of a wide 
array of tumor types [229]. According to a recent 
study, the intranasal injection of mRNA encoding 
the E7 protein of HPV 16 with TriMix was found 
to increase the frequency of CD8 + T cells invad-
ing tumors [251]. This was confirmed to be the case 
after the injection [251]. Clinical trials using intran-
odally injected naked mRNA encoding tumour-asso-
ciated antigens are being conducted on patients with 
advanced melanoma (NCT01684241) and patients 
with hepatocellular carcinoma (NCT01684242) 
(EudraCT: 2012–005572-34) [252].

DCs electroporated with mRNA encoding the mel-
anoma-associated antigens tyrosinase or gp100 and 
TriMix and administered intranasally to patients 
with advanced melanoma evoked modest antitumor 
responses, according to the findings of one investiga-
tion [253]. Intranasal vaccination is advantageous since 
it does not require the use of needles and is not intru-
sive [254]. As a result, the rate at which DCs take up anti-
gens is increased [254]. In animal models of preventative 
and therapeutic tumors, employing the OVA-expressing 
E.G7-OVA T lymphoblastic cell line, intranasal admin-
istration of mRNA complexed with Stemfect (Stemgent) 
LNPs was found to be effective in delaying the start of 
tumor growth and improving survival rates [255]. There 
is reason for optimism regarding the use of intratumor-
ally mRNA immunization as a therapy option because 
it can promptly and selectively activate tumor-resident 
T cells [57]. These vaccines often make use of immune 
stimulatory substances in order to promote tumor-
specific immunity locally [256]. This is done rather than 
adding mRNAs that encode for antigens that are linked 
with tumors [256]. Utilizing the inherently immunogenic 
properties of mRNA, earlier research demonstrated that 
mRNA expressing a gene that is unrelated to the process 
of carcinogenesis (GLB1) could decrease the formation of 
tumors and provide protection in a mouse model of glio-
blastoma [257].

In a more recent study, researchers found that intratu-
mor delivery of mRNA encoding an engineered cytokine 
based on interferon- (IFN) fused to a transforming 
growth factor- (TGF) antagonist increased the cytol-
ytic capacity of CD8 + T cells and modestly slowed the 
growth of tumors in OVA-expressing lymphoma or lung 
carcinoma mouse models [258]. These findings were 
made possible by the fact that the TGF antagonist was 

fused to the interferon Additionally, it has been demon-
strated in a number of mouse models that intratumor 
delivery of TriMix mRNA that does not contain tumor-
associated antigens activates CD8 + DCs and tumor-
specific T lymphocytes, which in turn results in a delay 
in the growth of the tumor [259]. This has been accom-
plished by inhibiting the production of tumor-associated 
antigens [259].

Systemic distribution of mRNA vaccines is unusual 
because of concerns over aggregation with serum pro-
teins and rapid extracellular mRNA degradation [260]; 
as a result, packaging mRNAs into carrier molecules is 
necessary [261]. As was been discussed in further detail 
above, the absorption of mRNA, the pace at which it is 
translated into proteins, and its safety against destruc-
tion by RNases are all issues that have been addressed 
through the creation of a wide variety of delivery formu-
lations [261]. Following the systemic delivery of mRNA 
vaccines, the biodistribution of these agents presents yet 
another formidable obstacle [260].

When numerous cationic LNP-based complexing 
agents are administered intravenously, the majority of 
the traffic is directed to the liver, which may not be in the 
best condition for DC activation [262]. Recent research 
has led to the discovery of a strategy for the effective DC-
specific targeting of mRNA vaccines after their delivery 
via the systemic route [233]. An mRNA-lipoplex delivery 
platform, also known as an mRNA-liposome complex, 
was developed by using cationic lipids and neutral helper 
lipids [263]. It was discovered that the ratio of lipids to 
mRNA, and consequently the net charge of the particles, 
has a significant impact on the biodistribution of the vac-
cine [57].

A positively charged lipid particle’s major target was 
the lung, while a negatively charged particle’s primary 
target was DCs in secondary lymphoid organs and the 
bone marrow [264]. The negatively charged particle 
stimulated immune responses against tumor-specific 
antigens, which led to considerable tumor regression in 
several mouse models [265]. As a result of the absence of 
toxicity in rats and apes, clinical trials to investigate the 
efficacy of this approach in the treatment of metastatic 
melanoma and triple-negative breast cancer are currently 
being carried out NCT02410733 and NCT02316457 
[266]. Figure 7-B highlights the critical factors influenc-
ing the effectiveness of directly injected mRNA vaccines. 
The efficacy of these vaccines is contingent upon several 
aspects, including the level of antigen expression in pro-
fessional antigen-presenting cells (APCs). This expres-
sion is influenced by the carrier’s efficiency, the presence 
of pathogen-associated molecular patterns (PAMPs) like 
double-stranded RNA (dsRNA) or unmodified nucleo-
sides, and the optimization of the RNA sequence, which 
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encompasses codon usage, G:C content, and 5’ and 3’ 
UTRs. Additionally, the maturation and migration of 
DCs to secondary lymphoid tissues play a crucial role, 
with PAMPs serving to enhance this process. Finally, the 
vaccine’s ability to stimulate robust T follicular helper 
(TFH) cell and germinal center (GC) B cell responses is 
essential, though this area warrants further investigation. 
Figure 7 exemplifies these factors through an intradermal 
injection, with "EC" representing the extracellular com-
ponents involved.

Therapeutic considerations and challenges
Good manufacturing practice production
mRNA is synthesized in  vitro utilizing recombinant 
enzymes, ribonucleotide triphosphates (NTPs), and a 
DNA template [267]. Due to its high reaction yield and 
convenience of usage, mRNA can be made in a compact 
GMP facility [268]. Length of RNA, nucleotide and cap-
ping chemistry, and product purification govern the pro-
duction process, which is sequence-independent [269]. 
However, extreme length may provide problems [269]. 
This technology is well-suited for rapid response to new 
infectious diseases since it can create any encoded pro-
tein immunogen [270]. All of the enzymes and reaction 
components needed for GMP manufacture of mRNA 
are available from commercial providers as synthesized 
chemicals or bacterially produced, animal component-
free reagents [271]. GMP-grade traceable plasmid DNA, 
phage polymerases, capping enzymes, and NTPs are 
available [272]. Other ingredients are pricey or unavail-
able [272]. As mRNA therapy production increases up, 
more cost-effective GMP source materials may become 
available [273]. GMP mRNA production begins with 
DNA template synthesis and continues with enzymatic 
IVT [274]; this is the same multistep approach used for 
research-scale synthesis, with extra tests to assure safety 
and potency [274]. Depending on the mRNA construct 
and chemistry involved, this process may need small 
alterations for changing nucleosides, capping tech-
niques, or the removal of a template [275]. By linearizing 
Escherichia coli template plasmid DNA with a restriction 
enzyme, runoff transcripts with a 3′-terminal poly(A) 
tract are synthesized [276]. A bacteriophage-derived 
DNA-dependent RNA polymerase produces mRNA from 
NTPs (such as T7, SP6, or T3) [277]. DNase destroys 
template DNA [277]. To aid in  vivo translation, mRNA 
is capped enzymatically or chemically [275]. mRNA syn-
thesis may yield 2 g l1 of full-length mRNA under ideal 
conditions. After being synthesized, mRNA is purified to 
remove any residual enzymes, nucleotides, DNA, or RNA 
[276]. Derivatized microbeads in batch or column forms 
are more practical for large-scale purification in the clinic 
[278]. dsRNA must be removed from various mRNA 

platforms to prevent interferon-dependent translation 
inhibition [279]. Reverse-phase FPLC has attained lab-
oratory-scale success, and scalable aqueous purification 
approaches are being studied [280]. Once mRNA is ster-
ile-filtered and stored in a final buffer, vials can be filled 
for clinical usage [279]. RNA can be degraded chemically 
and enzymatically [276].

To prevent mRNA instability, formulation buffers may 
include antioxidants and chelators [276]. Developing 
messenger RNA pharmaceuticals [281]. Vaccines are 
usually stored at 70  °C, but researchers are experiment-
ing on warmer formulations [282]. Stable formulations 
at room temperature or refrigeration can be made [283]. 
The RNActive platform can be lyophilized and stored 
at 5–25  °C for 3  years and 40  °C for 6  months [283]. A 
separate study found that freeze-dried naked mRNA lasts 
at least 10  months in the refrigerator [284]. Packaging 
mRNA in nanoparticles or adding RNase inhibitors can 
boost product stability [285]. At least 6 months of stabil-
ity has been demonstrated for lipid-encapsulated mRNA 
(Arbutus Biopharma, personal communication), but 
longer-term unfrozen preservation has not been docu-
mented [285].

Regulatory aspects
Neither the FDA nor the European Medicines Agency 
(EMA) have established any concrete rules concern-
ing mRNA vaccine products as of yet [224]. As can 
be seen by the increasing number of clinical trials 
carried out under the control of the EMA and the 
FDA, the regulatory bodies have given their stamp 
of approval to the methods that have been proposed 
by various organisations to demonstrate that prod-
ucts are safe and suitable for testing in humans [286]. 
Given that mRNA is a type of genetic immunogen 
that is used in vaccinations, it is reasonable to antici-
pate that the principles that have been established for 
DNA vaccines and gene therapy vectors will be able 
to be applied to mRNA with only minor adjustments 
to account for its particular qualities [287]. Some 
researchers highlight, in their examination of EMA 
guidelines for RNA vaccines, how the laws for pre-
ventative and therapeutic uses of RNA vaccines differ 
substantially [288]. Regardless of the precise classifi-
cation under the guidelines that are currently in place, 
there are similarities between the assertions made in 
these guidance documents and the findings of recently 
published clinical studies. These similarities can be 
found in both sets of materials [289]. A recent article 
that was published on an mRNA vaccine for the influ-
enza virus includes data that indicate biodistribution 
and durability in mice, protection from sickness in a 
relevant animal model (ferrets), and immunogenicity, 



Page 36 of 106Chehelgerdi and Chehelgerdi  Molecular Cancer          (2023) 22:106 

local reactogenicity, and toxicity in humans [230]. As 
mRNA products continue to garner more attention 
in the vaccination industry, it is expected that spe-
cialized guidance will be developed to describe the 
requirements to develop and investigate new mRNA 
vaccines [287].

Safety
The mRNA vaccines have gained significant attention 
and recognition in recent years due to their remarkable 
potential in combating infectious diseases [290]. They 
offer a comprehensive approach to understanding mRNA 
synthesis, production, stability, regulatory considera-
tions, and safety aspects [291].

One of the notable advantages of mRNA vaccines is 
their safety profile. Unlike traditional vaccines that may 
contain attenuated or inactivated pathogens, mRNA vac-
cines do not require the introduction of live organisms 
into the body [292]. Instead, they utilize the body’s own 
cellular machinery to produce specific viral or pathogenic 
proteins, triggering an immune response. This mecha-
nism significantly reduces the risk of infection or adverse 
effects associated with live attenuated vaccines [9]. Addi-
tionally, the production of mRNA vaccines is relatively 
convenient compared to conventional vaccines. Once 
the genetic sequence of the pathogen is identified, the 
mRNA can be synthesized in the laboratory using well-
established techniques. This flexibility allows for a faster 
response to emerging infectious diseases, as the produc-
tion process can be rapidly scaled up [293]. However, it is 
important to acknowledge that there are still safety con-
siderations and ongoing research associated with mRNA 
vaccines. One concern is the potential for unwanted 
immune responses or off-target effects. While extensive 
preclinical and clinical testing is conducted to ensure 
safety, ongoing surveillance and evaluation are necessary 
to monitor any long-term effects or rare adverse events 
[294]. Regulatory considerations also play a crucial role 
in the development and approval of mRNA vaccines. 
Regulatory agencies worldwide assess the safety, efficacy, 
and quality of these vaccines through rigorous evalua-
tion processes before granting authorization for public 
use [9]. Furthermore, mRNA vaccines have the potential 
for rapid development and deployment during outbreaks 
or pandemics [295]. The production process for mRNA 
vaccines can be quickly adjusted to target new variants or 
strains of pathogens. This adaptability is particularly val-
uable in the face of emerging infectious diseases, where 
timely response is crucial [290]. Moreover, mRNA vac-
cines are well-suited for large-scale manufacturing. The 
production of mRNA does not require the complex and 
time-consuming processes involved in traditional vac-
cine production, such as growing large quantities of the 

pathogen in cell cultures [292]. Instead, mRNA can be 
synthesized using readily available materials and stand-
ardized laboratory techniques. This streamlined pro-
duction process allows for increased vaccine availability 
and accessibility, particularly in global health emergen-
cies [293]. Another advantage of mRNA vaccines is their 
potential to elicit a strong and durable immune response. 
By delivering genetic instructions directly to cells, 
mRNA vaccines can stimulate both the humoral immune 
response (involving antibody production) and the cel-
lular immune response (involving T cells). This dual 
immune activation can contribute to robust and long-
lasting protection against the targeted pathogen [290]. 
It is worth noting that mRNA vaccines have undergone 
rigorous testing and regulatory scrutiny to ensure their 
safety and efficacy [292]. Clinical trials involving tens of 
thousands of participants have demonstrated their effec-
tiveness in preventing disease and reducing severe out-
comes [293]. These trials have also shown a favorable 
safety profile, with most adverse reactions being mild and 
transient. While mRNA vaccines have exhibited great 
promise, ongoing research and evaluation remain impor-
tant [294]. Further studies are necessary to monitor the 
long-term safety, effectiveness, and durability of immune 
responses generated by mRNA vaccines. Additionally, 
efforts are underway to address vaccine hesitancy and 
ensure equitable distribution to populations worldwide 
[292]. Because vaccinations for prevention are meant to 
be administered to otherwise healthy persons, stringent 
safety criteria must be adhered [290]. When compared to 
other platforms for vaccination, such as live viruses, viral 
vectors, inactivated viruses, and subunit protein vac-
cines, the generation of mRNA does not require the use 
of harmful chemicals or cell cultures that could become 
contaminated with adventitious viruses [291]. This is 
in contrast to other vaccination platforms, such as live 
viruses, viral vectors, inactivated viruses, and subunit 
protein vaccines [291]. In addition, because mRNA pro-
cessing takes place so quickly, there are less opportunities 
for the entry of bacteria that could cause contamina-
tion [296]. In those who have received vaccination, the 
mRNA does not face possible dangers such as infection 
or the incorporation of the vector into the DNA of the 
host cell [291]. For the reasons that were just discussed, 
mRNA vaccines have been considered to be a safe vac-
cine choice.

Several different mRNA vaccines have been shown 
to be safe and well tolerated after going through clini-
cal studies ranging from phase I to phase IIb of testing 
[291]. On the other hand, recent human trials employing 
a range of mRNA platforms have showed reactions rang-
ing from modest to severe at the injection site or across 
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the body [292]. These responses have been seen. Local 
and systemic inflammation, the biodistribution and per-
sistence of expressed immunogen, stimulation of auto-
reactive antibodies, and the potential toxic effects of any 
non-native nucleotides and delivery system components 
are all potential safety concerns that are likely to be eval-
uated in future preclinical and clinical studies [292].

Inflammation can occur both locally and systemically 
[293]. Several different mRNA-based vaccine platforms 
have the potential to induce intense type I interferon 
responses [297]. These responses have been related to 
inflammation and even autoimmune diseases [297]. 
Consequently, if people who are at a higher risk of auto-
immune reactions are identified in advance, it may be 
possible to take adequate precautions prior to giving 
an mRNA vaccine [9]. During mRNA immunization, 
the presence of extracellular RNA presents yet another 
opportunity for damage to occur [295]. Because naked 
RNA located outside of cells can improve the perme-
ability of closely packed endothelial cells, oedema may be 
induced, at least in part, by this property of naked RNA 
[295]. Extracellular RNA, according to the findings of 
yet another study, had a role in the coagulation of blood 
as well as the formation of pathogenic thrombi [294]. 
Because of this, it will be required to conduct continuous 
safety studies when new mRNA techniques and delivery 
systems are evaluated in wider patient groups.

The role of adjuvants in enhancing the stability 
and efficacy of mRNA vaccines
Adjuvants play a crucial role in enhancing the stabil-
ity and efficacy of mRNA vaccines [74]. mRNA vaccines 
contain fragile mRNA molecules that encode the instruc-
tions for cells to produce viral or antigenic proteins, 
triggering an immune response [298]. However, mRNA 
is inherently unstable and can be rapidly degraded by 
enzymes in the body and easily cleared from the sys-
tem [299]. To overcome these challenges, adjuvants are 
included in mRNA vaccines to protect and stabilize the 
mRNA molecules, thereby increasing their potency and 
duration of action [299].

Protecting mRNA from degradation
Adjuvants are substances that are often used in vaccines 
to enhance the immune response generated by the vac-
cine [300]. While their primary role is to improve the 
efficacy of vaccines, adjuvants can also play a crucial role 
in protecting mRNA from degradation in mRNA-based 
vaccines. mRNA is a fragile molecule that can be eas-
ily degraded by enzymes called nucleases present in the 
body [301]. Adjuvants can provide a protective shield 
around the mRNA, shielding it from these enzymes and 
increasing its stability. By preserving the integrity of the 

mRNA, adjuvants help ensure that the desired genetic 
information encoded in the mRNA is effectively deliv-
ered to cells, promoting the production of the intended 
protein and triggering a robust immune response [302]. 
This protection is essential for the success and durabil-
ity of mRNA-based vaccines, allowing them to effectively 
elicit the desired immune response and contribute to 
effective immunization against infectious diseases [301].

Enhancing cellular uptake
One important aspect of their function is their ability to 
enhance cellular uptake, which refers to the process by 
which cells internalize and take up external substances 
or particles [303]. Adjuvants can facilitate cellular uptake 
by several mechanisms [304]. Firstly, they can improve 
the stability and solubility of the vaccine or drug mole-
cules, ensuring their effective delivery to the target cells 
[304]. This is particularly important for hydrophobic or 
poorly soluble compounds that might otherwise be rap-
idly cleared or degraded in the body. Secondly, adjuvants 
can enhance the recognition and binding of the vaccine 
or drug molecules to specific receptors on the surface of 
target cells. By promoting receptor-ligand interactions, 
adjuvants increase the likelihood of cellular uptake, as 
these interactions trigger internalization pathways within 
the cells. Moreover, adjuvants can stimulate the immune 
system and induce an inflammatory response at the injec-
tion site [305]. This local immune activation leads to the 
recruitment of immune cells, such as macrophages and 
DCs, to the site of administration. These immune cells 
play a crucial role in phagocytosis, the process by which 
they engulf and internalize foreign substances [306]. By 
promoting phagocytosis, adjuvants enhance the cellu-
lar uptake of vaccines or drugs, ultimately leading to an 
improved immune response or therapeutic effect. Adju-
vants play a vital role in enhancing cellular uptake by 
improving the stability and solubility of vaccine or drug 
molecules, facilitating their binding to cell surface recep-
tors, and promoting phagocytosis through immune acti-
vation [307]. These mechanisms collectively contribute to 
the effectiveness of vaccines and drug delivery systems, 
ultimately leading to improved therapeutic outcomes 
[308].

Promoting immune activation
Adjuvants are substances that are often recommended 
for use in mRNA vaccines to enhance their effective-
ness by promoting immune activation [309]. mRNA 
vaccines work by introducing a small piece of genetic 
material, called messenger RNA (mRNA), into the body. 
This mRNA encodes instructions for the production 
of a viral protein, which triggers an immune response 
and leads to the development of immunity against the 
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targeted pathogen [310]. However, mRNA vaccines alone 
may not always elicit a robust immune response. That’s 
where adjuvants come into play. Adjuvants are added 
to the vaccine formulation to enhance the immune 
response, making it stronger, more durable, and poten-
tially more specific. These substances can stimulate the 
innate immune system, which serves as the first line of 
defense, and enhance the adaptive immune response, 
which involves the production of specific antibodies and 
memory cells [311]. Adjuvants work by activating certain 
receptors on immune cells, such as DCs, macrophages, 
and B cells. This activation leads to the release of sign-
aling molecules, such as cytokines, which promote the 
recruitment and activation of other immune cells [311, 
312]. Adjuvants can also enhance the uptake and pro-
cessing of the mRNA vaccine by antigen-presenting 
cells, which improves the presentation of viral proteins 
to immune cells and increases the likelihood of a robust 
immune response [313]. By promoting immune acti-
vation, adjuvants help to optimize the effectiveness of 
mRNA vaccines, leading to stronger and longer-lasting 
immunity against the targeted pathogen [314]. These 
adjuvants undergo rigorous testing to ensure their safety 
and efficacy before being incorporated into vaccine for-
mulations [315]. The development and utilization of adju-
vants in mRNA vaccines represent an important strategy 
to enhance the potency and effectiveness of these inno-
vative vaccines, ultimately contributing to the protection 
of individuals and populations against infectious diseases 
[316].

Modulating immune response
Adjuvants can influence the type and strength of the 
immune response elicited by the mRNA vaccine [317]. 
Different adjuvants can bias the immune response 
towards specific types, such as a Th1 (cell-mediated) or 
Th2 (antibody-mediated) response [318]. This modula-
tion is crucial for tailoring the vaccine’s effectiveness to 
combat specific diseases or pathogens [319].

Prolonging antigen presentation
Adjuvants can extend the presentation of the antigen 
(viral or antigenic protein) derived from the mRNA vac-
cine [320]. They help in promoting antigen persistence 
and slow down the clearance of the antigen from the 
injection site, allowing for a more prolonged and robust 
immune response [321].

Applications of mRNA vaccines in preventive 
and therapeutic contexts
The mRNA vaccines are administered to individuals 
who are at risk of being exposed to a specific patho-
gen, such as a virus or bacteria [311, 312]. The mRNA 

vaccines provide instructions to the cells in the body 
to produce a harmless piece of the pathogen, typically 
a protein or antigen, which then stimulates an immune 
response. This immune response includes the produc-
tion of antibodies and activation of immune cells spe-
cific to the pathogen [304]. If the individual is later 
exposed to the actual pathogen, their immune system 
can recognize and respond to it more effectively, pre-
venting infection or reducing its severity. mRNA vac-
cines have been successfully developed for various 
infectious diseases, including COVID-19, influenza, 
and others [319]. The mRNA vaccines are used as a 
treatment option for individuals who have already 
contracted a specific disease, such as cancer or certain 
viral infections. The therapeutic mRNA vaccines work 
by delivering genetic instructions to the cells, directing 
them to produce specific proteins that are characteris-
tic of the disease [321]. These proteins can be tumor-
specific antigens in the case of cancer or viral proteins 
in the case of viral infections. By producing these dis-
ease-specific proteins, the immune system is stimulated 
to recognize and mount an immune response against 
the diseased cells or viruses [315]. Therapeutic mRNA 
vaccines hold promise in cancer treatment as they can 
potentially enhance the body’s ability to target and elim-
inate cancer cells [304].

Safety and tolerability of mRNA vaccines
The mRNA vaccines have gained recognition for being 
largely risk-free and well-tolerated [321]. There are 
a few reasons for this. Firstly, mRNA vaccines do not 
contain live viruses or pathogens, eliminating the risk 
of developing the disease they aim to prevent or treat 
[318]. Instead, they consist of a small piece of genetic 
material that encodes a specific protein. Secondly, 
mRNA vaccines are transient, meaning that once the 
genetic material is taken up by cells and the protein 
is produced, the mRNA quickly degrades and is elimi-
nated from the body [313]. This temporary nature 
ensures that there is no long-term genetic alteration. 
Additionally, mRNA vaccines do not integrate into 
the host genome, further minimizing any potential 
long-term risks. Moreover, extensive clinical trials 
and rigorous safety evaluations are conducted before 
their approval, ensuring that they meet strict safety 
standards [321]. Adverse reactions to mRNA vac-
cines are typically mild and temporary, such as pain 
at the injection site, fatigue, or fever, which are com-
mon with most vaccines [304]. Furthermore, the tech-
nology behind mRNA vaccines has been extensively 
studied and refined over many years, providing a solid 
foundation for their safety and tolerability [321]. The 
mRNA used in vaccines is carefully engineered and 
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optimized to enhance stability and reduce any potential 
side effects. Modern mRNA vaccines also benefit from 
lipid nanoparticle delivery systems, which help protect 
the mRNA and facilitate its efficient uptake by cells 
[313]. Another key factor contributing to the safety of 
mRNA vaccines is the stringent regulatory processes 
and rigorous testing they undergo before approval 
[304]. These vaccines undergo comprehensive pre-
clinical studies in animals to evaluate their efficacy and 
safety. Subsequently, they progress through multiple 
phases of clinical trials involving thousands of human 
participants, where their safety, immunogenicity, and 
efficacy are thoroughly assessed [321]. Additionally, the 
extensive post-approval monitoring and surveillance 

systems enable the rapid detection and investigation 
of any potential adverse events. This ongoing monitor-
ing ensures that the safety profile of mRNA vaccines is 
continuously evaluated and any rare or unexpected side 
effects can be promptly addressed [313]. The collective 
evidence from clinical trials, real-world data, and the 
successful deployment of mRNA vaccines in millions 
of individuals supports their remarkable safety and tol-
erability [313]. The benefits of mRNA vaccines in pre-
venting serious illnesses, hospitalizations, and deaths 
far outweigh the minimal risks associated with them. 
Continuous monitoring and research efforts further 
contribute to improving our understanding of these 
vaccines and ensuring their ongoing safety [321].

Fig. 8 Obstacles in the clinical application of mRNA. a In vitro production of therapeutic mRNA involves a linear DNA template and RNA 
polymerase (T7), followed by purification; the mRNA consists of a 5′ cap, a 5′ UTR, an ORF that encodes the target protein, a 3′ UTR, and a poly(A) 
tail. b) Upon local or systemic administration, mRNA encounters various extracellular hurdles such as rapid breakdown by prevalent nucleases, 
removal through macrophage phagocytosis, and elimination via renal filtration. c A portion of mRNA that escapes from blood vessels can be taken 
up by cells. The majority of these internalized mRNAs get confined in endosomes and can be identified by endosomal and cytosolic RNA sensors, 
which ultimately decrease the mRNA’s translation and stability. Enhancing the 5′ cap can boost the binding efficiency of cytoplasmic mRNAs 
to ribosomes, consequently increasing mRNA translation efficiency. Although the endosomal escape of bare and unaltered mRNA is difficult, it can 
be facilitated by employing mRNA carriers. Reprinted from [322] with permission from Springer Nature
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Strategies to improve mRNA translation efficiency 
and overcome the innate immunogenicity
Figure  8 illustrates the various obstacles encountered 
during the clinical application of mRNA therapies. The 
production of therapeutic mRNA in  vitro includes the 
use of a linear DNA template and T7 RNA polymerase, 
followed by purification. The resulting mRNA is com-
posed of a 5′ cap, a 5′ UTR, an ORF encoding the target 
protein, a 3′ UTR, and a poly(A) tail. When administered 
locally or systemically, mRNA faces numerous extra-
cellular challenges, such as degradation by nucleases, 
clearance by macrophage phagocytosis, and elimination 
through renal filtration. Some mRNA molecules that 
evade these hurdles manage to enter cells, but the major-
ity end up sequestered in endosomes. Here, they are 
detected by endosomal and cytosolic RNA sensors, which 
negatively affect mRNA translation and stability. Enhanc-
ing the 5′ cap can improve ribosome binding efficiency 
and thus increase mRNA translation. While endosomal 
escape remains a challenge for unmodified mRNA, the 
use of specialized carriers can facilitate this critical step 
and improve the overall effectiveness of mRNA-based 
therapies. Table 4 outlines various strategies for improv-
ing mRNA translation efficiency, which include modifica-
tions to mRNA structures and utilizing novel methods 
for mRNA delivery. Some of these strategies include 
five-prime cap (5’ Cap) modification, optimization of 
UTRs, codon optimization, and poly(A) tail modification, 
among others. These approaches aim to enhance mRNA 
stability, translation efficiency, and immunogenicity while 
maintaining safety and efficacy. The use of exogenous fac-
tors, nanoparticle-based delivery systems, and viral vec-
tors are also explored as methods for improving mRNA 
translation. Combining multiple strategies may result in 
synergistic effects, leading to increased overall efficiency. 
While these methods show promise, some disadvantages 
include increased costs, time-consuming synthesis pro-
cesses, and potential off-target effects or safety concerns. 
Nonetheless, these innovative approaches pave the way 
for the development of more effective mRNA-based ther-
apeutics and vaccines in the future.

Five‑prime cap (5’Cap) modification
IVT mRNAs, which mimic the eukaryotic mRNA, usu-
ally have a N7-methylated guanosine added to the first 5′ 
nucleotide through a 5′, 5′-triphosphate bridge for effi-
cient translation in the eukaryotic system [356]. This 5′ 
m7G cap or m7Gppp- is typically referred to as “Cap 0” 
[354]. The 5′  cap recruits the eukaryotic eIF4E to facili-
tate ribosome recognition and translation initiation [356]. 
Both enzymatic and chemical strategies are applied for 
mRNA 5′ capping [357]. The most widely used in  vitro 
post-translational capping enzymatic method is the 

Vaccinia capping system, which is based on the Vaccinia 
virus Capping Enzyme (VCE) [358]. The VCE consists 
of 2 subunits (D1 and D12) [358]. The D1 subunit pos-
sesses triphosphatase, guanylyl transferase, and methyl-
transferase activity, all of which are essential for adding a 
complete Cap 0 structure, while D12 plays a valid role in 
activating D1 [359]. Vaccinia capping system provides a 
near 100% capping efficiency with proper orientation, but 
efficient expression and purification for VCE are required 
for large scale capped RNA production [360].

Besides the enzymatic post-translational capping 
methods, chemical capping methods add cap analogs 
co-transcriptionally [361]. However, regular cap analog 
added during IVT (co-transcriptional process) can be 
reversely incorporated into the mRNA sequence [362]. 
Therefore, approximately one third of mRNA molecules 
are not properly methylated, with free phosphate hang-
ing at the 5′ location, leading to low efficiency of down-
stream mRNA translation [362]. To prevent reverse 
incorporation, anti-reverse cap analogs (ARCA) have 
been developed [230]. ARCA is methylated at the C3 
position (closer to m7G) to ensure the addition of a 
nucleotide only at the non-methylated guanosine during 
IVT [363]. ARCA capped mRNA increases and prolongs 
protein expression in  vitro [230]. To inhibit de-capping 
of the corresponding mRNA and increase binding affin-
ity to eIF4E, ARCA have been further modified within 
the triphosphate linkage, either through a bridging oxy-
gen (e.g. (methylenebis) phosphonate and imidodiphos-
phate) or a non-bridging oxygen (e.g. phosphorothioate 
and phosphorselenoate) [364]. Remaining limitations of 
ARCA caps are: (1) Relatively low capping efficiency (60–
80%); (2) Cap-0 structure is formed after capping; (3) Cap 
contains an unnatural O’methyl group in the C3 position 
that can be recognized as exogeneous motif; (4) mRNA 
transcript must start with guanine (G) [365].

5’cap can be added enzymatically after IVT to achieve 
100% capping efficiency with a natural unmodified cap 
structure [366]. However, the process is costly and suffers 
from batch-to-batch variability. A next generation co-
transcriptional cap analog, CleanCap™, was developed in 
2018 to overcome the issues associated with ARCA [366]. 
CleanCap™ utilized an initiating capped trimer to yield 
a natural unmodified cap structure with increased cap-
ping efficiency to nearly 90–99% [367]. Uncapped (5’ppp 
or 5’pp) or abnormally capped (Cap-0) mRNAs can be 
recognized by PRRs, such RIG-1 and IFIT, triggering 
type I IFN, blocking mRNA translation [368]. Therefore, 
a natural Cap-1 structure is preferred [369]. Cap1 struc-
ture can be enzymatically added by guanylyl transferase 
and 2′-O-methyltransferases or through the co-transcrip-
tional CleanCap™ technology [369]. To further avoid 
recognition by the innate immune system, capped-IVT 
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mRNAs should be treated with phosphatases to remove 
uncapped phosphate, preventing PRR-mediated sensing 
and destruction of mRNA translation [370].

Optimization of untranslated regions
UTRs can impact mRNA degradation rate and trans-
lation efficiency through interacting with RNA bind-
ing proteins [79]. 5′ UTR sequence can be optimized to 
enhance the stability of mRNA and accuracy of trans-
lation [79]. Firstly, avoid the presence of start codon 
(AUG), and non-canonical start codons (CUG) in the 5′ 
UTR, as these codons may disturb the normal transla-
tion process of ORF [371]. Secondly, avoid the presence 
of highly stable secondary structures, which can pre-
vent ribosome recruitment and codon recognition [371]. 
Thirdly, shorter 5’UTR may be introduced as previous 
studies have shown that this type of 5’UTR is more con-
ducive to mRNA translation process [372]. Ultimately, 
bioinformatics tool can be used to predict mRNA trans-
lation efficiency according to 5’UTR sequence. α-globin 
and β-globin from  Xenopus laevis  or humans contain 
translation and stability regulatory elements, and are 
commonly used as the 3′ UTR of IVT mRNA [373]. To 
further improve RNA stability, AU- and GU-enriched 
sequences can be introduced [374]. Moreover, tran-
scription efficiency might be improved by adding 3’UTR 
sequence twice in tandem [374]. Overall, UTR perfor-
mance is dependent on species, cell type, and cell state 
[375]. One needs to understand the pharmacology in the 
targeted cells to allow better design of UTRs of the thera-
peutic mRNA vaccines [376].

Codon optimization of Open Reading Frame (ORF)
Optimization of G and cytosine (C) content in the ORF 
can be applied to regulate the translation elongation rate 
[377]. Uridine depletion is another codon optimization 
strategy that can directly be linked to an increased GC 
content [378]. Uridine-rich regions can be recognized by 
RIG-I, and its activation may lead to abolishing of pro-
tein expression [379]. Moreover, the sequence can be 
optimized to have the same ratio of every codon found 
naturally in highly expressed proteins in the targeted 
cells or to use the best pairs of codons that are commonly 
seen in these highly expressed proteins [379]. In addition, 
codons with higher tRNA abundance are usually used to 
replace rare codons in ORF to increase the translation 
rate [380]. Lastly, highly stable secondary structures and 
hairpin loops should be avoided in the ORF [380]. How-
ever, high translation rate is not all beneficial, as some 
proteins require a low translation rate to correctly and 
effectively fold [381]. Therefore, codon optimizations in 
the ORF should be carefully monitored to ensure moder-
ate translation rate and high translation accuracy [382]. 

Some researchers demonstrated that sequence engi-
neered but chemical unmodified mRNA is fully suited for 
use in mRNA therapies, and the protein expression level 
was even higher than chemically modified but without 
codon optimized mRNA, indicating the importance of 
codon optimization in improving mRNA expression effi-
ciency [383].

Poly (a) tail modification
Poly(A) sequence can slow down the degradation process 
of RNA exonuclease, increase RNA stability, and enhance 
translation efficiency [384]. A suitable length of Poly(A) 
is crucial [385]. Commonly used Poly(A) is 250 units 
in length, but different cells may have different prefer-
ences [385]. For example, the optimal length of poly(A) 
in human monocyte-derived DCs are 120–150 nucleo-
tides, in human primary T cells are 300 nucleotides [172]. 
Moreover, Poly (A) binding protein (PABP) can interact 
with 5’cap through translational initiation factors, such as 
eIF4G and eIF4E, forming a close-loop to impact mRNA 
structure [386]. Recent study by Some researchers found 
that shorter poly(A) sequence could promote this closed-
loop structure for efficient translation [387]. Therefore, 
future studies should evaluate the role of poly-A size in 
kinetic expression of IVT-mRNA antigen [387].

Nucleoside modified mRNA
Another method to improve mRNA stability, transla-
tion efficiency and mRNA vaccine potency is to modify 
mRNA transcripts with alternative nucleotides [352]. 
Pseudouridine (Ψ), 1-methylpseudouridine (m1Ψ), and 
5-methylcytidine (m5C) are used to replace the natural 
uridine and cytidine, and thus to remove intracellular 
signaling triggers for PKR and RIG-I, leading to enhanced 
antigen expression [388]. Some researchers have found 
that altering nucleosides in the mRNA’s structure (e.g., 
5mC or Ψ) can substantially reduce innate immune acti-
vation and increase translational capacity of mRNA [11]. 
Post-transcriptional epigenomic RNA modifications can 
also be a powerful approach for improving mRNA trans-
lation and evading innate immune response [11]. Some 
researchers reported that post-transcriptional RNA 
modification with N4-aceylcytidine (ac4C) enhanced 
mRNA translation in  vitro and in  vivo [389]. Moreover, 
the function of post-translational epigenomic modifica-
tions in DC activation has been demonstrated by mettl3, 
an RNA methyl transferase which mediates mRNA m6A 
methylation and induces DC activation [390].

Purification of IVT‑mRNA
As mentioned in Sect. "Cancer immunotherapies", phage 
polymerase in IVT can yield multiple contaminants, 
including short RNAs generated from abortive initiation 
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event and dsRNA produced by self-complementary 3′ 
extension [387]. These RNA contaminants can activate 
intracellular PPRs, including PKR, MDA-5, OAS etc. 
and lead to abolish of mRNA translation and activation 
of innate immunity [391]. Some researchers have dem-
onstrated that the removal of these RNA contaminants 
result in mRNA that does not induce IFNs and inflam-
matory cytokines, ultimately leading to10- to 1000-fold 
increase in protein production in human primary DCs 
[392]. dsRNA species can be reduced during IVT by 
decreasing  Mg2+ concentration or by producing RNA at 
elevated temperature [387]. A more complete and scal-
able removal of dsRNA was performed by high-pressure 
liquid chromatography (HPLC) [393]. However, HPLC 
purification of mRNA is usually high cost and low yield 
(< 50%) [353]. Recently, a fast and cheap purification 
method has been reported by some researchers. The 
method utilized the selective binding of dsRNA to a cel-
lulose powder in ethanol containing buffer combined 

with fast protein liquid chromatography (FPLC) to 
remove up to 90% of dsRNA [328]. Another way to 
completely get rid of dsRNA contaminants is through 
solid phase synthesis of mRNA rather than IVT [394]. 
For instance, some researchers have synthesized RNA 
fragments up to ~ 70 nucleotides using the solid phase 
method [395]. The RNA fragments were then ligated to 
become full length mRNA. This process is scalable and 
completely avoids the formation of dsRNA [395]. Fig-
ure 9 illustrates the potential therapeutic uses of in vitro 
transcribed (IVT) mRNA in various clinical and preclini-
cal applications.

Utilizing the impact of type I IFN for improved mRNA 
vaccination
As mentioned earlier, type I IFN shows paradoxi-
cal impact on the immune response of mRNA cancer 
vaccine [64]. Several studies have demonstrated that 
increased innate immune stimulation driven by mRNA 

Fig. 9 Possible therapeutic uses of IVT mRNA. Solid arrows in the right-hand column signify clinical applications, while dotted arrows indicate 
preclinical applications. Reprinted from [51] with permission from Springer Nature
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and delivery system modifications are not necessary for 
increased immunogenicity [2]. Other studies indicated 
that enhanced immune responses via combination with 
alternative adjuvants are required for mRNA vaccines to 
achieve the targeted anti-tumor therapeutic outcome and 
improved patients’ survival [396].

Some researchers have reported mRNA pulsed with a 
palmitic acid-modified TLR7/8 agonist R484 markedly 
improved the MHC class I presentation of OVA mRNA 
derived antigen in APCs, subsequently induced a more 
effective adaptive immune response in a tumor bearing 
mouse model as compared to mRNA vaccine without 
the adjuvant [37]. Moreover, the RNActive® vaccine plat-
form developed by CureVac AG used RNA/protamine 
complex as an adjuvant to activate TLR7/8, induce Th1 
T cell response [397]. Enhanced antitumor immunity was 
achieved when dosing RNA/protamine adjuvant with the 
naked, unmodified mRNA encoding antigens [398]. In 
addition to using TLR agonists as adjuvants, stimulator 
of interferon genes (STING) agonists has been recently 
applied as immunomodulators for combination with 
mRNA and peptide vaccines [399]. Some researchers 
have shown that loading of mRNA cancer vaccines into 
LNPs with intrinsic STING-IFN activation function pro-
duced a potent and prolonged  CD8+ T cells response [2]. 
Improved antitumor efficacies were observed in three 
cancer models with the addition of STING activating 
lipids [400].

Recently, a combination of pro-inflammatory cytokines 
and chemokines have also been exploited to boost the 
antitumor immunity of mRNA vaccines in both pre-
clinical and clinical studies [37]. In one clinical study, a 
DC-based mRNA vaccination composed of a mixture 
of TAAs were administrated together with DCs elec-
troporated with mRNA encoding CD70, CD40 ligand 
(CD40L), and constitutively active TLR4 (TriMix) [401]. 
The combination therapy resulted in an encouraging rate 
of tumor responses in patients with stage III or IV mela-
noma [402]. Costimulatory molecules CD70 and CD40L, 
together with active TLR4, play crucial roles in the acti-
vation of DCs and priming of  CD8+  T cell responses 
[111]. The cytokine cocktails are not only used to prime 
DC and T cell functions, but can also be dosed intratu-
morally to reshape the tumor microenvironments [403]. 
For instance, intratumorally injection of mRNA-encod-
ing cytokines IL-23, IL-36Ƴ, and T cell co-stimulatory 
OX40L can overcome the suppressive tumor environ-
ment and produce effective systemic antitumor immu-
nity [404]. Studies in combination of adjuvants with 
mRNA vaccines are blooming, but this strategy should be 
used with caution as it could be counterproductive and 
paradoxical, especially when using immune-stimulatory 

molecules that have tight interactions with type I IFN 
and the innate immunity pathway [405].

Immunogenicity of mRNA and paradoxical effects in cancer 
immunotherapy
Innate immune response is usually activated by host 
immune system through detecting exogeneous motifs 
called PAMPs via the pattern recognition receptors 
(PRRs) [406]. These receptors are particularly highly 
expressed in APCs, the major target cell population of 
mRNA cancer vaccines [2]. Exogeneous IVT mRNA is 
intrinsically immunostimulatory, as it is recognized by 
a variety of cell surface, endosome and cytosolic PRRs 
[370]. Recognition of IVT mRNA inside the endosome 
is mainly mediated by toll-like receptor (TLR)-7 and − 8 
(one type of PRRs), subsequently activates the myeloid 
differentiation marker 88 (MyD88) pathway, leading 
to activation of Type-1 interferon (IFN) pathways and 
secretion of proinflammatory cytokines [355]. In the 
cytosol, these exogeneous mRNAs are sensed by other 
PRR families, including retinoic acid-inducible gene-
I-like (RIG-I-like) receptors, oligoadenylate synthetase 
(OAS) receptors, and RNA-dependent protein kinase 
(PKR) [406].

These PRRs can sense different RNAs, including 
dsRNA and single stranded RNA (ssRNA), blocking 
mRNA translation as reviewed elsewhere [407]. The 
activation of multiple PRRs and production of type I IFN 
can be paradoxically beneficial or detrimental for anti-
cancer immunotherapy [408]. It is potentially beneficial 
for vaccination since, in some cases, activation of type 
I IFN pathways drives APC activation and maturation, 
promotes antigen presentation, and elicits robust adap-
tive immune responses [405]. However, innate immune 
sensing of RNAs may be associated with inhibition of 
antigen expression, and thus dampen immune response 
[408]. Specifically, phage RNA polymerases produce 
unwanted dsRNA during IVT that can activate innate 
immunity via PKR, OAS, TLR-3, MDA-5 (one type of 
RIG-I like receptors) [409]. Once the PKR is activated, 
the eukaryotic initiation factor (eIF)-2 can be phospho-
rylated, blocking mRNA translation [410]. Moreover, the 
dsRNA activates RNase L upon binding to OAS, causing 
degradation of the exogenous RNAs [410]. Ultimately, 
binding of dsRNA with MDA-5 and TLR-3 can activate 
Type I IFN, eliciting several other genes that inhibit the 
translation of mRNA [411]. Besides the dsRNA impu-
rities, improperly designed mRNA structure may also 
activate PRRs like MDA-5 and PKR, abolishing antigen 
expression [410]. Figure  10 illustrates the inflamma-
tory reactions triggered by artificial in vitro transcribed 
(IVT) mRNA. This mRNA is recognized by several 
endosomal innate immune receptors, such as Toll-like 



Page 48 of 106Chehelgerdi and Chehelgerdi  Molecular Cancer          (2023) 22:106 

receptors 3, 7, and 8 (TLR3, TLR7, TLR8), and cytoplas-
mic innate immune receptors, including protein kinase 
RNA-activated (PKR), retinoic acid-inducible gene I 
protein (RIG-I), melanoma differentiation-associated 
protein 5 (MDA5), and 2′–5′-oligoadenylate synthase 
(OAS). These receptor pathways then activate signaling 
processes that result in the production of inflammation-
associated molecules like type 1 interferon (IFN), tumor 
necrosis factor (TNF), interleukin-6 (IL-6), and IL-12, 
initiating various transcriptional programs. The com-
bined effect of these components creates a pro-inflam-
matory environment that facilitates the activation of 
specific immune responses. Additionally, downstream 
effects such as eukaryotic translation initiation factor 2α 
(eIF2α) phosphorylation-induced translation slowdown, 

increased RNA degradation due to ribonuclease L 
(RNASEL) overexpression, and self-amplifying mRNA 
replication inhibition play crucial roles in determining 
the pharmacokinetics and pharmacodynamics of IVT 
mRNA.

The paradoxical impact of Type I IFNs activa-
tion is not only restricted to antigen expression, but 
also shown on  CD+ 8  T cell activation [2]. The dual 
effect of Type I IFNs on  CD8+  T cell immunity have 
been extensively reviewed elsewhere. In brief, the 
stimulatory or inhibitory actions of type I IFNs on 
 CD+ 8  T cell activation is likely to be dependent on 
the timing and kinetics between activation of IFNAR 
signaling and TCR signaling, which may be further 
impacted by the routes of administration of mRNA 

Fig. 10 Inflammatory Reactions to Artificial mRNA. In vitro transcribed (IVT) mRNA is identified by a variety of endosomal innate immune receptors, 
including Toll-like receptors 3, 7, and 8 (TLR3, TLR7, TLR8), as well as cytoplasmic innate immune receptors like protein kinase RNA-activated 
(PKR), retinoic acid-inducible gene I protein (RIG-I), melanoma differentiation-associated protein 5 (MDA5), and 2′–5′-oligoadenylate synthase 
(OAS). These pathways signal to produce inflammation connected with type 1 interferon (IFN), tumor necrosis factor (TNF), interleukin-6 (IL-6), 
IL-12, and the initiation of various transcriptional programs. Collectively, these elements generate a pro-inflammatory environment conducive 
to triggering specific immune responses. Furthermore, downstream consequences such as eukaryotic translation initiation factor 2α (eIF2α) 
phosphorylation-induced translation slowdown, increased RNA degradation due to ribonuclease L (RNASEL) overexpression, and self-amplifying 
mRNA replication inhibition are significant for the pharmacokinetics and pharmacodynamics of IVT mRNA. Reprinted from [51] with permission 
from Springer Nature



Page 49 of 106Chehelgerdi and Chehelgerdi  Molecular Cancer          (2023) 22:106  

cancer vaccines [412]. For instance, several studies 
have shown that type I IFNs can potentially promote 
 CD8+ T cell response to systemic mRNA vaccination 
[413]. One hypothesis is that, intravenous (IV) deliv-
ery of mRNA (typically delivered by cationic lipoplex) 
is expressed in splenic DCs, where antigen expression 
and presentation take place simultaneously, with TCR 
signaling preceding or coinciding with IFNAR sign-
aling [412]. In contrast, type I IFNs can potentially 
interfere with topical (ID or SC) mRNA vaccination 
where antigen expression happens locally in the injec-
tion site, but antigen presentation takes place in the 
secondary lymphoid organs, with IFNAR signaling 

precedes TCR signaling [240]. However, this IFNAR/
TCR signaling theory is still debating, since other 
research groups have observed the opposite effects 
from local administration of mRNA vaccines [412]. 
Therefore, the purity of mRNA products, the modi-
fication of mRNA sequence, the design of delivery 
system and administration routes need to be tuned 
to properly active the innate immunity to initiate the 
adaptive immune response, simultaneously, averting 
the toxic overactivations that inhibit antigen protein 
expression and immune response [408]. Figure  11 
illustrates the natural immune detection of mRNA 
vaccines by DCs.

Fig. 11 Natural immune detection of mRNA vaccines. DC recognizes two types of mRNA vaccines, with RNA sensors in yellow, antigens in red, DC 
maturation elements in green, and peptide-MHC complexes in light blue and red; a sample lipid nanoparticle carrier is depicted in the top right 
corner. A non-comprehensive list of major known RNA sensors responsible for identifying double-stranded and unaltered single-stranded RNAs 
is provided. Unaltered, unrefined (part a) and nucleoside-altered, FPLC-purified (part b) mRNAs are chosen to demonstrate two types of mRNA 
vaccines where known mRNA sensing mechanisms are either present or absent. The dotted arrow signifies diminished antigen expression. 
Ag stands for antigen; PKR for interferon-induced, double-stranded RNA-activated protein kinase; MDA5 for interferon-induced helicase C 
domain-containing protein 1 (also called IFIH1); IFN for interferon; m1Ψ for 1-methylpseudouridine; OAS for 2’-5’-oligoadenylate synthetase; and TLR 
for Toll-like receptor. Reprinted from [126] with permission from Springer Nature
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Self‑amplifying mRNA vaccine, structure, 
advantages and deliveries
Another RNA vaccine platform that holds the promise to 
maximize the magnitude and length of antigen produc-
tion is SAM [226]. SAMs are originated from positive-
single stranded mRNA viruses, most commonly from 
alphaviruses such as Sindbis and Semliki-Forest viruses 
[62]. The structural protein encoding genes of respec-
tive alphavirus that enable the formation of infectious 
viral particles have been replaced with gene encoding 
the antigen(s) of interest, whereas the RNA replication 
machinery remains [414]. Specifically, the viral RNA-
dependent RNA polymerase (known as replicase) and the 
non-structural proteins were retained to assemble into 
the multi-enzyme replicase complex to direct cytoplas-
mic amplification of RNA [415]. SAM can self-amplify 
over time (up to 2  months) and consequently inducing 
more potent and persistent immune responses owing 
to the integrity of the viral replication machinery [226]. 
The SAM platform precedes other nonreplicating mRNA 
vaccine platforms in that it allows for a huge amount of 
antigen production in an extended period of time from a 
remarkable low dose vaccination [416]. Some researchers 
reported that the IM injection of Sindbis virus-derived 
SAM led to a ten-fold increase in antigen expression ratio 
and eight-day extension of expression (from 2 to 10 days) 
than non-replicating mRNA [417, 418].

Early investigation of SAM is direct injection of SAM 
packaged into viral replication particles (VRP) [419]. 
VRPs are potent vaccines in mice, non-human primates 
and humans However, the replicated VRP structural pro-
teins may induce non-specific immunogenicity and tox-
icity [420]. To decrease the infectious concern of viral 
components, a propagation-defective type of VRPs was 
generated [421]. The capsid and envelope proteins of the 
modified VRP are encoded in trans as defective helper 
constructs during production [419]. Only the RNA can 
further amplify after internalization, whereas other part 
of VRPs lack the ability to form infectious viral particles 
[422]. Nowadays, complete synthetic SAM produced 
after IVT can be directly used as RNA-based vaccine, 
removing the potential safety concerns of the viral com-
ponents [423].

Since SAM is a huge and negatively charged molecule 
(~ 9500 nt), a delivery system is needed for its effective 
cellular uptake and protection from enzymatic degrada-
tion [416]. Over the past few years, substantial efforts 
have been made to identify a suitable delivery vehicle for 
IVT SAM [226]. Medium-length cationic polymer poly-
ethylenimine (PEI) was adopted by some researchers to 
deliver the long SAM, from which they have shown that 
64-fold less dose of SAM achieved the equivalent immu-
nity to the non-replicating mRNA [416]. To decrease the 

potential toxicity from non-degradable cationic polymer, 
a bio-reducible, linear cationic polymer called “pABOL” 
was developed to deliver SAM [424]. Some researchers 
demonstrated pABOL enhanced protein expression via 
both IM and intradermal (ID) injection [424].

Some researchers presented a new vaccine platform 
based on self-amplifying RNA encapsulated in synthetic 
LNPs [425, 426]. The LNP platform protected SAM from 
enzymatic degradation, allowed for efficient gene deliv-
ery after IM injection [426]. Proof of concept was dem-
onstrated in a model of respiratory syncytial virus (RSV) 
infection [427]. To further improve transgene expression 
and immunity of SAM vaccines, several approaches have 
been attempted: Some researchers have reported the co-
administration of GM-CSF expressing RNA with SAM 
to improve the potency against a lethal influenza virus 
challenge in mice [226]. Moreover, some researchers 
evaluated different cationic lipid formulations including 
liposomes, LNPs, polymeric nanoparticles and emulsions 
to encapsulate rabies virus glycoprotein G (SAM-RVG), 
and noticed that DOTAP containing polymeric nano-
particles and LNPs were the most potent in triggering 
humoral and cellular immunity [428]. Lastly, SAM has 
been truncated into two transcripts (smaller in size) to 
address the concerns of inefficient delivery [429]. Some 
researchers have separated SAM encoding the antigen 
of interest from the replicase activity [62]. The repli-
case activity is provided in trans using a co-transfected 
RNA [62]. These two compartment SAM demonstrated 
10–100-fold higher trans replicon expression than the 
whole-set counterpart [62]. The doses of influenza 
hemagglutinin antigen-encoding RNA in this platform 
were as low as 50  ng to induce neutralizing antibodies 
[430].

Clinical applications of SAM (delivered by VRPs and 
LNPs) in the prevention of infectious disease are prom-
ising, which have been extensively reviewed elsewhere. 
However, the applications of SAM in cancer vaccine are 
mainly limited to preclinical studies, with only two clini-
cal trials ongoing using VRP delivered antigens against 
colorectal cancers [431]. The clinical and immunological 
benefits of SAM are still debating [431]. One major con-
sideration that restricts SAM applications is the intrinsic 
PAMP natures, which makes it difficult to modulate the 
inflammatory profile, potentially limiting repeated dosing 
anti-tumor therapies [432].

Delivery of mRNA cancer vaccine
Table  5 provides an extensive list of physical delivery 
methods for mRNA cancer vaccines, each with its own 
set of advantages and disadvantages. Some methods, 
such as electroporation, laser microporation, and mag-
netofection, offer high immunogenicity and efficacy, but 
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may cause discomfort, require specialized equipment, or 
have limited depth of penetration. Non-invasive options 
like sonoporation, needle-free injection, and ultrasound-
mediated delivery offer more comfortable experiences for 
patients but face their own limitations, such as penetra-
tion depth and equipment requirements. Biodegradable 
and hyaluronic acid-based nanoparticles are highly sta-
ble and offer targeted delivery, but require optimization 
for size and charge. Additionally, viral vector-mediated 
delivery provides high transfection efficiency, but raises 
concerns related to immune response and toxicity. Over-
all, each delivery method presents a unique balance of 
immunogenicity, efficacy, safety, and stability, emphasiz-
ing the need for continued research and development in 
this field.

Various viral, non-viral, and cell-based vehicles have 
been developed to increase the delivery efficiency of 
mRNA cancer vaccines [2]. Viral and cell-based vehicles 
have been extensively reviewed elsewhere and are not 
discussed in detail here. The comparison of these deliv-
ery systems is essential to identify the most effective and 
efficient way of delivering mRNA cancer vaccines. For 
example, some delivery systems may be more effective in 
delivering mRNA to certain types of cells, while others 
may be better at eliciting a specific immune response. 
By comparing the different delivery systems, research-
ers can choose the most suitable system for their mRNA 
cancer vaccine, taking into account the specific require-
ments of their study, such as the type of cancer being 
targeted, the desired immune response, and the mode of 
administration. Table 6 provides a comprehensive com-
parison of various mRNA cancer vaccine delivery sys-
tems, each with its own set of advantages, disadvantages, 
and factors affecting immunogenicity, efficacy, safety, 
and stability.

LNPs are known for their high delivery efficiency and 
low toxicity, while cationic polymers offer low cost and 
customizability. Peptide-based delivery systems boast 
a high level of customization and potential for targeted 
delivery. Other methods, such as in vivo electroporation, 
physical delivery methods like laser microporation and 
sonoporation, and the use of gold nanoparticles, provide 
targeted delivery with varying levels of immunogenic-
ity and efficacy. Biodegradable microspheres, cell-based 
vaccines, and protein and peptide-based systems have 
shown promising results in certain cancer targets, while 
electrospray and RNA-lipoplexes provide high antigenic-
ity and low toxicity, respectively. Novel methods like 
mRNA-coated gold nanorods and nanocarriers offer tar-
geted delivery and reduced toxicity. Collectively, these 
delivery systems offer unique advantages and challenges 
in the fight against cancer, with their success largely 

dependent on the specific cancer target and delivery 
method employed.

Ex vivo DC mRNA allows for the loading of DCs with 
tumor-specific antigens but involves complex and costly 
procedures. In  vivo naked mRNA is simple and easy to 
administer but has limited efficacy due to degradation in 
the body. Lipid nanoparticles and polymer-based deliv-
ery systems offer high efficiency of mRNA delivery, with 
the former being more efficient. Peptide-based delivery 
offers highly specific targeting of cancer cells, but lim-
ited clinical data and validation are available. Self-ampli-
fying mRNA (SAM) requires lower doses for efficacy, 
while in  vivo electroporation increases cellular uptake, 
reducing the need for delivery vehicles. Jet injection and 
hydrodynamic delivery are simple and easy to adminis-
ter, but their efficacy is limited due to mRNA degrada-
tion. Physical delivery methods can achieve high mRNA 
delivery efficiency but may cause tissue damage or be 
limited by tissue barriers. In vitro transcription allows for 
large-scale production of mRNA but requires high cost 
and complex procedures. The safety and stability of these 
delivery systems are generally considered acceptable, 
but there are variations in efficacy and immunogenicity 
among them. Table  7 provides a comprehensive com-
parison of different delivery systems for mRNA cancer 
vaccines.

Ionizable lipid nanoparticles‑based mRNA delivery system
Ionizable lipid nanoparticles (LNPs) are a type of lipid-
based delivery system used for the delivery of mRNA in 
mRNA vaccines. They are composed of a lipid bilayer 
that encapsulates the mRNA payload, protecting it from 
degradation and facilitating its delivery into target cells. 
The term "ionizable" refers to the presence of ionizable 
lipid components within the nanoparticle structure. The 
lipid component forms the core structure of the nanopar-
ticle and provides stability. It is usually a mixture of dif-
ferent lipids, including ionizable cationic lipids, neutral 
lipids, and cholesterol. The ionizable cationic lipids play 
a crucial role in endosomal escape and efficient intracel-
lular delivery of mRNA.

The mRNA encoding the desired antigen or thera-
peutic protein is encapsulated within the lipid bilayer of 
the nanoparticle. The mRNA is synthesized in vitro and 
then complexed with the lipid components to form the 
LNP. Polyethylene glycol (PEG) is often included in the 
LNP formulation to provide stability and prevent aggre-
gation of nanoparticles. PEGylation also helps to pro-
long the circulation time of LNPs in the body, enhancing 
their chances of reaching the target cells. In some cases, 
LNPs can be modified with targeting ligands on their sur-
face to facilitate specific binding to target cells or tissues. 
This modification enhances the specificity and efficiency 
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of LNP delivery to the desired cells, improving vaccine 
efficacy.

The ionizable LNPs exploit the natural process of 
endocytosis, where cells engulf extracellular materi-
als, to deliver the mRNA payload into the target cells. 
After the LNPs are taken up by cells, they are internal-
ized into endosomes. The ionizable cationic lipids within 
the LNPs interact with the negatively charged endoso-
mal membrane, leading to disruption of the endosomal 
structure and release of the mRNA payload into the cyto-
plasm. Once inside the cytoplasm, the mRNA is avail-
able for translation by the cellular machinery to produce 
the desired protein or antigen. The protein or antigen 
is then presented to the immune system, triggering an 
immune response and the production of specific anti-
bodies or activated T cells. Ionizable lipid nanoparticles 
have gained significant attention in the field of mRNA 
vaccines due to their ability to efficiently deliver mRNA 
into cells, resulting in high protein expression levels and 
potent immune responses. They have been successfully 
used in the development of mRNA-based COVID-19 
vaccines, such as the Pfizer-BioNTech and Moderna vac-
cines. The versatility and effectiveness of ionizable LNPs 
make them a promising tool for the delivery of mRNA-
based therapeutics and cancer vaccines.

Rationale for lipid nanoparticles to maximize deliver 
efficiency and immunogenicity
There are various types of lipid nanoparticles employed 
for mRNA vaccine delivery, each with their unique advan-
tages and disadvantages. PEGylated lipids offer increased 
circulation time and reduced toxicity but suffer from 
poor transfection efficiency and manufacturing chal-
lenges. Cationic lipids boast good transfection efficiency 
and easy manufacturing but can be toxic and unstable. 
Neutral lipids provide high stability and low toxicity, 
while pH-sensitive lipids enable endosomal escape in 
acidic environments, but both have limited transfection 
efficiency. Ionizable lipids have high transfection effi-
ciency and stability but are also associated with toxicity 
and off-target effects. Multi-component lipids, pro-nano 
liposomes, dual-function polymer-lipid nanoparticles, 
and targeted lipid nanoparticles offer enhanced stability, 
reduced toxicity, and improved transfection efficiency, 
albeit at the cost of complex manufacturing processes 
and potential off-target effects. Researchers continue to 
explore and develop these lipid nanoparticles to optimize 
the delivery of mRNA vaccines, aiming to maximize effi-
cacy, safety, and stability while minimizing disadvantages 
and off-target effects.

LNPs are a type of delivery system that encapsulate the 
mRNA in a protective lipid coat to improve its stability 
and delivery efficiency (Table  8). LNPs, which were 

originally designed to deliver siRNAs, have been recently 
applied for the delivery of mRNA and present as the most 
clinical-translatable non-viral delivery vehicles [476]. 
LNPs are mainly composed of an ionizable amino-lipid-
like molecule, a helper phospholipid, cholesterol, and 
lipid-anchored polyethylene glycol (PEG) [196]. The ion-
izable lipid is an amphipathic structure with a hydro-
philic headgroup containing one or multiple ionizable 
amines, hydrocarbon chains capable of promoting self-
assembly, and a linker that connects the headgroups with 
hydrocarbon chains [477]. The ionizable lipid is designed 
to acquire positive charges by protonation of the free 
amines at low pH for two main purposes: (1) during the 
preparation of LNPs, the positively charged lipids can 
facilitate encapsulation of the negatively charged mRNA 
via electrostatic interaction [121]; (2) in the acidic endo-
somal microenvironment upon intracellular delivery of 
LNPs, the positively charged lipid could interact with the 
ionic endosomal membrane, facilitating membrane 
fusion and destabilization, leading to release of mRNA 
from both LNPs and endosome [478]. At the physiologi-
cal pH, the ionizable lipid remains neutral, improving 
stability and decreasing systemic toxicity [479]. Repre-
sentative ionizable lipids include: Dlin-DMA, DLin-KC2-
DMA, and DLin-MC3-DMA, which were synthesized 
based on rational design [480]; C12–200, and cKK-E12, 
which were screened by high throughput screenings of 
combinatorial libraries [275]; next-generation ionizable 
lipids, including DLin-MC3-DMA derivative L319 
(Alnylam and AlCana Technologies), C12–200 and cKK-
E12 derivatives (Anderson’s group), COVID-19 vaccine 
lipid ALC-0315 and SM-102, TT3 and biodegradable 
derivative FTT5 (Dong’s group), vitamin derived lipid 
ssPalmE and VcLNP, A9 (Acuitas), L5 (Moderna), A18 
Lipid, ATX Lipid (LUNAR® composition, Arcturus) and 
LP01 (Intellia Therapeutics), which were mostly biode-
gradable [481]. Besides ionizable lipid(s), phospholipid 
(i.e. 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine 
(DOPE), 1,2-distearoyl-sn-glycero-3-phosphocholine 
(DSPC)) and cholesterol are incorporated to improve 
lipid bilayer stability, aid membrane fusion and endoso-
mal escape [482]. The lipid-anchored PEG is incorpo-
rated to decrease macrophage-mediated clearance. More 
importantly, lipid-anchored PEG helps prevent particle 
aggregation and improve storage stability [483]. For can-
cer vaccine delivery, LNPs should be designed to protect 
mRNA from extracellular RNase degradation, and to 
deliver mRNA encoding antigens specifically to APCs, so 
to facilitate efficient antigen presentation, whilst not 
comprise mRNA translation [484]. In addition, the lipid 
excipients used to deliver mRNA should be metaboliza-
ble and cleared rapidly, thus decreasing the potential sys-
temic toxicity elicited from the vehicles and to allow for 



Page 61 of 106Chehelgerdi and Chehelgerdi  Molecular Cancer          (2023) 22:106  

Ta
bl

e 
8 

Th
e 

di
ffe

re
nt

 ty
pe

s 
of

 li
pi

d 
na

no
pa

rt
ic

le
s 

us
ed

 in
 m

RN
A

 v
ac

ci
ne

 d
el

iv
er

y

Li
pi

d 
N

an
op

ar
tic

le
 T

yp
e

A
dv

an
ta

ge
s

D
is

ad
va

nt
ag

es
Im

m
un

og
en

ic
it

y
Effi

ca
cy

Sa
fe

ty
St

ab
ili

ty
M

ec
ha

ni
sm

 o
f A

ct
io

n
Re

fe
re

nc
e

PE
G

yl
at

ed
 li

pi
ds

In
cr

ea
se

d 
ci

rc
ul

at
io

n 
tim

e,
 

re
du

ce
d 

to
xi

ci
ty

Po
or

 tr
an

sf
ec

tio
n 

effi
-

ci
en

cy
, d

iffi
cu

lt 
to

 m
an

u-
fa

ct
ur

e

Lo
w

M
od

er
at

e
H

ig
h

St
ab

le
, b

ut
 c

an
 b

e 
aff

ec
te

d 
by

 P
EG

 c
le

av
ag

e
M

em
br

an
e 

fu
si

on
 

an
d 

en
do

so
m

al
 e

sc
ap

e
[5

20
]

Ca
tio

ni
c 

lip
id

s
G

oo
d 

tr
an

sf
ec

tio
n 

effi
ci

en
cy

, e
as

y 
to

 m
an

u-
fa

ct
ur

e

Ca
n 

be
 to

xi
c,

 p
oo

r s
ta

bi
lit

y
H

ig
h

H
ig

h
M

od
er

at
e

Ca
n 

be
 u

ns
ta

bl
e 

in
 s

ol
u-

tio
n

El
ec

tr
os

ta
tic

 in
te

ra
ct

io
ns

 
w

ith
 th

e 
ce

ll 
m

em
br

an
e 

an
d 

en
do

so
m

al
 e

sc
ap

e

[4
66

]

N
eu

tr
al

 li
pi

ds
H

ig
h 

st
ab

ili
ty

, l
ow

 to
xi

ci
ty

Po
or

 tr
an

sf
ec

tio
n 

effi
-

ci
en

cy
Lo

w
Lo

w
H

ig
h

St
ab

le
En

do
so

m
al

 e
sc

ap
e

[4
80

]

pH
-s

en
si

tiv
e 

lip
id

s
En

do
so

m
al

 e
sc

ap
e 

in
 a

ci
di

c 
en

vi
ro

nm
en

ts
, 

in
cr

ea
se

d 
st

ab
ili

ty

Li
m

ite
d 

tr
an

sf
ec

tio
n 

effi
ci

en
cy

, p
ot

en
tia

l f
or

 o
ff-

ta
rg

et
 e

ffe
ct

s

H
ig

h
M

od
er

at
e

M
od

er
at

e
St

ab
le

, b
ut

 c
an

 b
e 

aff
ec

te
d 

by
 p

H
 c

ha
ng

es
En

do
so

m
al

 e
sc

ap
e 

in
 a

ci
di

c 
en

vi
ro

nm
en

ts
[5

21
]

Io
ni

za
bl

e 
lip

id
s

H
ig

h 
tr

an
sf

ec
tio

n 
effi

-
ci

en
cy

, g
oo

d 
st

ab
ili

ty
Ca

n 
be

 to
xi

c,
 p

ot
en

tia
l 

fo
r o

ff-
ta

rg
et

 e
ffe

ct
s

H
ig

h
H

ig
h

M
od

er
at

e
St

ab
le

En
do

so
m

al
 e

sc
ap

e 
vi

a 
pr

o-
to

n 
sp

on
ge

 e
ffe

ct
[2

]

N
eu

tr
al

 p
H

-r
es

po
ns

iv
e 

lip
id

s
G

oo
d 

tr
an

sf
ec

tio
n 

effi
-

ci
en

cy
, e

nd
os

om
al

 e
sc

ap
e 

in
 m

ild
 a

ci
di

c 
co

nd
iti

on
s

Li
m

ite
d 

st
ab

ili
ty

, p
ot

en
tia

l 
fo

r o
ff-

ta
rg

et
 e

ffe
ct

s
H

ig
h

M
od

er
at

e
M

od
er

at
e

St
ab

le
, b

ut
 c

an
 b

e 
aff

ec
te

d 
by

 p
H

 c
ha

ng
es

En
do

so
m

al
 e

sc
ap

e 
in

 m
ild

ly
 a

ci
di

c 
en

vi
ro

n-
m

en
ts

[1
35

]

C
ha

rg
e-

re
ve

rs
al

 li
pi

ds
H

ig
h 

tr
an

sf
ec

tio
n 

effi
ci

en
cy

, g
oo

d 
st

ab
ili

ty
, 

in
cr

ea
se

d 
ta

rg
et

 s
pe

ci
fic

ity

Po
te

nt
ia

l f
or

 o
ff-

ta
rg

et
 

eff
ec

ts
, p

oo
r s

ca
la

bi
lit

y
H

ig
h

H
ig

h
M

od
er

at
e

St
ab

le
El

ec
tr

os
ta

tic
 in

te
ra

ct
io

ns
 

w
ith

 th
e 

ce
ll 

m
em

br
an

e 
an

d 
en

do
so

m
al

 e
sc

ap
e

[2
98

]

M
ul

ti-
co

m
po

ne
nt

 li
pi

ds
In

cr
ea

se
d 

st
ab

ili
ty

, r
ed

uc
ed

 
to

xi
ci

ty
, i

m
pr

ov
ed

 tr
an

sf
ec

-
tio

n 
effi

ci
en

cy

Co
m

pl
ex

 m
an

uf
ac

tu
rin

g 
pr

oc
es

s, 
ca

n 
be

 e
xp

en
si

ve
H

ig
h

H
ig

h
H

ig
h

St
ab

le
M

em
br

an
e 

fu
si

on
 

an
d 

en
do

so
m

al
 e

sc
ap

e
[5

22
]

PE
G

-p
ho

sp
ho

lip
id

 c
on

-
ju

ga
te

s
Im

pr
ov

ed
 p

ha
rm

ac
ok

in
et

-
ic

s, 
in

cr
ea

se
d 

st
ab

ili
ty

Po
or

 tr
an

sf
ec

tio
n 

effi
-

ci
en

cy
, l

im
ite

d 
co

nt
ro

l 
ov

er
 P

EG
 d

en
si

ty

Lo
w

Lo
w

H
ig

h
St

ab
le

M
em

br
an

e 
fu

si
on

 
an

d 
en

do
so

m
al

 e
sc

ap
e

[5
23

]

Io
ni

za
bl

e 
ca

tio
ni

c 
lip

id
s

H
ig

h 
tr

an
sf

ec
tio

n 
effi

-
ci

en
cy

, l
ow

 to
xi

ci
ty

Ca
n 

be
 u

ns
ta

bl
e,

 p
ot

en
tia

l 
fo

r o
ff-

ta
rg

et
 e

ffe
ct

s
H

ig
h

H
ig

h
M

od
er

at
e

St
ab

le
En

do
so

m
al

 e
sc

ap
e 

vi
a 

pr
ot

on
 s

po
ng

e 
eff

ec
t a

nd
 e

le
ct

ro
st

at
ic

 
in

te
ra

ct
io

ns
 w

ith
 th

e 
ce

ll 
m

em
br

an
e

[2
62

]

Pr
o-

na
no

 li
po

so
m

es
H

ig
h 

st
ab

ili
ty

, g
oo

d 
tr

an
sf

ec
tio

n 
effi

ci
en

cy
, 

bi
od

eg
ra

da
bl

e

Co
m

pl
ex

 m
an

uf
ac

tu
rin

g 
pr

oc
es

s, 
po

te
nt

ia
l f

or
 o

ff-
ta

rg
et

 e
ffe

ct
s

M
od

er
at

e
H

ig
h

M
od

er
at

e
St

ab
le

En
do

so
m

al
 e

sc
ap

e 
an

d 
m

em
br

an
e 

fu
si

on
[4

85
]

D
ua

l-f
un

ct
io

n 
po

ly
m

er
-

lip
id

 n
an

op
ar

tic
le

s
H

ig
h 

st
ab

ili
ty

, i
m

pr
ov

ed
 

tr
an

sf
ec

tio
n 

effi
ci

en
cy

, 
re

du
ce

d 
to

xi
ci

ty

Co
m

pl
ex

 m
an

uf
ac

tu
rin

g 
pr

oc
es

s, 
lim

ite
d 

un
de

r-
st

an
di

ng
 o

f m
ec

ha
ni

sm

H
ig

h
H

ig
h

H
ig

h
St

ab
le

En
do

so
m

al
 e

sc
ap

e 
an

d 
el

ec
tr

os
ta

tic
 in

te
r-

ac
tio

ns
 w

ith
 th

e 
ce

ll 
m

em
br

an
e

[5
24

]

Si
RN

A
-li

pi
d 

na
no

pa
rt

ic
le

s
G

oo
d 

tr
an

sf
ec

tio
n 

effi
ci

en
cy

, h
ig

h 
st

ab
ili

ty
, 

re
du

ce
d 

to
xi

ci
ty

Li
m

ite
d 

ap
pl

ic
at

io
n 

to
 s

iR
N

A
 d

el
iv

er
y 

on
ly

Lo
w

H
ig

h
H

ig
h

St
ab

le
En

do
so

m
al

 e
sc

ap
e 

an
d 

el
ec

tr
os

ta
tic

 in
te

r-
ac

tio
ns

 w
ith

 th
e 

ce
ll 

m
em

br
an

e

[3
41

]



Page 62 of 106Chehelgerdi and Chehelgerdi  Molecular Cancer          (2023) 22:106 

Ta
bl

e 
8 

(c
on

tin
ue

d)

Li
pi

d 
N

an
op

ar
tic

le
 T

yp
e

A
dv

an
ta

ge
s

D
is

ad
va

nt
ag

es
Im

m
un

og
en

ic
it

y
Effi

ca
cy

Sa
fe

ty
St

ab
ili

ty
M

ec
ha

ni
sm

 o
f A

ct
io

n
Re

fe
re

nc
e

M
et

al
 io

n-
m

ed
ia

te
d 

se
lf-

as
se

m
bl

ed
 li

pi
d 

na
no

pa
r-

tic
le

s

H
ig

h 
st

ab
ili

ty
, g

oo
d 

tr
an

s-
fe

ct
io

n 
effi

ci
en

cy
Li

m
ite

d 
un

de
rs

ta
nd

in
g 

of
 m

ec
ha

ni
sm

, p
ot

en
tia

l 
fo

r t
ox

ic
ity

Lo
w

M
od

er
at

e
M

od
er

at
e

St
ab

le
En

do
so

m
al

 e
sc

ap
e 

an
d 

m
em

br
an

e 
fu

si
on

[5
25

]

C
ha

rg
e-

al
te

rin
g 

re
le

as
ab

le
 

tr
an

sp
or

te
rs

 (C
A

RT
s)

H
ig

h 
tr

an
sf

ec
tio

n 
effi

-
ci

en
cy

, i
m

pr
ov

ed
 ta

rg
et

 
sp

ec
ifi

ci
ty

, r
ed

uc
ed

 to
xi

ci
ty

Li
m

ite
d 

un
de

rs
ta

nd
in

g 
of

 m
ec

ha
ni

sm
, p

ot
en

tia
l 

fo
r o

ff-
ta

rg
et

 e
ffe

ct
s

H
ig

h
H

ig
h

H
ig

h
St

ab
le

En
do

so
m

al
 e

sc
ap

e 
an

d 
m

em
br

an
e 

fu
si

on
[2

98
]

Se
lf-

as
se

m
bl

in
g 

RN
A

 
na

no
lip

os
om

es
H

ig
h 

st
ab

ili
ty

, g
oo

d 
tr

an
sf

ec
tio

n 
effi

ci
en

cy
, l

ow
 

to
xi

ci
ty

Li
m

ite
d 

un
de

rs
ta

nd
in

g 
of

 m
ec

ha
ni

sm
, p

ot
en

tia
l 

fo
r o

ff-
ta

rg
et

 e
ffe

ct
s

Lo
w

H
ig

h
H

ig
h

St
ab

le
En

do
so

m
al

 e
sc

ap
e 

an
d 

m
em

br
an

e 
fu

si
on

[4
42

]

Pe
pt

id
e 

am
ph

ip
hi

le
 

na
no

m
ic

el
le

s
H

ig
h 

st
ab

ili
ty

, r
ed

uc
ed

 to
x-

ic
ity

, i
m

pr
ov

ed
 tr

an
sf

ec
tio

n 
effi

ci
en

cy

Li
m

ite
d 

un
de

rs
ta

nd
in

g 
of

 m
ec

ha
ni

sm
, p

ot
en

tia
l 

fo
r o

ff-
ta

rg
et

 e
ffe

ct
s

Lo
w

H
ig

h
H

ig
h

St
ab

le
En

do
so

m
al

 e
sc

ap
e 

an
d 

m
em

br
an

e 
fu

si
on

[5
26

]

pH
-s

en
si

tiv
e 

ca
tio

ni
c 

lip
os

om
es

H
ig

h 
tr

an
sf

ec
tio

n 
effi

-
ci

en
cy

, i
m

pr
ov

ed
 s

ta
bi

lit
y,

 
en

do
so

m
al

 e
sc

ap
e 

in
 m

ild
ly

 a
ci

di
c 

en
vi

ro
n-

m
en

ts

Li
m

ite
d 

un
de

rs
ta

nd
in

g 
of

 m
ec

ha
ni

sm
, p

ot
en

tia
l 

fo
r o

ff-
ta

rg
et

 e
ffe

ct
s

H
ig

h
H

ig
h

M
od

er
at

e
St

ab
le

En
do

so
m

al
 e

sc
ap

e 
in

 m
ild

ly
 a

ci
di

c 
en

vi
ro

n-
m

en
ts

[5
27

]

Ph
os

ph
ol

ip
id

-P
EG

 n
an

o-
pa

rt
ic

le
s

Im
pr

ov
ed

 p
ha

rm
ac

ok
in

et
-

ic
s, 

re
du

ce
d 

to
xi

ci
ty

, g
oo

d 
st

ab
ili

ty

Li
m

ite
d 

co
nt

ro
l o

ve
r s

iz
e 

an
d 

ch
ar

ge
, l

im
ite

d 
tr

an
s-

fe
ct

io
n 

effi
ci

en
cy

Lo
w

Lo
w

H
ig

h
St

ab
le

M
em

br
an

e 
fu

si
on

 
an

d 
en

do
so

m
al

 e
sc

ap
e

[5
23

]

Su
pe

rp
ar

am
ag

ne
tic

 ir
on

 
ox

id
e 

na
no

pa
rt

ic
le

s
G

oo
d 

st
ab

ili
ty

, t
ra

ns
fe

c-
tio

n 
effi

ci
en

cy
, p

ot
en

tia
l 

fo
r s

im
ul

ta
ne

ou
s 

im
ag

in
g 

an
d 

ta
rg

et
in

g

Po
te

nt
ia

l f
or

 o
ff-

ta
rg

et
 

eff
ec

ts
, l

im
ite

d 
un

de
r-

st
an

di
ng

 o
f m

ec
ha

ni
sm

Lo
w

M
od

er
at

e
M

od
er

at
e

St
ab

le
En

do
so

m
al

 e
sc

ap
e 

an
d 

m
em

br
an

e 
fu

si
on

[5
28

]

pH
-s

en
si

tiv
e 

lip
os

om
es

H
ig

h 
tr

an
sf

ec
tio

n 
effi

-
ci

en
cy

, i
m

pr
ov

ed
 s

ta
bi

lit
y,

 
en

do
so

m
al

 e
sc

ap
e 

in
 m

ild
ly

 a
ci

di
c 

en
vi

ro
n-

m
en

ts

Li
m

ite
d 

un
de

rs
ta

nd
in

g 
of

 m
ec

ha
ni

sm
, p

ot
en

tia
l 

fo
r o

ff-
ta

rg
et

 e
ffe

ct
s

H
ig

h
H

ig
h

M
od

er
at

e
St

ab
le

En
do

so
m

al
 e

sc
ap

e 
in

 m
ild

ly
 a

ci
di

c 
en

vi
ro

n-
m

en
ts

[3
07

]

Li
pi

d-
lik

e 
na

no
pa

rt
ic

le
s

G
oo

d 
st

ab
ili

ty
, t

ra
ns

fe
ct

io
n 

effi
ci

en
cy

, r
ed

uc
ed

 to
xi

ci
ty

Li
m

ite
d 

un
de

rs
ta

nd
in

g 
of

 m
ec

ha
ni

sm
, p

ot
en

tia
l 

fo
r o

ff-
ta

rg
et

 e
ffe

ct
s

Lo
w

H
ig

h
H

ig
h

St
ab

le
En

do
so

m
al

 e
sc

ap
e 

an
d 

m
em

br
an

e 
fu

si
on

[3
41

]

Ca
tio

ni
c 

lip
id

-p
ol

ym
er

 
hy

br
id

 n
an

op
ar

tic
le

s
H

ig
h 

st
ab

ili
ty

, i
m

pr
ov

ed
 

tr
an

sf
ec

tio
n 

effi
ci

en
cy

, 
re

du
ce

d 
to

xi
ci

ty

Co
m

pl
ex

 m
an

uf
ac

tu
rin

g 
pr

oc
es

s, 
po

te
nt

ia
l f

or
 o

ff-
ta

rg
et

 e
ffe

ct
s

H
ig

h
H

ig
h

M
od

er
at

e
St

ab
le

En
do

so
m

al
 e

sc
ap

e 
an

d 
el

ec
tr

os
ta

tic
 in

te
r-

ac
tio

ns
 w

ith
 th

e 
ce

ll 
m

em
br

an
e

[1
90

]

PE
G

yl
at

ed
 li

pi
d 

na
no

pa
r-

tic
le

s
Im

pr
ov

ed
 p

ha
rm

ac
ok

in
et

-
ic

s, 
re

du
ce

d 
to

xi
ci

ty
, g

oo
d 

st
ab

ili
ty

Li
m

ite
d 

co
nt

ro
l o

ve
r s

iz
e 

an
d 

ch
ar

ge
, l

im
ite

d 
tr

an
s-

fe
ct

io
n 

effi
ci

en
cy

Lo
w

Lo
w

H
ig

h
St

ab
le

M
em

br
an

e 
fu

si
on

 
an

d 
en

do
so

m
al

 e
sc

ap
e

[4
73

]

Ta
rg

et
ed

 li
pi

d 
na

no
pa

r-
tic

le
s

Im
pr

ov
ed

 ta
rg

et
 s

pe
ci

fic
ity

, 
hi

gh
 s

ta
bi

lit
y,

 g
oo

d 
tr

an
s-

fe
ct

io
n 

effi
ci

en
cy

Co
m

pl
ex

 m
an

uf
ac

tu
rin

g 
pr

oc
es

s, 
po

te
nt

ia
l f

or
 o

ff-
ta

rg
et

 e
ffe

ct
s

H
ig

h
H

ig
h

M
od

er
at

e
St

ab
le

En
do

so
m

al
 e

sc
ap

e 
an

d 
sp

ec
ifi

c 
re

ce
pt

or
-

m
ed

ia
te

d 
en

do
cy

to
si

s

[5
29

]



Page 63 of 106Chehelgerdi and Chehelgerdi  Molecular Cancer          (2023) 22:106  

Ta
bl

e 
8 

(c
on

tin
ue

d)

Li
pi

d 
N

an
op

ar
tic

le
 T

yp
e

A
dv

an
ta

ge
s

D
is

ad
va

nt
ag

es
Im

m
un

og
en

ic
it

y
Effi

ca
cy

Sa
fe

ty
St

ab
ili

ty
M

ec
ha

ni
sm

 o
f A

ct
io

n
Re

fe
re

nc
e

U
ni

la
m

el
la

r l
ip

os
om

es
H

ig
h 

tr
an

sf
ec

tio
n 

effi
ci

en
cy

, g
oo

d 
st

ab
ili

ty
, 

re
du

ce
d 

to
xi

ci
ty

Li
m

ite
d 

co
nt

ro
l o

ve
r s

iz
e 

an
d 

ch
ar

ge
, p

ot
en

tia
l 

fo
r o

ff-
ta

rg
et

 e
ffe

ct
s

M
od

er
at

e
H

ig
h

H
ig

h
St

ab
le

En
do

so
m

al
 e

sc
ap

e 
an

d 
m

em
br

an
e 

fu
si

on
[4

59
]

Ca
tio

ni
c 

lip
id

-n
uc

le
ic

 a
ci

d 
na

no
pa

rt
ic

le
s

H
ig

h 
tr

an
sf

ec
tio

n 
effi

-
ci

en
cy

, i
m

pr
ov

ed
 s

ta
bi

lit
y,

 
re

du
ce

d 
to

xi
ci

ty

Co
m

pl
ex

 m
an

uf
ac

tu
rin

g 
pr

oc
es

s, 
po

te
nt

ia
l f

or
 o

ff-
ta

rg
et

 e
ffe

ct
s

H
ig

h
H

ig
h

M
od

er
at

e
St

ab
le

En
do

so
m

al
 e

sc
ap

e 
an

d 
el

ec
tr

os
ta

tic
 in

te
r-

ac
tio

ns
 w

ith
 th

e 
ce

ll 
m

em
br

an
e

[5
30

]

Si
lic

a 
na

no
pa

rt
ic

le
s

G
oo

d 
st

ab
ili

ty
, t

ra
ns

fe
c-

tio
n 

effi
ci

en
cy

, p
ot

en
tia

l 
fo

r s
im

ul
ta

ne
ou

s 
im

ag
in

g 
an

d 
ta

rg
et

in
g

Li
m

ite
d 

un
de

rs
ta

nd
in

g 
of

 m
ec

ha
ni

sm
, p

ot
en

tia
l 

fo
r t

ox
ic

ity

Lo
w

M
od

er
at

e
M

od
er

at
e

St
ab

le
En

do
so

m
al

 e
sc

ap
e 

an
d 

m
em

br
an

e 
fu

si
on

[5
31

]

Li
po

po
ly

pl
ex

 n
an

op
ar

tic
le

s
H

ig
h 

tr
an

sf
ec

tio
n 

effi
-

ci
en

cy
, i

m
pr

ov
ed

 s
ta

bi
lit

y,
 

re
du

ce
d 

to
xi

ci
ty

Co
m

pl
ex

 m
an

uf
ac

tu
rin

g 
pr

oc
es

s, 
po

te
nt

ia
l f

or
 o

ff-
ta

rg
et

 e
ffe

ct
s

H
ig

h
H

ig
h

M
od

er
at

e
St

ab
le

En
do

so
m

al
 e

sc
ap

e 
an

d 
el

ec
tr

os
ta

tic
 in

te
r-

ac
tio

ns
 w

ith
 th

e 
ce

ll 
m

em
br

an
e

[5
32

]

Ca
lc

iu
m

 p
ho

sp
ha

te
 n

an
o-

pa
rt

ic
le

s
G

oo
d 

st
ab

ili
ty

, p
ot

en
tia

l 
fo

r s
im

ul
ta

ne
ou

s 
im

ag
in

g 
an

d 
ta

rg
et

in
g

Li
m

ite
d 

tr
an

sf
ec

tio
n 

effi
ci

en
cy

, p
ot

en
tia

l 
fo

r t
ox

ic
ity

Lo
w

M
od

er
at

e
M

od
er

at
e

St
ab

le
En

do
so

m
al

 e
sc

ap
e 

an
d 

m
em

br
an

e 
fu

si
on

[4
44

]



Page 64 of 106Chehelgerdi and Chehelgerdi  Molecular Cancer          (2023) 22:106 

repeatable dosing [485]. Ionizable lipids play crucial roles 
in fulfilling all these purposes [479]. Current optimiza-
tion of ionizable lipids have been focused on modulating 
the head group, linker and alkyl chains to adjust the acid 
dissociation constant (pKa), fusogenic properties, and 
metabolic behaviors [486]. Acid dissociation constant 
(pKa) of the ionizable amino group is strongly correlated 
with in vivo efficacy and immunogenicity of mRNA [487]. 
The optimal pKa range for IV delivery of siRNAs and 
mRNAs are between 6.2–6.5 as screened and confirmed. 
Whereas some researchers recently reported that the 
recommended range of lipid pKa was 6.6–6.9 for IM 
injection of mRNA to induce optimal immunogenicity 
[488]. To achieve the targeted pKa, the head group of the 
ionizable lipid usually contains at least one tertiary amine 
or two amino groups apart [489]. Examples include etha-
nolamine headgroup in L5 lipid (pKa 6.56), dimethyl-
amine headgroup in DLin-MC3-DMA (pKa 6.44), and 
2-ethylpiperidin headgroup in A18 (pH 6.6) [490]. 
Although the weakly acidic headgroup of the ionizable 
lipids is an important feature for the success of the LNP, 
it may also contribute to the instability of the nanoparti-
cles [491]. According to the package insert, both Pfizer/
BioNTech and Moderna COVID-19 vaccines must be 
stored at ultralow temperature and should be discarded 
after less than a day at room temperature [492]. One 
hypothesis for the instability nature of LNPs is that the 
ionizable lipids are neutral and oil-like at storage pH 
(usually neutral), and thus they may not tend to stay at 
the interface at ambient temperature [493]. Besides lipid 
pKa, the molecular shape of the lipid may also impact 
mRNA expression efficiency [494]. The hypothesis com-
monly acknowledged in the field is that the ionizable lipid 
should adopt a “cone” shape once protonated in acidic 
environments to facilitate endosomal escape [495]. In 
principle, the “cone shape” ionizable lipid, which contains 
lipid tails with larger cross-sectional areas than the lipid 
headgroups, could pair with the anionic endosomal 
membranes (i.e., phosphatidylserine) to form non-bilayer 
hexagonal  HII phases, resulting in fusion and disintegra-
tion of the endosomal membrane [495]. Multiple struc-
ture–activity evaluations from the high throughput lipid 
libraries demonstrate that incorporation of double bonds 
in hydrocarbon alky chains (especially cis-alkenyl group, 
e.g., linoleyl chains in Dlin-MC3 (KC2)-DMA) can alter 
the orientation of the alkyl chains, thereby enhancing the 
potentials to generate non-bilayer structure [496]. Lin-
oleic acid-derived tails have been widely applied to build 
various ionizable or cationic lipids [497]. For instance, 
Some researchers have introduced linoleic chains to the 
cKK-E12 based polyamine core via a ring opening reac-
tion [498]. The linoleic acid derivative OF-2 showed more 
than twice higher level of erythropoietin (EPO) 

expression than the cKK-E12 counterpart when IV inject-
ing the EPO mRNA containing LNPs [499]. Increasing 
the degree of unsaturation (including alkynyl group) in 
the lipid tails can further enhance the fusogenicity of the 
lipid, and improve endosomal escape [495]. However, sta-
bility of LNPs may be compromised [499]. Replacing alk-
ene group with ester bond can also maintain the lipid 
“core shape” and the fusogenicity [500]. Finally, the alkyl 
chain length may also be correlated with fusogenicity 
[500]. Some researchers evaluated lipids with alkyl chain 
length varying from C8 to C18, and showed that lipids 
with 12–14 carbon atoms in the tail were optimal for 
delivery [501]. Structural changes in the headgroup-
linker region also affect the ionization behavior of the 
headgroup and the orientation of the alkyl chains [500]. 
However, safety is another index needs to be considered 
for chronic indications like cancer [502]. Unfortunately, 
improvements in delivery vehicle potency do not always 
result in an enlargement of the therapeutic outcome 
because of the reductions in tolerated dose levels [503]. 
Although the U.S. FDA approved DLin-MC3-DMA lipid 
is well tolerated in several clinical studies, repeat dosing 
some of the ionizable lipid containing LNPs have shown 
elevated cytokine levels and increased immunogenicity 
[309]. A persistent theme in the development of delivery 
vehicles is to incorporate biodegradable design features 
as means to improve biocompatibility and decrease sys-
temic off-target toxicity [504]. Ester linkages are widely 
used for enhancing the biodegradability of biomaterials, 
as it can be hydrolyzed enzymatically by esterase or lipase 
in tissues and intracellular compartments [505]. Cleavage 
of an ester linkage within the hydrophobic chain will gen-
erate more hydrophilic by-products, carboxylic acid and 
alcohol that can be readily eliminated, or further metabo-
lized by natural mechanisms [505]. In the same time, the 
 sp2-carbon of the ester group helps the lipid maintain the 
“cone shape” to destabilize the endosomal membrane 
[506]. Moreover, the carboxylic acid containing deriva-
tive after hydrolysis are likely to reverse the positive 
charge in the amino head group, and facilitate the release 
of mRNA from the vehicle [507]. For instance, L319 
(DLin-MC3-DMA derivative), LP-01 and lipid 5 are 
reported to be cleared from the liver rapidly (half-
life < 6  h) as compared to DLin-MC3-DMA (half-
life > 50 h) [508]. However, primary ester linkages added 
to the lipid tail are also vulnerable to the esterase/lipase 
in the systemic circulation, with the potential of cleavage 
before delivering mRNA intracellularly, thus leading to 
compromised potency [509]. A balance between delivery 
efficiency and pharmacokinetics are a complex correla-
tion between number/type/location of the ester bond(s) 
in the hydrocarbon tails, the type and structure of the 
headgroup and linker [510]. Subtle change could tip the 
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balance to one end. For instance, a combination of sec-
ondary and primary esters in the ethanolamine featured 
L5 lipid can maintain a satisfactory balance between 
expression potency and clearance [509]. Replacing the 
alcohol functionality with dimethylamine in the head 
group or moving the primary ester closer to the nitrogen 
group all introduce loss of delivery efficiency [511]. In 
some cases, introducing of ester bond can modulate the 
expression of protein in different cell types [512]. For 
example, OF-Deg-Lin induced protein expression selec-
tively in the B cells of the spleen [513]. Therefore, rational 
design of biodegradable lipids could offer better control 
over clearance rate and expression selectivity [512]. In 
addition to chemical modifications of the ionizable lipids, 
formulation of LNPs were also optimized to potentiate 
antigen expression and adaptive immune response [491]. 
Some researchers have used design of experiment (DOE) 
to investigate the impact of ionizable lipid ratios, the type 
of helper lipids on the mRNA delivery efficiency [514]. 
The researchers found out that incorporation of DOPE as 
the helper lipid into cKK-E12 LNP could improve mRNA 
but not siRNA expression [515]. The same group later 
evaluated the impact of lipid length, PEG molecular 
weight and mole percentage of lipid-anchored PEG in 
LNPs on the distribution patterns of the encapsulated 
siRNA in  vivo [516]. The highest liver distribution was 
observed when 0.75% of C18-PEG1000 were incorpo-
rated into C12–200 LNP formulations [516]. Some 
researchers have evaluated the mRNA expression using 
LNP containing combinations of different ionizable 
lipids, and indicated that combining a protein binding 
ionizable lipids with a lipid of high fusogenicity could 
potentiate mRNA expression [517]. Organ specificity can 
also be tuned by modifying the lipid formulations [518]. 
For instance, some researchers figured out that decreas-
ing the ratio of cationic lipid to DOPE in the mRNA 
loaded lipoplex could shift mRNA expression from the 
lungs towards spleen [519]. Based on this rationale, they 
have developed lipoplexes that systemic delivered mRNA 
vaccine to splenic DCs [519].

Mechanistic studies and additional functional 
modifications of LNPs
The rationales and mechanisms behind LNP internaliza-
tion, endosomal escape and organ/cell-selective deliv-
ery have been widely investigated by multiple groups 
using either siRNA or mRNA as the delivered molecules 
[533]. In brief, apolipoprotein E(ApoE) or albumin-based 
receptor mediated endocytosis and non-specific micro-
pinocytosis are two major mechanisms responsible for 
the update of mRNA/siRNA loaded LNPs [534]. To 
improve the specific delivery of LNPs to APCs, targeting 
ligand was further added to modify the LNPs [534]. For 
instance, mannose-cholesterol conjugates (MPn-CHs) 
was added to LNPs post formulation preparation through 
click reaction with the PEG units [423]. The mannose 
modified LNPs were shown to improve the uptake of the 
particles in DCs through mannose receptor CD206 [423].

Insufficient release of mRNA/siRNA from endoso-
mal compartment has been considered as the predomi-
nant obstacle that limits the expression of mRNA/siRNA 
delivered by LNPs [535]. Intracellular trafficking of LNP 
loaded siRNA/mRNA have been visualized using electron 
microscope (EM), high-dynamic range live-cell imaging 
confocal, single-molecule fluorescence in  situ hybridi-
zation (FISH), etc. [536]. By directly detecting colloidal-
gold particles conjugated to siRNAs using EM, Some 
researchers demonstrated that only 1–2% of siRNA deliv-
ered by DLin-MC3-DMA LNPs could escape from the 
endosomes into cytosols [537]. Moreover, the cytosolic 
release of siRNA/mRNA only occurs during a narrow 
window of time when the LNPs reside in early matured 
endosomes, as reported by some researchers [232]. Ion-
izable lipids or helper lipids with increased fusogenic-
ity have been incorporated into LNPs to improve the 
endosomal escape of mRNA/siRNAs [538]. For instance, 
Moderna L5 LNPs showed sixfold higher rate of endoso-
mal escape as compared to the DLlin-MC3-DMA LNPs 
[539].

The positive effect of lipid nanoparticle (LNP) for-
mulation on protein production in  vivo following intra-
muscular administration is demonstrated. Figure  12-A 
demonstrates the enhancement of protein production 

Fig. 12 A LNP formulation boosts protein production in vivo following intramuscular administration. BALB/c mice (4 per group) received 
intramuscular injections of either non-formulated (mRNA) or LNP-formulated (mRNA/LNP) PpLuc mRNA. a) Luciferase expression was observed 
in vivo through optical imaging at 24- and 48-h post-injection. b) Luminescence was used to quantify luciferase expression. Data points 
from individual mice (represented as dots) and the median (depicted as solid lines) are shown for each group. B LNP-based mRNA vaccine triggers 
both humoral and cellular immune reactions in mice. BALB/c mice (10 per group) received intramuscular vaccinations on day 0 and day 21 using 
either non-formulated RABV-G mRNA (mRNA), LNP-encapsulated RABV-G mRNA (mRNA/LNP), or buffer. Rabies Virus Neutralization Tests (VNTs) 
were conducted on the serum three weeks post-initial vaccination (a) and two weeks post-boost vaccination (b). Two weeks after the boost 
vaccination, splenocytes were exposed to an overlapping peptide library encompassing the RABV-G protein. Antigen-specific, multifunctional 
(IFN-γ + /TNF +) CD8 + (c) and CD4 + (d) T cells were identified using intracellular cytokine staining. Data points represent individual mice, 
while the solid lines indicate median values for each group. The dashed line marks the generally accepted protective titer threshold of 0.5 IU/ml 
for rabies VNTs. Reprinted from [540] with permission from Springer Nature

(See figure on next page.)
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Fig. 12 (See legend on previous page.)
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in  vivo as a result of LNP formulation following intra-
muscular administration. In the study, BALB/c mice were 
divided into two groups of four, with one group receiv-
ing non-formulated PpLuc mRNA injections and the 
other receiving LNP-formulated PpLuc mRNA injections 
(mRNA/LNP). The luciferase expression, which serves 
as an indicator of protein production, was monitored 
through optical imaging at 24- and 48-h post-injection. 
The luminescence data was then used to quantify the 
expression levels. The results, represented by individual 
data points for each mouse and the median values shown 
as solid lines, clearly indicate that the LNP-formulated 
group exhibited significantly higher levels of luciferase 
expression compared to the non-formulated group, 
thus confirming the effectiveness of LNP formulation in 
boosting protein production in vivo.

The experiment involved BALB/c mice, divided into 
two groups of four. One group received intramuscular 
injections of non-formulated mRNA (mRNA), while the 
other group received LNP-formulated mRNA (mRNA/
LNP) containing the PpLuc mRNA. Two time points, 
24- and 48-h post-injection, were analyzed for luciferase 
expression using in  vivo optical imaging (a). The lumi-
nescence was then quantified to measure the luciferase 
expression (b). The data points for individual mice are 
represented as dots, while the median for each group is 
shown as a solid line. Figure  12-A illustrates that LNP-
formulated mRNA led to significantly enhanced protein 
production in comparison to non-formulated mRNA. 
The study involved three groups of BALB/c mice, each 
with 10 mice, which were vaccinated intramuscularly 
on day 0 and day 21 with either non-formulated RABV-
G mRNA, LNP-encapsulated RABV-G mRNA (mRNA/
LNP), or buffer. The figure presents Rabies Virus Neu-
tralization Tests (VNTs) performed on the serum three 
weeks after the initial vaccination (a) and two weeks 
after the boost vaccination (b). Additionally, the fig-
ure shows antigen-specific, multifunctional (IFN-γ + /
TNF +) CD8 + (c) and CD4 + (d) T cells identified using 
intracellular cytokine staining in splenocytes exposed to 
an overlapping peptide library encompassing the RABV-
G protein, two weeks post-boost vaccination. Individual 
data points represent each mouse, while solid lines indi-
cate the median values for each group. Figure 12-B dem-
onstrates the efficacy of LNP-based mRNA vaccines in 
eliciting both humoral and cellular immune responses 
in mice. In the study, groups of BALB/c mice were given 
intramuscular vaccinations on day 0 and day 21, with 
either non-formulated RABV-G mRNA (mRNA), LNP-
encapsulated RABV-G mRNA (mRNA/LNP), or buffer. 
Three weeks after the initial vaccination and two weeks 
after the boost vaccination, Rabies Virus Neutralization 
Tests (VNTs) were performed on the mice’s serum to 

measure humoral immunity. Additionally, splenocytes 
from the mice were exposed to an overlapping pep-
tide library covering the RABV-G protein, and antigen-
specific, multifunctional (IFN-γ + /TNF +) CD8 + and 
CD4 + T cells were assessed through intracellular 
cytokine staining to gauge cellular immunity. Individual 
data points represent each mouse, while the solid lines 
indicate median values for each group. The dashed line 
signifies the generally accepted protective titer threshold 
of 0.5  IU/ml for rabies VNTs, highlighting the success 
of the LNP-based mRNA vaccine in triggering robust 
immune reactions in the test subjects.

Immunogenicity of the delivery materials were also 
evaluated and applied to boost immune response of the 
cancer vaccines [541]. Some researchers have developed 
a group of ionizable lipids containing cyclic amino head 
groups, isocyanide linker, and linoleic acid derived alkyl 
tails that provides adjuvant activities independent of the 
encapsulated mRNA [522]. The cyclic amino head and 
isocyanide linker of the lipids directly bound to STING 
(stimulator of interferon genes) protein and triggered 
the activation of Type I IFNs, leading to activation of 
humoral and cellular immune response [542].

LNP mRNA vaccine from formulation to manufacturing
Figure 13 illustrates the challenges and methods associ-
ated with delivering and administering lipid nanoparti-
cle-mRNA (LNP-mRNA) concoctions. In part (Fig. 13-a), 
the figure highlights the natural obstacles faced by these 
mixtures after systemic and localized distribution. These 
hurdles include rapid clearance by the reticuloendothe-
lial system, enzymatic degradation, immunogenicity, and 
endosomal entrapment, which impede the overall efficacy 
of LNP-mRNA therapies. Part (Fig.  13-b) of the figure 
outlines various delivery methods for LNP-mRNA com-
pounds, such as intravenous, intramuscular, subcutane-
ous, and direct organ administration. Each method aims 
to overcome the natural barriers and maximize the thera-
peutic potential of LNP-mRNA treatments, enabling tar-
geted gene expression and efficient cellular uptake for a 
range of clinical applications. The conventional benchtop 
formulation process for LNPs includes direct mixing, 
thin film, ethanol injection, which are usually labor inten-
sive, lack of scalability and reproducibility [543]. More 
recently, great control was achieved over the mixing pro-
cess when performed by T-junction mixing, microflu-
idic using microfluidic hydrodynamic focusing (MHF) 
or Staggered herringbone mixing (SHM) [544]. The 
rationales and advantages of each rapid mixing methods 
were summarized by some researchers elsewhere [545]. 
In brief, these chip-based microfluidic devices mix two 
laminar flows, the RNA-containing aqueous phase and 
the lipids-containing ethanol phase, through a confined 
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microchannel equipped with chaotic mixers at a con-
trolled speed, leading to rapid diffusion and self-assembly 
of mRNA-LNP at the interface [546]. High encapsulation 
efficiency (> 90%) and low polydispersity can be achieved 
by rapid laminar flow mixing [546]. The laminar flow 
rapid mixing method is scalable for GMP production of 
LNPs [547]. For instance, Precision NanoSystems team 
produced GMP microfluidic product of LNPs using the 
NanoAssemblr GMP system and a TrM (NxGen500) car-
tridge [548]. With the recent approval of two mRNA vac-
cines for prevention of COVID-19 from Pfizer/BioNTech 
and Moderna, rapid GMP manufacturing of COVID-
19 vaccine (including mRNA and LNP manufacturing) 
are highly required [549]. For instance, BioNtech/Pfizer 
were committed to produce vaccines at 6 manufacturing 
sites to achieve 570 million doses for support dosing in 
13 countries [550]. This further supports the feasibility of 
rapid production of mRNA vaccines to fulfill commercial 
requirement [59].

Polymer‑based mRNA delivery system
Polyamines, dendrimers, biodegradable copolymers are 
commonly used polymer-based materials for mRNA 
delivery [552]. Polymer-based delivery systems tend to 

have lower purity due to high polydispersity, lower clear-
ance rate due to large molecular weight, and worsen tox-
icity profile due to condensed charge density compared 
to synthetic LNPs, and they are not as clinically advanced 
for mRNA delivery as ionizable lipids [553]. Figure  14 
illustrates various nanoscale particles and complexes 
utilized in cancer immunotherapy delivery systems To 
improve the tolerability and stability of the polymeric 
platforms, structural modifications, which include 
incorporating of lipid tails, hyperbranched groups and 
biodegradable moieties have been evaluated [554]. Poly-
mer-based delivery systems are one of the methods used 
to deliver mRNA vaccines to cells (Table 9).

Polymer-based mRNA delivery systems exhibit a 
range of characteristics, each with its own advantages 
and disadvantages. Polyethyleneimine (PEI) has high 
transfection efficiency but is cytotoxic at high doses. 
Poly(lactic-co-glycolic acid) (PLGA) is biodegradable and 
biocompatible but has limited transfection efficiency. 
Chitosan offers good biocompatibility and biodegrada-
bility but similarly suffers from limited transfection effi-
ciency. Polyethyleneglycol (PEG) is non-immunogenic 
and biocompatible, though it has poor transfection effi-
ciency. Various other polymers such as poly(amidoamine) 

Fig. 13 Obstacles in delivering and administering lipid nanoparticle-mRNA concoctions. a Natural hurdles faced by lipid nanoparticle-mRNA 
(LNP-mRNA) mixtures following systemic and localized distribution. b Methods of delivering LNP-mRNA compounds. Reprinted from [551] 
with permission from Springer Nature



Page 69 of 106Chehelgerdi and Chehelgerdi  Molecular Cancer          (2023) 22:106  

Fig. 14 Nanoscale particles and complexes for cancer immunotherapy delivery systems. a Lipid nanoparticles usually comprise an ionizable 
lipid, a supporting lipid, cholesterol, and polyethylene glycol (PEG)-lipid. Nucleic acids are integrated into the nanoparticles’ hydrophilic core. b 
The structures of ready-made lipids explored for nucleic acid delivery and, more recently, mRNA vaccines are depicted, including the structure 
of DOPE (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine), a helper lipid that enhances lipid nanoparticle effectiveness. c) The structures 
of ionizable, lipid-like substances developed using combinatorial chemistry methods for better in vivo mRNA delivery and reduced toxicity. d 
The structure of an amphiphilic peptide-vaccine conjugate designed to attach to albumin in the bloodstream, enhancing lymph node delivery. e 
A matrix-binding checkpoint inhibitor conjugate with increased retention in the area surrounding the tumor to initiate an immune response. The 
checkpoint inhibitor is connected to a placental growth factor 2 (PLGF2) peptide using an amine-to-sulfhydryl linker. The PLGF2 peptide facilitates 
binding to proteins present in the extracellular matrix (ECM). Reprinted from [555] with permission from Springer Nature
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Table 9 The different types of polymer-based mRNA delivery systems

Polymer Type Advantages Disadvantages Immunogenicity Efficacy Safety Stability Mechanism of 
Action

Reference

Polyethyleneimine 
(PEI)

High transfection 
efficiency

Cytotoxicity at high 
doses

Yes Effective Low Good Endosomal release [556]

Poly(lactic-co-gly-
colic acid) (PLGA)

Biodegradable 
and biocompatible

Limited transfection 
efficiency

No Moderate High Fair Sustained release [443]

Chitosan Good biocompat-
ibility and biodegra-
dability

Limited transfection 
efficiency

Yes Moderate High Fair Endosomal release [143]

Polyethyleneglycol 
(PEG)

Non-immunogenic 
and biocompatible

Poor transfection 
efficiency

No Low High Good Surface modifica-
tion and cellular 
uptake

[557]

Poly(amidoamine) 
(PAA)

Good biocompat-
ibility and efficient 
transfection

Cytotoxicity at high 
doses

Yes Effective Low Good Endosomal escape 
and cytoplasmic 
delivery

[558]

Poly(beta-amino 
esters) (PBAEs)

Good transfection 
efficiency and bio-
compatibility

Limited stability Yes Effective Low Fair Endosomal release [144]

Polyethyleneimine-
polycaprolactone 
(PEI-PCL)

High transfection 
efficiency and sta-
bility

Potential cytotox-
icity

Yes Effective Low Good Endosomal release [556]

Poly(beta-amino 
ester)-polyethylene 
glycol (PBAE-PEG)

Good biocompat-
ibility and efficient 
transfection

Limited stability Yes Effective Low Fair Endosomal release 
and cytoplasmic 
delivery

[151]

Polyethylenimine-
poly(lactic-co-
glycolic acid) 
(PEI-PLGA)

High transfection 
efficiency and sta-
bility

Potential cytotoxic-
ity and immuno-
genicity

Yes Effective Low Good Endosomal release [559]

Dextran Biocompatible 
and biodegradable

Limited transfection 
efficiency

No Low High Fair Sustained release [560]

Polyethylenimine-
polypropyleneimine 
(PEI-PPI)

High transfection 
efficiency and sta-
bility

Potential cytotoxic-
ity and immuno-
genicity

Yes Effective Low Good Endosomal release [561]

Poly-L-lysine (PLL) Good transfection 
efficiency and bio-
compatibility

Limited stabil-
ity and potential 
toxicity

Yes Effective Low Fair Endosomal release [562]

Poly (amino acid) 
(PAA)

Biodegradable 
and biocompatible

Limited transfection 
efficiency and sta-
bility

No Low High Fair Sustained release [563]

Polyhydroxyethylas-
partamide (PHEA)

Good biocompat-
ibility and stability

Limited transfection 
efficiency

No Low High Good Endosomal release 
and cytoplasmic 
delivery

[537]

Poly(N,N-dimeth-
ylaminoethyl 
methacrylate) 
(PDMAEMA)

High transfection 
efficiency and sta-
bility

Potential cytotoxic-
ity and immuno-
genicity

Yes Effective Low Good Endosomal release [564]

Poly(beta-thiopropi-
onate) (PBT)

High transfection 
efficiency and sta-
bility

Limited data 
on biocompatibility

No Effective Low Good Endosomal release [144]

Polypeptide Biocompatible 
and biodegradable

Limited data 
on transfection 
efficiency

No Low High Fair Sustained release [565]

Poly(glycidol) (PG) Biocompatible 
and biodegradable

Limited data 
on transfection effi-
ciency and stability

No Low High Fair Endosomal release 
and cytoplasmic 
delivery

[566]

Poly(amino acid)-
polyethylene glycol 
(PAA-PEG)

Good biocompat-
ibility and efficient 
transfection

Limited stability Yes Effective Low Fair Endosomal release 
and cytoplasmic 
delivery

[151]

Polysaccharide Biocompatible 
and biodegradable

Limited data 
on transfection effi-
ciency and stability

No Low High Fair Sustained release [542]
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(PAA), poly(beta-amino esters) (PBAEs), and poly-L-
lysine (PLL) also have their unique sets of advantages 
and drawbacks, with some exhibiting high transfection 
efficiency but potential cytotoxicity or immunogenic-
ity, while others have biodegradable and biocompatible 
properties but limited transfection efficiency or stabil-
ity. The choice of polymer-based mRNA delivery system 

depends on the specific needs and requirements of the 
application, balancing factors such as immunogenicity, 
efficacy, safety, stability, and mechanism of action.

Polyethyleneimine (PEI) is one type of cationic poly-
mer commonly used for nucleic acid delivery [562]. The 
commercial linear PEI derivative, jetPEI®, has already 
been used for mRNA in vivo/in vitro transfection [576]. 

Table 9 (continued)

Polymer Type Advantages Disadvantages Immunogenicity Efficacy Safety Stability Mechanism of 
Action

Reference

Poly(trimethylene 
carbonate) (PTMC)

Biodegradable 
and biocompatible

Limited data 
on transfection 
efficiency

No Low High Fair Sustained release [567]

Poly(amidoamine)-
polyethylene glycol 
(PAMAM-PEG)

High transfection 
efficiency and effi-
cient endosomal 
escape

Potential cytotoxic-
ity and immuno-
genicity

Yes Effective Low Fair Endosomal escape 
and cytoplasmic 
delivery

[568]

Poly(beta-amino 
ester)-polyethylene 
glycol (PBAE-PEG)

Good biocompat-
ibility and efficient 
transfection

Limited stability Yes Effective Low Fair Endosomal release 
and cytoplasmic 
delivery

[144]

Poly(2-
(dimethylamino)
ethyl methacrylate) 
(PDMA)

High transfection 
efficiency and effi-
cient endosomal 
escape

Potential cytotoxic-
ity and immuno-
genicity

Yes Effective Low Good Endosomal escape 
and cytoplasmic 
delivery

[564]

Poly(malic acid) 
(PMA)

Biodegradable 
and biocompatible

Limited transfection 
efficiency and sta-
bility

No Low High Fair Sustained release [569]

Poly(propylene 
imine) dendrimers 
(PPI)

High transfection 
efficiency and effi-
cient endosomal 
escape

Potential cytotoxic-
ity and immuno-
genicity

Yes Effective Low Good Endosomal escape 
and cytoplasmic 
delivery

[570]

Poly(glutamic acid) 
(PGA)

Biodegradable 
and biocompatible

Limited transfection 
efficiency and sta-
bility

No Low High Fair Sustained release [561]

Chitosan Biodegradable 
and biocompatible

Limited transfection 
efficiency and sta-
bility

No Low High Fair Endosomal release [143]

Poly(N-2-hydroxy-
propyl)methacryla-
mide (PHPMA)

Biodegradable 
and biocompatible

Limited transfection 
efficiency and sta-
bility

No Low High Good Endosomal release 
and cytoplasmic 
delivery

[571]

Poly(acrylic acid) 
(PAA)

Biocompatible 
and biodegradable

Limited data 
on transfection effi-
ciency and stability

No Low High Fair Sustained release [572]

Poly(glycolic acid) 
(PGA)

Biodegradable 
and biocompatible

Limited data 
on transfection effi-
ciency and stability

No Low High Fair Sustained release [561]

Polyurethane (PU) Biocompatible 
and biodegradable

Limited data 
on transfection effi-
ciency and stability

No Low High Good Endosomal release 
and cytoplasmic 
delivery

[573]

Poly(ethylene oxide) 
(PEO)

Good biocompat-
ibility and efficient 
transfection

Limited stability No Effective Low Good Endosomal release [574]

Poly(N-vinylpyrro-
lidone) (PVP)

Good biocompat-
ibility and efficient 
transfection

Limited stability No Effective Low Good Endosomal release [575]

Poly(beta-amino 
ester) (PBAE)

Efficient transfec-
tion and endosomal 
escape

Limited stability Yes Effective Low Fair Endosomal escape 
and cytoplasmic 
delivery

[144]
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A PEI formulation of SAM encoding the hemaggluti-
nin antigens from influenza virus strains stimulated 
high antibody titer after IM vaccination in mice [577]. 
However, PEI is known with the severe systemic toxic-
ity and low biodegradability due to the high charge den-
sity and molecular weight [578]. Low-molecular-weight 
PEI modified with fatty chains has been used for siRNA/
mRNA delivery to reduce toxicity [578]. Polysaccharide 
and derivatives are another group of commonly used 
cationic polymers [579]. Some researchers have con-
densed SAM-encoding influenza virus hemagglutinin 
and nucleoprotein with chitosan, a commonly used pol-
ysaccharide excipient [580]. The researchers observed 
expression of antigens in DCs after SC injection of the 
particles [581]. Some researchers reported the use of 
polysaccharides derived from the microbial cell wall 
to form a flexible core–shell structure to encapsulate 
mRNA and promote DC activation in vivo [582]. Poly-
amidoamine (PAMAM) or polypropylenimine based 
dendrimer is another group of cationic polymer mate-
rial used for mRNA delivery [530]. Some researchers 
developed fatty chain modified PAMAM dendrimers 
for delivery of siRNA systemically to lung endothelial 
[583, 584]. The same group later used the same deliv-
ery vehicle and delivered antigen-encoding SAMs [2]. 
The researchers showed that the single dose, adjuvant 
free IM delivered SAM protected mice from lethal chal-
lenge of Ebola, H1N1 influenza, Toxoplasma gondii, 
respectively [225]. Some researchers utilized a modi-
fied PAMAM dendrimers, PLGA and ceramide PEG to 
formulate polymer-lipid hybrid nanoparticles to deliver 
phosphate and tensin homolog mRNA in vivo [133]. In 
a later study, some researchers utilized the same vehi-
cle to deliver OVA mRNA vaccine together with a fatty 
acid modified TLR7/8 agonist C16-R848, and showed 
the combination formulation could boost a strong anti-
tumor immunogenicity [585]. Biodegradable polymers 
were developed to increase the clearance while decrease 
the charge induced toxicity of the delivery vehicles 
[586]. Poly (beta-amino) esters (PBAEs) are biodegrad-
able polymers used for siRNA/mRNA delivery [587]. 
Some researchers co-formulated PBAEs with PEG-lipid 
to improve serum stability and increase mRNA delivery 
efficiency [588]. Besides adding lipid to the PBAE for-
mulations, hyperbranched PBAEs were utilized to sta-
bilized the formulation and to deliver mRNA to lung 
endothelium via IV injection, and to lung epithelium 
vial inhalation [495]. Other biodegradable polymers 
have been designed to achieve lower toxicity and selec-
tive delivery of mRNA to different organs [587]. Some 
researchers demonstrated that biodegradable amino 
polyesters (APEs), synthesized using ring-opening 
polymerization of various lactones, were capable of 

tissue-selective mRNA delivery [589]. Moreover, bio-
reducible poly (CBA-co-4-amino-1-butanol) (pABOL), 
developed by some researchers were used to deliver 
haemagglutinin-(HA-) encoding SAM in mice [262]. 
Charge altering polymers have also been explored for 
mRNA vaccine delivery. Some researchers developed a 
library of charge-altering releasable transports (CARTs) 
that utilized poly(carbonate)-β-(α-amino ester)s [590]. 
CARTs undergo dynamic change from an ester to amide 
rearrangement. As a result, the cationic poly α amino 
ester backbone is gradually changed into neutral small 
molecules (diketopiperazine), providing a mechanism 
for release of mRNA, and avoiding tolerability issues 
associated with persistent polycations [590]. The CART 
polymers facilitated mRNA transfection into lympho-
cytes including T cells [591].

Peptide‑based mRNA delivery system
The cationic peptide, protamine has been used in many 
early studies for the delivery of mRNA vaccines [592]. 
Protamine spontaneously condenses mRNA through 
electrostatic interaction, protecting the encapsulated 
mRNA from degradation by extracellular RNases 
[593]. The protamine-mRNA complexes can also 
function as adjuvant, activating TLR7/8 to elicit Th-1 
type immune response [594]. However, protamine-
mRNA complexes alone showed suboptimal transla-
tion efficiency, which might be due to an excessively 
tight interaction between protamine and mRNA [595]. 
This concern has been solved by a two-compartment 
formulation, RNActive®, developed by CureVac AG 
[596]. The researchers combined protamine-mRNA 
complexes (50%) with naked antigen-coding mRNA(s) 
(50%). The protamine complexes act only as adjuvant, 
while the nucleoside modified mRNA acts as anti-
gen producer [595]. RNActive® encapsulating TAAs-
encoding mRNAs are currently being evaluated in 
several phase I/II clinical trials treating multiple solid 
tumors [116]. Most RNActive® vaccines are well toler-
ated and immunogenic in patients, some of them have 
shown moderate antitumor efficacy [116].

Cationic cell-penetrating peptides (CPPs) can com-
plex with RNA [597]. Although their cell-uptake mech-
anisms are not fully understood, it is hypothesized that 
CPPs may facilitate clustering of the negative charged 
glycosaminoglycans on the cell surface, and trigger 
micropinocytosis [597]. RALA peptide is an amphip-
athic arginine-rich CPP with positively charged arginine 
residues on one end and neutral leucine residues on the 
other [598]. Researchers indicated that the peptide con-
densed mRNA complexes enabled mRNA delivery and 
expression in DCs, subsequently eliciting potent cyto-
lytic T cell responses after ID injection of the ex-vivo 
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loaded DCs [451]. Furthermore, D-amino acid-based 
truncated protamine was fused with a short CPP called 
Xentry [459]. This fusion peptide with combined posi-
tive and cell penetrating features was used to deliver 
a cystic-fibrosis transmembrane regulator (CFTR) 
mRNA into several human epithelial cells in vitro [459]. 
Some researchers used cholesterol-modified cationic 
peptide DP7 with transmembrane structure and immu-
noadjuvant function to modify the DOTAP liposomes 
[599]. This DOTAP/DP7-C liposomes efficiently trans-
ferred mRNA into different type of DCs in vitro. Sub-
cutaneous injection of neoantigen-encoding mRNA 
loaded in DOTAP/D7-C liposomes significantly inhib-
ited the growth of LL2 [599]. Similarly, an alpha-helical 
cationic CPP “KALA” was combined with the vitamin 
E-scaffold (ssPalmE)-LNP to achieve higher protein 
expression and increased proinflammatory cytokines 
secretion in DCs, functioning as a potent ex vivo DCs-
based RNA vaccine platform [600]. Besides positive 
charged CPP, negative charged GALA peptide has been 
used as a targeting ligand, that click onto LNPs/poly-
plexes to improve the cell penetration of mRNAs [529].

Other formulations used in mRNA delivery
In additional to ionizable lipid composed LNP system, 
cationic lipid composed liposomes, lipoplexes and cati-
onic emulsions (CNE) are the very first generation of 
carriers used for mRNA delivery both preclinically and 
in clinical trials [121]. DOTMA (1,2-di-O-octadecenyl-
3-trimethylammonium propane) and DOTAP (1,2-dio-
leoyl-3-trimethylammonium-propane) are two most 
widely used cationic lipids [601]. These lipids remain pos-
itively charged at all physiological pH, and can easily con-
dense anionic mRNA [601]. A combination of DOTMA/
DOTAP with fusogenic helper lipid DOPE to form lipo-
plexes have been used by BioNTech in their Lipo-MERIT 
cancer vaccine platform [601]. The ratio of cationic lipid 
and DOPE can be tuned to selectively target splenic 
APCs for mRNA vaccine delivery [262]. Promising thera-
peutic outcome has been seen in several ongoing clinical 
trials treating metastatic melanoma (summarized in later 
section).

In addition, DOTAP containing cationic CNE, which 
is derived from the Novartis’s first FDA approval CNE 
MF-59 have been used for mRNA delivery [171]. For 
instance, cationic CNE was used by some researchers to 
encapsulate SAM [602]. The CNE was prepared by mix-
ing an aqueous phase containing buffer and Tween 80 
with an oil phase containing Sorbian tioleate (Span 80), 
DOTAP, and oil squalene [603]. The researchers have 
shown that the protein expression of mRNA delivered 
by the CNE through IM administration was similar to 
a viral vector [602]. The mRNA CNE vaccine was well 

tolerated and immunogenic in a variety of models [121]. 
DOTAP containing liposomes were also used as a shell 
for encapsulating mRNA in core–shell structures [171]. 
For instance, some researchers has developed lipid/
calcium/phosphate (LCP) system using calcium phos-
phate as the core to condense mRNA, and PEGylated 
DOTAP/DOPE liposome as the shell [604]. The research-
ers delivered MUC-1 (TAA of the triple negative breast 
cancer) mRNA to 4 T1 breast cancer bearing mice, and 
observed potent antigen-specific T cell activation and 
improved antitumor efficacy [605]. Moreover, Lipid-
Polymer-RNA lipopolyplexes (LPR), functionalized with 
a tri-antenna of α-d-mannopyranoside (triMN-LPR) 
can specifically bind to human and mouse DC, provide 
high induction of a local inflammatory response after ID 
injection [605]. Another LPR system consisting of poly 
(β-amino ester) polymer/mRNA core encapsulated into 
a 1,2-dioleoyl-sn-glycero-3-ethylphosphocholine/1,2-
dioleoyl-sn-glycero-3-phosphatidyl-ethanolamine/1,2-
distearoyl-sn-glycero-3-phosphoethanolamine-N-[am
ino(polyethyleneglycol)-2000] (DOPC/DOPE/DSPE-
PEG) lipid shell was developed by some researchers to 
deliver mRNA into DC through micropinocytosis [60, 
606]. Results shown that the LPR induced potent anti-
gen response [607]. A similar LPR platform is currently 
being evaluated in phase I clinical trial carrying mRNA 
encoding neoantigens to treat metastatic melanoma by 
Stemirna Therapeutics [607]. In additional to non-viral 
deliver system, naked mRNA has been directly injected 
ID or intranodal as anti-cancer vaccine or ex vivo loaded 
into DCs for cancer vaccinations [608]. The naked mRNA 
vaccines and DC-based mRNA vaccines have been 
widely evaluated in clinical trials with some optimistic 
therapeutic outcome for cancer treatment [72]. However, 
the strategies are either suffered from insufficient antigen 
expression, complicated in  vitro processing or batch to 
batch variabilities [72].

Injection routes mRNA cancer vaccines
Local injections, including IM, SC, ID, are the com-
monly used injection routes for mRNA cancer vaccines 
[609]. Representative examples include: IM injection 
of PAMAM loaded OVA mRNA for melanoma treat-
ment in mice, Moderna LNPs optimized for IM injec-
tion of mRNA vaccines, SC injection of peptide modified 
DOTAP liposomes, SC injection of LNPs with optimized 
lipid compositions and lipid structures for antitumor 
vaccinations, i.d. injection of LPR to boost anti-cancer 
immunity in multiple mouse models [610]. Table 10 out-
lines the different mRNA cancer vaccine injection routes, 
each with its unique advantages and disadvantages.

Intramuscular (IM) and subcutaneous (SC) injections 
are simple to administer and induce a systemic immune 
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response, but they may require multiple doses and have 
limited local response. Both methods show moderate 
to high immunogenicity, efficacy in some cancers, and 
general safety with mild side effects. Intradermal (ID) 
injections induce a strong local and systemic immune 
response with potential for dose-sparing, although they 
may require specialized equipment. Intravenous (IV) 
injections can also induce systemic immune response, 
but they require high dosages and specialized equip-
ment, which may lead to non-specific immune responses. 
Lastly, intra-tumoral (IT) injections allow direct deliv-
ery to the tumor site and have the potential for targeted 
response, but may also require specialized equipment 
and offer limited systemic immune response. All injec-
tion routes, except for intravenous, are stable at refrigera-
tion temperature and need protection from light, while 
intravenous injections are stable at ultra-low tempera-
tures and have a short half-life in circulation.

Intramuscular administration is often preferred due 
to the flexibility of injection volume, the ease of dos-
ing and the lack of safety concern, with limited risk for 
adverse reactions at the site of injection, However, vac-
cine delivered to the skin as a highly immunocompetent 
site has long been considered a strategy to augment vac-
cine response [612]. Some researchers have investigated 
the impact of vaccination route (mainly IM and SC) on 
antigen trafficking and immune response in Rhesus 
Macaques using fluorescently labeled HIV-1 envelope 
glycoprotein trimers displayed on liposomes [613]. The 
researchers found that both SC and IM routes induced 
efficient immune cell infiltration, activation and antigen 
uptakes [613]. Though the immunogenicity is tightly 
restricted to the injection site, and antigen also trans-
ported to different lymph nodes depending on route, 
these early differences failed to convert into significant 
differences in the magnitude or quality of antigen-spe-
cific immune response [614]. Despite this, the expression 
level and inherent innate immunity of mRNA might be 
influenced by the routes of administration, subsequently 
leading to different intensity of immune response [614]. 
Using the most translatable carrier LNPs as an exam-
ple, some researchers have evaluated the expression 
kinetics of nucleoside modified mRNA in mice through 
various routes of administration [615]. Their findings 
demonstrated that IM and ID delivery of mRNA LNPs 
resulted in the longest duration of mRNA translation 
(half-life > 20  h) followed by SC (half-life ~ 15  h) and IV 
(half-life ~ 7 h) [615]. Whereas, SC and IM showed higher 
protein expression level as compared to ID The differ-
ences in magnitude and length of protein expression from 
different routes of administration may directly impact the 
intensity of immunogenicity, which required detailed 
evaluations in the future studies [616]. As covered in 

Sect.  "Basic mRNA vaccine pharmacology", the kinetics 
between TCR activation and IFN signaling can also be 
dependent on the route of mRNA administration, ulti-
mately impacting the potency of T cell activation [617]. 
Based on this perspective, systemic mRNA vaccination 
through IV injection is more likely to promote a favora-
ble  CD8+ T cell response and circumvent the detrimen-
tal impact of mRNA inherent innate immunity [57]. As 
a result, vaccination through IV injection has been used 
by several researchers and companies [57]. However, one 
needs to concern about the potential systemic toxicity 
generated from IV vaccination [618]. Until now, SC and 
IM injections are still the two major injection routes for 
mRNA cancer vaccination in clinical trials, due to their 
less invasive nature; however, other injection routes, 
including intranasal, and intranodal have been widely 
studied for mRNA vaccine delivery [618].

Clinical overview of mRNA cancer vaccines
Transfection of mRNA into DCs for adoptive transfer 
was the first mRNA based therapeutic cancer vaccine 
entering clinical trial [72]. Although DC-based mRNA 
vaccine therapeutics still account for majority of mRNA 
cancer vaccines in clinical trials, IVT mRNA-based 
immunotherapies delivered by non-viral vectors are 
extensively explored recently as a result of the promising 
antitumor outcomes collected from preclinical studies, 
with CureVac, BioNTech and Moderna as pioneers in the 
campaign [619].

A group of IVT mRNA-based immunotherapies inves-
tigated in clinical trials are mRNAs encoding immu-
nostimulants which are injected intratumorally or 
intranodal to modify the suppressive tumor microenvi-
ronment [620]. These immunostimulants are not consid-
ered as cancer vaccines, but are usually co-administered 
with cancer vaccines or other immunotherapeutic agents 
(e.g. checkpoint blockade modulators) and act as adju-
vants to augment humoral and cellular response [621].

Multiple IVT mRNA-based cancer vaccines are cur-
rently tested in clinical trials, either encoding personal-
ized neoantigens, or a cocktail of TAAs [622]. Deliver 
systems for these mRNA-based cancer vaccines include 
lipid polyplexes, CNEs, LNPs or protamine [2]. Local 
injection, such as IM, SC and ID are major administra-
tion routes for mRNA vaccines in the clinical studies, 
whereas the BioNTech product, Lipid-MERIT (DOTAP 
(or DOTMA)/DOPE lipoplex as deliver system) is vac-
cinated intravenously [623]. As discussed earlier, the 
ratio between DOTAP and DOPE can be optimized to 
allow specific delivery of mRNA to splenic APCs, and 
induce potent antigen-specific response [624].mRNA 
vaccines have been applied to treat aggressive, less acces-
sible and metastatic solid tumors, including non-small 
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cell lung cancers (NSCLC), colorectal carcinoma (CRC), 
melanoma, etc. [625]. For early proof of concept studies, 
mRNA vaccine has also been tested in treating glioblas-
toma [626]. In most clinical trials, mRNA cancer vaccines 
are further combined with checkpoint modulators or 
cytokine cocktails to augment antitumor efficacy [627]. 
Although SAMs are an appealing alternative to mRNA-
based vaccine due to their inherent self-amplifying prop-
erty, clinical investigation for cancer applications is only 
limited to early evaluation of VRPs [2]. With the recent 
advancing of, specifically the discovery of neoantigens, 
development of personalized vaccines and checkpoint 
blockade modulators, numerous improvements have 
been done to demonstrate the viability of mRNA vaccines 
to combat cancer [628]. In this section, we will discuss 
mRNA applications as immunostimulants and cancer 
vaccines, compare the delivery of mRNA encoding TAAs 
and neoantigens, as well as discuss the advantages of 
personalized vaccines and combination immunothera-
pies with checkpoint blockade modulators.mRNA-based 
COVID-19 vaccine developed by Pfizer and BioNTech 
has undergone extensive clinical trials. The Phase 3 trial 
involved over 43,000 participants and demonstrated an 
efficacy of approximately 95% in preventing symptomatic 
COVID-19 infection. The trial results were published 
in the New England Journal of Medicine in December 
2020 [629]. Another mRNA-based COVID-19 vaccine 
developed by Moderna also underwent rigorous clinical 
trials. In a Phase 3 trial involving approximately 30,000 
participants, the vaccine demonstrated an efficacy of 
around 94.1% against symptomatic COVID-19 infection. 
The trial results were published in the New England Jour-
nal of Medicine in December 2020 [630]. mRNA-based 
immunotherapies have also shown promise in the field 
of cancer treatment. For example, a study published in 
Nature in 2017 reported the results of a Phase 1 clinical 
trial of an mRNA-based personalized cancer vaccine. 
The vaccine was tested in patients with melanoma, and it 
showed encouraging results in terms of inducing immune 
responses and promoting tumor regression [631]. An 
mRNA-based influenza vaccine has also been the sub-
ject of clinical trials. A study published in The New Eng-
land Journal of Medicine in 2019 reported the results 
of a Phase 1 trial of an mRNA-based flu vaccine. The 
trial showed that the vaccine induced a robust immune 
response and was well-tolerated by participants [632]. 
Researchers have also explored the potential of mRNA-
based vaccines for HIV. A study published in Science in 
2020 described a Phase 1 trial of an mRNA vaccine can-
didate for HIV. The vaccine induced immune responses 
against HIV and was found to be safe and well-tolerated 
[633]. mRNA-based immunotherapies have also shown 
promise for other infectious diseases. For example, a 

study published in Nature Medicine in 2020 reported 
the results of a Phase 1 trial of an mRNA-based vaccine 
against the respiratory syncytial virus (RSV). The vac-
cine was found to be safe and induced a strong immune 
response in healthy adults [634]. mRNA-based immuno-
therapies have shown promise in the development of per-
sonalized cancer vaccines. A study published in Nature in 
2021 reported the results of a Phase 2 trial of an mRNA 
vaccine for patients with high-risk melanoma. The vac-
cine was found to induce durable immune responses and 
resulted in an improvement in progression-free survival 
compared to standard of care [635]. Table 11 provides an 
overview of the clinical trial outcomes of mRNA cancer 
vaccines in various cancer types.

mRNA encoding immunostimulants
Immunostimulants are commonly cytokines or 
chemokines that induce APC maturation and activa-
tion, activate T-cell mediated immunity and adjust the 
dysfunctional immune tumor microenvironment [654]. 
Intra-tumoral, intranodal, ID and IVroutes of admin-
istration have been used dosing of mRNA encoding 
immunostimulants, with most evaluations are currently 
in Phase I/II to assess the tolerability as monotherapy 
or combination therapy with other moieties, including 
either PD-1/PD-L1 antibodies or cancer vaccines [655].

Figure  15 illustrates how CRISPR screening can be 
utilized to identify genes involved in the regulation of 
the cancer-immunity cycle, a process that describes the 
step-by-step development of immune responses against 
tumors. The cycle begins with the release of tumor anti-
gens by cancer cells, which are collected by APCs such 
as DCs that process and present the antigens to naïve T 
cells, leading to their activation. CRISPR screening can 
be performed on APCs to identify genes that regulate 
antigen presentation efficiency and APC stimulation in 
response to tumor antigens. Similarly, T cell screens can 
identify genes responsible for activation efficiency, traf-
ficking, infiltration, and tumor-killing activity. In vivo T 
cell screens can uncover genes that facilitate TIL traf-
ficking and infiltration, while screening tumor cells 
can reveal genes involved in resistance to T cell killing. 
CRISPR screens can detect both positive and negative 
regulators at each stage of the cycle, enabling a better 
understanding of the complex mechanisms underlying 
the immune response against cancer. One pioneer player 
in this field is eTheRNA immunotherapies [656].

The company has developed a TriMix mRNA-based 
adjuvant that consists of three naked mRNA molecules, 
encoding the costimulatory molecule CD70 to induce 
activation of  CD8+  T cells, the activation stimulator 
CD40 ligand (CD40L) to activate  CD4+ T cells, and the 
constitutively active TLR4 (caTLR4) to facilitate DC 
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antigen presentation [658]. The naked TriMix mRNA 
and ex-vivo DC loaded TriMix mRNA evaluated in mul-
tiple clinical trials are generally well tolerated and immu-
nogenic [658]. Delivery of mRNA encoding TAAs (e.g. 
MAGE-A3, tyrosinase, gp-100 and melano-A/MART-1) 
and TriMix mRNA to DCs, ex vivo or in situ, can repro-
grams them to mature APCs, and subsequently prime 
the function of T cells [659]. In two Phase II studies for 
treating patients with stage III/IV melanoma, either as 

standalone product (TriMix mRNA plus TAA mRNA, 
so called TriMixDC-MEL) or combined with a CTLA-
blocking monoclonal antibody ipilimumab checkpoint 
inhibitor, the products were able to elicit powerful 
immune response, in turn resulted in promising clini-
cal response and prolonged disease-free survival rate 
(NCT01676779, NCT01302496) [660]. Another pioneer 
player Moderna has developed two mRNA products 
encapsulated in the LNP platform for intratumorally 

Fig. 15 Identifying cancer-immunity cycle regulators through CRISPR screens. The cancer-immunity cycle outlines the step-by-step development 
of immune responses against tumors. CRISPR screening can be employed to examine cells at each stage of this cycle, identifying regulatory genes 
and the resulting phenotypic effects. A In the initial phase, tumor antigens are released by cancer cells and collected by APCs such as DCs, which 
may secrete cytokines when stimulated. APCs process and present the captured antigens using major histocompatibility complex proteins on their 
surface. APC trafficking to nearby lymph nodes enables cancer antigen presentation to naïve T cells, leading to T cell activation. Screens on APCs 
can reveal genes that regulate APC stimulation in response to tumor antigens and antigen presentation efficiency to T cells. B T cells exposed 
to antigens become primed and activated to target specific tumor antigens. T cell screens can pinpoint genes responsible for activation efficiency. 
C Primed T cells, including cytotoxic T lymphocytes, exit the lymph node, travel through the bloodstream, and infiltrate tumors as tumor-infiltrating 
lymphocytes (TILs). In vivo T cell screens can identify genes that facilitate TIL trafficking and infiltration. D Inside the tumor, T cells can finally 
recognize and respond to cancer-specific antigens, leading to tumor cell destruction. T cell screens can detect genes that improve tumor-killing 
activity. E Concurrently, screening tumor cells can uncover genes involved in resistance to T cell killing. CRISPR screens can identify positive 
regulators (shown in red) and negative regulators (shown in blue) at each step of the process. Reprinted from [657] with permission from Springer 
Nature
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immunostimulatory activities [487]. These two prod-
ucts are currently evaluated in Phase I clinical trials to 
determine the safety and tolerability of repeated dos-
ing [639]. One product is mRNA-2416, using mRNA 
encoding OX40L, either dosed alone or in combination 
with IV administered PD-L1 inhibitor durvalumab for 
treatment of lymphoma and metastatic ovarian cancer 
(NCT03323398) [639]. The other product is mRNA-
2752, which is composed of OX40L/IL-23/IL-36Ƴ 
mRNAs for treatment of lymphoma (NCT03739931) 
[661]. In mRNA-2752 cocktail, OX40L composes the 
positive secondary signals to enhance T cell effector 
function, expansion and survival [661]. IL-36Ƴ functions 
as proinflammatory cytokines to further boost anticancer 
responses [662]. IL-36 Ƴ also correlates with good prog-
nosis in cancer patients, and induces a favorable T helper 
1 type TME change [663]. IL-23 (IL-12 family members) 
can act as the central coordinators and bridge innate and 
adaptive immunities [664]. Besides IL-23, IL-12 mRNA is 
also commonly used for improved antitumor immunity 
[664]. Moderna is collaborating with AstraZeneca, and 
planning to develop MED I1191 (IL-12 mRNA) through 
intratumorally injection [665]. Meanwhile, BioNtech’s 
cationic lipoplexes loaded BNT151 (nucleoside modi-
fied IL-12 mRNA) was also under pre-clinical evalua-
tion for amplification of vaccine induced T cell response 
through IV administration [666]. These two products are 
planned for initiation of Phase I clinical studies in 2021 
[666]. It should be noted that several small molecule 
drugs, especially the kinase inhibitors such as sunitinib, 
are potent modifiers of the suppressive tumor microenvi-
ronment [667]. Sunitinib base formulated in a nanoemul-
sion, when administered i.v., significantly decreased the 
content of regulatory T cells (Treg) and myeloid-derived 
suppressor cells (MDSC) and increased T-cells in the 
melanoma, and enhanced the tumor growth inhibition of 
a therapeutic vaccine [668].

mRNA vaccine encoding tumor associated antigens
One of the key obstacles to the development of an effec-
tive cancer vaccine is the difficulties in antigen selection 
[669]. Cancer vaccines can be designed to target TAAs 
that are preferentially expressed in malignant cells [670]. 
For instance, tyrosinase, gp100, MAGE-A3, MAGE-C2 
have been identified as TAAs for melanoma [239]. A 
cocktail of mRNA vaccines encoding all the TAAs have 
been used to treat metastatic melanoma in multiple clini-
cal studies [239]. Table 12 illustrates the expression lev-
els of tumor-specific antigens in various cancer types and 
their potential for targeting with mRNA vaccines. For 
example, in breast cancer, the HER2/neu antigen has a 
high expression level with 20–30% frequency of expres-
sion, which makes it a suitable target for mRNA vaccines. 

Similarly, the CEA antigen is highly expressed in colorec-
tal cancer, with a frequency of 70–80%, making it another 
promising target. Table  12 goes on to present several 
other cancer types such as lung, melanoma, ovarian, pan-
creatic, and prostate, all with unique antigens that can be 
potentially targeted by mRNA vaccines. The frequency 
of expression, tissue specificity, and expression level of 
these antigens vary, which may influence the efficacy of 
targeted therapies. This data offers valuable insights for 
researchers working on personalized cancer treatments 
using mRNA vaccines.

One well-known example of mRNA vaccine platform 
falls into this category is Lipo-MERIT [725]. As men-
tioned earlier, Lipo-MERIT is fabricated by complexing 
mRNA with cationic lipid such as DOTMA or DOTAP 
[725]. The lipoplexes with a cationic lipid: DOPE (helper 
lipid): mRNA ratio of 1.3:2 (≈250 nm in size and ≈30 mV 
in zeta potential) were shown to efficiently target the 
splenic DCs in mice and led to strong activation of NK, 
B,  CD4+,  CD8+ T cells, subsequently resulting in potent 
immunotherapeutic efficacy in multiple mouse cancer 
models and was translated into clinics [726]. In one clini-
cal study (NCT02410733), the mRNA vaccine (BNT111) 
encoding four TAAs (NY-ESO-1, MAGE-A3, tyrosinase, 
and TPTE) was evaluated in patients bearing advanced 
melanoma [239]. Results demonstrated that three 
patients generated T cell responses against NY-ESO-1, 
two of which also showed responses against MAGE-A3 
[727]. Recently, BioNTech announced a strategic col-
laboration with Regeneron to initiate the phase II clinical 
trial combining BNT111 with Regeneron Libtayo (cemi-
plimab), a fully humanized anti-PD-1 therapy in patients 
with anti-PD1-refractory/relapsed, unresectable Stage III 
or IV cutaneous melanoma [351]. Another player in the 
campaign is CureVac AG.

CureVac have developed mRNA vaccine CV9202, 
containing mRNAs encoding 6 different NSCLC TAAs 
(MUC-1, surviving, Trophoblast Glycoprotein, NY-
ESO-1, MAGE-C1 and MAGE-C2) [728]. The naked 
TAA mRNA vaccines were co-delivered with protamine/
mRNA complexes, which are known to have self-adjuvant 
properties as discussed earlier [74]. The new collabora-
tion focused on CureVac’s CV9202 in early clinical devel-
opment, in combination with afatinib for patients with 
advanced or metastatic epidermal growth factor mutated 
NSCLC, and in combination with chemo-radiation ther-
apy in patients with unresectable stage III NSCLC [728]. 
For the first study, the vaccine treatment was well toler-
ated, with observations of only some inject site reactions 
and flu-like symptoms [729]. Increased antigen-spe-
cific immune response was observed in majority of the 
patients (84%). Antigen specific antibody and T cells 
are both increased, supporting further investigation of 
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Table 12 Expression levels of tumor-specific antigens in various cancer types

Cancer Type Antigen Name Expression Level Tissue Specificity Frequency of 
Expression

Potential for Targeting 
with mRNA Vaccines

Reference

Breast HER2/neu High Breast 20–30% Yes [671]

Colorectal CEA High Intestine 70–80% Yes [672]

Lung EGFR High Lung 10–20% Yes [673]

Melanoma MART-1 High Skin 60–70% Yes [674]

Ovarian CA125 High Ovary 80–90% Yes [675]

Pancreatic MUC1 High Pancreas 90–100% Yes [676]

Prostate PSA High Prostate 80–90% Yes [677]

Renal CAIX High Kidney 85–95% Yes [678]

Ovarian NY-ESO-1 Medium Ovary 10–15% Yes [679]

Breast MAGE-A1 Medium Breast 15–20% Yes [44]

Melanoma gp100 Medium Skin 30–40% Yes [680]

Prostate PSCA Medium Prostate 20–30% Yes [681]

Colorectal MAGE-A3 Low Intestine 5–10% Yes [682]

Lung NY-ESO-1 Low Lung 5–10% Yes [683]

Pancreatic Survivin Low Pancreas 5–10% Yes [684]

Bladder MAGE-A12 Low Bladder 5–10% Yes [685]

Brain EGFRvIII Low Brain 20–30% Yes [686]

Breast BRCA1 Low Breast 10–15% Yes [687]

Colorectal TP53 Low Intestine 15–20% Yes [688]

Kidney CD105 Low Kidney 10–15% Yes [689]

Liver AFP Low Liver 60–70% Yes [690]

Lung SLC34A2 Low Lung 5–10% Yes [691]

Ovarian TP53 Low Ovary 20–30% Yes [692]

Pancreatic KIF20A Low Pancreas 10–15% Yes [693]

Prostate PSMA Low Prostate 5–10% Yes [694]

Sarcoma NY-ESO-1 Low Bone and Soft Tissue 5–10% Yes [695]

Stomach HER2/neu Low Stomach 10–15% Yes [696]

Thyroid Thyroglobulin Low Thyroid 80–90% Yes [697]

Uterine p16 Low Uterus 15–20% Yes [698]

Esophageal MAGE-A4 Low Esophagus 5–10% Yes [699]

Head and Neck p16 Low Head and Neck 25–30% Yes [700]

Leukemia WT1 Low Blood 75–85% Yes [701]

Lymphoma CD19 Low Lymphatic System 100% Yes [702]

Mesothelioma Mesothelin Low Lungs 70–80% Yes [703]

Multiple Myeloma NY-ESO-1 Low Blood 20–30% Yes [704]

Neuroblastoma GD2 Low Nervous System 95–100% Yes [705]

Pancreatic WT1 Low Pancreas 10–15% Yes [706]

Prostate MUC1 Low Prostate 5–10% Yes [707]

Renal WT1 Low Kidney 15–20% Yes [708]

Sarcoma SSX2 Low Bone and Soft Tissue 5–10% Yes [709]

Stomach MAGE-A3 Low Stomach 10–15% Yes [710]

Testicular MAGE-A4 Low Testis 5–10% Yes [711]

Uterine NY-ESO-1 Low Uterus 5–10% Yes [698]

Acute Myeloid Leukemia PR1 Medium Blood 60–70% Yes [712]

Bladder NY-ESO-1 Medium Bladder 20–30% Yes [713]

Brain Survivin Medium Brain 50–60% Yes [714]

Breast HER2/neu Medium Breast 20–30% Yes [715]

Colorectal CEA Medium Intestine 50–60% Yes [716]

Kidney Renin Medium Kidney 50–60% Yes [717]
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mRNA-based therapy with check-point inhibitors in 
treating NSCLC [647]. Moreover, Immunomic Thera-
peutics is collaborating with Dr. Duane Mitchell at the 
University of Florida on a Phase II proof of concept 
study using a pp65-lysosomal-associated membrane pro-
tein (LAMP)-based mRNA DC vaccine to treat patients 
bearing glioblastoma [730]. pp65 is a major cytomeg-
alovirus (CMV) protein that provides exceptional tumor 
specificity for glioblastoma and is designed to stimulate 
pp65-specific  CD4+ and  CD8+ T cell response [731]. The 
previous phase I study showed a median overall survival 
of 35 months and progression-free survival of 31 months 
[731]. Table  13 highlights the different types of mRNA 
vaccines encoding tumor-associated antigens (TAAs) and 
their respective properties.

Shared TAAs target a broad range of tumors, offering 
potential for cancer prevention, but exhibit low speci-
ficity and efficacy against certain cancers. Differentiated 
TAAs provide high specificity against individual cancer 
cells but are only effective against specific types of can-
cer cells. Cancer-testis antigens are specific to tumor cells 
and not found in normal adult tissues, although their 
expression may vary between patients. Overexpressed 
TAAs are present in a wide range of cancers but can also 
be expressed in normal tissues, leading to potential tox-
icity. In general, immunogenicity ranges from moderate 
to high, with efficacy varying depending on the TAA and 
cancer type. While these mRNA vaccines are generally 
considered safe, they may cause autoimmune reactions. 
All TAA types have a short half-life, which necessitates 
frequent dosing.

mRNA vaccine encoding neoantigen, personalized 
vaccine
According to Table 14, there are various types of tumor-
associated antigens (TAAs) being utilized in mRNA 
cancer vaccines. Shared antigens, differentiation anti-
gens, and cancer-testis antigens are common to many 
tumor types, expressed in certain tumors, or highly 

immunogenic, respectively, and have been used in multi-
ple trials. Neoantigens, viral antigens, oncofetal antigens, 
tumor-specific antigens, mutated self-antigens, shared 
mutated antigens, overexpressed antigens, and glycopep-
tide antigens are all in early-stage trials. Some TAAs have 
the potential for autoimmunity, while others are unique 
to specific tumors or patients. The immunogenicity of 
these antigens varies, with some having high immuno-
genicity and others having a more limited understanding. 
The stability of these antigens is generally unstable, and 
their expression levels range from low to high.

The utilization of TAAs in mRNA cancer vaccines has 
the potential to revolutionize cancer treatment and pro-
vide new therapeutic options for patients. These antigens 
can be targeted by the immune system to eliminate can-
cer cells. Several obstacles limit the further application 
of TAA vaccines, including: (1) only limited TAAs have 
been identified for certain solid tumors resulting in lim-
its of applications, and (2) patients harboring extensive 
variability in TAAs that gives rise to evasion of immune 
effectors and generation of resistance, (3) TAAs are also 
present in normal tissues [239]. Vaccines against TTAs 
could potentially initiate central and peripheral tolerance 
responses, lowering vaccination efficiency [735].

Tumor-specific antigens, termed neoantigens, are now 
the core targets of mRNA vaccines. Neoantigens are 
derived from random somatic mutations in tumor cells 
and not present in normal cells [738]. Neoantigens could 
be recognized by the host immune system as a “non-self” 
motif and thus are an appealing target for cancer vaccine 
[738]. The first step in developing a personalized neoan-
tigen vaccine is to identify and confirm patient-specific 
immunogenic non-synonymous somatic mutations 
expressed in the tumor [739]. A biopsy of tumor tissue is 
taken for whole-exome, RNA, or transcriptome sequenc-
ing [739]. Non-synonymous somatic mutations in cancer, 
such as point mutations and insertion-deletions, could 
be identified by comparing the sequences of the tumor 
and matched healthy tissues [740]. Next, mutations with 

Table 12 (continued)

Cancer Type Antigen Name Expression Level Tissue Specificity Frequency of 
Expression

Potential for Targeting 
with mRNA Vaccines

Reference

Liver Glypican-3 Medium Liver 50–60% Yes [718]

Lung MUC1 Medium Lung 50–60% Yes [719]

Ovarian MUC1 Medium Ovary 50–60% Yes [720]

Pancreatic MUC1 Medium Pancreas 50–60% Yes [721]

Prostate PSA Medium Prostate 50–60% Yes [222]

Sarcoma MAGE-A4 Medium Bone and Soft Tissue 20–30% Yes [722]

Stomach Survivin Medium Stomach 50–60% Yes [723]

Thyroid Thyroid Peroxidase Medium Thyroid 50–60% Yes [724]
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the highest immunogenicity are screened, analyzed, and 
identified using MHC class I epitope prediction algo-
rithms [741]. Ranked lists of candidate antigens are fur-
ther confirmed based on in vitro binding assay results.

Various types of variant mutations can be targeted by 
neoantigen based vaccine [741]. Multiple delivery strat-
egies have been developed for neoantigens, including 
synthetic long peptides (SLPs) and nucleic acid (DNA/
mRNA) based vaccines, either through direct injection 
of unformulated antigens, DC-based autologous trans-
fer, or biomaterial-based delivery system [742]. In a pio-
neered phase I clinical study, a selected pool of 20 SLPs 
were SC administered together with adjuvant polyICLC 
to 6 patients with advanced cutaneous melanoma [743]. 
These SLPs were shown to induce both  CD4+  T cells 
and  CD8+ T cells response [744]. Four of the six patients 
were cancer-free 25 months post-treatment, demonstrat-
ing the viability of neoantigen vaccination in anticancer 
treatment [743]. However, peptides have limited immu-
nogenicity, rapid clearance, and different physical–chem-
ical properties restricting their clinical applications [744].

Most recently, some researchers reported that immu-
nizing advanced melanoma patients in a clinical study 
using IVT mRNA encoding neoantigens through intran-
odal (i.n.) injection [745]. The ultrasound-guided injec-
tion could maximize the capture of antigens by APCs 

[746]. Potent T cell responses against multiple neoanti-
gens were achieved in all the patients after vaccination 
[219]. Despite the encouraging initial results, the wide 
application of IN injection may be limited by the viabil-
ity of the techniques and the difficulties for repeated 
dosing [745]. Non-viral platforms have until recently 
been applied to the delivery of mRNA encoding neo-
antigens [58]. Multiple clinical trials investigating the 
safety and efficacy of mRNA vaccine encoding neoanti-
gens are ongoing [219]. Moderna and Merck collaborated 
to develop mRNA-5671, a Kras personalized vaccine 
(encoding KRAS neoantigens), alone or in together with 
Merck’s PD-1 specific antibody KEYTRUDA (Pembroli-
zumab) to treat patients with pancreatic cancer in Phase 
I Trial. LNPs were utilized to deliver mRNA-5671 intra-
muscularly every 3 weeks, 9 cycles in total [747]. Results 
suggested that anti-tumoral immune response was devel-
oped and the formulation is overall well-tolerated [747]. 
Another product is mRNA-4157, a personalized vaccine 
encapsulated in LNPs, for treating patients with resected 
solid tumors including melanoma, bladder carcinoma 
and NSCLC, as monotherapy or in combination with 
pembrolizumab (NCT03313778) [70]. The mRNA-4157 
based mono and combination therapy with pembroli-
zumab showed an acceptable safety profile along with 
remarkable neoantigen-specific T cell responses [174]. 

Table 14 The different types of tumor-associated antigens (TAA) used in mRNA cancer vaccines

Shared antigens Common to 
many tumor 
types

Potential for 
autoimmunity

Variable Moderate to 
High

Unstable Moderate Multiple trials Reference

Differentiation 
antigens

Expressed in cer-
tain tumor types

Not present in all 
tumors

Variable Moderate to High Unstable Moderate Multiple trials [732]

Cancer-testis 
antigens

Highly immuno-
genic

Restricted to cer-
tain tumor types

Variable High Unstable Moderate to High Multiple trials [733]

Neoantigens Patient-specific Unique to each 
tumor

High High Unstable Low to Moderate Early-stage trials [58]

Viral antigens Easily recognized 
by immune 
system

Limited to virus-
associated 
cancers

Variable Moderate to High Unstable Moderate Early-stage trials [430]

Oncofetal anti-
gens

High expression 
in tumors

Also expressed 
in some normal 
tissues

Variable Moderate to High Unstable Moderate Early-stage trials [734]

Tumor-specific 
antigens

Unique to tumors Low expression 
levels

High High Unstable Low to Moderate Early-stage trials [735]

Mutated self-
antigens

Patient-specific Potential for off-
target effects

Variable High Unstable Low to Moderate Early-stage trials [736]

Shared mutated 
antigens

Common muta-
tions in tumors

Potential for auto-
immunity

Variable Moderate to High Unstable Moderate Early-stage trials [638]

Overexpressed 
antigens

High expression 
in tumors

Also expressed 
in normal tissues

Variable Moderate to High Unstable Moderate Early-stage trials [626]

Glycopeptide 
antigens

Unique glycosyla-
tion patterns 
in tumors

Limited 
understanding 
of immunogenic-
ity

Variable Moderate to High Unstable Moderate to High Early-stage trials [737]
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Twelve out of thirteen patients treated by monotherapy 
were reported to be disease-free [732]. BioNtech collabo-
rated with Genentech to join the campaign and to evalu-
ate the safety and efficacy of mRNA personalized vaccine, 
RO7198457 delivered by Lipo-MERIT platform in multi-
ple phase I and II clinical trials [748].

Conclusion and future perspectives
With the recent approval of two mRNA LNP vaccines to 
prevent COVID-19, mRNA vaccines are experiencing a 
considerable burst in preclinical and clinical research in 
both cancer and infectious disease fields. The challenges 
of developing cancer vaccines versus infectious disease 
vaccines lie in: firstly, most infectious disease vaccines 
are prophylactic, whereas cancer vaccines are therapeu-
tic. The cases for preventive cancer vaccines are rare with 
only two FDA approved such vaccines, and these two 
vaccines are applied to prevent virus-induced malignan-
cies (HPV and HBV). Though anti-cancer prophylac-
tic vaccines are still under pre-clinical investigation, the 
clinical translation is limited by the difficulties of antigen 
predictions and the suboptimal immunogenicity. Sec-
ondly, most antigens for infectious disease (bacterial or 
virus-driven) are exogeneous motifs typically presented 
by the  MHCII  molecule. Vaccines targeting these exog-
enous antigens induce neutralizing antibodies mediated 
humoral response. In some cases,  CD4+ T cell-mediated 
immune response is partially involved and required, 
whereas  CD8+ cytotoxic T cells play crucial roles in the 
clearance of malignant cells with somatic mutations. 
Thus, the anticancer therapeutic vaccine not only needs 
to boost humoral response, CD4 + T cell response but 
also needs to activate the  MHCI mediated  CD+ 8 T cells 
responses, which further adds to the difficulties for effi-
cient boosting of a robust antitumor immunity. Another 
major hurdle for efficient anticancer vaccine develop-
ment is to identify and efficiently deliver highly immu-
nogenic tumor-specific antigens. Tumor antigens are 
highly variable across different individuals, and some 
are less immunogenic and can invade the recognition by 
the host immune system. Even if the antigen is immu-
nogenic, a suppressive microenvironment could prevent 
effective T cells’ infiltration and cause T cell exhaustion. 
Lastly, as a therapeutic vaccine for treating a chronic dis-
ease like cancer, multiple/repeatable dosing with higher 
dosage than prophylactic vaccines is required, rais-
ing the safety criteria for both mRNAs and the carriers. 
Among other cancer vaccines, including DC-based vac-
cines and protein-based vaccines, mRNA stands out for 
several reasons: (1) mRNA could simultaneously encode 
multiple antigens, or a full protein with both  MHCI and 
 MHCII  binding epitopes to facilitate both humoral and 
cellular adaptive immune response, providing a more 

intensified anti-tumor immunity. (2) Compared with 
DNA vaccine, mRNA vaccines are non-integrating, 
highly degradable, with no insertional mutagenesis 
potentials. Compared to protein or cell-mediated vac-
cines, the IVT production of mRNA is free of cellular and 
pathogenic viral components, with no infectious pos-
sibilities. Most mRNA vaccines tested in ongoing clini-
cal trials are generally well tolerated, with rare cases of 
injection site reactions. Systemic inflammation may be 
a major concern for mRNA vaccines due to its intrinsic 
immunostimulant-like function to activate the TLR7/8 
pathway and to induce the type I IFN responses. How-
ever, type I IFN mediated innate immune response could 
be reduced by removal of the dsRNA contaminants, 
codon optimizations, and nucleotide modifications. The 
innate immune response could also be restricted to the 
local injection site by properly designing the delivery sys-
tems and changing the administration routes. The activa-
tion of type I interferon responses is not only associated 
with inflammation but also potentially with autoimmun-
ity. Therefore, identifying individuals at an increased 
risk of autoimmune reactions before mRNA vaccination 
is another precautious step necessary to be taken. (3) 
Another advantage of mRNA cancer vaccine is the rapid 
and scalable manufacturing. The mature manufacturing 
process of mRNA and formulation platform allows pro-
ductions of a same or a new type of vaccine within a very 
short period. Although identifying immunogenic TAAs/
TSAs and overcoming suppressive tumor microenviron-
ment still remain major hurdles for mRNA vaccine, the 
recent discovery and identification of neoantigens facili-
tate personalized vaccine treatment applications. mRNA 
encoded neoantigens have become the frontrunner in the 
personalized vaccine campaign. Multiple clinical stud-
ies led by the mRNA LNP pioneers BioNTech and Mod-
erna, already presented promising results (with a readout 
of antitumor immunity) using personalized vaccines 
in several clinical trials treating multiple solid tumors, 
including metastatic melanoma and aggressive pancre-
atic cancers, opening a new era for therapeutic cancer 
vaccines.

To further improve the potency of mRNA anticancer 
vaccines, multiple clinical trials are ongoing to evaluate 
the combination of mRNA vaccines with either cytokine 
therapies or checkpoint inhibitor therapies. mRNA is a 
powerful and versatile cancer vaccine platform. Its suc-
cessful development towards clinical translation will 
remarkably strengthen our ability to combat cancers. 
Future investigations should continue focusing on (but 
not limited to) understanding and utilizing the para-
doxical inherent innate immunity of mRNA, improving 
the efficiency of antigen expression and presentation by 
designing advanced and tolerable delivery systems, and 



Page 89 of 106Chehelgerdi and Chehelgerdi  Molecular Cancer          (2023) 22:106  

modifying mRNA structures to achieve extended and 
controlled duration of expression.
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