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Over the past several decades, MRNA vaccines have evolved from a theoretical concept to a clinical reality. These
vaccines offer several advantages over traditional vaccine techniques, including their high potency, rapid develop-
ment, low-cost manufacturing, and safe administration. However, until recently, concerns over the instability and inef-
ficient distribution of mRNA in vivo have limited their utility. Fortunately, recent technological advancements have
mostly resolved these concerns, resulting in the development of numerous mRNA vaccination platforms for infec-
tious diseases and various types of cancer. These platforms have shown promising outcomes in both animal models
and humans. This study highlights the potential of mRNA vaccines as a promising alternative approach to conven-
tional vaccine techniques and cancer treatment. This review article aims to provide a thorough and detailed examina-
tion of mRNA vaccines, including their mechanisms of action and potential applications in cancer immunotherapy.
Additionally, the article will analyze the current state of mRNA vaccine technology and highlight future directions

for the development and implementation of this promising vaccine platform as a mainstream therapeutic option.
The review will also discuss potential challenges and limitations of mRNA vaccines, such as their stability and in vivo
distribution, and suggest ways to overcome these issues. By providing a comprehensive overview and critical

analysis of mMRNA vaccines, this review aims to contribute to the advancement of this innovative approach to cancer
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Introduction

Cancer immunotherapies have gained significant atten-
tion and popularity in recent years, significant advance-
ments have been made in cancer immunotherapies
with the FDA approval of checkpoint blockade modula-
tors (such as pembrolizumab in 2014 and nivolumab in
2015) and CAR-T cell immunotherapies (like tisagenle-
cleucel in 2017 and axicabtagene ciloleucel in 2018) [1].
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These immunotherapies work by enhancing the immune
system’s ability to recognize and destroy cancer cells,
offering a promising alternative to traditional cancer
treatments. The approval of these treatments highlights
the potential of cancer immunotherapy as a novel and
effective approach to cancer treatment [2].

The primary goal of cancer immunotherapies is to
enhance the host’s anti-tumor immunity and modify
the tumor’s suppressive microenvironment. By doing so,
these therapies aim to inhibit the growth of the patient’s
tumor and prolong their lifespan [2]. Through the stimu-
lation of the immune system, cancer immunotherapies
have shown potential to induce long-term remission
and offer a durable treatment option for cancer patients.
Additionally, cancer immunotherapy may also have fewer
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side effects than traditional cancer treatments, which can
lead to an improved quality of life for patients [3].

Cancer vaccines have emerged as a promising alterna-
tive approach to cancer immunotherapy, with potential
applications in cancer prevention and therapy. Unlike
traditional vaccines that are used to prevent infectious
diseases, cancer vaccines are designed to stimulate the
immune system to recognize and attack cancer cells.
Cancer vaccines may be used as a preventative measure
in individuals at high risk for developing certain types of
cancer, or as a therapeutic option to treat existing can-
cer. The development of cancer vaccines has the poten-
tial to revolutionize cancer treatment by offering a more
targeted and personalized approach, with fewer side
effects than conventional cancer treatments. The appli-
cation of cancer vaccines in both cancer prevention and
therapy highlights their potential as a promising tool in
the fight against cancer [2]. Vaccinations against tumor-
associated or tumor-specific antigens (TAAs or TSAs)
have shown promise in targeting and destroying can-
cer cells that overexpress certain antigens, leading to a
long-lasting therapeutic response. TAAs and TSAs are
specific molecules expressed by cancer cells that are not
found on normal cells, making them a unique and attrac-
tive target for cancer immunotherapy. By vaccinating
individuals with cancer-specific antigens, the immune
system can be trained to recognize and destroy cancer
cells. This targeted approach has the potential to induce
a long-lasting immune response, providing a durable and
effective treatment option for cancer patients. The ability
to specifically target cancer cells that overexpress certain
antigens highlights the potential of vaccinations against
TAAs or TSAs in cancer immunotherapy [4].

Immunologic memory, a property of the immune
system, plays a crucial role in the effectiveness of can-
cer vaccines. This memory allows the immune system
to recognize and attack cancer cells even after the ini-
tial exposure to a cancer vaccine. Unlike other types of
immunotherapies, cancer vaccines offer a specific, non-
toxic, and well-tolerated therapy option. By targeting
cancer-specific antigens, cancer vaccines have the poten-
tial to induce a targeted immune response, reducing the
risk of adverse effects and toxicities associated with tra-
ditional cancer treatments. The specific nature of cancer
vaccines allows for a personalized approach to cancer
treatment, targeting the specific antigens expressed by
a patient’s cancer cells. This personalized approach,
along with the non-toxic and well-tolerated nature of
cancer vaccines, highlights their potential as a valuable
tool in cancer immunotherapy [3]. Despite significant
research efforts, the clinical translation of cancer vac-
cines into effective medicines has been challenging for
decades. One of the primary reasons for this challenge
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is the highly variable nature of tumor antigens, mak-
ing it difficult to identify specific targets for cancer vac-
cines. Additionally, the immune response generated by
cancer vaccines has often been insufficient to produce a
therapeutic effect. These factors have hindered the devel-
opment of effective cancer vaccines and limited their
potential impact on cancer treatment. Despite these chal-
lenges, ongoing research and advancements in cancer
immunotherapy hold promise for the future development
of effective cancer vaccines. By identifying more specific
targets for cancer vaccines and developing more potent
immune responses, researchers may be able to overcome
these hurdles and harness the full potential of cancer vac-
cines in cancer treatment [5].

This is the case despite the fact that there have been
significant attempts to generate cancer vaccines. Despite
the fact that the human papillomavirus (HPV) is respon-
sible for 70% of cervical cancers and the hepatitis B virus
may cause liver cancer, the Food and Drug Administra-
tion in the United States has only recently licenced two
prophylactic vaccines. More encouragingly, the first ther-
apeutic cancer vaccine, PROVENGE (sipuleucel-T), was
licensed by the U.S. FDA [3] which was designed to treat
hormone-resistant prostate cancer. In the treatment of a
broad range of solid and metastatic cancers, clinical tri-
als are now examining a wide variety of customised can-
cer vaccines in conjunction with checkpoint blockade
modulators or cytokine therapies, with positive results
[3, 5]. Cancer vaccines may be classified into the follow-
ing four groups: those that are based on tumour cells or
immune cells; those that are based on peptides; those
that are based on viral vectors; and those that are based
on nucleic acids [5]. There are several reasons why vac-
cines that are constructed using nucleic acids (DNA or
RNA) have a great deal of potential. The first advantage
of nucleic acid vaccines is that they can deliver multiple
antigens all at once, covering a wider range of TAAs or
somatic tumour alterations, and increasing the possibility
of overcoming vaccine resistance by inducing a humoral
and cell-mediated immune response [1]. Covering a
wider range of TAAs or somatic tumour alterations is the
second advantage of nucleic acid vaccines [6]. Second,
nucleic acid vaccines are less constrained by the human
HLA types and are more likely to induce a larger T cell
response because they may encode full-length tumour
antigens and enable antigen presenting cells (APCs) to
present or cross-present several epitopes with both class
I and II patient-specific HLA [7]. This is because nucleic
acid vaccines can encode full-length tumour antigens and
enable APCs to present or cross-present several epitopes
[8]. Nucleic acid vaccines, such as mRNA or DNA vac-
cines, have the potential to encode a broad range of
tumor antigens [5]. Unlike traditional protein-based
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vaccines, which typically target a limited number of spe-
cific antigens, nucleic acid vaccines can be designed to
produce a variety of antigens simultaneously. This char-
acteristic allows for a broader immune response against
diverse tumor-associated antigens [6]. For example, in
preclinical studies, researchers have developed mRNA
vaccines encoding multiple tumor antigens, including
neoantigens specific to individual patients, resulting in
enhanced antitumor immune responses [5].

HLA (human leukocyte antigen) molecules play a criti-
cal role in presenting antigens to the immune system [9].
However, the genetic diversity of HLA types across indi-
viduals can pose a challenge for vaccine development, as
a vaccine targeting one HLA type may not be effective for
individuals with different HLA types [10]. Nucleic acid
vaccines offer advantages in this regard. By encoding the
antigen directly in the mRNA or DNA sequence, nucleic
acid vaccines can bypass the need for HLA matching.
The produced antigen is processed by the recipient’s cells,
leading to the presentation of peptides on the cell sur-
face in a manner that is independent of the individual’s
HLA type [8]. This ability to generate a broader immune
response regardless of HLA type has been demonstrated
in several studies [10]. For instance, in a clinical trial
evaluating an mRNA-based cancer vaccine, personalized
neoantigens were shown to induce immune responses
across various HLA types, suggesting the potential for
broad applicability [9].

Nucleic acid vaccines are risk-free for use in both pre-
ventive and therapeutic contexts since they do not trans-
mit infections and their production does not include any
protein or virus-derived contaminations [6]. In recent
years, mRNA vaccine has emerged as a potentially use-
ful alternative to DNA vaccine for using in the preven-
tion of infectious illnesses and the treatment of cancer
[11]. As contrast to DNA, the use of mRNA as a cancer
vaccine approach has a number of advantages, includ-
ing the following: Once RNA has been taken up into
the cytoplasm, the antigen (or antigens) of interest may
be translated from mRNA in a single step in cells that
are dividing as well as in cells that are not dividing [5].
mRNA vaccines, in contrast to DNA vaccines, often have
higher rates and levels of protein synthesis [2]. This is due
to the fact that mRNA vaccines cannot integrate into the
genome sequence, meaning that they are not susceptible
to insertional mutagenesis [1]. The feasibility of creating
an mRNA vaccine was first reported in the year 1990,
when it was discovered that in vitro transcription (IVT)
mRNA could be effectively generated in mouse skeletal
muscle cells by the process of direct injection into ani-
mals [6]. It is possible that worries over mRNA instability,
poor in vivo transport, and highly intrinsic innate immu-
nogenicity contributed to the fact that this first attempt
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did not result in extensive study on the production of
mRNA vaccines [7]. mRNA vaccination has become a
more practical choice as a result of significant techno-
logical developments that have taken place over the last
several decades [11]. The RNA may be made more resist-
ant to RNases, more stable, and more translation-friendly
by making various modifications to the mRNA backbone
and the untranslated regions [12]. mRNA products are
now accessible without double-stranded contaminations
as a result of developments in purifying procedures [13].
This helps to reduce the non-specific activation of the
body’s innate immune system [7]. The incorporation of
messenger RNA (mRNA) into delivery vehicles, includ-
ing as lipid nanoparticles (LNPs), polymers, and peptides,
has led to an improvement in the distribution of mRNA
in living organisms [8]. Finally, mRNAs have been discov-
ered to be useful in IVT procedures in a broad manner
[6]. Scale-up manufacturing has progressed to the point
where mRNA vaccines provide substantial advantages
over traditional immunisation approaches [4].

These advantages include decreased production costs
and the possibility for wider use. In terms of cancer
treatment, clinical trials have mostly concentrated on
non-replicating mRNAs up to this point [1]. Self-ampli-
fying mRNAs, also known as SAM, have garnered a lot
of attention and are now being investigated for potential
use in the treatment of cancer and infectious illnesses
[6]. This is due to the fact that SAM are more cost-effec-
tive in the long term and have a lower impact per dos-
age [7]. More than twenty immunotherapies based on
mRNA have progressed to the clinical trial stage, and
the outcomes of these trials have been promising in the
treatment of solid tumours [6, 7]. Furthermore, mRNA
vaccines provide a considerable edge over anti-can-
cer immunotherapies when it comes to preventing the
spread of the coronavirus infection over the globe [6].
Since the FDA in the United States has given its approval
to two mRNA-based vaccines, one from Pfizer-BioNTech
and one from Moderna, for emergency use in prevent-
ing COVID-19, the mRNA vaccine field will encompass a
dramatic increase in market value and attract widespread
interest in both cancer and infectious disease applica-
tions [2, 6, 8]. According to the findings, cancer immuno-
therapies might benefit from the use of mRNA vaccines
in order to overcome certain obstacles.

This review article covers a range of topics related to
mRNA vaccines in cancer immunotherapy. It begins with
a discussion of basic mRNA vaccine pharmacology and
recent advances in mRNA vaccine technology. The article
then examines the optimization of mRNA translation and
stability, modulation of immunogenicity, and progress in
mRNA vaccine delivery. Various delivery methods are
discussed, including ex vivo loading of DCs, injection of
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naked mRNA in vivo, physical delivery methods in vivo,
protamine, and cationic lipid and polymer-based deliv-
ery. The review covers the development of mRNA cancer
vaccines, including DC mRNA cancer vaccines and direct
injection of mRNA cancer vaccines. It also highlights
therapeutic considerations and challenges, good manu-
facturing practice production, and regulatory aspects of
mRNA vaccines. Strategies to improve mRNA transla-
tion efficiency and overcome innate immunogenicity are
examined, including the modification of the five-prime
cap, optimization of untranslated regions, codon opti-
mization of open reading frames, poly(a) tail modifica-
tion, nucleoside modified mRNA, and purification of
IVT-mRNA. The article also discusses the immunogenic-
ity of mRNA and paradoxical effects in cancer immuno-
therapy, as well as self-amplifying mRNA vaccines, their
structure, advantages, and deliveries. The review covers
the delivery of mRNA cancer vaccines, including the
rationale for lipid nanoparticles to maximize delivery
efficiency and immunogenicity, mechanistic studies, and
additional functional modifications of LNPs, LNP mRNA
vaccine from formulation to manufacturing, polymer-
based mRNA delivery systems, peptide-based mRNA
delivery systems, and other formulations used in mRNA
delivery. The article also examines the injection routes of
mRNA cancer vaccines and provides a clinical overview
of mRNA cancer vaccines. Finally, the review discusses
mRNA encoding immunostimulants, mRNA vaccine
encoding tumor-associated antigens, mRNA vaccine
encoding neoantigen, personalized vaccines, and con-
cludes with future perspectives on the development of
RNA-based treatments in cancer immunotherapy.

Cancer immunotherapies

Cancer immunotherapy is a revolutionary approach to
treating cancer that harnesses the power of the immune
system to recognize and destroy cancer cells [14]. The
immune system plays a crucial role in detecting and elim-
inating abnormal cells in the body, including cancer cells
[15]. However, cancer cells have developed various mech-
anisms to evade the immune system and continue to
grow unchecked [14]. Immunotherapy aims to enhance
and activate the body’s immune response against cancer
cells, helping the immune system to recognize and elimi-
nate them effectively [16].

Immune checkpoint inhibitors

Immune checkpoint inhibitors are a type of cancer
immunotherapy that target molecules known as check-
points on immune cells [17]. These checkpoints act as
regulators or "brakes" on the immune system, prevent-
ing excessive immune responses that can lead to autoim-
mune reactions [16]. One of the well-known checkpoint
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molecules is called programmed cell death protein 1 (PD-
1). It is expressed on the surface of certain immune cells,
including T cells, which play a crucial role in recogniz-
ing and eliminating cancer cells [18]. Another checkpoint
molecule is cytotoxic T-lymphocyte-associated protein
4 (CTLA-4), which is primarily found on the surface of
regulatory T cells [19]. Cancer cells often exploit these
checkpoint molecules to evade immune detection and
attack. They can express ligands (such as PD-L1) that
bind to the checkpoints on immune cells, sending inhibi-
tory signals that dampen the immune response. By doing
so, cancer cells can avoid being targeted and destroyed by
the immune system [19].

Immune checkpoint inhibitors work by blocking these
inhibitory signals, thereby unleashing the immune sys-
tem’s ability to recognize and attack cancer cells. Spe-
cifically, these inhibitors bind to either PD-1 or CTLA-4,
preventing the cancer cell’s ligands from interacting with
the checkpoint molecules [20]. As a result, the immune
response is reinvigorated, and immune cells, particu-
larly T cells, can better recognize and eliminate cancer
cells. By removing these "brakes" on the immune sys-
tem, checkpoint inhibitors enhance the host’s anti-tumor
immunity. They allow immune cells to infiltrate tumors
more effectively, recognize cancer-specific antigens, and
mount a robust immune response against the tumor [19].
This can lead to tumor shrinkage and improved outcomes
for cancer patients. It’s important to note that checkpoint
inhibitors are used in the treatment of various types of
cancer, including melanoma, lung cancer, kidney cancer,
bladder cancer, and others. They have shown significant
success in some patients, with durable responses and
improved survival rates. However, their effectiveness
can vary depending on the type of cancer and individual
patient factors [20].

CAR-T cell therapy

CAR-T cell therapy is an innovative form of cancer
immunotherapy that involves modifying a patient’s
own T cells to enhance their ability to recognize and
attack cancer cells [21]. The process begins by collect-
ing the patient’s T cells from their blood. These T cells
are then genetically engineered to express a CAR on
their surface. The CAR is designed to recognize a spe-
cific antigen present on the surface of cancer cells [22].
Once the CAR-T cells are generated in the laboratory,
they are infused back into the patient’s body. The modi-
fied CAR-T cells can now specifically target and bind to
cancer cells expressing the targeted antigen, initiating a
potent immune response against the tumor. This therapy
has shown remarkable success in treating certain types of
blood cancers, such as leukemia and lymphoma, where
the targeted antigen is abundantly expressed [23].
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CAR-T cell therapy represents a personalized and
highly targeted approach that harnesses the power of the
patient’s immune system to fight cancer. Once infused
back into the patient, the CAR-T cells multiply and
persist in the body, allowing for a sustained anti-tumor
response [24]. The CAR-T cells have the ability to rec-
ognize and eliminate cancer cells throughout the body,
including in hard-to-reach areas. This makes CAR-T cell
therapy particularly effective against cancers that have
spread or have been resistant to other treatments. One of
the key advantages of CAR-T cell therapy is its specific-
ity [24]. The CAR is designed to target a specific antigen
present on cancer cells, minimizing damage to healthy
cells. This targeted approach reduces the risk of off-target
side effects commonly associated with traditional cancer
treatments like chemotherapy and radiation [25]. Despite
its success, CAR-T cell therapy does have potential side
effects. The activation of the immune system can lead to
an excessive immune response, known as cytokine release
syndrome (CRS). CRS can cause flu-like symptoms, fever,
low blood pressure, and in severe cases, organ damage.
Another potential side effect is neurotoxicity, which can
lead to confusion, seizures, and other neurological symp-
toms [26]. However, medical professionals closely moni-
tor patients receiving CAR-T cell therapy to manage and
mitigate these potential side effects.

CAR-T cell therapy has revolutionized the field of
cancer treatment, particularly for certain types of blood
cancers [27]. It has demonstrated remarkable efficacy in
inducing long-term remissions and even cures in some
patients. Ongoing research and clinical trials are explor-
ing the application of CAR-T cell therapy to other types
of cancer, with the hope of expanding its benefits to a
wider range of patients [25]. Additionally, CAR-T cell
therapy has shown promising results in pediatric patients
with relapsed or refractory cancers [24]. Children with
acute lymphoblastic leukemia who have not responded to
standard treatments have achieved significant remissions
with CAR-T cell therapy. This breakthrough therapy has
provided a new treatment option for young patients who
previously had limited options [21].

CAR-T cell therapy is continually evolving and improv-
ing. Researchers are exploring ways to enhance its effec-
tiveness and reduce side effects. One area of focus is the
development of "second-generation” and "third-genera-
tion" CARs that incorporate additional signaling domains
to enhance CAR-T cell activation and persistence [27].
These advancements aim to further improve the anti-
tumor response and potentially broaden the applicability
of CAR-T cell therapy to other types of cancer. Moreo-
ver, efforts are underway to overcome challenges related
to solid tumors, which have proven more complex to tar-
get with CAR-T cell therapy compared to blood cancers.
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Strategies such as combining CAR-T cell therapy with
other treatments, including immune checkpoint inhibi-
tors or CAR-T cells targeting multiple antigens, are being
explored to improve outcomes in solid tumors [26].

Tumor-infiltrating lymphocyte (TIL) therapy
Tumor-infiltrating lymphocyte (TIL) therapy is a form
of cancer immunotherapy that harnesses the power of
a patient’s own immune system to fight against cancer
[28]. In TIL therapy, immune cells called lymphocytes are
isolated from a tumor sample obtained from the patient.
These lymphocytes, which have infiltrated the tumor, are
then expanded and activated in the laboratory [29]. Once
a sufficient number of TILs have been generated, they
are infused back into the patient’s body [30]. The goal of
TIL therapy is to enhance the host’s anti-tumor immune
response by providing a larger population of activated
T cells that can specifically recognize and target cancer
cells. By reintroducing these modified TILs, the therapy
aims to create a more potent immune response against
the tumor [29].

TIL therapy also has the potential to modify the
tumor microenvironment by increasing the infiltra-
tion of immune cells into the tumor, thereby creating a
more hostile environment for cancer cells and improv-
ing the overall anti-tumor immune response [31]. TIL
therapy offers a promising approach to treating can-
cer by leveraging the patient’s own immune system to
specifically target and eliminate cancer cells [32]. Upon
infusion, the expanded TILs migrate to the tumor site,
where they engage with cancer cells through the recogni-
tion of tumor-specific antigens. This interaction activates
the TILs, leading to the release of cytotoxic molecules
and the secretion of immune-stimulating cytokines. The
cytotoxic molecules, such as perforin and granzymes,
enable the TILs to directly attack and kill cancer cells
[32]. Additionally, the secreted cytokines help recruit and
activate other immune cells, further enhancing the anti-
tumor immune response.

TIL therapy not only focuses on the direct elimination
of cancer cells but also aims to modify the tumor micro-
environment [33]. Tumors often create an immunosup-
pressive environment that inhibits immune cell function
and allows the cancer cells to evade immune detection.
However, the introduction of activated TILs can disrupt
this immune suppression by promoting immune cell
infiltration and altering the balance of immune cell types
within the tumor [32]. This shift in the tumor microen-
vironment can create a more favorable setting for anti-
tumor immune responses to occur. It’s important to
note that TIL therapy is still an area of active research,
and its effectiveness can vary depending on several fac-
tors, including the type and stage of cancer, the quality
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and quantity of TILs, and the overall immune status of
the patient [32].

Ongoing studies are focused on optimizing TIL expan-
sion techniques, improving the selection of tumor-
specific TILs, and exploring combination therapies to
enhance the efficacy of TIL-based treatments. In addi-
tion to its potential as a standalone therapy, TIL therapy
is also being investigated in combination with other can-
cer treatments [32]. For example, researchers are explor-
ing the use of TIL therapy alongside immune checkpoint
inhibitors to further enhance the anti-tumor immune
response. Immune checkpoint inhibitors can alleviate
the brakes on the immune system, allowing TILs to exert
their full potential in targeting cancer cells [34]. Moreo-
ver, ongoing efforts are being made to overcome some of
the challenges associated with TIL therapy [32].

One such challenge is the limited availability of TILs
from some tumor types or patients with low TIL infiltra-
tion. Researchers are exploring strategies to generate and
expand TILs from small tumor samples or using tech-
niques such as genetic engineering to improve TIL func-
tionality [32]. Another area of interest is the development
of personalized TIL therapy, where TILs are specifically
tailored to target the unique antigens present in an indi-
vidual patient’s tumor. This approach involves identify-
ing the specific antigens expressed by the patient’s tumor
and selecting or engineering TILs that can recognize and
attack those antigens [32]. Personalized TIL therapy has
shown promising results in early clinical trials and may
improve treatment efficacy by targeting tumor-specific
antigens.

As research in TIL therapy progresses, it holds the
potential to become an integral part of the cancer treat-
ment landscape [32]. By harnessing the power of the
immune system, TIL therapy offers a targeted and per-
sonalized approach to combat cancer, potentially lead-
ing to improved outcomes and better quality of life for
patients. Continued advancements and clinical studies
will provide further insights into the optimal use and
potential of TIL therapy in the fight against cancer [31].

Therapeutic vaccines

Therapeutic vaccines can be developed using different
strategies. One approach is to use tumor-specific anti-
gens derived from the patient’s own tumor cells [35].
These antigens are unique to the cancer cells and not
present in healthy cells, making them ideal targets for
the immune system. By presenting these tumor-specific
antigens to the immune system, the therapeutic vac-
cine helps train immune cells to recognize and attack
cancer cells specifically. Another strategy involves
using immune-stimulating molecules called adjuvants
[36]. Adjuvants are included in the vaccine formulation
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to enhance the immune response. They can activate
immune cells, promote antigen presentation, and
improve the overall effectiveness of the vaccine [37].
Adjuvants can be designed to trigger specific immune
pathways or amplify immune responses against cancer
cells [37].

Therapeutic vaccines are typically administered
through injections, either subcutaneously or intramuscu-
larly. The vaccination process may involve multiple doses
over a period of time to optimize the immune response
[38]. In some cases, the vaccines may be combined with
other immunotherapies or conventional treatments like
chemotherapy or radiation therapy to enhance their
effectiveness.

Therapeutic vaccines offer several advantages in the
field of cancer immunotherapy [39]. One major advan-
tage is their potential for personalized medicine. Each
patient’s tumor is unique, and therapeutic vaccines can be
tailored to target specific antigens present in their cancer
cells. This personalized approach can enhance the vac-
cine’s effectiveness by focusing on the individual’s specific
tumor characteristics [40]. Furthermore, therapeutic vac-
cines have the potential to induce immune memory. This
means that even after the initial treatment, the immune
system may retain the ability to recognize and respond to
cancer cells if they reappear. This immune memory could
provide long-term protection against cancer recurrence,
offering a durable and sustained therapeutic effect [38].
Additionally, therapeutic vaccines are generally well-tol-
erated with manageable side effects. They do not typically
cause the severe adverse reactions associated with tradi-
tional cancer treatments such as chemotherapy or radia-
tion therapy [41]. This makes therapeutic vaccines an
attractive option for patients who are unable to tolerate
or have completed standard treatments and are seeking
alternative therapies [38]. However, challenges remain
in the development and implementation of therapeutic
vaccines. One hurdle is identifying the most appropri-
ate tumor antigens to target, as cancer cells can have a
complex and heterogeneous antigen profile [37]. Addi-
tionally, tumors employ various mechanisms to evade
immune detection and suppress the immune response,
which can limit the effectiveness of therapeutic vaccines
[36]. Overcoming these immunosuppressive mechanisms
is an active area of research to improve the efficacy of
therapeutic vaccines. Therapeutic vaccines hold great
promise in harnessing the power of the immune system
to target and eliminate cancer cells [35]. Their personal-
ized nature, potential for immune memory, and relatively
favorable side effect profile make them a compelling ave-
nue for cancer treatment. As research advances and our
understanding of the immune response to cancer deep-
ens, therapeutic vaccines are likely to play an increasingly
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important role in the broader landscape of cancer immu-
notherapy [38].

Adoptive cell transfer

Adoptive cell transfer is a cancer immunotherapy
approach that involves transferring immune cells, such
as TILs or genetically modified T cells, into the patient
[42]. The process begins by isolating immune cells from
the patient’s tumor, which often contains TILs that have
already recognized the cancer cells [43]. These TILs are
then expanded and activated in the laboratory to enhance
their anti-tumor capabilities. In some cases, genetic
modifications may be made to these cells to improve their
effectiveness or to introduce specific receptors that rec-
ognize tumor antigens [44]. Once the cells have been pre-
pared, they are infused back into the patient, where they
can seek out and attack cancer cells more effectively than
the patient’s own immune system alone [45]. By transfer-
ring these highly specialized immune cells, adoptive cell
transfer aims to bolster the host’s anti-tumor immunity
and modify the tumor microenvironment [46]. The trans-
ferred cells can infiltrate the tumor, recognize cancer cells
more efficiently, and mount a targeted immune response,
leading to tumor regression. Additionally, the presence
of these activated immune cells can influence the tumor
microenvironment by promoting immune cell infiltration
and altering the balance of immune cell types within the
tumor, creating a more hostile environment for cancer
cells [47].

Adoptive cell transfer holds promise as a powerful
tool in cancer treatment, harnessing the potential of the
immune system to fight against cancer. Through adop-
tive cell transfer, the immune cells that are transferred
into the patient are specifically selected and engineered
to recognize and target cancer cells [48]. This approach
can overcome some of the limitations of the patient’s
own immune system, which may not have been able to
effectively recognize or eliminate the cancer cells on its
own. One example of adoptive cell transfer is CAR-T cell
therapy, where T cells are genetically modified to express
chimeric antigen receptors (CARs) on their surface [49].
These CARs are designed to recognize specific tumor
antigens, enabling the T cells to specifically target cancer
cells [50]. Once infused into the patient, these engineered
CAR-T cells can multiply and persist in the body, contin-
uously searching for and attacking cancer cells. Another
example is the use of TILs, which are immune cells that
have naturally infiltrated the tumor [49]. TILs are iso-
lated from the tumor, expanded in the laboratory, and
then reinfused back into the patient. These TILs, already
primed to recognize cancer cells, can exert a potent anti-
tumor immune response [48]. By transferring a large
number of activated TILs, the immune response against
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the tumor is enhanced, leading to tumor regression.
Adoptive cell transfer not only enhances the host’s anti-
tumor immunity but also has the potential to modify the
tumor microenvironment [50]. The transferred immune
cells can secrete cytokines and other signaling molecules
that can recruit additional immune cells to the tumor site
[49]. This immune cell infiltration can lead to changes in
the tumor microenvironment, such as increased presence
of effector immune cells and reduced suppressive factors.
These modifications create a more immune-favorable
environment, allowing for better immune surveillance
and targeting of the cancer cells [45]. Adoptive cell trans-
fer is a promising cancer immunotherapy that leverages
the power of engineered or expanded immune cells to
enhance the host’s immune response against cancer [44].
By specifically targeting cancer cells and modifying the
tumor microenvironment, adoptive cell transfer holds
great potential in improving outcomes for patients with
various types of cancer. Ongoing research and advance-
ments in this field are continually refining and expanding
the applications of adoptive cell transfer in cancer treat-
ment [48].

Basic mRNA vaccine pharmacology

The translation of protein-encoding DNA into mRNA is
the first step in the synthesis of proteins by ribosomes
in the cytoplasm. Figure 1-A illustrates the process of
adjusting mRNA medicine dosage pharmacokinetics
through the manipulation of crucial structural compo-
nents in IVT mRNA. By altering elements such as the
cap structure, untranslated regions (UTRs), and polyade-
nylated (poly(A)) tails, researchers can effectively control
and optimize the expression duration and kinetic profile
of the protein product. This approach involves modulat-
ing the interaction of eukaryotic translation initiation
factor 4E (eIF4E) with the mRNA cap, leveraging the
internal ribosome entry site (IRES) for alternative trans-
lation initiation, and adjusting the open reading frame
(ORF) to fine-tune protein production. As a result, this
method offers a promising avenue for the development
of personalized mRNA medicine with enhanced efficacy
and reduced side effects.

Both non-replicating and virally produced, self-
amplifying RNA are now being investigated as vaccine
candidates: non-replicating RNA and self-amplifying
RNA. The antigen of interest and the 5" and 3’ UTRs are
encoded by conventional mRNA-based vaccines, whereas
self-amplifying RNAs encode not only the antigen of
interest but also the viral replication machinery, which
allows for intracellular RNA amplification and abundant
protein expression. RNA polymerase (T7, T3, or Sp6) is
used to transcribe the linear DNA template into mRNA,
which is then used to transcribe the mRNA in vitro. The
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Fig. 1 A Adjusting mRNA Medicine Dosage Pharmacokinetics. a) Crucial structural components of in vitro transcribed (IVT) mRNA and approaches
for their alterations. b) Based on the individual or combined use of these elements (such as modification of caps, UTRs, or poly(A) tails), the protein
product’s expression duration and kinetic profile can be controlled and optimized. elF4E represents eukaryotic translation initiation factor 4E;

IRES refers to the internal ribosome entry site; and ORF denotes open reading frame. Reprinted from [51] with permission from Springer Nature. B
Fundamentals of MRNA-based antigen pharmacology. a) A linear DNA plasmid containing the antigen-encoding sequence is employed for in vitro
transcription. The transcribed mRNA consists of the cap, 5" and 3" UTRs, the open reading frame (ORF), and the poly(A) tail, which influence

the mRNA's translational activity and stability once introduced into cells. b) Step 1: A portion of the foreign mRNA avoids degradation by common
RNases and is taken up by cell-specific mechanisms (such as macropinocytosis in immature dendritic cells) into endosomal pathways. Step 2:

The release of mRNA into the cytoplasm is not entirely understood. Step 3: Host cell protein synthesis machinery translates the mRNA. mRNA
translation’s rate-limiting step involves eukaryotic elF4E binding to the cap structure. The formation of circular structures and active translation result
from mRNA binding to ribosomes, elF4E, elF4G, and poly(A)-binding protein. Step 4: Exonucleases catalyze the termination of translation via mRNA
degradation. Decapping enzymes D CP1, DCP2, and DCPS hydrolyze the cap, followed by the digestion of residual mRNA by 5'-3" exoribonuclease
1 (XRN1). Degradation might be delayed if mRNA is silenced and located within cytoplasmic processing bodies. Alternatively, exosomal
endonucleolytic cleavage of mRNA may take place. Various mechanisms control the breakdown of aberrant mRNA (such as mRNA with a premature
stop codon). Step 5: The translated protein undergoes post-translational modifications based on the host cell’s characteristics. The synthesized
protein can then function within the cell it was produced in. Step 6: Alternatively, the protein is secreted and can function through autocrine,
paracrine, or endocrine pathways. Step 7: For immunotherapeutic mRNA application, the protein must be broken down into antigenic peptide
epitopes. These peptides are loaded onto major MHC molecules, which present the antigens to immune effector cells. Proteasomes degrade
cytoplasmic proteins, which are then transported to the endoplasmic reticulum and loaded onto MHC class | molecules for presentation

to CD8+cytotoxic T lymphocytes. Almost all cells express MHC class | molecules. Step 8: In antigen-presenting cells, the protein must be directed
to MHC class Il loading compartments to obtain T cell assistance for a stronger, lasting immune response. This can be achieved by incorporating
routing signal-encoding sequences into the mRNA. Additionally, DCs can process and load exogenous antigens onto MHC class | molecules
through a mechanism called cross-priming. Step 9: Antigens derived from the protein can be displayed on the cell surface by both MHC class |

and MHC class Il molecules, enabling the immune system to recognize and respond to them accordingly. Reprinted from [51] with permission
from Springer Nature

final product should include an open reading frame that
encodes the protein of interest, flanking UTRs, a 5' cap,
and a poly(A) tail, if possible. As a result, the mRNA has
been made to look and behave like fully processed mature
mRNA molecules seen in the cytoplasm of eukaryotic
cells in the natural world. Unprocessed mRNA is rapidly
destroyed by extracellular RNases and does not undergo
effective internalization. The result has been the develop-
ment of a large number of different in vitro and in vivo
transfection agents that aid in the absorption of mRNA
into cells while also protecting it from destruction.

Once the mRNA reaches the cytosol, the cellular trans-
lation machinery begins to generate protein, which is
then subjected to post-translational modifications, cul-
minating in a correctly folded and completely function-
ing protein. As previously stated, this aspect of mRNA
pharmacology is especially helpful for vaccinations and
protein replacement treatments that need the delivery
of cytosolic or transmembrane proteins to the appro-
priate cellular compartments in order to be effective.
In the end, IVT mRNA is destroyed by natural physi-
ological processes, lowering the risk of toxicity from
metabolites. Figure 1-B illustrates the fundamentals of
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mRNA-based antigen pharmacology. The process begins
with in vitro transcription of a linear DNA plasmid con-
taining the antigen-encoding sequence, producing an
mRNA molecule with various components influencing
its translational activity and stability. The foreign mRNA
then enters cells through specific mechanisms, such
as macropinocytosis in immature dendritic cells, and
undergoes several steps, including cytoplasmic release,
translation by host cell machinery, and degradation. The
rate-limiting step of mRNA translation involves eukary-
otic translation initiation factors (eIF4E and elF4G) and
poly(A)-binding protein, which facilitate the formation of
circular structures for active translation.

Following translation, the synthesized protein under-
goes post-translational modifications and may either
function within the producing cell or be secreted to act
through autocrine, paracrine, or endocrine pathways. In
immunotherapeutic applications, the protein is degraded
into antigenic peptide epitopes and loaded onto major
MHC molecules to elicit immune responses. MHC class I
and class II molecules present antigens to immune effec-
tor cells, with class II molecules typically requiring addi-
tional routing signals encoded into the mRNA. Dendritic
cells (DCs) play a crucial role in this process by process-
ing exogenous antigens and cross-priming. Ultimately,
the immune system recognizes and responds to the anti-
gens presented on the cell surface by both MHC class I
and II molecules.

Recent advances in mRNA vaccine technology

In recent years, a number of mRNA vaccine platforms
have been generated and confirmed in investigations
of immunogenicity and effectiveness [53]. Through the
use of genetic engineering, synthesized mRNA is more
readily translated than ever before [54]. Table 1 provides
a summary of the different types of mRNA cancer vac-
cines and mentioned several categories of mRNA cancer
vaccines. There is a wide array of mRNA cancer vaccines
under development, each with distinct mechanisms of
action and unique advantages and disadvantages [55].
These vaccines range from DC mRNA cancer vaccines,
which involve the ex vivo loading of patient-derived DCs,
to direct injection of mRNA into the tumor or surround-
ing tissue [56]. Some mRNA cancer vaccines encode for
specific tumor-associated antigens or neoantigens, while
others utilize self-amplifying RNA vectors or lipid nano-
particles for improved delivery. Other strategies include
combining mRNA with adjuvants, immune checkpoint
inhibitors, gene editing tools, or novel delivery systems
to enhance the immune response against cancer cells
[11]. Despite the diversity of approaches, mRNA can-
cer vaccines generally face challenges in terms of stabil-
ity, immunogenicity, and manufacturing complexity.
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Additionally, while many of these vaccines have shown
promise in preclinical studies, their efficacy in early clini-
cal trials remains limited. Nonetheless, these innovative
treatments hold great potential in the fight against cancer
and warrant further research and development.

The development of highly effective and non-toxic
RNA carriers has allowed for the expression of antigens
in vivo to be extended in certain circumstances [75].
Novel adjuvants are used in certain vaccination formula-
tions, whereas others produce robust immune responses
even in the absence of well-established adjuvants [76].
The significant advancements in these areas of mRNA
engineering, as well as their implications for vaccination
effectiveness, are summarized in the following section
[53]. Figure 2 highlights the essential breakthroughs and
progress in mRNA-based treatment development, which
can be divided into three main phases.

Optimization of mRNA translation and stability

Stability and translation of mRNA are significantly influ-
enced by the 5' and 3' UTRs that surround the coding
sequence, both of which are key issues for vaccine devel-
opment [77]. Regulation sequences may be obtained
from viral or Eukaryotic genes, and they have been
shown to significantly prolong the half-life and boost the
production of therapeutic mRNAs [78]. A 5' cap struc-
ture is necessary for effective protein synthesis from
mRNA [79]. A 5' cap structure is required to successfully
generate protein from mRNA [79]. Depending on the
application, 5' caps may be inserted during or after tran-
scription using a vaccinia virus capping enzyme or syn-
thetic cap or anti-reverse cap analogues [80]. To ensure
that mRNA is translated and stable, a suitable length
of poly(A) must be added to it, either directly from the
encoding DNA template or by using poly(A) polymer-
ase [81]. The codons utilized also affect protein transla-
tion [82]. It is typical practice to replace unusual codons
with common synonymous codons that have abundant
cognate tRNA in the cytosol to increase protein synthe-
sis from mRNA, although this paradigm has been ques-
tioned [83]. Enriching G:C composition in sequences has
been shown to increase steady-state mRNA levels in vitro
and protein expression in vivo [84]. While it is possible
to positively modulate protein expression by modifying
codon composition or nucleosides, it is also possible to
negatively modulate mRNA secondary structure, transla-
tion kinetics and accuracy, simultaneous protein folding
kinetics and accuracy, and expression of cryptic T cell
epitopes present in alternative reading frames30 [85].
These factors may all affect the magnitude and specificity
of the immune response [86]. Figure 3 presents a com-
prehensive summary of the PERSIST-seq approach, as
well as key findings on ribosome load for various mRNA
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Fig. 2 Essential breakthroughs and progress in mRNA-based treatment development. The creation of mRNA-based treatments can be split

into three primary phases. Phase 1 (1961-1990) involves mRNA discovery, in vitro synthesis, and the construction of nucleic acid delivery systems,
including mRNA identification, protamine uses for RNA delivery, in vitro mRNA translation, mRNA cap discovery, liposome-trapped mRNA

delivery, commercialization of cap analogs and T7 RNA polymerases, cationic lipid-mediated mRNA delivery, and in vivo translation of naked

mRNA through direct injection. Phase 2 (1990-2019) encompasses the accumulation of knowledge through numerous attempts and diverse
applications, particularly protein replacement therapies and vaccination strategies for cancer and infectious diseases, such as MRNA-based cancer
immunotherapy, founding of an mRNA-based company, 3'-UTR regulation of mRNA localization, antitumor T cell response triggered by mRNA,

first clinical trial with mRNA using ex vivo transfected DCs, mRNA-based immunotherapy for human cancer, preclinical study with intranodally
injected DC-targeted mRNA, protective mRNA vaccinations for influenza and respiratory syncytial virus, CRISPR-Cas9 mRNA for gene editing,

and personalized mMRNA cancer vaccines for clinical trials. Phase 3 (2019-present) sees mRNA-based therapeutics emerging as a disruptive
technology, providing powerful and versatile tools for treating diseases, including clinical trials of mRNA vaccines for cancer and infectious diseases,
as well as the emergency use of MRNA-1273 and BNT162b for the SARS-CoV-2 pandemic. Reprinted from [52] with permission from Springer Nature

designs. The process begins with a schematic represen-
tation of mRNA optimization (Fig. 3-a), where 5" and 3'
UTRs are combined with Eterna-based and algorithmi-
cally generated coding sequences. All mRNA sequences
are experimentally evaluated for in-solution and in-cell
stability, along with ribosome load, using unique 6-9 nt
barcodes for tag counting through short-read sequenc-
ing. The experimental layout (Fig. 3-b) demonstrates the
parallel assessment of in-solution and in-cell stability and
ribosome load, with mRNAs synthesized and prepared
in a pooled format before HEK293T cell transfection or
in-solution degradation exposure. Polysome traces from
a 233-mRNA pool (Fig. 3-c) show the effect of UTR vari-
ations on ribosome load, revealing greater variability in
average load per construct for 5" UTR variations (Fig. 3-
d). The ribosome load formula is provided alongside box
hinges and whiskers illustrating data distribution. Heat-
maps (Fig. 3-e) display polysome profiles for the top,
middle, and bottom five mRNA designs across design

categories, while the SARS-CoV-2 5' UTR secondary
structure model (Fig. 3-f) highlights mutations and sub-
stitutions. Finally, heatmaps of SARS-CoV-2 5' UTR vari-
ant polysome profiles (Fig. 3-g) are sorted by ribosome
load, offering valuable insight into the impact of design
optimization on ribosome efficiency.

Modulation of immunogenicity

Exogenous mRNA may be recognized by the innate
immune system at several levels, including the cell sur-
face, the endosome, and the cytosol [88]; as a result, the
innate immune system is extremely immunostimulatory
[88]. This characteristic of mRNA might either be help-
ful or detrimental to therapeutic endeavors, depending
on the circumstances [89]. Because it may increase DC
maturation, which in turn enhances T and B cell immu-
nological responses, it has the potential to be effective
as an adjuvant for vaccination [90]. On the other hand,
the reduction of antigen expression could be a collateral
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Fig. 3 PERSIST-seq summary and representative ribosome load findings. a Schematic representation of the mRNA optimization process. 5'

and 3" UTRs sourced from literature and rational design were merged with Eterna and algorithmically created coding sequences. All sequences
underwent simultaneous experimental evaluation for in-solution and in-cell stability, as well as ribosome load. Unique 6-9 nt barcodes in the 3’
UTR of the mRNA design enabled tag counting via short-read sequencing. b Experimental layout for assessing in-solution and in-cell stability
and ribosome load concurrently. mRNAs were in vitro transcribed, 5’ capped, and polyadenylated in a pooled format prior to HEK293T cell
transfection or in-solution degradation exposure. Cells were then collected for sucrose gradient fractionation or in-cell degradation examination.
¢ Polysome trace from a 233-mRNA pool transfected into HEK293T cells. d 5" UTR variations exhibit greater variability in average ribosome load
per construct, as determined by polysome sequencing. The ribosome load formula is provided. Box hinges display 25% quantile, median, and 75%
quantile from left to right, while whiskers indicate lower or upper hinge + 1.5 X interquartile range. e Heatmaps of polysome profiles for top,
middle, and bottom five mRNA designs (based on ribosome load) from each design category. f SARS-CoV-2 5" UTR secondary structure model,
with highlighted mutations and substitutions. g Heatmaps of SARS-CoV-2 5" UTR variant polysome profiles, sorted by ribosome load. Reprinted

from [87] with permission from Springer Nature

consequence of the innate immune system detecting
mRNA [91]. In recent years, more clarity has been given
to the seemingly contradicting effects of innate immune
sensing on distinct mRNA vaccination types [91]; none-
theless, there is still a great deal of work to be done in this
area.

Purifying IVT mRNA, adding various nucleosides, and
complexing the mRNA with other carrier molecules are
all possible ways to modify the immunostimulatory pro-
file of the mRNA, as was discovered in recent study [65].
It is possible for enzymatically generated mRNA sam-
ples to include double-stranded RNA contaminants, also
known as dsRNA [92]. These contaminants are by-prod-
ucts of the IVT process [65]. Pathogen-associated molec-
ular patterns, or pathogen-associated molecular patterns
(PAMPs), such as double-stranded RNA (dsRNA), mimic
viral genomes and replication intermediates [93]. Pat-
tern recognition receptors, which are located in a variety
of different cellular sites, are responsible for detecting
PAMPs [94]. In response to the detection of [IVT mRNA
that is contaminated with dsRNA, both protein kinase
R (also known as EIF2AK2) and 2'-5'-oligoadenylate
synthetase (OAS) are activated [95]. This results in the
inhibition of translation as well as the destruction of cel-
lular mRNA and ribosomal RNA [96]. Some researchers
demonstrated, with the use of chromatographic methods
such as reverse-phase fast protein liquid chromatogra-
phy (FPLC) or high-performance liquid chromatography,
that contaminating dsRNA could be efficiently removed
from IVT mRNA [97]. It has been proven that purifica-
tion by FPLC may significantly increase the amount of
protein that can be synthesized from IVT mRNA in pri-
mary human DCs by as much as a factor of 1,000 [98].
Therefore, it would seem that proper purification of IVT
mRNA is necessary for adequate protein (immunogen)
production in DCs in order to avoid unnecessary acti-
vation of the innate immune system [99]. When exog-
enous single-stranded mRNA molecules are introduced
into cells, they function as a PAMP in a manner similar

to that of dsRNA contaminants [100]. Endosomal sen-
sors known as Toll-like receptor 7 (TLR7) and TLR8
are responsible for the generation of type I interferon
when they detect single-stranded oligoribonucleotides
and the products of their breakdown [101]. Importantly,
it was revealed that type I interferon signaling48 may
be inhibited by integrating naturally occurring chemi-
cally modified nucleosides such as pseudouridine and
1-methylpseudouridine [87]. This was a significant find-
ing. Nucleoside modification is another factor that may,
to a certain degree, impede dsRNA species recognition.
According to the findings of some researchers, the trans-
lation efficiency of nucleoside-modified mRNA is much
higher than that of unmodified mRNA both in vitro, par-
ticularly in primary DCs, and in vivo in mice [102]. It is
important to highlight that DCs were only able to create
the highest quantities of protein when the mRNA had
been FPLC-purified as well as nucleoside-modified [103].
Recent research into the mechanisms behind innate
immune sensing and methods for mitigating the poten-
tially detrimental effects it may have may be responsible,
at least in part, for the surge in interest in mRNA-based
immunizations and protein replacement therapies [104].
According to the findings of a study that was car-
ried out by some researchers, sequence-optimized,
HPLC-purified, unmodified mRNA produced greater
amounts of protein in HeLa cells and in mice than its
nucleoside-modified counterpart did [105]. In addi-
tion, some researchers demonstrated that nucleo-
side-modified mRNA leads to far less robust protein
synthesis than unmodified, non-HPLC-purified mRNA
does in HeLa cells, yet both types of mRNA lead to a
similar quantity of protein creation in mice [106]. Dif-
ferences in RNA sequence optimization, the stringency
of mRNA purification to exclude dsRNA contami-
nants, and the degree of innate immune sensing in the
targeted cell types may be to blame for the unresolved
discrepancies between the findings obtained by some
researchers [107]. It is possible that the inclusion of
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an adjuvant, which increases the immunostimulatory
properties of mRNA, might improve the efficiency of
some kinds of mRNA vaccination [108]. Some of these
approaches make use of traditional adjuvants, while
others are considered to be more cutting-edge and lev-
erage on the immunogenicity of mRNA or its potential
to encode immune-modulatory proteins [109]. It has
been shown that the incorporation of self-replicating
RNA vaccines into cationic nanoemulsions, using as
their foundation the FDA-approved MF59 (Novartis)
adjuvant, results in increased immunogenicity and
effectiveness [110]. CD70, CD40 ligand (CD40L), and
constitutively active TLR4 are the three immune acti-
vator proteins that are combined in the TriMix tech-
nique, a powerful adjuvant that mixes the mRNAs
that code for them [111]. TriMix mRNA was proven
to be more immunogenic than unmodified, unpuri-
fied mRNA in several cancer vaccination tests, and
this effect was most clearly associated to improved
DC maturation and cytotoxic T lymphocyte (CTL)
responses [112]. It has been proven that the kind of
mRNA carrier utilized and the size of the mRNA-
carrier complex both have an effect on the cytokine
profile that is produced as a result of the injection of
mRNA [113]. For example, the carrier is what provides
the adjuvant effect for the RNActive (CureVac AG)
immunization platform [113]. RNA complexed with
protamine, which is a polycationic peptide, works as
an adjuvant by increasing TLR7 signaling and is uti-
lized to make the antigen [114]. The naked, sequence-
optimized mRNA is used to produce the antigen [114].
Positive immune responses have been shown in a
number of different preclinical animal investigations
that used this vaccine formulation to protect against
viral diseases as well as cancer [115]. A newly pub-
lished piece of study has provided mechanistic insight
into the adjuvanticity of RNActive vaccines in mice
in vivo and human cells in vitro, respectively [116].
The intradermal vaccination led to a high activation

(See figure on next page.)
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of TLR7 in both mice and humans, as well as TLRS in
humans[117]. This immunization also led to the pro-
duction of type I interferon, as well as pro-inflamma-
tory cytokines and chemokines [118]. In a similar vein,
it was shown that RNAdjuvant (CureVac AG), which is
an unmodified, single-stranded RNA that is stabilized
by a cationic carrier peptide, had adjuvant effect in
the context of vaccines that do not include messenger
RNA [119].

Progress in mRNA vaccine delivery

In order to achieve therapeutic relevance, effective
mRNA distribution in living organisms is required [120].
It is necessary for the mRNA to pass through the lipid
barrier that separates the cytoplasm from the rest of the
cell in order for the translation of exogenous mRNA into
a functional protein to take place [121]. The mechanisms
by which cells appear to take up mRNA appear to dif-
fer depending on the lineage of the cells, and the phys-
icochemical properties of mRNA complexes can have a
significant impact on the transport of the complexes into
cells as well as their subsequent location within tissues
[122]. There have, up until this point, been documented
two basic strategies for the administration of mRNA vac-
cines [123]. Direct parenteral injection of mRNA with
or without a carrier, followed by first ex vivo loading of
mRNA into DCs and then subsequent re-infusion of
the transfected cells [55]. Figure 4 illustrates a variety of
delivery methods and carrier molecules for mRNA vac-
cines, each with distinct particulate complex diameters.
Naked mRNA (Fig. 4-a) lacks a carrier or delivery system,
while in vivo electroporation (Fig. 4-b) uses an electric
field to facilitate cellular uptake of naked mRNA. Prota-
mine-complexed mRNA (Fig. 4-c) combines mRNA with
the cationic peptide protamine for increased stability
and uptake. Cationic nanoemulsion (Fig. 4-d) associates
mRNA with a positively charged oil-in-water emulsion,
while dendrimer and PEG-lipid complexes (Fig. 4-e) pro-
vide improved delivery and reduced immunogenicity.

Fig. 4 Various delivery methods and carrier molecules for mRNA vaccines, along with the typical diameters of the particulate complexes: a Naked
mRNA: mRNA without any carrier or delivery system. b) Naked mRNA with in vivo electroporation: mRNA is introduced into cells by applying

an electric field to facilitate uptake. ¢ Protamine-complexed mRNA: mRNA is complexed with protamine, a cationic peptide, to improve stability
and cellular uptake. d mRNA in cationic nanoemulsion: mRNA is associated with a positively charged oil-in-water cationic nanoemulsion to enhance
delivery. @ mRNA with dendrimer and PEG-lipid: mRNA is associated with a chemically modified dendrimer and complexed with polyethylene
glycol (PEG)-lipid for improved delivery and reduced immunogenicity. f Protamine-complexed mRNA in a PEG-lipid nanoparticle: mRNA

is complexed with protamine and encapsulated in a PEG-lipid nanoparticle for enhanced stability and delivery. g mRNA with polyethylenimine
(PEN: mRNA is associated with a cationic polymer like PEl to improve delivery and transfection efficiency. h mRNA with PEI and lipid component:
mRNA is associated with PEI and a lipid component for improved delivery and reduced immunogenicity. i mRNA in a polysaccharide particle or gel:
mRNA is associated with a polysaccharide, such as chitosan, to form a particle or gel for improved stability and delivery. j mRNA in cationic lipid
nanoparticle: mRNA is encapsulated in a cationic lipid nanoparticle (e.g., DOTAP or DOPE lipids) for enhanced stability and cellular uptake. k mRNA
complexed with cationic lipids and cholesterol: mRNA is complexed with cationic lipids and cholesterol for improved stability and delivery. | mRNA
complexed with cationic lipids, cholesterol, and PEG-lipid: mRNA is complexed with cationic lipids, cholesterol, and PEG-lipid for enhanced stability,
delivery, and reduced immunogenicity. Reprinted from [126] with permission from Springer Nature
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Fig. 4 (Seelegend on previous page.)

Protamine-complexed mRNA in PEG-lipid nanoparticles  Polysaccharide particles or gels (Fig. 4-i) use materi-
(Fig. 4-f) offer enhanced stability and delivery. Polyeth-  als like chitosan for stability and delivery. Cationic lipid
ylenimine (PEI) (Fig. 4-g) and PEI with lipid component  nanoparticles (Fig. 4-j), cationic lipids and cholesterol
(Fig. 4-h) improve delivery and transfection efficiency.  complexes (Fig. 4-k), and cationic lipids, cholesterol, and
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Fig. 5 The impact of different intracellular delivery methods on in vitro and in vivo functionality. a In vitro colony-forming assays are used

to compare the differentiation potential of electroporated and squeezed human CD34 +HSCs into CFU-GM and BFU-E colonies over a 2-week
period. b The viability of mouse T cells after undergoing squeeze and electroporation is displayed. c and d The proportion of CD3 +mouse T

cells expressing PD-1 or CD69 activation after squeeze, electroporation, or no treatment (control) is presented over time. e A diagram illustrates
the experimental method for evaluating the effects of delivery methods on T cell activation. f and g On day 4, after re-exposure to OVA, CD45.2+/
CD8+/IFN-y+T cells were stained intracellularly for IFN-y. Reprinted from [127] with permission from the Proceedings of the National Academy

of Sciences

PEG-lipid complexes (Fig. 4-1) all serve to optimize sta-
bility, delivery, and reduced immunogenicity. Ex vivo DC
loading is an expensive and time-consuming way of vac-
cination that enables precise control of the cellular target,
transfection effectiveness, and other cellular properties
[124]. Figure 5 demonstrates the impact of different intra-
cellular delivery methods, specifically electroporation
and cell squeezing, on the in vitro and in vivo functional-
ity of cells. In an in vitro colony-forming assay (Fig. 5-A),
the differentiation potential of human CD34+ hemat-
opoietic stem cells (HSCs) subjected to these methods
was assessed by comparing the growth of CFU-GM and
BFU-E colonies over a two-week period. Moreover, the
viability of mouse T cells following both delivery meth-
ods was analyzed (Fig. 5-B). In panels Fig. 5-C and D,
the proportion of CD3+mouse T cells expressing PD-1
or CD69 activation markers after electroporation, cell
squeezing, or no treatment (control) was monitored over
time. To evaluate the effects of these delivery methods
on T cell activation, an experimental method is illus-
trated in panel Fig. 5-E. On day 4 post-re-exposure to
the OVA antigen, CD45.24/CD8+/IFN-y+T cells were

stained intracellularly for IFN-y, as shown in panels Fig-F
and G. Overall, this figure highlights the potential con-
sequences of different intracellular delivery methods
on cell functionality and responsiveness. However, this
method has the advantage of being able to manage these
cellular factors [124]. Even though considerable progress
has been made in the field, cell-type-specific delivery
that is accurate and efficient cannot yet be achieved with
direct injection of mRNA [125]. Table 2 highlights the
various characteristics of mRNA cancer vaccine deliv-
ery methods. In vivo injection of naked mRNA involves
direct injection into the patient, with the antigen being
expressed by host cells.

Ex vivo loading of DCs

DCs are unparalleled in their ability to deliver antigens to
T cells [166]. Adaptive immunity is initiated when APCs
take in and proteolytically digest antigens, then present
them on major histocompatibility complexes (MHCs) of
the class I and class II kind to helper T cells (CD8+and
CD4+T cells) [167]. The DCs’ ability to transmit intact
antigen to B cells and so stimulate an antibody response
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is another important function [168]. DCs also respond
well to mRNA transfection [168].

Considering these characteristics, DCs are a poten-
tially effective in vivo and ex vivo target for mRNA vac-
cine transfection [169]. While it has been established that
DCs ingest naked mRNA through a number of endocytic
mechanisms, electroporation is routinely employed to
boost transfection effectiveness ex vivo by forcing mRNA
molecules through membrane pores generated by a high-
voltage pulse and into the cytoplasm [170]. This method
of mRNA administration has become widely used due
to its high transfection effectiveness and lack of a carrier
molecule [171]. DCs are re-infused into a patient under-
going autologous immunization after being pre-activated
with mRNA in vitro [172]. Because they induce a cell-
mediated immune response, most DC vaccines that have
been loaded ex vivo have been used to treat cancer [172].

Injection of naked mRNA in vivo

In vivo vaccines using naked mRNA have been shown
to be effective, particularly when administered by intra-
dermal or intranodal injections, both of which preferen-
tially target antigen-presenting cells [173]. Recent study
has revealed that immunizing patient’s numerous times
with unmodified mRNA encoding tumor-associated neo-
antigens boosts progression-free survival and generates
robust T cell responses [174]. Some researchers were the
first to use tailored cancer vaccines including neoepitope
mRNA [175].

High-throughput sequencing is used to identify each
somatic mutation in a patient’s tumor sample [176]. The
term "mutanome” is used to describe this phenomenon
[177]. In addition to allowing for the rational construc-
tion of neoepitope cancer vaccines on an individual
basis, this approach has the added benefit of focusing
on non-self-antigen specificities that central tolerance
mechanisms shouldn’t destroy [178]. Recent advances
have established proof of concept in the following fields:
Scientists found that a sizable fraction of non-synony-
mous cancer mutations were immunogenic when deliv-
ered by messenger RNA, and that CD4+T cells were
the preeminent population capable of recognizing these
abnormalities [179]. Using this information, they devised
a computational method for predicting vaccine immuno-
gens that are confined to major MHC class II [180].

Tumor growth was inhibited in animal models of B16-
F10 melanoma and CT26 colon cancer when mRNA
vaccines encoding these neoepitopes were administered
[58]. Some researchers recently conducted a clinical trial
in which 13 patients with metastatic melanoma were
given customized neoepitope-based mRNA vaccinations
[30]. The high rate of somatic mutations and subsequent
neoepitopes in melanoma makes it a distinct subtype of
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the malignancy [181]. They immunized people against
10 different neoepitopes by injecting naked mRNA
into their noses [182]. After several months of follow-
up, a low incidence of metastatic disease was seen, and
CD4+T cell responses were found against the bulk of the
neoepitopes [183]. It is worth noting that a study with
a similar methodology, but using synthetic peptides as
the immunogens instead of mRNA, also yielded similar
results [183]. All of these recent clinical trials support the
idea that the personalized vaccine technique may have
some application [184].

Physical delivery methods in vivo

On occasion, the breaching of the cell membrane and
the enhancement of the efficient uptake of mRNA in vivo
have been accomplished through the use of physical
methods [185]. In order to express mRNA in tissues that
is complexed with gold particles, microprojectile technol-
ogy, also known as a "gene gun," has been utilized [186].
The gene gun has been shown to be an efficient method of
RNA delivery and immunization in mouse models; how-
ever, there is a dearth of data about the gene gun’s useful-
ness in either large animals or people at this time [187].
The immunogenicity of a vaccination that was based on
non-replicating mRNA was not improved by in vivo elec-
troporation [188]; nevertheless, one research found that
the absorption of therapeutic RNA was improved [188].
When adopting physical methods, there is a possibility
of increased cell death and decreased access to the cells
or tissues of interest [189]. However, lipid or polymer-
based nanoparticles have recently acquired favor as effec-
tive and adaptable delivery vehicles [190]. This trend is
expected to continue in the near future.

Protamine

In spite of the fact that protamine, a cationic peptide, has
been demonstrated to protect mRNA from degradation
by serum RNases, protamine-complexed mRNA alone
demonstrated limited protein expression and efficacy in
a cancer vaccine model [191]. This could have been the
result of an overly tight association between protamine
and mRNA [191]. This issue was the impetus behind
the development of the RNActive vaccination platform,
which employs RNA that has been modified with prota-
mine purely for the purpose of acting as an immune acti-
vator and not as an expression vector [192].

Cationic lipid and polymer-based delivery

Although there are commercially available highly effi-
cient mRNA transfection reagents that are based on
cationic lipids or polymers and work effectively in a large
number of primary cells and cancer cell lines, these rea-
gents frequently exhibit either limited efficacy in vivo



Chehelgerdi and Chehelgerdi Molecular Cancer ~ (2023) 22:106

or a high level of toxicity [56]. TransIT-mRNA (manu-
factured by Mirus Bio LLC) and Lipofectamine are two
examples (Invitrogen) [193]. In a number of recent stud-
ies, the tremendous progress that has been made in the
development of complexing reagents that are similarly
designed for use in vivo that is both safe and successful
has been discussed [194]. In recent years, dendrimers
and other cationic lipids and polymers have emerged as
preferred techniques for the delivery of mRNA [133]. For
almost a decade, researchers have used small interfering
RNA (siRNA) as a delivery vehicle in the mRNA region,
and their efforts have undoubtedly paid off [195].mRNA
distribution using lipid nanoparticles is quickly becom-
ing one of the most promising and widely used technolo-
gies of LNPs [196]. LNPs are composed of four primary
components [197]: an ionizable cationic lipid that pro-
motes self-assembly into virus-sized (100 nm) particles
and allows endosomal release of mRNA to the cyto-
plasm [197]; lipid-linked polyethylene glycol (PEG) that
increases the half-life of formulations [198]; cholesterol,
which acts as a stabilizing agent; and naturally occur-
ring phospholipids that support lipid bilayer structure
[199]. All of these components work together Although
LNPs have been found to be effective instruments for the
in vivo administration of siRNAs in a number of studies,
it was not until recently that it was discovered that they
may also be used to deliver larger RNAs as well as tra-
ditional, non-replicating mRNA21 [199]. This discovery
was made despite the fact that LNPs have been found to
be effective instruments for the in vivo administration of
siRNA. Although it has been demonstrated that intra-
dermal, intramuscular, and subcutaneous administration
can produce prolonged protein expression at the site of
injection, systemically delivered mRNA-LNP complexes
primarily target the liver due to the binding of apolipo-
protein E and the subsequent receptor-mediated uptake
by hepatocytes [200]. This is the case even though these
administration routes have been shown to produce pro-
longed protein expression at the site of injection. Neither
artificial liposomes nor exosomes that occur naturally
have had their processes for mRNA escape into the cyto-
plasm completely deciphered [156]. More research into
this subject area is likely to be very beneficial to the field
of therapeutic RNA delivery.

One strategy to vary the amount of in vivo protein
synthesis as well as its duration is by changing the route
through which mRNA-LNP vaccines are delivered to the
body [201]. In the experiment, the half-life of mRNA-
encoded firefly luciferase was roughly threefold longer
after intradermal injection than after intravenous deliv-
ery, demonstrating that intramuscular and intradermal
delivery of mRNA-LNPs result in more persistent protein
expression than systemic delivery routes [202]. It is likely
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that the rapidity with which mRNA-LNPs are generated
can be advantageous for inducing immune responses
[202]. Recent research has found that high levels of anti-
body titers, as well as B cells from the germinal center
(GC) and TFH cells, are driven by prolonged antigen
availability during vaccination [203]. This process may
have contributed to the efficiency of intramuscular and
intradermally given nucleoside-modified mRNA-LNP
vaccines [203]. Vaccines have been proven to be success-
ful only if they stimulate a specific population of immune
cells termed TFH cells, which are necessary for eliciting
powerful and lasting neutralizing antibody responses,
especially against viruses that escape humoral immunity
[204]. Any advancement in our knowledge of the kinetics
of the GC reaction and the differentiation of the TFH cell
will undoubtedly assist the design of future vaccines.

mRNA cancer vaccines

Cancer vaccines based on messenger RNA have been the
subject of recent, in-depth last investigations [2]. Figure 6
illustrates the process of how mRNA vaccines work to
activate the immune system. When the mRNA vaccine is
introduced into the body, it is taken up by cells through
endocytosis and released from the endosome. Ribosomes
then convert the mRNA into proteins that stimulate the
immune system in two main ways: i) proteasomes break
down the proteins into peptides, which are displayed as
antigens on the cell surface by MHC class I molecules,
subsequently activating CD8+T cells that release per-
forin and granzyme to destroy infected cells; ii) proteins
secreted externally are absorbed by APCs and broken
down into peptides, which are displayed on the cell sur-
face by MHC class II molecules, allowing recognition by
CD4+T cells, which in turn activate cellular immune
responses by producing cytokines and humoral immune
responses by co-activating B cells. Furthermore, single-
stranded RNA and double-stranded RNA in mRNA
vaccines bind to TLR in the endosome, initiating antivi-
ral innate immune responses through the production of
type-1 interferon (IFN-I). This leads to the induction of
numerous IFN-I-stimulated genes involved in antiviral
innate immunity, a phenomenon referred to as the self-
adjuvant effect of sequence-engineered mRNA.

Cancer vaccines and other forms of immunother-
apy represent promising new approaches in the war
against the disease [206]. Tumor-associated antigens,
such as growth-associated factors or antigens that
are unique to malignant cells as a result of somatic
mutation, can be used in the development of cancer
vaccines [207]. Targeting either these neoantigens
or the neoepitopes they are composed of, human
mRNA vaccines have been created [58]. Most cancer
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Fig. 6 In an mRNA vaccine, the mRNA is taken up by cells through endocytosis and subsequently released from the endosome to be converted
into proteins by ribosomes. These proteins can activate the immune system in two primary ways: i) the proteins are broken down by proteasomes
into peptides that are then displayed as antigens on the cell surface by MHC class | molecules, which bind to the TCR and activate CD8+T cells

to destroy infected cells by releasing perforin and granzyme; ii) proteins secreted externally are taken up by APCs and broken down into peptides
that are then displayed on the cell surface by MHC class Il molecules for recognition by CD4+T cells, which can activate both cellular immune
responses by producing cytokines and humoral immune responses by co-activating B cells. Additionally, single-stranded RNA and double-stranded
RNA in mRNA vaccines bind to TLR in the endosome to activate antiviral innate immune responses through the production of type-I interferon
(IFN-1), which leads to the induction of numerous IFN-1-stimulated genes involved in antiviral innate immunity, a process known as the self-adjuvant
effect of sequence-engineered mRNA. Reprinted from [205] with permission from Springer Nature

vaccines are designed for therapeutic use rather than
prevention [2]; they function by eliciting cell-medi-
ated responses (such as CTLs) that can remove or
greatly reduce tumor burden [208]. The earliest
proof-of-concept studies proposing and presenting
evidence for the feasibility of RNA cancer vaccines
were published more than two decades ago [209].
Numerous studies on both animals and humans have
since confirmed that mRNA vaccinations are highly
effective against cancer [2].

Tumor cell-based vaccines

Tumor cell-based vaccines are a type of cancer vaccine
that involves using whole tumor cells to stimulate an
immune response against cancer [210]. These vaccines
are designed to target the unique antigens expressed by
tumor cells, which can elicit an immune response specifi-
cally directed against the cancer cells [211].

Autologous Tumor Cell-Based Vaccines: Autolo-
gous tumor cell-based vaccines are personalized vac-
cines created from the patient’s own tumor cells [210].
A small sample of the patient’s tumor is obtained, and
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tumor cells are isolated and processed in the laboratory
[178]. These tumor cells may be modified or treated to
enhance their immunogenicity and ability to trigger
an immune response [210]. For example, they can be
genetically engineered to express molecules that stim-
ulate the immune system or fused with immune-stim-
ulating substances [212]. The modified tumor cells are
then reintroduced into the patient through vaccination.
The idea behind autologous tumor cell-based vaccines
is to create a vaccine that contains a broad spectrum of
antigens unique to the patient’s tumor [213]. By using
the patient’s own tumor cells, the vaccine aims to acti-
vate the patient’s immune system against the specific
antigens present in their cancer cells, potentially lead-
ing to a targeted immune response against the tumor
[214].

Allogeneic tumor cell-based vaccines are developed
using tumor cells obtained from a donor or cell lines
derived from tumor tissues. These cells are not specific
to the patient receiving the vaccine [213]. Allogeneic vac-
cines may contain a mixture of tumor cell lines from dif-
ferent patients or may be derived from well-characterized
tumor cell lines established in the laboratory. Allogeneic
vaccines offer the advantage of being readily available,
as they can be produced in large quantities and stored
for future use [215]. They can also provide a broader
range of tumor antigens compared to autologous vac-
cines since they may represent a variety of tumor types
and genetic variations [212]. However, there is a risk of
immune rejection or immune tolerance to the allogeneic
tumor cells, which may limit their effectiveness [215].
Both autologous and allogeneic tumor cell-based vac-
cines are being investigated in clinical trials and research
studies [213]. These vaccines represent an approach that
harnesses the patient’s immune system to recognize and
attack the unique antigens present on their tumor cells
[212]. By stimulating an immune response against these
antigens, tumor cell-based vaccines aim to target and
destroy cancer cells while sparing healthy cells [215].

Peptide-based vaccines

Peptide-based vaccines are a type of cancer vaccine that
utilizes small protein fragments called peptides to trig-
ger an immune response against cancer cells [210]. These
peptides are derived from tumor-specific antigens, which
are unique proteins expressed by cancer cells [216]. The
process of developing a peptide-based vaccine begins
with identifying specific antigens that are associated with
the tumor cells of interest. These antigens can be identi-
fied through various methods, such as analyzing the pro-
teins expressed by cancer cells or studying the immune
response of cancer patients [217]. Once the tumor-spe-
cific antigens are identified, the corresponding peptides
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are synthesized or produced using recombinant DNA
technology. These peptides are designed to mimic the
antigens and contain specific regions that can stimulate
an immune response [216].

Peptide-based vaccines are typically administered
through injection, either subcutaneously or intramus-
cularly. Upon injection, the peptides are presented to
immune cells called antigen-presenting cells (APCs) such
as dendritic cells. APCs engulf the peptides and process
them internally [218]. The processed peptides are then
presented on the surface of APCs in complex with major
histocompatibility complex (MHC) molecules, forming
MHC-peptide complexes [216]. The MHC-peptide com-
plexes on the surface of APCs act as signals to alert and
activate immune cells, especially CTLs or CD8+T cells,
which are crucial for eliminating cancer cells [210].

CTLs recognize the MHC-peptide complexes as for-
eign or abnormal, indicating the presence of cancer
cells displaying those specific antigens. This triggers the
activation of CTLs, leading to their proliferation and
the release of immune molecules such as cytokines and
perforins [217]. The activated CTLs can then migrate to
tumor sites, recognize cancer cells expressing the tar-
geted antigens, and eliminate them through various
mechanisms, including inducing cell death (apoptosis)
or activating other components of the immune system to
attack the cancer cells [212].

Peptide-based vaccines offer several advantages. They
are highly specific because they target tumor-specific
antigens, minimizing the risk of off-target effects. Pep-
tides can be synthesized relatively easily and can be mod-
ified to enhance their stability and immunogenicity [210].
Additionally, peptide-based vaccines are generally well-
tolerated and have a favorable safety profile [216]. How-
ever, there are challenges associated with peptide-based
vaccines [219]. Peptides alone may not efficiently stimu-
late a strong immune response, so adjuvants or immune-
stimulating molecules are often included to enhance the
vaccine’s efficacy [216]. Another challenge is the poten-
tial for tumor cells to escape immune recognition by
downregulating the expression of targeted antigens or
undergoing genetic mutations that alter the antigenic
profile [220]. Ongoing research and advancements in
peptide synthesis, adjuvant design, and personalized
medicine are continuously improving the effectiveness
of peptide-based vaccines. They are being investigated as
both standalone therapies and in combination with other
immunotherapeutic approaches to enhance immune
responses against cancer cells and improve patient out-
comes [221].
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Viral vector-based vaccines

Viral vector-based vaccines are a type of vaccine that
uses modified viruses as carriers or vectors to deliver
specific antigens into the body [222]. These viruses are
typically genetically engineered to be safe and non-rep-
licative, meaning they cannot cause disease in the vacci-
nated individual. Instead, they serve as delivery vehicles
to introduce selected antigens to the immune system and
stimulate an immune response [222].

The viral vectors used in these vaccines are often
derived from naturally occurring viruses, such as ade-
noviruses or lentiviruses. These viruses have the ability
to infect cells and deliver their genetic material [223].
However, in viral vector-based vaccines, the viral genes
responsible for replication and causing disease are
removed or inactivated, ensuring that the vector can-
not replicate in the body and cause harm [223]. To cre-
ate a viral vector-based vaccine, scientists modify the
viral vector by inserting a gene that encodes the desired
antigen. This antigen is typically a protein or a part of a
pathogen, such as a viral protein or a tumor-specific anti-
gen [224]. Once the modified viral vector is administered
to a person, it enters cells and releases the genetic mate-
rial encoding the antigen. The cells then use this genetic
information to produce the antigen, which is presented
to the immune system [224].

The immune system recognizes the antigen as for-
eign and mounts an immune response against it. This
response includes the activation of immune cells, such as
T cells and B cells, which are essential for eliminating the
targeted antigen [225]. The immune system also gener-
ates memory cells that remember the antigen, providing
long-term protection against future encounters with the
actual pathogen or cancer cells expressing the specific
antigen.

Viral vector-based vaccines offer several advantages
[226]. They have the ability to deliver genetic material
encoding complex antigens, making them suitable for
generating robust immune responses [223]. These vac-
cines can also be designed to target specific cell types
or tissues, further enhancing their effectiveness [222].
Additionally, viral vectors can stimulate both cellular and
humoral immune responses, involving different compo-
nents of the immune system [223]. Viral vector-based
vaccines have been successfully utilized in various vac-
cine development efforts, including the development of
COVID-19 vaccines [226]. These vaccines have shown
promising results in stimulating immune responses
and providing protection against targeted pathogens or
tumor cells. Ongoing research continues to explore and
optimize viral vector-based vaccines for a wide range
of diseases, including cancer, infectious diseases, and
genetic disorders [223].
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Nucleic acid-based vaccines

Nucleic acid-based vaccines represent a promising
approach in the field of immunization, offering a unique
strategy to induce protective immune responses against
various diseases, including cancer [227]. These vaccines
utilize genetic material, either in the form of DNA or
RNA, to encode specific antigens that are targeted for
immune recognition [228]. Nucleic acid-based vaccines
have garnered significant attention due to their ability to
mimic natural infection processes and stimulate robust
and long-lasting immune responses [229].

DNA-based vaccines are designed by inserting the gene
encoding the desired antigen into a circular DNA plas-
mid. This plasmid is then administered directly into the
body through intramuscular or intradermal injection
[230]. Once inside the cells, the DNA plasmid is taken
up by the nucleus, where the antigen gene is transcribed
into mRNA. The mRNA then undergoes translation in
the cytoplasm, leading to the synthesis of the target anti-
gen within the host cells. This process mimics the natural
viral infection cycle, but without causing disease [231].
The newly produced antigen is subsequently presented
on the surface of the host cells, triggering an immune
response that includes the activation of APCs, such as
dendritic cells [232]. These APCs process and present the
antigen to T cells, thereby initiating a specific immune
response against the antigen-expressing cells.

RNA-based vaccines, on the other hand, directly uti-
lize mRNA molecules encoding the desired antigens
[231]. These mRNA vaccines can be synthesized in the
laboratory and then encapsulated within lipid nanopar-
ticles for efficient delivery into the cells. Upon admin-
istration, the lipid nanoparticles protect the mRNA
from degradation and facilitate its entry into host
cells [227]. Once inside the cells, the mRNA is trans-
lated into the target antigen, triggering an immune
response similar to DNA-based vaccines [228]. RNA-
based vaccines offer several advantages, such as ease of
design and production, rapid manufacturing process,
and flexibility to incorporate modifications to enhance
antigen expression or stability [231]. Both DNA-based
and RNA-based vaccines have shown great potential
in cancer immunotherapy. They enable the expres-
sion of tumor-specific antigens within the patient’s
own cells, leading to the presentation of these antigens
to the immune system [230]. This process activates
immune cells, including cytotoxic T cells, NK cells,
and B cells, which work together to target and destroy
cancer cells expressing the specific antigen [228]. In
addition to directly targeting tumor cells, nucleic acid-
based vaccines can also stimulate an immune response
against other components of the tumor microenviron-
ment, such as stromal cells or immune-suppressive
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cells, thereby promoting a comprehensive anti-tumor
response [231]. Moreover, nucleic acid-based vac-
cines offer several advantages over traditional vaccine
approaches. Firstly, they have the potential to elicit
both humoral (antibody-mediated) and cellular (T cell-
mediated) immune responses, making them suitable for
combating various pathogens and diseases, including
those that require both arms of the immune system for
protection [227]. Secondly, nucleic acid-based vaccines
can be rapidly developed and manufactured, as they
do not rely on the time-consuming process of growing
live attenuated pathogens or producing recombinant
proteins. This characteristic makes them particularly
valuable in the context of emerging infectious diseases
or rapidly evolving pathogens [230]. Thirdly, nucleic
acid-based vaccines are highly flexible and adaptable,
allowing for the incorporation of multiple antigens or
modifications to optimize their efficacy. This flexibility
is particularly advantageous in the case of cancer vac-
cines, where targeting multiple tumor-specific antigens
or incorporating immune-stimulating adjuvants can
enhance therapeutic outcomes [223].

DC mRNA cancer vaccines

The use of DCs in cancer immunotherapy made sense
because of their pivotal function in initiating antigen-
specific immune responses [233]. Some researchers
described how DCs electroporated with mRNA might
trigger strong immune responses against tumor antigens
[234]. Stimulating DCs with ovalbumin (OVA)-encoding
mRNA or tumor-derived RNAs dampened the immune
response in OVA-expressing and other mice models of
melanoma [235].

Immune regulatory proteins can be found in abun-
dance in mRNA-encoded adjuvants, which can increase
the potency of DC cancer vaccines [236]. Multiple studies
have revealed that electroporation of DCs with mRNAs
expressing co-stimulatory molecules like CD83, tumour
necrosis factor receptor superfamily member 4, greatly
increases their immune stimulating activity [237]. How-
ever, DC activity can also be modulated by a variety of
substances linked with trafficking and by pro-inflamma-
tory cytokines encoded on messenger RNA [237].

Electroporation of antigen-encoding mRNA or mRNAs
is possible in conjunction with the adjuvant cocktail Tri-
Mix, which includes mRNA-encoded CD70, CD40L,
and constitutively active TLR4 [111]. This formulation
has been shown to be effective in a number of preclini-
cal studies by increasing DC activation and altering the
phenotype of CD4+ T cells to make them more like TH1
cells rather than T regulatory cells [238]. A total of 27% of
patients with stages III or IV melanoma who were treated
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with DCs loaded with mRNA expressing melanoma-
associated antigens and TriMix adjuvant experienced
tumor regression [239].

Trials using DC immunization have been conducted for
a variety of cancers, including prostate, lung, brain, and
pancreatic cancers [239]. It is a new approach to combine
mRNA electroporation of DCs with standard chemo-
therapeutic medicines or immune checkpoint inhibitors
[240]. Patients in stages III and IV of the disease were
given a combination of the monoclonal antibody ipili-
mumab, which targets CTL antigen 4, and DCs loaded
with mRNA encoding melanoma-associated antigens and
TriMix [239]. After receiving this treatment, the major-
ity of patients with recurrent or refractory melanoma
reported a substantial reduction in tumour size [239].

Direct injection of mRNA cancer vaccines

The manner in which messenger RNA vaccines are
delivered can have a substantial impact on the degree to
which they are successful [69]. Figure 7-A illustrates the
key elements and processes of an effective cancer vac-
cine, focusing on the tumor antigen presentation process
and the vaccine components.

In the antigen presentation process, APCs like DCs
encounter or receive externally-loaded antigens before
injection. These antigen-loaded APCs travel through
the lymphatic system to draining lymph nodes, where
T cell activation primarily occurs. Mature DCs present
tumor-derived peptides on MHC class I and II molecules
to CD8+and CD4+T cells, with costimulatory "signal
2" interactions enhancing the development of tumor-
specific T cell responses. IL-12 and type I interferons
produced by DCs further augment costimulation. These
interactions result in the generation and expansion of
activated tumor-specific CD4+and CD8+T cell popu-
lations, which can then migrate to the tumor site and
destroy tumor cells.

The lysed tumor cells release antigens that induce
polyclonal T cell responses, increasing the antigenic
variety of the anti-tumor immune response and lead-
ing to epitope spreading. Cancer vaccines are composed
of four main components: tumor antigens, formula-
tions, immune adjuvants, and delivery vehicles. These
components work together to facilitate a robust and
targeted immune response against cancer cells. In the
process of developing mRNA cancer vaccines, both
conventional and nonconventional administration sys-
tems (intralipid) have been utilized [242]. Conventional
administration systems include intradermal, intramuscu-
lar, subcutaneous, and intranasal [242]. Nonconventional
administration systems include intralipid (intranodal,
intravenous, intrasplenic or intratumoural) [243]. Table 3
outlines the different types of mRNA vaccines for direct
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Fig. 7 A Key elements and processes of an effective cancer vaccine. a The tumor antigen presentation process involves several steps. Initially,
APCs such as DCs encounter antigens at the injection site or have antigens externally loaded onto them before injection, as in the case of DC
vaccines. Antigen-loaded APCs then travel through the lymphatic system to the draining lymph nodes, where T cell activation primarily takes
place. In the lymph node, mature DCs present tumor-derived peptides on MHC class | and Il molecules to CD8+and CD4 +T cells, both of naive
and memory types. The development of tumor-specific T cell responses is facilitated by delivering a costimulatory "signal 2" to T cells

through interactions like CD80-CD28, CD86-CD28, CD70-CD27, and CD40-CD40 ligand (CD40L). Costimulation is enhanced by IL-12 and type |
interferons (IFNs) produced by DCs. These interactions collectively support the generation and expansion of activated tumor-specific CD4 +and
CD8+T cell populations. CD4+and CD8+T cells migrate to the tumor site, and upon recognizing their specific antigens, they can destroy tumor
cells through cytotoxicity and effector cytokine production, such as IFNy and tumor necrosis factor (TNF). Consequently, lysed tumor cells release
tumor antigens, which can be captured, processed, and presented by APCs to induce polyclonal T cell responses, thus increasing the antigenic
variety of the anti-tumor immune response and leading to epitope spreading. b Cancer vaccines consist of four main components: tumor antigens,
formulations, immune adjuvants, and delivery vehicles. Abbreviations: CpG ODN, CpG oligodeoxynucleotide; GM-CSF, granulocyte-macrophage
colony-stimulating factor; MPL, monophosphoryl lipid A; poly-ICLC, polyinosinic—polycytidylic acid with polylysine and carboxymethylcellulose;
STING, stimulator of interferon genes protein; TCR, T cell receptor; TLR, Toll-like receptor. Reprinted from [241] with permission from Springer
Nature. B Key factors in the efficacy of directly injected mRNA vaccines. The effectiveness of an injected mRNA vaccine depends on several factors:
the amount of antigen expression in professional APCs, which is affected by the carrier’s efficiency, the presence of PAMPs such as double-stranded
RNA (dsRNA) or unmodified nucleosides, and the optimization of the RNA sequence (including codon usage, G:C content, and 5'and 3'UTRs);

the maturation and migration of DCs to secondary lymphoid tissues, which is enhanced by PAMPs; and the vaccine’s capacity to stimulate strong T
follicular helper (TFH) cell and germinal center (GC) B cell responses, an aspect that is not yet well-understood. An intradermal injection is provided
as an illustration. EC refers to extracellular. Reprinted from [126] with permission from Springer Nature

injection, each with their own unique set of advantages
and disadvantages.

Naked mRNA vaccines are easy to manufacture and
administer, and are relatively low-cost. However, they
suffer from inefficient delivery and translation, leading
to low immunogenicity. These vaccines have moderate
efficacy and good safety, but their stability is hindered
by a short half-life and susceptibility to degradation by
RNases. Naked mRNA vaccines require a high dosage
and have low manufacturing complexity, with Phase 1/II
clinical trials serving as references. An unconventional
technique of delivering vaccines that uses intranasal
administration of naked mRNA has been shown to be

successful [41]. If mRNA is injected directly into second-
ary lymphoid tissue, antigen-presenting cells are able
to skip the necessity for DC migration and be directed
straight to the site of T cell activation [248]. Numerous
studies have demonstrated that naked mRNA delivered
via intranasal injection is selectively taken up by DCs
and has the ability to generate potent antitumor T cell
responses, either for therapeutic or preventative pur-
poses [249]. Results from an earlier trial were found to
be comparable when intrasplenic administration was
used [249]. It was discovered in a number of trials that it
was possible to increase immune responses to intranasal
mRNA vaccination by coadministering the DC-activating
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protein FMS-related tyrosine kinase 3 ligand, also known
as FLT3L [250]. This was accomplished by giving the vac-
cine at the same time [250].

In mice, mRNAs encoding tumor-associated anti-
gens were delivered intranasally using the TriMix
adjuvant [56]. This resulted in powerful antigen-spe-
cific CTL responses and the suppression of a wide
array of tumor types [229]. According to a recent
study, the intranasal injection of mRNA encoding
the E7 protein of HPV 16 with TriMix was found
to increase the frequency of CD8+T cells invad-
ing tumors [251]. This was confirmed to be the case
after the injection [251]. Clinical trials using intran-
odally injected naked mRNA encoding tumour-asso-
ciated antigens are being conducted on patients with
advanced melanoma (NCTO01684241) and patients
with  hepatocellular carcinoma (NCT01684242)
(EudraCT: 2012-005572-34) [252].

DCs electroporated with mRNA encoding the mel-
anoma-associated antigens tyrosinase or gpl00 and
TriMix and administered intranasally to patients
with advanced melanoma evoked modest antitumor
responses, according to the findings of one investiga-
tion [253]. Intranasal vaccination is advantageous since
it does not require the use of needles and is not intru-
sive [254]. As a result, the rate at which DCs take up anti-
gens is increased [254]. In animal models of preventative
and therapeutic tumors, employing the OVA-expressing
E.G7-OVA T lymphoblastic cell line, intranasal admin-
istration of mRNA complexed with Stemfect (Stemgent)
LNPs was found to be effective in delaying the start of
tumor growth and improving survival rates [255]. There
is reason for optimism regarding the use of intratumor-
ally mRNA immunization as a therapy option because
it can promptly and selectively activate tumor-resident
T cells [57]. These vaccines often make use of immune
stimulatory substances in order to promote tumor-
specific immunity locally [256]. This is done rather than
adding mRNAs that encode for antigens that are linked
with tumors [256]. Utilizing the inherently immunogenic
properties of mRNA, earlier research demonstrated that
mRNA expressing a gene that is unrelated to the process
of carcinogenesis (GLB1) could decrease the formation of
tumors and provide protection in a mouse model of glio-
blastoma [257].

In a more recent study, researchers found that intratu-
mor delivery of mRNA encoding an engineered cytokine
based on interferon- (IFN) fused to a transforming
growth factor- (TGF) antagonist increased the cytol-
ytic capacity of CD8+T cells and modestly slowed the
growth of tumors in OVA-expressing lymphoma or lung
carcinoma mouse models [258]. These findings were
made possible by the fact that the TGF antagonist was
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fused to the interferon Additionally, it has been demon-
strated in a number of mouse models that intratumor
delivery of TriMix mRNA that does not contain tumor-
associated antigens activates CD8+DCs and tumor-
specific T lymphocytes, which in turn results in a delay
in the growth of the tumor [259]. This has been accom-
plished by inhibiting the production of tumor-associated
antigens [259].

Systemic distribution of mRNA vaccines is unusual
because of concerns over aggregation with serum pro-
teins and rapid extracellular mRNA degradation [260];
as a result, packaging mRNAs into carrier molecules is
necessary [261]. As was been discussed in further detail
above, the absorption of mRNA, the pace at which it is
translated into proteins, and its safety against destruc-
tion by RNases are all issues that have been addressed
through the creation of a wide variety of delivery formu-
lations [261]. Following the systemic delivery of mRNA
vaccines, the biodistribution of these agents presents yet
another formidable obstacle [260].

When numerous cationic LNP-based complexing
agents are administered intravenously, the majority of
the traffic is directed to the liver, which may not be in the
best condition for DC activation [262]. Recent research
has led to the discovery of a strategy for the effective DC-
specific targeting of mRNA vaccines after their delivery
via the systemic route [233]. An mRNA-lipoplex delivery
platform, also known as an mRNA-liposome complex,
was developed by using cationic lipids and neutral helper
lipids [263]. It was discovered that the ratio of lipids to
mRNA, and consequently the net charge of the particles,
has a significant impact on the biodistribution of the vac-
cine [57].

A positively charged lipid particle’s major target was
the lung, while a negatively charged particle’s primary
target was DCs in secondary lymphoid organs and the
bone marrow [264]. The negatively charged particle
stimulated immune responses against tumor-specific
antigens, which led to considerable tumor regression in
several mouse models [265]. As a result of the absence of
toxicity in rats and apes, clinical trials to investigate the
efficacy of this approach in the treatment of metastatic
melanoma and triple-negative breast cancer are currently
being carried out NCT02410733 and NCT02316457
[266]. Figure 7-B highlights the critical factors influenc-
ing the effectiveness of directly injected mRNA vaccines.
The efficacy of these vaccines is contingent upon several
aspects, including the level of antigen expression in pro-
fessional antigen-presenting cells (APCs). This expres-
sion is influenced by the carrier’s efficiency, the presence
of pathogen-associated molecular patterns (PAMPs) like
double-stranded RNA (dsRNA) or unmodified nucleo-
sides, and the optimization of the RNA sequence, which
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encompasses codon usage, G:C content, and 5 and 3’
UTRs. Additionally, the maturation and migration of
DCs to secondary lymphoid tissues play a crucial role,
with PAMPs serving to enhance this process. Finally, the
vaccine’s ability to stimulate robust T follicular helper
(TFH) cell and germinal center (GC) B cell responses is
essential, though this area warrants further investigation.
Figure 7 exemplifies these factors through an intradermal
injection, with "EC" representing the extracellular com-
ponents involved.

Therapeutic considerations and challenges

Good manufacturing practice production

mRNA is synthesized in vitro utilizing recombinant
enzymes, ribonucleotide triphosphates (NTPs), and a
DNA template [267]. Due to its high reaction yield and
convenience of usage, mRNA can be made in a compact
GMP facility [268]. Length of RNA, nucleotide and cap-
ping chemistry, and product purification govern the pro-
duction process, which is sequence-independent [269].
However, extreme length may provide problems [269].
This technology is well-suited for rapid response to new
infectious diseases since it can create any encoded pro-
tein immunogen [270]. All of the enzymes and reaction
components needed for GMP manufacture of mRNA
are available from commercial providers as synthesized
chemicals or bacterially produced, animal component-
free reagents [271]. GMP-grade traceable plasmid DNA,
phage polymerases, capping enzymes, and NTPs are
available [272]. Other ingredients are pricey or unavail-
able [272]. As mRNA therapy production increases up,
more cost-effective GMP source materials may become
available [273]. GMP mRNA production begins with
DNA template synthesis and continues with enzymatic
IVT [274]; this is the same multistep approach used for
research-scale synthesis, with extra tests to assure safety
and potency [274]. Depending on the mRNA construct
and chemistry involved, this process may need small
alterations for changing nucleosides, capping tech-
niques, or the removal of a template [275]. By linearizing
Escherichia coli template plasmid DNA with a restriction
enzyme, runoff transcripts with a 3'-terminal poly(A)
tract are synthesized [276]. A bacteriophage-derived
DNA-dependent RNA polymerase produces mRNA from
NTPs (such as T7, SP6, or T3) [277]. DNase destroys
template DNA [277]. To aid in vivo translation, mRNA
is capped enzymatically or chemically [275]. mRNA syn-
thesis may yield 2 g 11 of full-length mRNA under ideal
conditions. After being synthesized, mRNA is purified to
remove any residual enzymes, nucleotides, DNA, or RNA
[276]. Derivatized microbeads in batch or column forms
are more practical for large-scale purification in the clinic
[278]. dsRNA must be removed from various mRNA
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platforms to prevent interferon-dependent translation
inhibition [279]. Reverse-phase FPLC has attained lab-
oratory-scale success, and scalable aqueous purification
approaches are being studied [280]. Once mRNA is ster-
ile-filtered and stored in a final buffer, vials can be filled
for clinical usage [279]. RNA can be degraded chemically
and enzymatically [276].

To prevent mRNA instability, formulation buffers may
include antioxidants and chelators [276]. Developing
messenger RNA pharmaceuticals [281]. Vaccines are
usually stored at 70 °C, but researchers are experiment-
ing on warmer formulations [282]. Stable formulations
at room temperature or refrigeration can be made [283].
The RNActive platform can be lyophilized and stored
at 5-25 °C for 3 years and 40 °C for 6 months [283]. A
separate study found that freeze-dried naked mRNA lasts
at least 10 months in the refrigerator [284]. Packaging
mRNA in nanoparticles or adding RNase inhibitors can
boost product stability [285]. At least 6 months of stabil-
ity has been demonstrated for lipid-encapsulated mRNA
(Arbutus Biopharma, personal communication), but
longer-term unfrozen preservation has not been docu-
mented [285].

Regulatory aspects

Neither the FDA nor the European Medicines Agency
(EMA) have established any concrete rules concern-
ing mRNA vaccine products as of yet [224]. As can
be seen by the increasing number of clinical trials
carried out under the control of the EMA and the
FDA, the regulatory bodies have given their stamp
of approval to the methods that have been proposed
by various organisations to demonstrate that prod-
ucts are safe and suitable for testing in humans [286].
Given that mRNA is a type of genetic immunogen
that is used in vaccinations, it is reasonable to antici-
pate that the principles that have been established for
DNA vaccines and gene therapy vectors will be able
to be applied to mRNA with only minor adjustments
to account for its particular qualities [287]. Some
researchers highlight, in their examination of EMA
guidelines for RNA vaccines, how the laws for pre-
ventative and therapeutic uses of RNA vaccines differ
substantially [288]. Regardless of the precise classifi-
cation under the guidelines that are currently in place,
there are similarities between the assertions made in
these guidance documents and the findings of recently
published clinical studies. These similarities can be
found in both sets of materials [289]. A recent article
that was published on an mRNA vaccine for the influ-
enza virus includes data that indicate biodistribution
and durability in mice, protection from sickness in a
relevant animal model (ferrets), and immunogenicity,
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local reactogenicity, and toxicity in humans [230]. As
mRNA products continue to garner more attention
in the vaccination industry, it is expected that spe-
cialized guidance will be developed to describe the
requirements to develop and investigate new mRNA
vaccines [287].

Safety

The mRNA vaccines have gained significant attention
and recognition in recent years due to their remarkable
potential in combating infectious diseases [290]. They
offer a comprehensive approach to understanding mRNA
synthesis, production, stability, regulatory considera-
tions, and safety aspects [291].

One of the notable advantages of mRNA vaccines is
their safety profile. Unlike traditional vaccines that may
contain attenuated or inactivated pathogens, mRNA vac-
cines do not require the introduction of live organisms
into the body [292]. Instead, they utilize the body’s own
cellular machinery to produce specific viral or pathogenic
proteins, triggering an immune response. This mecha-
nism significantly reduces the risk of infection or adverse
effects associated with live attenuated vaccines [9]. Addi-
tionally, the production of mRNA vaccines is relatively
convenient compared to conventional vaccines. Once
the genetic sequence of the pathogen is identified, the
mRNA can be synthesized in the laboratory using well-
established techniques. This flexibility allows for a faster
response to emerging infectious diseases, as the produc-
tion process can be rapidly scaled up [293]. However, it is
important to acknowledge that there are still safety con-
siderations and ongoing research associated with mRNA
vaccines. One concern is the potential for unwanted
immune responses or off-target effects. While extensive
preclinical and clinical testing is conducted to ensure
safety, ongoing surveillance and evaluation are necessary
to monitor any long-term effects or rare adverse events
[294]. Regulatory considerations also play a crucial role
in the development and approval of mRNA vaccines.
Regulatory agencies worldwide assess the safety, efficacy,
and quality of these vaccines through rigorous evalua-
tion processes before granting authorization for public
use [9]. Furthermore, mRNA vaccines have the potential
for rapid development and deployment during outbreaks
or pandemics [295]. The production process for mRNA
vaccines can be quickly adjusted to target new variants or
strains of pathogens. This adaptability is particularly val-
uable in the face of emerging infectious diseases, where
timely response is crucial [290]. Moreover, mRNA vac-
cines are well-suited for large-scale manufacturing. The
production of mRNA does not require the complex and
time-consuming processes involved in traditional vac-
cine production, such as growing large quantities of the
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pathogen in cell cultures [292]. Instead, mRNA can be
synthesized using readily available materials and stand-
ardized laboratory techniques. This streamlined pro-
duction process allows for increased vaccine availability
and accessibility, particularly in global health emergen-
cies [293]. Another advantage of mRNA vaccines is their
potential to elicit a strong and durable immune response.
By delivering genetic instructions directly to cells,
mRNA vaccines can stimulate both the humoral immune
response (involving antibody production) and the cel-
lular immune response (involving T cells). This dual
immune activation can contribute to robust and long-
lasting protection against the targeted pathogen [290].
It is worth noting that mRNA vaccines have undergone
rigorous testing and regulatory scrutiny to ensure their
safety and efficacy [292]. Clinical trials involving tens of
thousands of participants have demonstrated their effec-
tiveness in preventing disease and reducing severe out-
comes [293]. These trials have also shown a favorable
safety profile, with most adverse reactions being mild and
transient. While mRNA vaccines have exhibited great
promise, ongoing research and evaluation remain impor-
tant [294]. Further studies are necessary to monitor the
long-term safety, effectiveness, and durability of immune
responses generated by mRNA vaccines. Additionally,
efforts are underway to address vaccine hesitancy and
ensure equitable distribution to populations worldwide
[292]. Because vaccinations for prevention are meant to
be administered to otherwise healthy persons, stringent
safety criteria must be adhered [290]. When compared to
other platforms for vaccination, such as live viruses, viral
vectors, inactivated viruses, and subunit protein vac-
cines, the generation of mRNA does not require the use
of harmful chemicals or cell cultures that could become
contaminated with adventitious viruses [291]. This is
in contrast to other vaccination platforms, such as live
viruses, viral vectors, inactivated viruses, and subunit
protein vaccines [291]. In addition, because mRNA pro-
cessing takes place so quickly, there are less opportunities
for the entry of bacteria that could cause contamina-
tion [296]. In those who have received vaccination, the
mRNA does not face possible dangers such as infection
or the incorporation of the vector into the DNA of the
host cell [291]. For the reasons that were just discussed,
mRNA vaccines have been considered to be a safe vac-
cine choice.

Several different mRNA vaccines have been shown
to be safe and well tolerated after going through clini-
cal studies ranging from phase I to phase IIb of testing
[291]. On the other hand, recent human trials employing
a range of mRNA platforms have showed reactions rang-
ing from modest to severe at the injection site or across
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the body [292]. These responses have been seen. Local
and systemic inflammation, the biodistribution and per-
sistence of expressed immunogen, stimulation of auto-
reactive antibodies, and the potential toxic effects of any
non-native nucleotides and delivery system components
are all potential safety concerns that are likely to be eval-
uated in future preclinical and clinical studies [292].

Inflammation can occur both locally and systemically
[293]. Several different mRNA-based vaccine platforms
have the potential to induce intense type I interferon
responses [297]. These responses have been related to
inflammation and even autoimmune diseases [297].
Consequently, if people who are at a higher risk of auto-
immune reactions are identified in advance, it may be
possible to take adequate precautions prior to giving
an mRNA vaccine [9]. During mRNA immunization,
the presence of extracellular RNA presents yet another
opportunity for damage to occur [295]. Because naked
RNA located outside of cells can improve the perme-
ability of closely packed endothelial cells, oedema may be
induced, at least in part, by this property of naked RNA
[295]. Extracellular RNA, according to the findings of
yet another study, had a role in the coagulation of blood
as well as the formation of pathogenic thrombi [294].
Because of this, it will be required to conduct continuous
safety studies when new mRNA techniques and delivery
systems are evaluated in wider patient groups.

The role of adjuvants in enhancing the stability

and efficacy of mRNA vaccines

Adjuvants play a crucial role in enhancing the stabil-
ity and efficacy of mRNA vaccines [74]. mRNA vaccines
contain fragile mRNA molecules that encode the instruc-
tions for cells to produce viral or antigenic proteins,
triggering an immune response [298]. However, mRNA
is inherently unstable and can be rapidly degraded by
enzymes in the body and easily cleared from the sys-
tem [299]. To overcome these challenges, adjuvants are
included in mRNA vaccines to protect and stabilize the
mRNA molecules, thereby increasing their potency and
duration of action [299].

Protecting mRNA from degradation

Adjuvants are substances that are often used in vaccines
to enhance the immune response generated by the vac-
cine [300]. While their primary role is to improve the
efficacy of vaccines, adjuvants can also play a crucial role
in protecting mRNA from degradation in mRNA-based
vaccines. mRNA is a fragile molecule that can be eas-
ily degraded by enzymes called nucleases present in the
body [301]. Adjuvants can provide a protective shield
around the mRNA, shielding it from these enzymes and
increasing its stability. By preserving the integrity of the
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mRNA, adjuvants help ensure that the desired genetic
information encoded in the mRNA is effectively deliv-
ered to cells, promoting the production of the intended
protein and triggering a robust immune response [302].
This protection is essential for the success and durabil-
ity of mRNA-based vaccines, allowing them to effectively
elicit the desired immune response and contribute to
effective immunization against infectious diseases [301].

Enhancing cellular uptake

One important aspect of their function is their ability to
enhance cellular uptake, which refers to the process by
which cells internalize and take up external substances
or particles [303]. Adjuvants can facilitate cellular uptake
by several mechanisms [304]. Firstly, they can improve
the stability and solubility of the vaccine or drug mole-
cules, ensuring their effective delivery to the target cells
[304]. This is particularly important for hydrophobic or
poorly soluble compounds that might otherwise be rap-
idly cleared or degraded in the body. Secondly, adjuvants
can enhance the recognition and binding of the vaccine
or drug molecules to specific receptors on the surface of
target cells. By promoting receptor-ligand interactions,
adjuvants increase the likelihood of cellular uptake, as
these interactions trigger internalization pathways within
the cells. Moreover, adjuvants can stimulate the immune
system and induce an inflammatory response at the injec-
tion site [305]. This local immune activation leads to the
recruitment of immune cells, such as macrophages and
DCs, to the site of administration. These immune cells
play a crucial role in phagocytosis, the process by which
they engulf and internalize foreign substances [306]. By
promoting phagocytosis, adjuvants enhance the cellu-
lar uptake of vaccines or drugs, ultimately leading to an
improved immune response or therapeutic effect. Adju-
vants play a vital role in enhancing cellular uptake by
improving the stability and solubility of vaccine or drug
molecules, facilitating their binding to cell surface recep-
tors, and promoting phagocytosis through immune acti-
vation [307]. These mechanisms collectively contribute to
the effectiveness of vaccines and drug delivery systems,
ultimately leading to improved therapeutic outcomes
[308].

Promoting immune activation

Adjuvants are substances that are often recommended
for use in mRNA vaccines to enhance their effective-
ness by promoting immune activation [309]. mRNA
vaccines work by introducing a small piece of genetic
material, called messenger RNA (mRNA), into the body.
This mRNA encodes instructions for the production
of a viral protein, which triggers an immune response
and leads to the development of immunity against the
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targeted pathogen [310]. However, mRNA vaccines alone
may not always elicit a robust immune response. That’s
where adjuvants come into play. Adjuvants are added
to the vaccine formulation to enhance the immune
response, making it stronger, more durable, and poten-
tially more specific. These substances can stimulate the
innate immune system, which serves as the first line of
defense, and enhance the adaptive immune response,
which involves the production of specific antibodies and
memory cells [311]. Adjuvants work by activating certain
receptors on immune cells, such as DCs, macrophages,
and B cells. This activation leads to the release of sign-
aling molecules, such as cytokines, which promote the
recruitment and activation of other immune cells [311,
312]. Adjuvants can also enhance the uptake and pro-
cessing of the mRNA vaccine by antigen-presenting
cells, which improves the presentation of viral proteins
to immune cells and increases the likelihood of a robust
immune response [313]. By promoting immune acti-
vation, adjuvants help to optimize the effectiveness of
mRNA vaccines, leading to stronger and longer-lasting
immunity against the targeted pathogen [314]. These
adjuvants undergo rigorous testing to ensure their safety
and efficacy before being incorporated into vaccine for-
mulations [315]. The development and utilization of adju-
vants in mRNA vaccines represent an important strategy
to enhance the potency and effectiveness of these inno-
vative vaccines, ultimately contributing to the protection
of individuals and populations against infectious diseases
[316].

Modulating immune response

Adjuvants can influence the type and strength of the
immune response elicited by the mRNA vaccine [317].
Different adjuvants can bias the immune response
towards specific types, such as a Thl (cell-mediated) or
Th2 (antibody-mediated) response [318]. This modula-
tion is crucial for tailoring the vaccine’s effectiveness to
combat specific diseases or pathogens [319].

Prolonging antigen presentation

Adjuvants can extend the presentation of the antigen
(viral or antigenic protein) derived from the mRNA vac-
cine [320]. They help in promoting antigen persistence
and slow down the clearance of the antigen from the
injection site, allowing for a more prolonged and robust
immune response [321].

Applications of mMRNA vaccines in preventive

and therapeutic contexts

The mRNA vaccines are administered to individuals
who are at risk of being exposed to a specific patho-
gen, such as a virus or bacteria [311, 312]. The mRNA
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vaccines provide instructions to the cells in the body
to produce a harmless piece of the pathogen, typically
a protein or antigen, which then stimulates an immune
response. This immune response includes the produc-
tion of antibodies and activation of immune cells spe-
cific to the pathogen [304]. If the individual is later
exposed to the actual pathogen, their immune system
can recognize and respond to it more effectively, pre-
venting infection or reducing its severity. mRNA vac-
cines have been successfully developed for various
infectious diseases, including COVID-19, influenza,
and others [319]. The mRNA vaccines are used as a
treatment option for individuals who have already
contracted a specific disease, such as cancer or certain
viral infections. The therapeutic mRNA vaccines work
by delivering genetic instructions to the cells, directing
them to produce specific proteins that are characteris-
tic of the disease [321]. These proteins can be tumor-
specific antigens in the case of cancer or viral proteins
in the case of viral infections. By producing these dis-
ease-specific proteins, the immune system is stimulated
to recognize and mount an immune response against
the diseased cells or viruses [315]. Therapeutic mRNA
vaccines hold promise in cancer treatment as they can
potentially enhance the body’s ability to target and elim-
inate cancer cells [304].

Safety and tolerability of mRNA vaccines

The mRNA vaccines have gained recognition for being
largely risk-free and well-tolerated [321]. There are
a few reasons for this. Firstly, mRNA vaccines do not
contain live viruses or pathogens, eliminating the risk
of developing the disease they aim to prevent or treat
[318]. Instead, they consist of a small piece of genetic
material that encodes a specific protein. Secondly,
mRNA vaccines are transient, meaning that once the
genetic material is taken up by cells and the protein
is produced, the mRNA quickly degrades and is elimi-
nated from the body [313]. This temporary nature
ensures that there is no long-term genetic alteration.
Additionally, mRNA vaccines do not integrate into
the host genome, further minimizing any potential
long-term risks. Moreover, extensive clinical trials
and rigorous safety evaluations are conducted before
their approval, ensuring that they meet strict safety
standards [321]. Adverse reactions to mRNA vac-
cines are typically mild and temporary, such as pain
at the injection site, fatigue, or fever, which are com-
mon with most vaccines [304]. Furthermore, the tech-
nology behind mRNA vaccines has been extensively
studied and refined over many years, providing a solid
foundation for their safety and tolerability [321]. The
mRNA used in vaccines is carefully engineered and
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optimized to enhance stability and reduce any potential
side effects. Modern mRNA vaccines also benefit from
lipid nanoparticle delivery systems, which help protect
the mRNA and facilitate its efficient uptake by cells
[313]. Another key factor contributing to the safety of
mRNA vaccines is the stringent regulatory processes
and rigorous testing they undergo before approval
[304]. These vaccines undergo comprehensive pre-
clinical studies in animals to evaluate their efficacy and
safety. Subsequently, they progress through multiple
phases of clinical trials involving thousands of human
participants, where their safety, immunogenicity, and
efficacy are thoroughly assessed [321]. Additionally, the
extensive post-approval monitoring and surveillance

systems enable the rapid detection and investigation
of any potential adverse events. This ongoing monitor-
ing ensures that the safety profile of mRNA vaccines is
continuously evaluated and any rare or unexpected side
effects can be promptly addressed [313]. The collective
evidence from clinical trials, real-world data, and the
successful deployment of mRNA vaccines in millions
of individuals supports their remarkable safety and tol-
erability [313]. The benefits of mRNA vaccines in pre-
venting serious illnesses, hospitalizations, and deaths
far outweigh the minimal risks associated with them.
Continuous monitoring and research efforts further
contribute to improving our understanding of these
vaccines and ensuring their ongoing safety [321].
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Strategies to improve mRNA translation efficiency
and overcome the innate immunogenicity

Figure 8 illustrates the various obstacles encountered
during the clinical application of mRNA therapies. The
production of therapeutic mRNA in vitro includes the
use of a linear DNA template and T7 RNA polymerase,
followed by purification. The resulting mRNA is com-
posed of a 5' cap, a 5' UTR, an ORF encoding the target
protein, a 3' UTR, and a poly(A) tail. When administered
locally or systemically, mRNA faces numerous extra-
cellular challenges, such as degradation by nucleases,
clearance by macrophage phagocytosis, and elimination
through renal filtration. Some mRNA molecules that
evade these hurdles manage to enter cells, but the major-
ity end up sequestered in endosomes. Here, they are
detected by endosomal and cytosolic RNA sensors, which
negatively affect mRNA translation and stability. Enhanc-
ing the 5' cap can improve ribosome binding efficiency
and thus increase mRNA translation. While endosomal
escape remains a challenge for unmodified mRNA, the
use of specialized carriers can facilitate this critical step
and improve the overall effectiveness of mRNA-based
therapies. Table 4 outlines various strategies for improv-
ing mRNA translation efficiency, which include modifica-
tions to mRNA structures and utilizing novel methods
for mRNA delivery. Some of these strategies include
five-prime cap (5° Cap) modification, optimization of
UTRs, codon optimization, and poly(A) tail modification,
among others. These approaches aim to enhance mRNA
stability, translation efficiency, and immunogenicity while
maintaining safety and efficacy. The use of exogenous fac-
tors, nanoparticle-based delivery systems, and viral vec-
tors are also explored as methods for improving mRNA
translation. Combining multiple strategies may result in
synergistic effects, leading to increased overall efficiency.
While these methods show promise, some disadvantages
include increased costs, time-consuming synthesis pro-
cesses, and potential off-target effects or safety concerns.
Nonetheless, these innovative approaches pave the way
for the development of more effective mRNA-based ther-
apeutics and vaccines in the future.

Five-prime cap (5'Cap) modification

IVT mRNAs, which mimic the eukaryotic mRNA, usu-
ally have a N7-methylated guanosine added to the first 5'
nucleotide through a 5', 5'-triphosphate bridge for effi-
cient translation in the eukaryotic system [356]. This 5’
m7G cap or m7Gppp- is typically referred to as “Cap 0”
[354]. The 5' cap recruits the eukaryotic eIF4E to facili-
tate ribosome recognition and translation initiation [356].
Both enzymatic and chemical strategies are applied for
mRNA 5' capping [357]. The most widely used in vitro
post-translational capping enzymatic method is the
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Vaccinia capping system, which is based on the Vaccinia
virus Capping Enzyme (VCE) [358]. The VCE consists
of 2 subunits (D1 and D12) [358]. The D1 subunit pos-
sesses triphosphatase, guanylyl transferase, and methyl-
transferase activity, all of which are essential for adding a
complete Cap 0 structure, while D12 plays a valid role in
activating D1 [359]. Vaccinia capping system provides a
near 100% capping efficiency with proper orientation, but
efficient expression and purification for VCE are required
for large scale capped RNA production [360].

Besides the enzymatic post-translational capping
methods, chemical capping methods add cap analogs
co-transcriptionally [361]. However, regular cap analog
added during IVT (co-transcriptional process) can be
reversely incorporated into the mRNA sequence [362].
Therefore, approximately one third of mRNA molecules
are not properly methylated, with free phosphate hang-
ing at the 5' location, leading to low efficiency of down-
stream mRNA translation [362]. To prevent reverse
incorporation, anti-reverse cap analogs (ARCA) have
been developed [230]. ARCA is methylated at the C3
position (closer to m7G) to ensure the addition of a
nucleotide only at the non-methylated guanosine during
IVT [363]. ARCA capped mRNA increases and prolongs
protein expression in vitro [230]. To inhibit de-capping
of the corresponding mRNA and increase binding affin-
ity to eIF4E, ARCA have been further modified within
the triphosphate linkage, either through a bridging oxy-
gen (e.g. (methylenebis) phosphonate and imidodiphos-
phate) or a non-bridging oxygen (e.g. phosphorothioate
and phosphorselenoate) [364]. Remaining limitations of
ARCA caps are: (1) Relatively low capping efficiency (60—
80%); (2) Cap-0 structure is formed after capping; (3) Cap
contains an unnatural O’methyl group in the C3 position
that can be recognized as exogeneous motif; (4) mRNA
transcript must start with guanine (G) [365].

5'cap can be added enzymatically after IVT to achieve
100% capping efficiency with a natural unmodified cap
structure [366]. However, the process is costly and suffers
from batch-to-batch variability. A next generation co-
transcriptional cap analog, CleanCap ', was developed in
2018 to overcome the issues associated with ARCA [366].
CleanCap " utilized an initiating capped trimer to yield
a natural unmodified cap structure with increased cap-
ping efficiency to nearly 90-99% [367]. Uncapped (5'ppp
or 5'pp) or abnormally capped (Cap-0) mRNAs can be
recognized by PRRs, such RIG-1 and IFIT, triggering
type I IFN, blocking mRNA translation [368]. Therefore,
a natural Cap-1 structure is preferred [369]. Capl struc-
ture can be enzymatically added by guanylyl transferase
and 2'-O-methyltransferases or through the co-transcrip-
tional CleanCap'" technology [369]. To further avoid
recognition by the innate immune system, capped-IVT
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mRNAs should be treated with phosphatases to remove
uncapped phosphate, preventing PRR-mediated sensing
and destruction of mRNA translation [370].

Optimization of untranslated regions

UTRs can impact mRNA degradation rate and trans-
lation efficiency through interacting with RNA bind-
ing proteins [79]. 5' UTR sequence can be optimized to
enhance the stability of mRNA and accuracy of trans-
lation [79]. Firstly, avoid the presence of start codon
(AUG), and non-canonical start codons (CUQG) in the 5'
UTR, as these codons may disturb the normal transla-
tion process of ORF [371]. Secondly, avoid the presence
of highly stable secondary structures, which can pre-
vent ribosome recruitment and codon recognition [371].
Thirdly, shorter 5’UTR may be introduced as previous
studies have shown that this type of 5’UTR is more con-
ducive to mRNA translation process [372]. Ultimately,
bioinformatics tool can be used to predict mRNA trans-
lation efficiency according to 5’"UTR sequence. a-globin
and B-globin from Xenopus laevis or humans contain
translation and stability regulatory elements, and are
commonly used as the 3' UTR of IVT mRNA [373]. To
further improve RNA stability, AU- and GU-enriched
sequences can be introduced [374]. Moreover, tran-
scription efficiency might be improved by adding 3'UTR
sequence twice in tandem [374]. Overall, UTR perfor-
mance is dependent on species, cell type, and cell state
[375]. One needs to understand the pharmacology in the
targeted cells to allow better design of UTRs of the thera-
peutic mRNA vaccines [376].

Codon optimization of Open Reading Frame (ORF)

Optimization of G and cytosine (C) content in the ORF
can be applied to regulate the translation elongation rate
[377]. Uridine depletion is another codon optimization
strategy that can directly be linked to an increased GC
content [378]. Uridine-rich regions can be recognized by
RIG-I, and its activation may lead to abolishing of pro-
tein expression [379]. Moreover, the sequence can be
optimized to have the same ratio of every codon found
naturally in highly expressed proteins in the targeted
cells or to use the best pairs of codons that are commonly
seen in these highly expressed proteins [379]. In addition,
codons with higher tRNA abundance are usually used to
replace rare codons in ORF to increase the translation
rate [380]. Lastly, highly stable secondary structures and
hairpin loops should be avoided in the ORF [380]. How-
ever, high translation rate is not all beneficial, as some
proteins require a low translation rate to correctly and
effectively fold [381]. Therefore, codon optimizations in
the ORF should be carefully monitored to ensure moder-
ate translation rate and high translation accuracy [382].
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Some researchers demonstrated that sequence engi-
neered but chemical unmodified mRNA is fully suited for
use in mRNA therapies, and the protein expression level
was even higher than chemically modified but without
codon optimized mRNA, indicating the importance of
codon optimization in improving mRNA expression effi-
ciency [383].

Poly (a) tail modification

Poly(A) sequence can slow down the degradation process
of RNA exonuclease, increase RNA stability, and enhance
translation efficiency [384]. A suitable length of Poly(A)
is crucial [385]. Commonly used Poly(A) is 250 units
in length, but different cells may have different prefer-
ences [385]. For example, the optimal length of poly(A)
in human monocyte-derived DCs are 120-150 nucleo-
tides, in human primary T cells are 300 nucleotides [172].
Moreover, Poly (A) binding protein (PABP) can interact
with 5’cap through translational initiation factors, such as
elF4G and elF4E, forming a close-loop to impact mRNA
structure [386]. Recent study by Some researchers found
that shorter poly(A) sequence could promote this closed-
loop structure for efficient translation [387]. Therefore,
future studies should evaluate the role of poly-A size in
kinetic expression of IVT-mRNA antigen [387].

Nucleoside modified mRNA

Another method to improve mRNA stability, transla-
tion efficiency and mRNA vaccine potency is to modify
mRNA transcripts with alternative nucleotides [352].
Pseudouridine (¥), 1-methylpseudouridine (m1¥), and
5-methylcytidine (m5C) are used to replace the natural
uridine and cytidine, and thus to remove intracellular
signaling triggers for PKR and RIG-I, leading to enhanced
antigen expression [388]. Some researchers have found
that altering nucleosides in the mRNA’s structure (e.g.,
5mC or ¥) can substantially reduce innate immune acti-
vation and increase translational capacity of mRNA [11].
Post-transcriptional epigenomic RNA modifications can
also be a powerful approach for improving mRNA trans-
lation and evading innate immune response [11]. Some
researchers reported that post-transcriptional RNA
modification with N4-aceylcytidine (ac4C) enhanced
mRNA translation in vitro and in vivo [389]. Moreover,
the function of post-translational epigenomic modifica-
tions in DC activation has been demonstrated by mettl3,
an RNA methyl transferase which mediates mRNA m6A
methylation and induces DC activation [390].

Purification of IV'T-mRNA

As mentioned in Sect. "Cancer immunotherapies”, phage
polymerase in IVT can yield multiple contaminants,
including short RNAs generated from abortive initiation
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Fig. 9 Possible therapeutic uses of IVT mRNA. Solid arrows in the right-hand column signify clinical applications, while dotted arrows indicate
preclinical applications. Reprinted from [51] with permission from Springer Nature

event and dsRNA produced by self-complementary 3’
extension [387]. These RNA contaminants can activate
intracellular PPRs, including PKR, MDA-5, OAS etc.
and lead to abolish of mRNA translation and activation
of innate immunity [391]. Some researchers have dem-
onstrated that the removal of these RNA contaminants
result in mRNA that does not induce IFNs and inflam-
matory cytokines, ultimately leading to10- to 1000-fold
increase in protein production in human primary DCs
[392]. dsRNA species can be reduced during IVT by
decreasing Mg®* concentration or by producing RNA at
elevated temperature [387]. A more complete and scal-
able removal of dsRNA was performed by high-pressure
liquid chromatography (HPLC) [393]. However, HPLC
purification of mRNA is usually high cost and low yield
(<50%) [353]. Recently, a fast and cheap purification
method has been reported by some researchers. The
method utilized the selective binding of dsRNA to a cel-
lulose powder in ethanol containing buffer combined

with fast protein liquid chromatography (FPLC) to
remove up to 90% of dsRNA [328]. Another way to
completely get rid of dsRNA contaminants is through
solid phase synthesis of mRNA rather than IVT [394].
For instance, some researchers have synthesized RNA
fragments up to~70 nucleotides using the solid phase
method [395]. The RNA fragments were then ligated to
become full length mRNA. This process is scalable and
completely avoids the formation of dsRNA [395]. Fig-
ure 9 illustrates the potential therapeutic uses of in vitro
transcribed (IVT) mRNA in various clinical and preclini-
cal applications.

Utilizing the impact of type | IFN for improved mRNA
vaccination

As mentioned earlier, type I IFN shows paradoxi-
cal impact on the immune response of mRNA cancer
vaccine [64]. Several studies have demonstrated that
increased innate immune stimulation driven by mRNA
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and delivery system modifications are not necessary for
increased immunogenicity [2]. Other studies indicated
that enhanced immune responses via combination with
alternative adjuvants are required for mRNA vaccines to
achieve the targeted anti-tumor therapeutic outcome and
improved patients’ survival [396].

Some researchers have reported mRNA pulsed with a
palmitic acid-modified TLR7/8 agonist R484 markedly
improved the MHC class I presentation of OVA mRNA
derived antigen in APCs, subsequently induced a more
effective adaptive immune response in a tumor bearing
mouse model as compared to mRNA vaccine without
the adjuvant [37]. Moreover, the RNActive® vaccine plat-
form developed by CureVac AG used RNA/protamine
complex as an adjuvant to activate TLR7/8, induce Thl
T cell response [397]. Enhanced antitumor immunity was
achieved when dosing RNA/protamine adjuvant with the
naked, unmodified mRNA encoding antigens [398]. In
addition to using TLR agonists as adjuvants, stimulator
of interferon genes (STING) agonists has been recently
applied as immunomodulators for combination with
mRNA and peptide vaccines [399]. Some researchers
have shown that loading of mRNA cancer vaccines into
LNPs with intrinsic STING-IFN activation function pro-
duced a potent and prolonged CD8" T cells response [2].
Improved antitumor efficacies were observed in three
cancer models with the addition of STING activating
lipids [400].

Recently, a combination of pro-inflammatory cytokines
and chemokines have also been exploited to boost the
antitumor immunity of mRNA vaccines in both pre-
clinical and clinical studies [37]. In one clinical study, a
DC-based mRNA vaccination composed of a mixture
of TAAs were administrated together with DCs elec-
troporated with mRNA encoding CD70, CD40 ligand
(CD40L), and constitutively active TLR4 (TriMix) [401].
The combination therapy resulted in an encouraging rate
of tumor responses in patients with stage III or IV mela-
noma [402]. Costimulatory molecules CD70 and CD40L,
together with active TLR4, play crucial roles in the acti-
vation of DCs and priming of CD8* T cell responses
[111]. The cytokine cocktails are not only used to prime
DC and T cell functions, but can also be dosed intratu-
morally to reshape the tumor microenvironments [403].
For instance, intratumorally injection of mRNA-encod-
ing cytokines IL-23, IL-36Y, and T cell co-stimulatory
OX40L can overcome the suppressive tumor environ-
ment and produce effective systemic antitumor immu-
nity [404]. Studies in combination of adjuvants with
mRNA vaccines are blooming, but this strategy should be
used with caution as it could be counterproductive and
paradoxical, especially when using immune-stimulatory
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molecules that have tight interactions with type I IFN
and the innate immunity pathway [405].

Immunogenicity of mRNA and paradoxical effects in cancer
immunotherapy

Innate immune response is usually activated by host
immune system through detecting exogeneous motifs
called PAMPs via the pattern recognition receptors
(PRRs) [406]. These receptors are particularly highly
expressed in APCs, the major target cell population of
mRNA cancer vaccines [2]. Exogeneous IVT mRNA is
intrinsically immunostimulatory, as it is recognized by
a variety of cell surface, endosome and cytosolic PRRs
[370]. Recognition of IVT mRNA inside the endosome
is mainly mediated by toll-like receptor (TLR)-7 and —8
(one type of PRRs), subsequently activates the myeloid
differentiation marker 88 (MyD88) pathway, leading
to activation of Type-1 interferon (IFN) pathways and
secretion of proinflammatory cytokines [355]. In the
cytosol, these exogeneous mRNAs are sensed by other
PRR families, including retinoic acid-inducible gene-
I-like (RIG-I-like) receptors, oligoadenylate synthetase
(OAS) receptors, and RNA-dependent protein kinase
(PKR) [406)].

These PRRs can sense different RNAs, including
dsRNA and single stranded RNA (ssRNA), blocking
mRNA translation as reviewed elsewhere [407]. The
activation of multiple PRRs and production of type I IFN
can be paradoxically beneficial or detrimental for anti-
cancer immunotherapy [408]. It is potentially beneficial
for vaccination since, in some cases, activation of type
I IEN pathways drives APC activation and maturation,
promotes antigen presentation, and elicits robust adap-
tive immune responses [405]. However, innate immune
sensing of RNAs may be associated with inhibition of
antigen expression, and thus dampen immune response
[408]. Specifically, phage RNA polymerases produce
unwanted dsRNA during IVT that can activate innate
immunity via PKR, OAS, TLR-3, MDA-5 (one type of
RIG-I like receptors) [409]. Once the PKR is activated,
the eukaryotic initiation factor (eIF)-2 can be phospho-
rylated, blocking mRNA translation [410]. Moreover, the
dsRNA activates RNase L upon binding to OAS, causing
degradation of the exogenous RNAs [410]. Ultimately,
binding of dsRNA with MDA-5 and TLR-3 can activate
Type I IEN, eliciting several other genes that inhibit the
translation of mRNA [411]. Besides the dsRNA impu-
rities, improperly designed mRNA structure may also
activate PRRs like MDA-5 and PKR, abolishing antigen
expression [410]. Figure 10 illustrates the inflamma-
tory reactions triggered by artificial in vitro transcribed
(IVT) mRNA. This mRNA is recognized by several
endosomal innate immune receptors, such as Toll-like
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Fig. 10 Inflammatory Reactions to Artificial mMRNA. In vitro transcribed (IVT) mRNA is identified by a variety of endosomal innate immune receptors,
including Toll-like receptors 3, 7, and 8 (TLR3, TLR7, TLR8), as well as cytoplasmic innate immune receptors like protein kinase RNA-activated

(PKR), retinoic acid-inducible gene | protein (RIG-1), melanoma differentiation-associated protein 5 (MDA5), and 2'-5"-oligoadenylate synthase

(OAS). These pathways signal to produce inflammation connected with type 1 interferon (IFN), tumor necrosis factor (TNF), interleukin-6 (IL-6),

IL-12, and the initiation of various transcriptional programs. Collectively, these elements generate a pro-inflammatory environment conducive

to triggering specific immune responses. Furthermore, downstream consequences such as eukaryotic translation initiation factor 2a (elF2a)
phosphorylation-induced translation slowdown, increased RNA degradation due to ribonuclease L (RNASEL) overexpression, and self-amplifying
mRNA replication inhibition are significant for the pharmacokinetics and pharmacodynamics of IVT mRNA. Reprinted from [51] with permission

from Springer Nature

receptors 3, 7, and 8 (TLR3, TLR7, TLR8), and cytoplas-
mic innate immune receptors, including protein kinase
RNA-activated (PKR), retinoic acid-inducible gene I
protein (RIG-I), melanoma differentiation-associated
protein 5 (MDAS5), and 2'-5'-oligoadenylate synthase
(OAS). These receptor pathways then activate signaling
processes that result in the production of inflammation-
associated molecules like type 1 interferon (IFN), tumor
necrosis factor (TNF), interleukin-6 (IL-6), and IL-12,
initiating various transcriptional programs. The com-
bined effect of these components creates a pro-inflam-
matory environment that facilitates the activation of
specific immune responses. Additionally, downstream
effects such as eukaryotic translation initiation factor 2«
(eIF2a) phosphorylation-induced translation slowdown,

increased RNA degradation due to ribonuclease L
(RNASEL) overexpression, and self-amplifying mRNA
replication inhibition play crucial roles in determining
the pharmacokinetics and pharmacodynamics of IVT
mRNA.

The paradoxical impact of Type I IFNs activa-
tion is not only restricted to antigen expression, but
also shown on CD"8 T cell activation [2]. The dual
effect of Type I IFNs on CD8* T cell immunity have
been extensively reviewed elsewhere. In brief, the
stimulatory or inhibitory actions of type I IFNs on
CD*8 T cell activation is likely to be dependent on
the timing and kinetics between activation of IFNAR
signaling and TCR signaling, which may be further
impacted by the routes of administration of mRNA
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a Unmodified, unpurified mRNA
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b Nucleoside-modified, purified mRNA
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cancer vaccines [412]. For instance, several studies
have shown that type I IFNs can potentially promote
CD8"* T cell response to systemic mRNA vaccination
[413]. One hypothesis is that, intravenous (IV) deliv-
ery of mRNA (typically delivered by cationic lipoplex)
is expressed in splenic DCs, where antigen expression
and presentation take place simultaneously, with TCR
signaling preceding or coinciding with IFNAR sign-
aling [412]. In contrast, type I IFNs can potentially
interfere with topical (ID or SC) mRNA vaccination
where antigen expression happens locally in the injec-
tion site, but antigen presentation takes place in the
secondary lymphoid organs, with IFNAR signaling

precedes TCR signaling [240]. However, this IFNAR/
TCR signaling theory is still debating, since other
research groups have observed the opposite effects
from local administration of mRNA vaccines [412].
Therefore, the purity of mRNA products, the modi-
fication of mRNA sequence, the design of delivery
system and administration routes need to be tuned
to properly active the innate immunity to initiate the
adaptive immune response, simultaneously, averting
the toxic overactivations that inhibit antigen protein
expression and immune response [408]. Figure 11
illustrates the natural immune detection of mRNA
vaccines by DCs.
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Self-amplifying mRNA vaccine, structure,
advantages and deliveries

Another RNA vaccine platform that holds the promise to
maximize the magnitude and length of antigen produc-
tion is SAM [226]. SAMs are originated from positive-
single stranded mRNA viruses, most commonly from
alphaviruses such as Sindbis and Semliki-Forest viruses
[62]. The structural protein encoding genes of respec-
tive alphavirus that enable the formation of infectious
viral particles have been replaced with gene encoding
the antigen(s) of interest, whereas the RNA replication
machinery remains [414]. Specifically, the viral RNA-
dependent RNA polymerase (known as replicase) and the
non-structural proteins were retained to assemble into
the multi-enzyme replicase complex to direct cytoplas-
mic amplification of RNA [415]. SAM can self-amplify
over time (up to 2 months) and consequently inducing
more potent and persistent immune responses owing
to the integrity of the viral replication machinery [226].
The SAM platform precedes other nonreplicating mRNA
vaccine platforms in that it allows for a huge amount of
antigen production in an extended period of time from a
remarkable low dose vaccination [416]. Some researchers
reported that the IM injection of Sindbis virus-derived
SAM led to a ten-fold increase in antigen expression ratio
and eight-day extension of expression (from 2 to 10 days)
than non-replicating mRNA [417, 418].

Early investigation of SAM is direct injection of SAM
packaged into viral replication particles (VRP) [419].
VRPs are potent vaccines in mice, non-human primates
and humans However, the replicated VRP structural pro-
teins may induce non-specific immunogenicity and tox-
icity [420]. To decrease the infectious concern of viral
components, a propagation-defective type of VRPs was
generated [421]. The capsid and envelope proteins of the
modified VRP are encoded in trans as defective helper
constructs during production [419]. Only the RNA can
further amplify after internalization, whereas other part
of VRPs lack the ability to form infectious viral particles
[422]. Nowadays, complete synthetic SAM produced
after IVT can be directly used as RNA-based vaccine,
removing the potential safety concerns of the viral com-
ponents [423].

Since SAM is a huge and negatively charged molecule
(~9500nt), a delivery system is needed for its effective
cellular uptake and protection from enzymatic degrada-
tion [416]. Over the past few years, substantial efforts
have been made to identify a suitable delivery vehicle for
IVT SAM [226]. Medium-length cationic polymer poly-
ethylenimine (PEI) was adopted by some researchers to
deliver the long SAM, from which they have shown that
64-fold less dose of SAM achieved the equivalent immu-
nity to the non-replicating mRNA [416]. To decrease the
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potential toxicity from non-degradable cationic polymer,
a bio-reducible, linear cationic polymer called “pABOL”
was developed to deliver SAM [424]. Some researchers
demonstrated pABOL enhanced protein expression via
both IM and intradermal (ID) injection [424].

Some researchers presented a new vaccine platform
based on self-amplifying RNA encapsulated in synthetic
LNPs [425, 426]. The LNP platform protected SAM from
enzymatic degradation, allowed for efficient gene deliv-
ery after IM injection [426]. Proof of concept was dem-
onstrated in a model of respiratory syncytial virus (RSV)
infection [427]. To further improve transgene expression
and immunity of SAM vaccines, several approaches have
been attempted: Some researchers have reported the co-
administration of GM-CSF expressing RNA with SAM
to improve the potency against a lethal influenza virus
challenge in mice [226]. Moreover, some researchers
evaluated different cationic lipid formulations including
liposomes, LNPs, polymeric nanoparticles and emulsions
to encapsulate rabies virus glycoprotein G (SAM-RVG),
and noticed that DOTAP containing polymeric nano-
particles and LNPs were the most potent in triggering
humoral and cellular immunity [428]. Lastly, SAM has
been truncated into two transcripts (smaller in size) to
address the concerns of inefficient delivery [429]. Some
researchers have separated SAM encoding the antigen
of interest from the replicase activity [62]. The repli-
case activity is provided in trans using a co-transfected
RNA [62]. These two compartment SAM demonstrated
10-100-fold higher trans replicon expression than the
whole-set counterpart [62]. The doses of influenza
hemagglutinin antigen-encoding RNA in this platform
were as low as 50 ng to induce neutralizing antibodies
[430].

Clinical applications of SAM (delivered by VRPs and
LNPs) in the prevention of infectious disease are prom-
ising, which have been extensively reviewed elsewhere.
However, the applications of SAM in cancer vaccine are
mainly limited to preclinical studies, with only two clini-
cal trials ongoing using VRP delivered antigens against
colorectal cancers [431]. The clinical and immunological
benefits of SAM are still debating [431]. One major con-
sideration that restricts SAM applications is the intrinsic
PAMP natures, which makes it difficult to modulate the
inflammatory profile, potentially limiting repeated dosing
anti-tumor therapies [432].

Delivery of mRNA cancer vaccine

Table 5 provides an extensive list of physical delivery
methods for mRNA cancer vaccines, each with its own
set of advantages and disadvantages. Some methods,
such as electroporation, laser microporation, and mag-
netofection, offer high immunogenicity and efficacy, but
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may cause discomfort, require specialized equipment, or
have limited depth of penetration. Non-invasive options
like sonoporation, needle-free injection, and ultrasound-
mediated delivery offer more comfortable experiences for
patients but face their own limitations, such as penetra-
tion depth and equipment requirements. Biodegradable
and hyaluronic acid-based nanoparticles are highly sta-
ble and offer targeted delivery, but require optimization
for size and charge. Additionally, viral vector-mediated
delivery provides high transfection efficiency, but raises
concerns related to immune response and toxicity. Over-
all, each delivery method presents a unique balance of
immunogenicity, efficacy, safety, and stability, emphasiz-
ing the need for continued research and development in
this field.

Various viral, non-viral, and cell-based vehicles have
been developed to increase the delivery efficiency of
mRNA cancer vaccines [2]. Viral and cell-based vehicles
have been extensively reviewed elsewhere and are not
discussed in detail here. The comparison of these deliv-
ery systems is essential to identify the most effective and
efficient way of delivering mRNA cancer vaccines. For
example, some delivery systems may be more effective in
delivering mRNA to certain types of cells, while others
may be better at eliciting a specific immune response.
By comparing the different delivery systems, research-
ers can choose the most suitable system for their mRNA
cancer vaccine, taking into account the specific require-
ments of their study, such as the type of cancer being
targeted, the desired immune response, and the mode of
administration. Table 6 provides a comprehensive com-
parison of various mRNA cancer vaccine delivery sys-
tems, each with its own set of advantages, disadvantages,
and factors affecting immunogenicity, efficacy, safety,
and stability.

LNPs are known for their high delivery efficiency and
low toxicity, while cationic polymers offer low cost and
customizability. Peptide-based delivery systems boast
a high level of customization and potential for targeted
delivery. Other methods, such as in vivo electroporation,
physical delivery methods like laser microporation and
sonoporation, and the use of gold nanoparticles, provide
targeted delivery with varying levels of immunogenic-
ity and efficacy. Biodegradable microspheres, cell-based
vaccines, and protein and peptide-based systems have
shown promising results in certain cancer targets, while
electrospray and RNA-lipoplexes provide high antigenic-
ity and low toxicity, respectively. Novel methods like
mRNA-coated gold nanorods and nanocarriers offer tar-
geted delivery and reduced toxicity. Collectively, these
delivery systems offer unique advantages and challenges
in the fight against cancer, with their success largely
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dependent on the specific cancer target and delivery
method employed.

Ex vivo DC mRNA allows for the loading of DCs with
tumor-specific antigens but involves complex and costly
procedures. In vivo naked mRNA is simple and easy to
administer but has limited efficacy due to degradation in
the body. Lipid nanoparticles and polymer-based deliv-
ery systems offer high efficiency of mRNA delivery, with
the former being more efficient. Peptide-based delivery
offers highly specific targeting of cancer cells, but lim-
ited clinical data and validation are available. Self-ampli-
fying mRNA (SAM) requires lower doses for efficacy,
while in vivo electroporation increases cellular uptake,
reducing the need for delivery vehicles. Jet injection and
hydrodynamic delivery are simple and easy to adminis-
ter, but their efficacy is limited due to mRNA degrada-
tion. Physical delivery methods can achieve high mRNA
delivery efficiency but may cause tissue damage or be
limited by tissue barriers. In vitro transcription allows for
large-scale production of mRNA but requires high cost
and complex procedures. The safety and stability of these
delivery systems are generally considered acceptable,
but there are variations in efficacy and immunogenicity
among them. Table 7 provides a comprehensive com-
parison of different delivery systems for mRNA cancer
vaccines.

lonizable lipid nanoparticles-based mRNA delivery system

Ionizable lipid nanoparticles (LNPs) are a type of lipid-
based delivery system used for the delivery of mRNA in
mRNA vaccines. They are composed of a lipid bilayer
that encapsulates the mRNA payload, protecting it from
degradation and facilitating its delivery into target cells.
The term "ionizable" refers to the presence of ionizable
lipid components within the nanoparticle structure. The
lipid component forms the core structure of the nanopar-
ticle and provides stability. It is usually a mixture of dif-
ferent lipids, including ionizable cationic lipids, neutral
lipids, and cholesterol. The ionizable cationic lipids play
a crucial role in endosomal escape and efficient intracel-
lular delivery of mRNA.

The mRNA encoding the desired antigen or thera-
peutic protein is encapsulated within the lipid bilayer of
the nanoparticle. The mRNA is synthesized in vitro and
then complexed with the lipid components to form the
LNP. Polyethylene glycol (PEG) is often included in the
LNP formulation to provide stability and prevent aggre-
gation of nanoparticles. PEGylation also helps to pro-
long the circulation time of LNPs in the body, enhancing
their chances of reaching the target cells. In some cases,
LNPs can be modified with targeting ligands on their sur-
face to facilitate specific binding to target cells or tissues.
This modification enhances the specificity and efficiency
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of LNP delivery to the desired cells, improving vaccine
efficacy.

The ionizable LNPs exploit the natural process of
endocytosis, where cells engulf extracellular materi-
als, to deliver the mRNA payload into the target cells.
After the LNPs are taken up by cells, they are internal-
ized into endosomes. The ionizable cationic lipids within
the LNPs interact with the negatively charged endoso-
mal membrane, leading to disruption of the endosomal
structure and release of the mRNA payload into the cyto-
plasm. Once inside the cytoplasm, the mRNA is avail-
able for translation by the cellular machinery to produce
the desired protein or antigen. The protein or antigen
is then presented to the immune system, triggering an
immune response and the production of specific anti-
bodies or activated T cells. Ionizable lipid nanoparticles
have gained significant attention in the field of mRNA
vaccines due to their ability to efficiently deliver mRNA
into cells, resulting in high protein expression levels and
potent immune responses. They have been successfully
used in the development of mRNA-based COVID-19
vaccines, such as the Pfizer-BioNTech and Moderna vac-
cines. The versatility and effectiveness of ionizable LNPs
make them a promising tool for the delivery of mRNA-
based therapeutics and cancer vaccines.

Rationale for lipid nanoparticles to maximize deliver
efficiency and immunogenicity
There are various types of lipid nanoparticles employed
for mRNA vaccine delivery, each with their unique advan-
tages and disadvantages. PEGylated lipids offer increased
circulation time and reduced toxicity but suffer from
poor transfection efficiency and manufacturing chal-
lenges. Cationic lipids boast good transfection efficiency
and easy manufacturing but can be toxic and unstable.
Neutral lipids provide high stability and low toxicity,
while pH-sensitive lipids enable endosomal escape in
acidic environments, but both have limited transfection
efficiency. Ionizable lipids have high transfection effi-
ciency and stability but are also associated with toxicity
and off-target effects. Multi-component lipids, pro-nano
liposomes, dual-function polymer-lipid nanoparticles,
and targeted lipid nanoparticles offer enhanced stability,
reduced toxicity, and improved transfection efficiency,
albeit at the cost of complex manufacturing processes
and potential off-target effects. Researchers continue to
explore and develop these lipid nanoparticles to optimize
the delivery of mRNA vaccines, aiming to maximize effi-
cacy, safety, and stability while minimizing disadvantages
and off-target effects.

LNPs are a type of delivery system that encapsulate the
mRNA in a protective lipid coat to improve its stability
and delivery efficiency (Table 8). LNPs, which were
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originally designed to deliver siRNAs, have been recently
applied for the delivery of mRNA and present as the most
clinical-translatable non-viral delivery vehicles [476].
LNPs are mainly composed of an ionizable amino-lipid-
like molecule, a helper phospholipid, cholesterol, and
lipid-anchored polyethylene glycol (PEG) [196]. The ion-
izable lipid is an amphipathic structure with a hydro-
philic headgroup containing one or multiple ionizable
amines, hydrocarbon chains capable of promoting self-
assembly, and a linker that connects the headgroups with
hydrocarbon chains [477]. The ionizable lipid is designed
to acquire positive charges by protonation of the free
amines at low pH for two main purposes: (1) during the
preparation of LNPs, the positively charged lipids can
facilitate encapsulation of the negatively charged mRNA
via electrostatic interaction [121]; (2) in the acidic endo-
somal microenvironment upon intracellular delivery of
LNPs, the positively charged lipid could interact with the
ionic endosomal membrane, facilitating membrane
fusion and destabilization, leading to release of mRNA
from both LNPs and endosome [478]. At the physiologi-
cal pH, the ionizable lipid remains neutral, improving
stability and decreasing systemic toxicity [479]. Repre-
sentative ionizable lipids include: Dlin-DMA, DLin-KC2-
DMA, and DLin-MC3-DMA, which were synthesized
based on rational design [480]; C12-200, and cKK-E12,
which were screened by high throughput screenings of
combinatorial libraries [275]; next-generation ionizable
lipids, including DLin-MC3-DMA derivative 1319
(Alnylam and AlCana Technologies), C12-200 and cKK-
E12 derivatives (Anderson’s group), COVID-19 vaccine
lipid ALC-0315 and SM-102, TT3 and biodegradable
derivative FTT5 (Dong’s group), vitamin derived lipid
ssPalmE and VcLNP, A9 (Acuitas), L5 (Moderna), A18
Lipid, ATX Lipid (LUNAR® composition, Arcturus) and
LPO1 (Intellia Therapeutics), which were mostly biode-
gradable [481]. Besides ionizable lipid(s), phospholipid
(ie. 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine
(DOPE), 1,2-distearoyl-sn-glycero-3-phosphocholine
(DSPC)) and cholesterol are incorporated to improve
lipid bilayer stability, aid membrane fusion and endoso-
mal escape [482]. The lipid-anchored PEG is incorpo-
rated to decrease macrophage-mediated clearance. More
importantly, lipid-anchored PEG helps prevent particle
aggregation and improve storage stability [483]. For can-
cer vaccine delivery, LNPs should be designed to protect
mRNA from extracellular RNase degradation, and to
deliver mRNA encoding antigens specifically to APCs, so
to facilitate efficient antigen presentation, whilst not
comprise mRNA translation [484]. In addition, the lipid
excipients used to deliver mRNA should be metaboliza-
ble and cleared rapidly, thus decreasing the potential sys-
temic toxicity elicited from the vehicles and to allow for
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repeatable dosing [485]. Ionizable lipids play crucial roles
in fulfilling all these purposes [479]. Current optimiza-
tion of ionizable lipids have been focused on modulating
the head group, linker and alkyl chains to adjust the acid
dissociation constant (pKa), fusogenic properties, and
metabolic behaviors [486]. Acid dissociation constant
(pKa) of the ionizable amino group is strongly correlated
with in vivo efficacy and immunogenicity of mRNA [487].
The optimal pKa range for IV delivery of siRNAs and
mRNAs are between 6.2—6.5 as screened and confirmed.
Whereas some researchers recently reported that the
recommended range of lipid pKa was 6.6-6.9 for IM
injection of mRNA to induce optimal immunogenicity
[488]. To achieve the targeted pKa, the head group of the
ionizable lipid usually contains at least one tertiary amine
or two amino groups apart [489]. Examples include etha-
nolamine headgroup in L5 lipid (pKa 6.56), dimethyl-
amine headgroup in DLin-MC3-DMA (pKa 6.44), and
2-ethylpiperidin headgroup in A18 (pH6.6) [490].
Although the weakly acidic headgroup of the ionizable
lipids is an important feature for the success of the LNP,
it may also contribute to the instability of the nanoparti-
cles [491]. According to the package insert, both Pfizer/
BioNTech and Moderna COVID-19 vaccines must be
stored at ultralow temperature and should be discarded
after less than a day at room temperature [492]. One
hypothesis for the instability nature of LNPs is that the
ionizable lipids are neutral and oil-like at storage pH
(usually neutral), and thus they may not tend to stay at
the interface at ambient temperature [493]. Besides lipid
pKa, the molecular shape of the lipid may also impact
mRNA expression efficiency [494]. The hypothesis com-
monly acknowledged in the field is that the ionizable lipid
should adopt a “cone” shape once protonated in acidic
environments to facilitate endosomal escape [495]. In
principle, the “cone shape” ionizable lipid, which contains
lipid tails with larger cross-sectional areas than the lipid
headgroups, could pair with the anionic endosomal
membranes (i.e., phosphatidylserine) to form non-bilayer
hexagonal Hj; phases, resulting in fusion and disintegra-
tion of the endosomal membrane [495]. Multiple struc-
ture—activity evaluations from the high throughput lipid
libraries demonstrate that incorporation of double bonds
in hydrocarbon alky chains (especially cis-alkenyl group,
e.g., linoleyl chains in Dlin-MC3 (KC2)-DMA) can alter
the orientation of the alkyl chains, thereby enhancing the
potentials to generate non-bilayer structure [496]. Lin-
oleic acid-derived tails have been widely applied to build
various ionizable or cationic lipids [497]. For instance,
Some researchers have introduced linoleic chains to the
cKK-E12 based polyamine core via a ring opening reac-
tion [498]. The linoleic acid derivative OF-2 showed more
than twice higher level of erythropoietin (EPO)
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expression than the cKK-E12 counterpart when IV inject-
ing the EPO mRNA containing LNPs [499]. Increasing
the degree of unsaturation (including alkynyl group) in
the lipid tails can further enhance the fusogenicity of the
lipid, and improve endosomal escape [495]. However, sta-
bility of LNPs may be compromised [499]. Replacing alk-
ene group with ester bond can also maintain the lipid
“core shape” and the fusogenicity [500]. Finally, the alkyl
chain length may also be correlated with fusogenicity
[500]. Some researchers evaluated lipids with alkyl chain
length varying from C8 to C18, and showed that lipids
with 12-14 carbon atoms in the tail were optimal for
delivery [501]. Structural changes in the headgroup-
linker region also affect the ionization behavior of the
headgroup and the orientation of the alkyl chains [500].
However, safety is another index needs to be considered
for chronic indications like cancer [502]. Unfortunately,
improvements in delivery vehicle potency do not always
result in an enlargement of the therapeutic outcome
because of the reductions in tolerated dose levels [503].
Although the U.S. FDA approved DLin-MC3-DMA lipid
is well tolerated in several clinical studies, repeat dosing
some of the ionizable lipid containing LNPs have shown
elevated cytokine levels and increased immunogenicity
[309]. A persistent theme in the development of delivery
vehicles is to incorporate biodegradable design features
as means to improve biocompatibility and decrease sys-
temic off-target toxicity [504]. Ester linkages are widely
used for enhancing the biodegradability of biomaterials,
as it can be hydrolyzed enzymatically by esterase or lipase
in tissues and intracellular compartments [505]. Cleavage
of an ester linkage within the hydrophobic chain will gen-
erate more hydrophilic by-products, carboxylic acid and
alcohol that can be readily eliminated, or further metabo-
lized by natural mechanisms [505]. In the same time, the
sp-carbon of the ester group helps the lipid maintain the
“cone shape” to destabilize the endosomal membrane
[506]. Moreover, the carboxylic acid containing deriva-
tive after hydrolysis are likely to reverse the positive
charge in the amino head group, and facilitate the release
of mRNA from the vehicle [507]. For instance, 1319
(DLin-MC3-DMA derivative), LP-01 and lipid 5 are
reported to be cleared from the liver rapidly (half-
life<6 h) as compared to DLin-MC3-DMA (half-
life >50 h) [508]. However, primary ester linkages added
to the lipid tail are also vulnerable to the esterase/lipase
in the systemic circulation, with the potential of cleavage
before delivering mRNA intracellularly, thus leading to
compromised potency [509]. A balance between delivery
efficiency and pharmacokinetics are a complex correla-
tion between number/type/location of the ester bond(s)
in the hydrocarbon tails, the type and structure of the
headgroup and linker [510]. Subtle change could tip the
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balance to one end. For instance, a combination of sec-
ondary and primary esters in the ethanolamine featured
L5 lipid can maintain a satisfactory balance between
expression potency and clearance [509]. Replacing the
alcohol functionality with dimethylamine in the head
group or moving the primary ester closer to the nitrogen
group all introduce loss of delivery efficiency [511]. In
some cases, introducing of ester bond can modulate the
expression of protein in different cell types [512]. For
example, OF-Deg-Lin induced protein expression selec-
tively in the B cells of the spleen [513]. Therefore, rational
design of biodegradable lipids could offer better control
over clearance rate and expression selectivity [512]. In
addition to chemical modifications of the ionizable lipids,
formulation of LNPs were also optimized to potentiate
antigen expression and adaptive immune response [491].
Some researchers have used design of experiment (DOE)
to investigate the impact of ionizable lipid ratios, the type
of helper lipids on the mRNA delivery efficiency [514].
The researchers found out that incorporation of DOPE as
the helper lipid into cKK-E12 LNP could improve mRNA
but not siRNA expression [515]. The same group later
evaluated the impact of lipid length, PEG molecular
weight and mole percentage of lipid-anchored PEG in
LNPs on the distribution patterns of the encapsulated
siRNA in vivo [516]. The highest liver distribution was
observed when 0.75% of C18-PEG1000 were incorpo-
rated into C12-200 LNP formulations [516]. Some
researchers have evaluated the mRNA expression using
LNP containing combinations of different ionizable
lipids, and indicated that combining a protein binding
ionizable lipids with a lipid of high fusogenicity could
potentiate mRNA expression [517]. Organ specificity can
also be tuned by modifying the lipid formulations [518].
For instance, some researchers figured out that decreas-
ing the ratio of cationic lipid to DOPE in the mRNA
loaded lipoplex could shift mRNA expression from the
lungs towards spleen [519]. Based on this rationale, they
have developed lipoplexes that systemic delivered mRNA
vaccine to splenic DCs [519].

(See figure on next page.)
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Mechanistic studies and additional functional
modifications of LNPs

The rationales and mechanisms behind LNP internaliza-
tion, endosomal escape and organ/cell-selective deliv-
ery have been widely investigated by multiple groups
using either siRNA or mRNA as the delivered molecules
[533]. In brief, apolipoprotein E(ApoE) or albumin-based
receptor mediated endocytosis and non-specific micro-
pinocytosis are two major mechanisms responsible for
the update of mRNA/siRNA loaded LNPs [534]. To
improve the specific delivery of LNPs to APCs, targeting
ligand was further added to modify the LNPs [534]. For
instance, mannose-cholesterol conjugates (MPn-CHs)
was added to LNPs post formulation preparation through
click reaction with the PEG units [423]. The mannose
modified LNPs were shown to improve the uptake of the
particles in DCs through mannose receptor CD206 [423].

Insufficient release of mRNA/siRNA from endoso-
mal compartment has been considered as the predomi-
nant obstacle that limits the expression of mRNA/siRNA
delivered by LNPs [535]. Intracellular trafficking of LNP
loaded siRNA/mRNA have been visualized using electron
microscope (EM), high-dynamic range live-cell imaging
confocal, single-molecule fluorescence in situ hybridi-
zation (FISH), etc. [536]. By directly detecting colloidal-
gold particles conjugated to siRNAs using EM, Some
researchers demonstrated that only 1-2% of siRNA deliv-
ered by DLin-MC3-DMA LNPs could escape from the
endosomes into cytosols [537]. Moreover, the cytosolic
release of siRNA/mRNA only occurs during a narrow
window of time when the LNPs reside in early matured
endosomes, as reported by some researchers [232]. Ion-
izable lipids or helper lipids with increased fusogenic-
ity have been incorporated into LNPs to improve the
endosomal escape of mRNA/siRNAs [538]. For instance,
Moderna L5 LNPs showed sixfold higher rate of endoso-
mal escape as compared to the DLlin-MC3-DMA LNPs
[539].

The positive effect of lipid nanoparticle (LNP) for-
mulation on protein production in vivo following intra-
muscular administration is demonstrated. Figure 12-A
demonstrates the enhancement of protein production

Fig. 12 A LNP formulation boosts protein production in vivo following intramuscular administration. BALB/c mice (4 per group) received
intramuscular injections of either non-formulated (mRNA) or LNP-formulated (mMRNA/LNP) PpLuc mRNA. a) Luciferase expression was observed

in vivo through optical imaging at 24- and 48-h post-injection. b) Luminescence was used to quantify luciferase expression. Data points

from individual mice (represented as dots) and the median (depicted as solid lines) are shown for each group. B LNP-based mRNA vaccine triggers
both humoral and cellular immune reactions in mice. BALB/c mice (10 per group) received intramuscular vaccinations on day 0 and day 21 using
either non-formulated RABV-G mRNA (mRNA), LNP-encapsulated RABV-G mRNA (mRNA/LNP), or buffer. Rabies Virus Neutralization Tests (VNTs)
were conducted on the serum three weeks post-initial vaccination (a) and two weeks post-boost vaccination (b). Two weeks after the boost
vaccination, splenocytes were exposed to an overlapping peptide library encompassing the RABV-G protein. Antigen-specific, multifunctional
(IFN-y+/TNF +) CD8 +(c) and CD4+ (d) T cells were identified using intracellular cytokine staining. Data points represent individual mice,

while the solid lines indicate median values for each group. The dashed line marks the generally accepted protective titer threshold of 0.5 [U/ml

for rabies VNTs. Reprinted from [540] with permission from Springer Nature
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in vivo as a result of LNP formulation following intra-
muscular administration. In the study, BALB/c mice were
divided into two groups of four, with one group receiv-
ing non-formulated PpLuc mRNA injections and the
other receiving LNP-formulated PpLuc mRNA injections
(mRNA/LNP). The luciferase expression, which serves
as an indicator of protein production, was monitored
through optical imaging at 24- and 48-h post-injection.
The luminescence data was then used to quantify the
expression levels. The results, represented by individual
data points for each mouse and the median values shown
as solid lines, clearly indicate that the LNP-formulated
group exhibited significantly higher levels of luciferase
expression compared to the non-formulated group,
thus confirming the effectiveness of LNP formulation in
boosting protein production in vivo.

The experiment involved BALB/c mice, divided into
two groups of four. One group received intramuscular
injections of non-formulated mRNA (mRNA), while the
other group received LNP-formulated mRNA (mRNA/
LNP) containing the PpLuc mRNA. Two time points,
24- and 48-h post-injection, were analyzed for luciferase
expression using in vivo optical imaging (a). The lumi-
nescence was then quantified to measure the luciferase
expression (b). The data points for individual mice are
represented as dots, while the median for each group is
shown as a solid line. Figure 12-A illustrates that LNP-
formulated mRNA led to significantly enhanced protein
production in comparison to non-formulated mRNA.
The study involved three groups of BALB/c mice, each
with 10 mice, which were vaccinated intramuscularly
on day 0 and day 21 with either non-formulated RABV-
G mRNA, LNP-encapsulated RABV-G mRNA (mRNA/
LNP), or buffer. The figure presents Rabies Virus Neu-
tralization Tests (VNTs) performed on the serum three
weeks after the initial vaccination (a) and two weeks
after the boost vaccination (b). Additionally, the fig-
ure shows antigen-specific, multifunctional (IFN-y+/
TNF+) CD8+(c) and CD4+(d) T cells identified using
intracellular cytokine staining in splenocytes exposed to
an overlapping peptide library encompassing the RABV-
G protein, two weeks post-boost vaccination. Individual
data points represent each mouse, while solid lines indi-
cate the median values for each group. Figure 12-B dem-
onstrates the efficacy of LNP-based mRNA vaccines in
eliciting both humoral and cellular immune responses
in mice. In the study, groups of BALB/c mice were given
intramuscular vaccinations on day 0 and day 21, with
either non-formulated RABV-G mRNA (mRNA), LNP-
encapsulated RABV-G mRNA (mRNA/LNP), or buffer.
Three weeks after the initial vaccination and two weeks
after the boost vaccination, Rabies Virus Neutralization
Tests (VNTs) were performed on the mice’s serum to
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measure humoral immunity. Additionally, splenocytes
from the mice were exposed to an overlapping pep-
tide library covering the RABV-G protein, and antigen-
specific, multifunctional (IFN-y+/TNF+) CD8+and
CD4+T cells were assessed through intracellular
cytokine staining to gauge cellular immunity. Individual
data points represent each mouse, while the solid lines
indicate median values for each group. The dashed line
signifies the generally accepted protective titer threshold
of 0.5 IU/ml for rabies VNTs, highlighting the success
of the LNP-based mRNA vaccine in triggering robust
immune reactions in the test subjects.

Immunogenicity of the delivery materials were also
evaluated and applied to boost immune response of the
cancer vaccines [541]. Some researchers have developed
a group of ionizable lipids containing cyclic amino head
groups, isocyanide linker, and linoleic acid derived alkyl
tails that provides adjuvant activities independent of the
encapsulated mRNA [522]. The cyclic amino head and
isocyanide linker of the lipids directly bound to STING
(stimulator of interferon genes) protein and triggered
the activation of Type I IFNs, leading to activation of
humoral and cellular immune response [542].

LNP mRNA vaccine from formulation to manufacturing

Figure 13 illustrates the challenges and methods associ-
ated with delivering and administering lipid nanoparti-
cle-mRNA (LNP-mRNA) concoctions. In part (Fig. 13-a),
the figure highlights the natural obstacles faced by these
mixtures after systemic and localized distribution. These
hurdles include rapid clearance by the reticuloendothe-
lial system, enzymatic degradation, immunogenicity, and
endosomal entrapment, which impede the overall efficacy
of LNP-mRNA therapies. Part (Fig. 13-b) of the figure
outlines various delivery methods for LNP-mRNA com-
pounds, such as intravenous, intramuscular, subcutane-
ous, and direct organ administration. Each method aims
to overcome the natural barriers and maximize the thera-
peutic potential of LNP-mRNA treatments, enabling tar-
geted gene expression and efficient cellular uptake for a
range of clinical applications. The conventional benchtop
formulation process for LNPs includes direct mixing,
thin film, ethanol injection, which are usually labor inten-
sive, lack of scalability and reproducibility [543]. More
recently, great control was achieved over the mixing pro-
cess when performed by T-junction mixing, microflu-
idic using microfluidic hydrodynamic focusing (MHEF)
or Staggered herringbone mixing (SHM) [544]. The
rationales and advantages of each rapid mixing methods
were summarized by some researchers elsewhere [545].
In brief, these chip-based microfluidic devices mix two
laminar flows, the RNA-containing aqueous phase and
the lipids-containing ethanol phase, through a confined
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microchannel equipped with chaotic mixers at a con-
trolled speed, leading to rapid diffusion and self-assembly
of mRNA-LNP at the interface [546]. High encapsulation
efficiency (>90%) and low polydispersity can be achieved
by rapid laminar flow mixing [546]. The laminar flow
rapid mixing method is scalable for GMP production of
LNPs [547]. For instance, Precision NanoSystems team
produced GMP microfluidic product of LNPs using the
NanoAssemblr GMP system and a TrM (NxGen500) car-
tridge [548]. With the recent approval of two mRNA vac-
cines for prevention of COVID-19 from Pfizer/BioNTech
and Moderna, rapid GMP manufacturing of COVID-
19 vaccine (including mRNA and LNP manufacturing)
are highly required [549]. For instance, BioNtech/Pfizer
were committed to produce vaccines at 6 manufacturing
sites to achieve 570 million doses for support dosing in
13 countries [550]. This further supports the feasibility of
rapid production of mRNA vaccines to fulfill commercial
requirement [59].

Polymer-based mRNA delivery system

Polyamines, dendrimers, biodegradable copolymers are
commonly used polymer-based materials for mRNA
delivery [552]. Polymer-based delivery systems tend to

have lower purity due to high polydispersity, lower clear-
ance rate due to large molecular weight, and worsen tox-
icity profile due to condensed charge density compared
to synthetic LNPs, and they are not as clinically advanced
for mRNA delivery as ionizable lipids [553]. Figure 14
illustrates various nanoscale particles and complexes
utilized in cancer immunotherapy delivery systems To
improve the tolerability and stability of the polymeric
platforms, structural modifications, which include
incorporating of lipid tails, hyperbranched groups and
biodegradable moieties have been evaluated [554]. Poly-
mer-based delivery systems are one of the methods used
to deliver mRNA vaccines to cells (Table 9).
Polymer-based mRNA delivery systems exhibit a
range of characteristics, each with its own advantages
and disadvantages. Polyethyleneimine (PEI) has high
transfection efficiency but is cytotoxic at high doses.
Poly(lactic-co-glycolic acid) (PLGA) is biodegradable and
biocompatible but has limited transfection efficiency.
Chitosan offers good biocompatibility and biodegrada-
bility but similarly suffers from limited transfection effi-
ciency. Polyethyleneglycol (PEG) is non-immunogenic
and biocompatible, though it has poor transfection effi-
ciency. Various other polymers such as poly(amidoamine)
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Polymer Type Advantages Disadvantages Immunogenicity Efficacy Safety Stability Mechanism of Reference
Action
Polyethyleneimine  High transfection Cytotoxicity at high ~ Yes Effective  Low Good Endosomal release  [556]
(PEI) efficiency doses
Poly(lactic-co-gly- ~ Biodegradable Limited transfection No Moderate High  Fair Sustained release [443]
colic acid) (PLGA) and biocompatible  efficiency
Chitosan Good biocompat- Limited transfection Yes Moderate High Fair Endosomal release  [143]
ibility and biodegra- efficiency
dability
Polyethyleneglycol ~ Non-immunogenic  Poor transfection No Low High  Good Surface modifica-  [557]
(PEG) and biocompatible  efficiency tion and cellular
uptake
Poly(amidoamine)  Good biocompat-  Cytotoxicity at high ~ Yes Effective  Low Good Endosomal escape  [558]
(PAA) ibility and efficient ~ doses and cytoplasmic
transfection delivery
Poly(beta-amino Good transfection Limited stability Yes Effective  Low Fair Endosomal release  [144]
esters) (PBAEs) efficiency and bio-
compatibility
Polyethyleneimine-  High transfection Potential cytotox-  Yes Effective  Low Good Endosomal release  [556]
polycaprolactone efficiency and sta- icity
(PEI-PCL) bility
Poly(beta-amino Good biocompat- Limited stability Yes Effective  Low Fair Endosomal release  [151]
ester)-polyethylene  ibility and efficient and cytoplasmic
glycol (PBAE-PEG) transfection delivery
Polyethylenimine-  High transfection Potential cytotoxic-  Yes Effective Low  Good Endosomal release  [559]
poly(lactic-co- efficiency and sta- ity and immuno-
glycolic acid) bility genicity
(PEI-PLGA)
Dextran Biocompatible Limited transfection No Low High  Fair Sustained release [560]
and biodegradable  efficiency
Polyethylenimine-  High transfection Potential cytotoxic-  Yes Effective Low  Good Endosomal release  [561]
polypropyleneimine efficiency and sta- ity and immuno-
(PEI-PPI) bility genicity
Poly-L-lysine (PLL) Good transfection Limited stabil- Yes Effective  Low Fair Endosomal release  [562]
efficiency and bio- ity and potential
compatibility toxicity
Poly (amino acid) Biodegradable Limited transfection No Low High Fair Sustained release [563]
(PAA) and biocompatible  efficiency and sta-
bility
Polyhydroxyethylas- Good biocompat-  Limited transfection No Low High  Good Endosomal release  [537]
partamide (PHEA) ibility and stability  efficiency and cytoplasmic
delivery
Poly(N,N-dimeth- High transfection Potential cytotoxic-  Yes Effective  Low Good Endosomal release  [564]
ylaminoethy! efficiency and sta- ity and immuno-
methacrylate) bility genicity
(PDMAEMA)
Poly(beta-thiopropi- High transfection Limited data No Effective  Low Good Endosomal release  [144]
onate) (PBT) efficiency and sta-  on biocompatibility
bility
Polypeptide Biocompatible Limited data No Low High  Fair Sustained release  [565]
and biodegradable  on transfection
efficiency
Poly(glycidol) (PG) Biocompatible Limited data No Low High Fair Endosomal release  [566]
and biodegradable  on transfection effi- and cytoplasmic
ciency and stability delivery
Poly(amino acid)- Good biocompat- Limited stability Yes Effective  Low Fair Endosomal release  [151]
polyethylene glycol ibility and efficient and cytoplasmic
(PAA-PEG) transfection delivery
Polysaccharide Biocompatible Limited data No Low High  Fair Sustained release [542]

and biodegradable

on transfection effi-
ciency and stability
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Polymer Type Advantages Disadvantages Immunogenicity Efficacy Safety Stability Mechanism of Reference
Action
Poly(trimethylene Biodegradable Limited data No Low High  Fair Sustained release [567]
carbonate) (PFTMC)  and biocompatible  on transfection
efficiency
Poly(amidoamine)-  High transfection Potential cytotoxic-  Yes Effective  Low Fair Endosomal escape  [568]
polyethylene glycol  efficiency and effi- ity and immuno- and cytoplasmic
(PAMAM-PEG) cient endosomal genicity delivery
escape
Poly(beta-amino Good biocompat- Limited stability Yes Effective  Low Fair Endosomal release  [144]
ester)-polyethylene  ibility and efficient and cytoplasmic
glycol (PBAE-PEG) transfection delivery
Poly(2- High transfection Potential cytotoxic-  Yes Effective  Low Good Endosomal escape  [564]
(dimethylamino) efficiency and effi- ity and immuno- and cytoplasmic
ethyl methacrylate)  cient endosomal genicity delivery
(PDMA) escape
Poly(malic acid) Biodegradable Limited transfection No Low High  Fair Sustained release  [569]
(PMA) and biocompatible  efficiency and sta-
bility
Poly(propylene High transfection Potential cytotoxic-  Yes Effective  Low Good Endosomal escape  [570]
imine) dendrimers  efficiency and effi- ity and immuno- and cytoplasmic
(PPI) cient endosomal genicity delivery
escape
Poly(glutamic acid)  Biodegradable Limited transfection No Low High  Fair Sustained release [561]
(PGA) and biocompatible  efficiency and sta-
bility
Chitosan Biodegradable Limited transfection No Low High Fair Endosomal release  [143]
and biocompatible  efficiency and sta-
bility
Poly(N-2-hydroxy-  Biodegradable Limited transfection No Low High  Good Endosomal release  [571]
propyl)methacryla-  and biocompatible  efficiency and sta- and cytoplasmic
mide (PHPMA) bility delivery
Poly(acrylic acid) Biocompatible Limited data No Low High Fair Sustained release [572]
(PAA) and biodegradable  on transfection effi-
ciency and stability
Poly(glycolic acid) Biodegradable Limited data No Low High  Fair Sustained release [561]
(PGA) and biocompatible  on transfection effi-
ciency and stability
Polyurethane (PU) Biocompatible Limited data No Low High Good Endosomal release  [573]
and biodegradable  on transfection effi- and cytoplasmic
ciency and stability delivery
Poly(ethylene oxide) Good biocompat-  Limited stability No Effective  Low Good Endosomal release  [574]
(PEO) ibility and efficient
transfection
Poly(N-vinylpyrro- ~ Good biocompat-  Limited stability No Effective  Low Good Endosomal release  [575]
lidone) (PVP) ibility and efficient
transfection
Poly(beta-amino Efficient transfec- Limited stability Yes Effective  Low Fair Endosomal escape  [144]

ester) (PBAE)

tion and endosomal

escape

and cytoplasmic
delivery

(PAA), poly(beta-amino esters) (PBAEs), and poly-L-
lysine (PLL) also have their unique sets of advantages
and drawbacks, with some exhibiting high transfection
efficiency but potential cytotoxicity or immunogenic-
ity, while others have biodegradable and biocompatible
properties but limited transfection efficiency or stabil-
ity. The choice of polymer-based mRNA delivery system

depends on the specific needs and requirements of the
application, balancing factors such as immunogenicity,
efficacy, safety, stability, and mechanism of action.
Polyethyleneimine (PEI) is one type of cationic poly-
mer commonly used for nucleic acid delivery [562]. The
commercial linear PEI derivative, jetPEI®, has already
been used for mRNA in vivo/in vitro transfection [576].
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A PEI formulation of SAM encoding the hemaggluti-
nin antigens from influenza virus strains stimulated
high antibody titer after IM vaccination in mice [577].
However, PEI is known with the severe systemic toxic-
ity and low biodegradability due to the high charge den-
sity and molecular weight [578]. Low-molecular-weight
PEI modified with fatty chains has been used for siRNA/
mRNA delivery to reduce toxicity [578]. Polysaccharide
and derivatives are another group of commonly used
cationic polymers [579]. Some researchers have con-
densed SAM-encoding influenza virus hemagglutinin
and nucleoprotein with chitosan, a commonly used pol-
ysaccharide excipient [580]. The researchers observed
expression of antigens in DCs after SC injection of the
particles [581]. Some researchers reported the use of
polysaccharides derived from the microbial cell wall
to form a flexible core—shell structure to encapsulate
mRNA and promote DC activation in vivo [582]. Poly-
amidoamine (PAMAM) or polypropylenimine based
dendrimer is another group of cationic polymer mate-
rial used for mRNA delivery [530]. Some researchers
developed fatty chain modified PAMAM dendrimers
for delivery of siRNA systemically to lung endothelial
[583, 584]. The same group later used the same deliv-
ery vehicle and delivered antigen-encoding SAMs [2].
The researchers showed that the single dose, adjuvant
free IM delivered SAM protected mice from lethal chal-
lenge of Ebola, HIN1 influenza, Toxoplasma gondii,
respectively [225]. Some researchers utilized a modi-
fied PAMAM dendrimers, PLGA and ceramide PEG to
formulate polymer-lipid hybrid nanoparticles to deliver
phosphate and tensin homolog mRNA in vivo [133]. In
a later study, some researchers utilized the same vehi-
cle to deliver OVA mRNA vaccine together with a fatty
acid modified TLR7/8 agonist C16-R848, and showed
the combination formulation could boost a strong anti-
tumor immunogenicity [585]. Biodegradable polymers
were developed to increase the clearance while decrease
the charge induced toxicity of the delivery vehicles
[586]. Poly (beta-amino) esters (PBAEs) are biodegrad-
able polymers used for siRNA/mRNA delivery [587].
Some researchers co-formulated PBAEs with PEG-lipid
to improve serum stability and increase mRNA delivery
efficiency [588]. Besides adding lipid to the PBAE for-
mulations, hyperbranched PBAEs were utilized to sta-
bilized the formulation and to deliver mRNA to lung
endothelium via IV injection, and to lung epithelium
vial inhalation [495]. Other biodegradable polymers
have been designed to achieve lower toxicity and selec-
tive delivery of mRNA to different organs [587]. Some
researchers demonstrated that biodegradable amino
polyesters (APEs), synthesized using ring-opening
polymerization of various lactones, were capable of
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tissue-selective mRNA delivery [589]. Moreover, bio-
reducible poly (CBA-co-4-amino-1-butanol) (pABOL),
developed by some researchers were used to deliver
haemagglutinin-(HA-) encoding SAM in mice [262].
Charge altering polymers have also been explored for
mRNA vaccine delivery. Some researchers developed a
library of charge-altering releasable transports (CARTS)
that utilized poly(carbonate)-p-(a-amino ester)s [590].
CARTs undergo dynamic change from an ester to amide
rearrangement. As a result, the cationic poly a amino
ester backbone is gradually changed into neutral small
molecules (diketopiperazine), providing a mechanism
for release of mRNA, and avoiding tolerability issues
associated with persistent polycations [590]. The CART
polymers facilitated mRNA transfection into lympho-
cytes including T cells [591].

Peptide-based mRNA delivery system

The cationic peptide, protamine has been used in many
early studies for the delivery of mRNA vaccines [592].
Protamine spontaneously condenses mRNA through
electrostatic interaction, protecting the encapsulated
mRNA from degradation by extracellular RNases
[593]. The protamine-mRNA complexes can also
function as adjuvant, activating TLR7/8 to elicit Th-1
type immune response [594]. However, protamine-
mRNA complexes alone showed suboptimal transla-
tion efficiency, which might be due to an excessively
tight interaction between protamine and mRNA [595].
This concern has been solved by a two-compartment
formulation, RNActive®, developed by CureVac AG
[596]. The researchers combined protamine-mRNA
complexes (50%) with naked antigen-coding mRNA(s)
(50%). The protamine complexes act only as adjuvant,
while the nucleoside modified mRNA acts as anti-
gen producer [595]. RNActive® encapsulating TAAs-
encoding mRNAs are currently being evaluated in
several phase I/II clinical trials treating multiple solid
tumors [116]. Most RNActive® vaccines are well toler-
ated and immunogenic in patients, some of them have
shown moderate antitumor efficacy [116].

Cationic cell-penetrating peptides (CPPs) can com-
plex with RNA [597]. Although their cell-uptake mech-
anisms are not fully understood, it is hypothesized that
CPPs may facilitate clustering of the negative charged
glycosaminoglycans on the cell surface, and trigger
micropinocytosis [597]. RALA peptide is an amphip-
athic arginine-rich CPP with positively charged arginine
residues on one end and neutral leucine residues on the
other [598]. Researchers indicated that the peptide con-
densed mRNA complexes enabled mRNA delivery and
expression in DCs, subsequently eliciting potent cyto-
lytic T cell responses after ID injection of the ex-vivo
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loaded DCs [451]. Furthermore, D-amino acid-based
truncated protamine was fused with a short CPP called
Xentry [459]. This fusion peptide with combined posi-
tive and cell penetrating features was used to deliver
a cystic-fibrosis transmembrane regulator (CFTR)
mRNA into several human epithelial cells in vitro [459].
Some researchers used cholesterol-modified cationic
peptide DP7 with transmembrane structure and immu-
noadjuvant function to modify the DOTAP liposomes
[599]. This DOTAP/DP7-C liposomes efficiently trans-
ferred mRNA into different type of DCs in vitro. Sub-
cutaneous injection of neoantigen-encoding mRNA
loaded in DOTAP/D7-C liposomes significantly inhib-
ited the growth of LL2 [599]. Similarly, an alpha-helical
cationic CPP “KALA” was combined with the vitamin
E-scaffold (ssPalmE)-LNP to achieve higher protein
expression and increased proinflammatory cytokines
secretion in DCs, functioning as a potent ex vivo DCs-
based RNA vaccine platform [600]. Besides positive
charged CPP, negative charged GALA peptide has been
used as a targeting ligand, that click onto LNPs/poly-
plexes to improve the cell penetration of mRNAs [529].

Other formulations used in mRNA delivery

In additional to ionizable lipid composed LNP system,
cationic lipid composed liposomes, lipoplexes and cati-
onic emulsions (CNE) are the very first generation of
carriers used for mRNA delivery both preclinically and
in clinical trials [121]. DOTMA (1,2-di-O-octadecenyl-
3-trimethylammonium propane) and DOTAP (1,2-dio-
leoyl-3-trimethylammonium-propane) are two most
widely used cationic lipids [601]. These lipids remain pos-
itively charged at all physiological pH, and can easily con-
dense anionic mRNA [601]. A combination of DOTMA/
DOTARP with fusogenic helper lipid DOPE to form lipo-
plexes have been used by BioNTech in their Lipo-MERIT
cancer vaccine platform [601]. The ratio of cationic lipid
and DOPE can be tuned to selectively target splenic
APCs for mRNA vaccine delivery [262]. Promising thera-
peutic outcome has been seen in several ongoing clinical
trials treating metastatic melanoma (summarized in later
section).

In addition, DOTAP containing cationic CNE, which
is derived from the Novartis’s first FDA approval CNE
ME-59 have been used for mRNA delivery [171]. For
instance, cationic CNE was used by some researchers to
encapsulate SAM [602]. The CNE was prepared by mix-
ing an aqueous phase containing buffer and Tween 80
with an oil phase containing Sorbian tioleate (Span 80),
DOTAP, and oil squalene [603]. The researchers have
shown that the protein expression of mRNA delivered
by the CNE through IM administration was similar to
a viral vector [602]. The mRNA CNE vaccine was well
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tolerated and immunogenic in a variety of models [121].
DOTAP containing liposomes were also used as a shell
for encapsulating mRNA in core—shell structures [171].
For instance, some researchers has developed lipid/
calcium/phosphate (LCP) system using calcium phos-
phate as the core to condense mRNA, and PEGylated
DOTAP/DOPE liposome as the shell [604]. The research-
ers delivered MUC-1 (TAA of the triple negative breast
cancer) mRNA to 4T1 breast cancer bearing mice, and
observed potent antigen-specific T cell activation and
improved antitumor efficacy [605]. Moreover, Lipid-
Polymer-RNA lipopolyplexes (LPR), functionalized with
a tri-antenna of o-d-mannopyranoside (triMN-LPR)
can specifically bind to human and mouse DC, provide
high induction of a local inflammatory response after ID
injection [605]. Another LPR system consisting of poly
(B-amino ester) polymer/mRNA core encapsulated into
a 1,2-dioleoyl-sn-glycero-3-ethylphosphocholine/1,2-
dioleoyl-sn-glycero-3-phosphatidyl-ethanolamine/1,2-
distearoyl-sn-glycero-3-phosphoethanolamine-N-[am
ino(polyethyleneglycol)-2000] (DOPC/DOPE/DSPE-
PEQG) lipid shell was developed by some researchers to
deliver mRNA into DC through micropinocytosis [60,
606]. Results shown that the LPR induced potent anti-
gen response [607]. A similar LPR platform is currently
being evaluated in phase I clinical trial carrying mRNA
encoding neoantigens to treat metastatic melanoma by
Stemirna Therapeutics [607]. In additional to non-viral
deliver system, naked mRNA has been directly injected
ID or intranodal as anti-cancer vaccine or ex vivo loaded
into DCs for cancer vaccinations [608]. The naked mRNA
vaccines and DC-based mRNA vaccines have been
widely evaluated in clinical trials with some optimistic
therapeutic outcome for cancer treatment [72]. However,
the strategies are either suffered from insufficient antigen
expression, complicated in vitro processing or batch to
batch variabilities [72].

Injection routes mRNA cancer vaccines
Local injections, including IM, SC, ID, are the com-
monly used injection routes for mRNA cancer vaccines
[609]. Representative examples include: IM injection
of PAMAM loaded OVA mRNA for melanoma treat-
ment in mice, Moderna LNPs optimized for IM injec-
tion of mRNA vaccines, SC injection of peptide modified
DOTAP liposomes, SC injection of LNPs with optimized
lipid compositions and lipid structures for antitumor
vaccinations, i.d. injection of LPR to boost anti-cancer
immunity in multiple mouse models [610]. Table 10 out-
lines the different mRNA cancer vaccine injection routes,
each with its unique advantages and disadvantages.
Intramuscular (IM) and subcutaneous (SC) injections
are simple to administer and induce a systemic immune
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response, but they may require multiple doses and have
limited local response. Both methods show moderate
to high immunogenicity, efficacy in some cancers, and
general safety with mild side effects. Intradermal (ID)
injections induce a strong local and systemic immune
response with potential for dose-sparing, although they
may require specialized equipment. Intravenous (IV)
injections can also induce systemic immune response,
but they require high dosages and specialized equip-
ment, which may lead to non-specific immune responses.
Lastly, intra-tumoral (IT) injections allow direct deliv-
ery to the tumor site and have the potential for targeted
response, but may also require specialized equipment
and offer limited systemic immune response. All injec-
tion routes, except for intravenous, are stable at refrigera-
tion temperature and need protection from light, while
intravenous injections are stable at ultra-low tempera-
tures and have a short half-life in circulation.
Intramuscular administration is often preferred due
to the flexibility of injection volume, the ease of dos-
ing and the lack of safety concern, with limited risk for
adverse reactions at the site of injection, However, vac-
cine delivered to the skin as a highly immunocompetent
site has long been considered a strategy to augment vac-
cine response [612]. Some researchers have investigated
the impact of vaccination route (mainly IM and SC) on
antigen trafficking and immune response in Rhesus
Macaques using fluorescently labeled HIV-1 envelope
glycoprotein trimers displayed on liposomes [613]. The
researchers found that both SC and IM routes induced
efficient immune cell infiltration, activation and antigen
uptakes [613]. Though the immunogenicity is tightly
restricted to the injection site, and antigen also trans-
ported to different lymph nodes depending on route,
these early differences failed to convert into significant
differences in the magnitude or quality of antigen-spe-
cific immune response [614]. Despite this, the expression
level and inherent innate immunity of mRNA might be
influenced by the routes of administration, subsequently
leading to different intensity of immune response [614].
Using the most translatable carrier LNPs as an exam-
ple, some researchers have evaluated the expression
kinetics of nucleoside modified mRNA in mice through
various routes of administration [615]. Their findings
demonstrated that IM and ID delivery of mRNA LNPs
resulted in the longest duration of mRNA translation
(half-life >20 h) followed by SC (half-life~ 15 h) and IV
(half-life ~7 h) [615]. Whereas, SC and IM showed higher
protein expression level as compared to ID The differ-
ences in magnitude and length of protein expression from
different routes of administration may directly impact the
intensity of immunogenicity, which required detailed
evaluations in the future studies [616]. As covered in
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Sect. "Basic mRNA vaccine pharmacology”, the kinetics
between TCR activation and IFN signaling can also be
dependent on the route of mRNA administration, ulti-
mately impacting the potency of T cell activation [617].
Based on this perspective, systemic mRNA vaccination
through IV injection is more likely to promote a favora-
ble CD8* T cell response and circumvent the detrimen-
tal impact of mRNA inherent innate immunity [57]. As
a result, vaccination through IV injection has been used
by several researchers and companies [57]. However, one
needs to concern about the potential systemic toxicity
generated from IV vaccination [618]. Until now, SC and
IM injections are still the two major injection routes for
mRNA cancer vaccination in clinical trials, due to their
less invasive nature; however, other injection routes,
including intranasal, and intranodal have been widely
studied for mRNA vaccine delivery [618].

Clinical overview of mRNA cancer vaccines
Transfection of mRNA into DCs for adoptive transfer
was the first mRNA based therapeutic cancer vaccine
entering clinical trial [72]. Although DC-based mRNA
vaccine therapeutics still account for majority of mRNA
cancer vaccines in clinical trials, IVT mRNA-based
immunotherapies delivered by non-viral vectors are
extensively explored recently as a result of the promising
antitumor outcomes collected from preclinical studies,
with CureVac, BioNTech and Moderna as pioneers in the
campaign [619].

A group of IVT mRNA-based immunotherapies inves-
tigated in clinical trials are mRNAs encoding immu-
nostimulants which are injected intratumorally or
intranodal to modify the suppressive tumor microenvi-
ronment [620]. These immunostimulants are not consid-
ered as cancer vaccines, but are usually co-administered
with cancer vaccines or other immunotherapeutic agents
(e.g. checkpoint blockade modulators) and act as adju-
vants to augment humoral and cellular response [621].

Multiple IVT mRNA-based cancer vaccines are cur-
rently tested in clinical trials, either encoding personal-
ized neoantigens, or a cocktail of TAAs [622]. Deliver
systems for these mRNA-based cancer vaccines include
lipid polyplexes, CNEs, LNPs or protamine [2]. Local
injection, such as IM, SC and ID are major administra-
tion routes for mRNA vaccines in the clinical studies,
whereas the BioNTech product, Lipid-MERIT (DOTAP
(or DOTMA)/DOPE lipoplex as deliver system) is vac-
cinated intravenously [623]. As discussed earlier, the
ratio between DOTAP and DOPE can be optimized to
allow specific delivery of mRNA to splenic APCs, and
induce potent antigen-specific response [624].mRNA
vaccines have been applied to treat aggressive, less acces-
sible and metastatic solid tumors, including non-small
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cell lung cancers (NSCLC), colorectal carcinoma (CRC),
melanoma, etc. [625]. For early proof of concept studies,
mRNA vaccine has also been tested in treating glioblas-
toma [626]. In most clinical trials, mRNA cancer vaccines
are further combined with checkpoint modulators or
cytokine cocktails to augment antitumor efficacy [627].
Although SAMs are an appealing alternative to mRNA-
based vaccine due to their inherent self-amplifying prop-
erty, clinical investigation for cancer applications is only
limited to early evaluation of VRPs [2]. With the recent
advancing of, specifically the discovery of neoantigens,
development of personalized vaccines and checkpoint
blockade modulators, numerous improvements have
been done to demonstrate the viability of mRNA vaccines
to combat cancer [628]. In this section, we will discuss
mRNA applications as immunostimulants and cancer
vaccines, compare the delivery of mRNA encoding TAAs
and neoantigens, as well as discuss the advantages of
personalized vaccines and combination immunothera-
pies with checkpoint blockade modulators. mRNA-based
COVID-19 vaccine developed by Pfizer and BioNTech
has undergone extensive clinical trials. The Phase 3 trial
involved over 43,000 participants and demonstrated an
efficacy of approximately 95% in preventing symptomatic
COVID-19 infection. The trial results were published
in the New England Journal of Medicine in December
2020 [629]. Another mRNA-based COVID-19 vaccine
developed by Moderna also underwent rigorous clinical
trials. In a Phase 3 trial involving approximately 30,000
participants, the vaccine demonstrated an efficacy of
around 94.1% against symptomatic COVID-19 infection.
The trial results were published in the New England Jour-
nal of Medicine in December 2020 [630]. mRNA-based
immunotherapies have also shown promise in the field
of cancer treatment. For example, a study published in
Nature in 2017 reported the results of a Phase 1 clinical
trial of an mRNA-based personalized cancer vaccine.
The vaccine was tested in patients with melanoma, and it
showed encouraging results in terms of inducing immune
responses and promoting tumor regression [631]. An
mRNA-based influenza vaccine has also been the sub-
ject of clinical trials. A study published in The New Eng-
land Journal of Medicine in 2019 reported the results
of a Phase 1 trial of an mRNA-based flu vaccine. The
trial showed that the vaccine induced a robust immune
response and was well-tolerated by participants [632].
Researchers have also explored the potential of mRNA-
based vaccines for HIV. A study published in Science in
2020 described a Phase 1 trial of an mRNA vaccine can-
didate for HIV. The vaccine induced immune responses
against HIV and was found to be safe and well-tolerated
[633]. mRNA-based immunotherapies have also shown
promise for other infectious diseases. For example, a
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study published in Nature Medicine in 2020 reported
the results of a Phase 1 trial of an mRNA-based vaccine
against the respiratory syncytial virus (RSV). The vac-
cine was found to be safe and induced a strong immune
response in healthy adults [634]. mRNA-based immuno-
therapies have shown promise in the development of per-
sonalized cancer vaccines. A study published in Nature in
2021 reported the results of a Phase 2 trial of an mRNA
vaccine for patients with high-risk melanoma. The vac-
cine was found to induce durable immune responses and
resulted in an improvement in progression-free survival
compared to standard of care [635]. Table 11 provides an
overview of the clinical trial outcomes of mRNA cancer
vaccines in various cancer types.

mRNA encoding immunostimulants
Immunostimulants are commonly cytokines or
chemokines that induce APC maturation and activa-
tion, activate T-cell mediated immunity and adjust the
dysfunctional immune tumor microenvironment [654].
Intra-tumoral, intranodal, ID and IVroutes of admin-
istration have been used dosing of mRNA encoding
immunostimulants, with most evaluations are currently
in Phase I/II to assess the tolerability as monotherapy
or combination therapy with other moieties, including
either PD-1/PD-L1 antibodies or cancer vaccines [655].

Figure 15 illustrates how CRISPR screening can be
utilized to identify genes involved in the regulation of
the cancer-immunity cycle, a process that describes the
step-by-step development of immune responses against
tumors. The cycle begins with the release of tumor anti-
gens by cancer cells, which are collected by APCs such
as DCs that process and present the antigens to naive T
cells, leading to their activation. CRISPR screening can
be performed on APCs to identify genes that regulate
antigen presentation efficiency and APC stimulation in
response to tumor antigens. Similarly, T cell screens can
identify genes responsible for activation efficiency, traf-
ficking, infiltration, and tumor-killing activity. In vivo T
cell screens can uncover genes that facilitate TIL traf-
ficking and infiltration, while screening tumor cells
can reveal genes involved in resistance to T cell killing.
CRISPR screens can detect both positive and negative
regulators at each stage of the cycle, enabling a better
understanding of the complex mechanisms underlying
the immune response against cancer. One pioneer player
in this field is eTheRNA immunotherapies [656].

The company has developed a TriMix mRNA-based
adjuvant that consists of three naked mRNA molecules,
encoding the costimulatory molecule CD70 to induce
activation of CD8" T cells, the activation stimulator
CD40 ligand (CD40L) to activate CD4" T cells, and the
constitutively active TLR4 (caTLR4) to facilitate DC
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Fig. 15 Identifying cancer-immunity cycle regulators through CRISPR screens. The cancer-immunity cycle outlines the step-by-step development
of immune responses against tumors. CRISPR screening can be employed to examine cells at each stage of this cycle, identifying regulatory genes
and the resulting phenotypic effects. A In the initial phase, tumor antigens are released by cancer cells and collected by APCs such as DCs, which
may secrete cytokines when stimulated. APCs process and present the captured antigens using major histocompatibility complex proteins on their
surface. APC trafficking to nearby lymph nodes enables cancer antigen presentation to naive T cells, leading to T cell activation. Screens on APCs
can reveal genes that regulate APC stimulation in response to tumor antigens and antigen presentation efficiency to T cells. BT cells exposed

to antigens become primed and activated to target specific tumor antigens. T cell screens can pinpoint genes responsible for activation efficiency.
C Primed T cells, including cytotoxic T lymphocytes, exit the lymph node, travel through the bloodstream, and infiltrate tumors as tumor-infiltrating
lymphocytes (TILs). In vivo T cell screens can identify genes that facilitate TIL trafficking and infiltration. D Inside the tumor, T cells can finally
recognize and respond to cancer-specific antigens, leading to tumor cell destruction. T cell screens can detect genes that improve tumor-killing
activity. E Concurrently, screening tumor cells can uncover genes involved in resistance to T cell killing. CRISPR screens can identify positive
regulators (shown in red) and negative regulators (shown in blue) at each step of the process. Reprinted from [657] with permission from Springer

Nature

antigen presentation [658]. The naked TriMix mRNA
and ex-vivo DC loaded TriMix mRNA evaluated in mul-
tiple clinical trials are generally well tolerated and immu-
nogenic [658]. Delivery of mRNA encoding TAAs (e.g.
MAGE-A3, tyrosinase, gp-100 and melano-A/MART-1)
and TriMix mRNA to DCs, ex vivo or in situ, can repro-
grams them to mature APCs, and subsequently prime
the function of T cells [659]. In two Phase II studies for
treating patients with stage III/IV melanoma, either as

standalone product (TriMix mRNA plus TAA mRNA,
so called TriMixDC-MEL) or combined with a CTLA-
blocking monoclonal antibody ipilimumab checkpoint
inhibitor, the products were able to elicit powerful
immune response, in turn resulted in promising clini-
cal response and prolonged disease-free survival rate
(NCTO01676779, NCT01302496) [660]. Another pioneer
player Moderna has developed two mRNA products
encapsulated in the LNP platform for intratumorally
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immunostimulatory activities [487]. These two prod-
ucts are currently evaluated in Phase I clinical trials to
determine the safety and tolerability of repeated dos-
ing [639]. One product is mRNA-2416, using mRNA
encoding OX40L, either dosed alone or in combination
with IV administered PD-L1 inhibitor durvalumab for
treatment of lymphoma and metastatic ovarian cancer
(NCTO03323398) [639]. The other product is mRNA-
2752, which is composed of OX40L/IL-23/IL-36Y
mRNAs for treatment of lymphoma (NCT03739931)
[661]. In mRNA-2752 cocktail, OX40L composes the
positive secondary signals to enhance T cell effector
function, expansion and survival [661]. IL-36Y functions
as proinflammatory cytokines to further boost anticancer
responses [662]. IL-36 Y also correlates with good prog-
nosis in cancer patients, and induces a favorable T helper
1 type TME change [663]. IL-23 (IL-12 family members)
can act as the central coordinators and bridge innate and
adaptive immunities [664]. Besides IL-23, IL-12 mRNA is
also commonly used for improved antitumor immunity
[664]. Moderna is collaborating with AstraZeneca, and
planning to develop MED 11191 (IL-12 mRNA) through
intratumorally injection [665]. Meanwhile, BioNtech’s
cationic lipoplexes loaded BNT151 (nucleoside modi-
fied IL-12 mRNA) was also under pre-clinical evalua-
tion for amplification of vaccine induced T cell response
through IV administration [666]. These two products are
planned for initiation of Phase I clinical studies in 2021
[666]. It should be noted that several small molecule
drugs, especially the kinase inhibitors such as sunitinib,
are potent modifiers of the suppressive tumor microenvi-
ronment [667]. Sunitinib base formulated in a nanoemul-
sion, when administered i.v., significantly decreased the
content of regulatory T cells (Treg) and myeloid-derived
suppressor cells (MDSC) and increased T-cells in the
melanoma, and enhanced the tumor growth inhibition of
a therapeutic vaccine [668].

mRNA vaccine encoding tumor associated antigens
One of the key obstacles to the development of an effec-
tive cancer vaccine is the difficulties in antigen selection
[669]. Cancer vaccines can be designed to target TAAs
that are preferentially expressed in malignant cells [670].
For instance, tyrosinase, gp100, MAGE-A3, MAGE-C2
have been identified as TAAs for melanoma [239]. A
cocktail of mRNA vaccines encoding all the TAAs have
been used to treat metastatic melanoma in multiple clini-
cal studies [239]. Table 12 illustrates the expression lev-
els of tumor-specific antigens in various cancer types and
their potential for targeting with mRNA vaccines. For
example, in breast cancer, the HER2/neu antigen has a
high expression level with 20-30% frequency of expres-
sion, which makes it a suitable target for mRNA vaccines.
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Similarly, the CEA antigen is highly expressed in colorec-
tal cancer, with a frequency of 70-80%, making it another
promising target. Table 12 goes on to present several
other cancer types such as lung, melanoma, ovarian, pan-
creatic, and prostate, all with unique antigens that can be
potentially targeted by mRNA vaccines. The frequency
of expression, tissue specificity, and expression level of
these antigens vary, which may influence the efficacy of
targeted therapies. This data offers valuable insights for
researchers working on personalized cancer treatments
using mRNA vaccines.

One well-known example of mRNA vaccine platform
falls into this category is Lipo-MERIT [725]. As men-
tioned earlier, Lipo-MERIT is fabricated by complexing
mRNA with cationic lipid such as DOTMA or DOTAP
[725]. The lipoplexes with a cationic lipid: DOPE (helper
lipid): mRNA ratio of 1.3:2 (%250 nm in size and ~30 mV
in zeta potential) were shown to efficiently target the
splenic DCs in mice and led to strong activation of NK,
B, CD4*, CD8" T cells, subsequently resulting in potent
immunotherapeutic efficacy in multiple mouse cancer
models and was translated into clinics [726]. In one clini-
cal study (NCT02410733), the mRNA vaccine (BNT111)
encoding four TAAs (NY-ESO-1, MAGE-A3, tyrosinase,
and TPTE) was evaluated in patients bearing advanced
melanoma [239]. Results demonstrated that three
patients generated T cell responses against NY-ESO-1,
two of which also showed responses against MAGE-A3
[727]. Recently, BioNTech announced a strategic col-
laboration with Regeneron to initiate the phase II clinical
trial combining BNT111 with Regeneron Libtayo (cemi-
plimab), a fully humanized anti-PD-1 therapy in patients
with anti-PD1-refractory/relapsed, unresectable Stage III
or IV cutaneous melanoma [351]. Another player in the
campaign is CureVac AG.

CureVac have developed mRNA vaccine CV9202,
containing mRNAs encoding 6 different NSCLC TAAs
(MUC-1, surviving, Trophoblast Glycoprotein, NY-
ESO-1, MAGE-C1 and MAGE-C2) [728]. The naked
TAA mRNA vaccines were co-delivered with protamine/
mRNA complexes, which are known to have self-adjuvant
properties as discussed earlier [74]. The new collabora-
tion focused on CureVac’s CV9202 in early clinical devel-
opment, in combination with afatinib for patients with
advanced or metastatic epidermal growth factor mutated
NSCLC, and in combination with chemo-radiation ther-
apy in patients with unresectable stage III NSCLC [728].
For the first study, the vaccine treatment was well toler-
ated, with observations of only some inject site reactions
and flu-like symptoms [729]. Increased antigen-spe-
cific immune response was observed in majority of the
patients (84%). Antigen specific antibody and T cells
are both increased, supporting further investigation of
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Table 12 Expression levels of tumor-specific antigens in various cancer types
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Cancer Type Antigen Name Expression Level  Tissue Specificity Frequency of Potential for Targeting Reference
Expression with mRNA Vaccines

Breast HER2/neu High Breast 20-30% Yes [671]
Colorectal CEA High Intestine 70-80% Yes [672]
Lung EGFR High Lung 10-20% Yes [673]
Melanoma MART-1 High Skin 60-70% Yes [674]
Ovarian CA125 High Ovary 80-90% Yes [675]
Pancreatic MUC1 High Pancreas 90-100% Yes [676]
Prostate PSA High Prostate 80-90% Yes [677]
Renal CAIX High Kidney 85-95% Yes [678]
Ovarian NY-ESO-1 Medium Ovary 10-15% Yes [679]
Breast MAGE-A1 Medium Breast 15-20% Yes [44]
Melanoma gp100 Medium Skin 30-40% Yes [680]
Prostate PSCA Medium Prostate 20-30% Yes [681]
Colorectal MAGE-A3 Low Intestine 5-10% Yes [682]
Lung NY-ESO-1 Low Lung 5-10% Yes [683]
Pancreatic Survivin Low Pancreas 5-10% Yes [684]
Bladder MAGE-A12 Low Bladder 5-10% Yes [685]
Brain EGFRvIII Low Brain 20-30% Yes [686]
Breast BRCA1 Low Breast 10-15% Yes [687]
Colorectal TP53 Low Intestine 15-20% Yes [688]
Kidney CD105 Low Kidney 10-15% Yes [689]
Liver AFP Low Liver 60-70% Yes [690]
Lung SLC34A2 Low Lung 5-10% Yes [691]
Ovarian TP53 Low Ovary 20-30% Yes [692]
Pancreatic KIF20A Low Pancreas 10-15% Yes [693]
Prostate PSMA Low Prostate 5-10% Yes [694]
Sarcoma NY-ESO-1 Low Bone and Soft Tissue  5-10% Yes [695]
Stomach HER2/neu Low Stomach 10-15% Yes [696]
Thyroid Thyroglobulin Low Thyroid 80-90% Yes [697]
Uterine p16 Low Uterus 15-20% Yes [698]
Esophageal MAGE-A4 Low Esophagus 5-10% Yes [699]
Head and Neck p16 Low Head and Neck 25-30% Yes [700]
Leukemia WT1 Low Blood 75-85% Yes [701]
Lymphoma cD19 Low Lymphatic System 100% Yes [702]
Mesothelioma Mesothelin Low Lungs 70-80% Yes [703]
Multiple Myeloma NY-ESO-1 Low Blood 20-30% Yes [704]
Neuroblastoma GD2 Low Nervous System 95-100% Yes [705]
Pancreatic WT1 Low Pancreas 10-15% Yes [706]
Prostate MUC1 Low Prostate 5-10% Yes [707]
Renal WT1 Low Kidney 15-20% Yes [708]
Sarcoma SSX2 Low Bone and Soft Tissue  5-10% Yes [709]
Stomach MAGE-A3 Low Stomach 10-15% Yes [710]
Testicular MAGE-A4 Low Testis 5-10% Yes [711]
Uterine NY-ESO-1 Low Uterus 5-10% Yes [698]
Acute Myeloid Leukemia PRI Medium Blood 60-70% Yes [712]
Bladder NY-ESO-1 Medium Bladder 20-30% Yes (713]
Brain Survivin Medium Brain 50-60% Yes [714]
Breast HER2/neu Medium Breast 20-30% Yes [715]
Colorectal CEA Medium Intestine 50-60% Yes [716]
Kidney Renin Medium Kidney 50-60% Yes [7171
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Table 12 (continued)
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Cancer Type Antigen Name Expression Level  Tissue Specificity Frequency of Potential for Targeting Reference
Expression with mRNA Vaccines
Liver Glypican-3 Medium Liver 50-60% Yes [718]
Lung MUC1 Medium Lung 50-60% Yes [719]
Ovarian MUC1 Medium Ovary 50-60% Yes [720]
Pancreatic MUC1 Medium Pancreas 50-60% Yes [721]
Prostate PSA Medium Prostate 50-60% Yes [222]
Sarcoma MAGE-A4 Medium Bone and Soft Tissue ~ 20-30% Yes [722]
Stomach Survivin Medium Stomach 50-60% Yes [723]
Thyroid Thyroid Peroxidase ~ Medium Thyroid 50-60% Yes [724]

mRNA-based therapy with check-point inhibitors in
treating NSCLC [647]. Moreover, Immunomic Thera-
peutics is collaborating with Dr. Duane Mitchell at the
University of Florida on a Phase II proof of concept
study using a pp65-lysosomal-associated membrane pro-
tein (LAMP)-based mRNA DC vaccine to treat patients
bearing glioblastoma [730]. pp65 is a major cytomeg-
alovirus (CMV) protein that provides exceptional tumor
specificity for glioblastoma and is designed to stimulate
pp65-specific CD4" and CD8" T cell response [731]. The
previous phase I study showed a median overall survival
of 35 months and progression-free survival of 31 months
[731]. Table 13 highlights the different types of mRNA
vaccines encoding tumor-associated antigens (TAAs) and
their respective properties.

Shared TAAs target a broad range of tumors, offering
potential for cancer prevention, but exhibit low speci-
ficity and efficacy against certain cancers. Differentiated
TAAs provide high specificity against individual cancer
cells but are only effective against specific types of can-
cer cells. Cancer-testis antigens are specific to tumor cells
and not found in normal adult tissues, although their
expression may vary between patients. Overexpressed
TAAs are present in a wide range of cancers but can also
be expressed in normal tissues, leading to potential tox-
icity. In general, immunogenicity ranges from moderate
to high, with efficacy varying depending on the TAA and
cancer type. While these mRNA vaccines are generally
considered safe, they may cause autoimmune reactions.
All TAA types have a short half-life, which necessitates
frequent dosing.

mRNA vaccine encoding neoantigen, personalized
vaccine

According to Table 14, there are various types of tumor-
associated antigens (TAAs) being utilized in mRNA
cancer vaccines. Shared antigens, differentiation anti-
gens, and cancer-testis antigens are common to many
tumor types, expressed in certain tumors, or highly

immunogenic, respectively, and have been used in multi-
ple trials. Neoantigens, viral antigens, oncofetal antigens,
tumor-specific antigens, mutated self-antigens, shared
mutated antigens, overexpressed antigens, and glycopep-
tide antigens are all in early-stage trials. Some TAAs have
the potential for autoimmunity, while others are unique
to specific tumors or patients. The immunogenicity of
these antigens varies, with some having high immuno-
genicity and others having a more limited understanding.
The stability of these antigens is generally unstable, and
their expression levels range from low to high.

The utilization of TAAs in mRNA cancer vaccines has
the potential to revolutionize cancer treatment and pro-
vide new therapeutic options for patients. These antigens
can be targeted by the immune system to eliminate can-
cer cells. Several obstacles limit the further application
of TAA vaccines, including: (1) only limited TAAs have
been identified for certain solid tumors resulting in lim-
its of applications, and (2) patients harboring extensive
variability in TAAs that gives rise to evasion of immune
effectors and generation of resistance, (3) TAAs are also
present in normal tissues [239]. Vaccines against TTAs
could potentially initiate central and peripheral tolerance
responses, lowering vaccination efficiency [735].

Tumor-specific antigens, termed neoantigens, are now
the core targets of mRNA vaccines. Neoantigens are
derived from random somatic mutations in tumor cells
and not present in normal cells [738]. Neoantigens could
be recognized by the host immune system as a “non-self”
motif and thus are an appealing target for cancer vaccine
[738]. The first step in developing a personalized neoan-
tigen vaccine is to identify and confirm patient-specific
immunogenic non-synonymous somatic mutations
expressed in the tumor [739]. A biopsy of tumor tissue is
taken for whole-exome, RNA, or transcriptome sequenc-
ing [739]. Non-synonymous somatic mutations in cancer,
such as point mutations and insertion-deletions, could
be identified by comparing the sequences of the tumor
and matched healthy tissues [740]. Next, mutations with



Page 86 of 106

(2023) 22:106

Chehelgerdi and Chehelgerdi Molecular Cancer

Buisop uanbaiy aunbai

suonoeal
aunwwioINe asned

uolissalbai jowny 19|d
-Wwo> 1o} |ennualod 1nq
'9dA1 19dued pue VY| Uo

Audyiads
VYL uo buipuadap

A11D1x01 01
Bujpes| 'sanssiy |euliou Ul

Slodued JO abuel

les1] Aew pue dji-j[ey 1oyS  Aeul 1N 3JeS A|[eJausD) Buipusdsp salep ‘'ybry o1 s1eIspON passaidxa 9 OS|e Ae)\  PROIQ B Ul PassaldXalon)  SYL PassaidxaianQ
suonoeal $9582 SWIOS Ul MO) sanssn npe
Buisop uanbaiy aunbai QUNWIWIOINE 95Ned 2dA1 195UED pUE VVL oyl bul 3 pue siusiied Usamiag  [BWIOU Ul puNojlou pue
[80G]  Aew pueojil-jey LoyS  Aew Ing ojes AjjeJausD | Uo buipuadap sauep  -ssaidxe susned ul ybiy Asen Kew uolissaidx3 §[|92 Jowny 01 2yads  susbiue S11$a1-19due)
suoloeal uolIssalbal 5|19 J92Ued Jo S[ES!
Buisop Jusnbaiy aunbai auNWWIOINe asned Jown) 919|dwod Joj s9dA1 uiplied 1sulebe  U9dURD [enplApUl 1sulebe
[ees] Aew pue ajil-jley Lioys  Aewl Inq ayes A||pJousD [enus1od yum ‘ybiy ybiH DAI1D3YD AUD Aupyidads ybiH SYV1 parenuaiagiq
suonoeal Aoynads sI90Ued SI9DUED JO UONUSA
Buisop uanbaiy aunbai auNWIWIoINe 35Ned 2dA1195UED pUR VYL uo buipuadap uleIaD 1sulebe Aoed  -aud 1oy |NJasn ‘siowni Jo
[ce/]  Aew pueajil-jey Loys  Aew 1ng ojes AjjeJaus | UO buipuadap sauep ‘ybiy 01 91eI9POK Yo pue A1dypads moT obues peoiq e 19b1e| SYVL Paieys
ERITEIETEN Aujgers JSETL-IN Ao>edy)3 fApruabounwiwg sabejuenpesiq sabejuenpy ELIYRYAR

(syV1) susbpue paie|dosse-Jown) BUIPOdUS SUDIRA YNYW JO sadAl Juaiayip 3yl €1 djqeL



Chehelgerdi and Chehelgerdi Molecular Cancer ~ (2023) 22:106 Page 87 of 106
Table 14 The different types of tumor-associated antigens (TAA) used in mRNA cancer vaccines
Shared antigens Common to Potential for Variable Moderate to Unstable Moderate Multiple trials  Reference
many tumor autoimmunity High
types
Differentiation Expressed in cer-  Not presentinall  Variable Moderate to High Unstable Moderate Multiple trials [732]
antigens tain tumor types  tumors
Cancer-testis Highly immuno-  Restricted to cer-  Variable  High Unstable  Moderate to High Multiple trials [733]
antigens genic tain tumor types
Neoantigens Patient-specific Unique to each High High Unstable  Low to Moderate  Early-stage trials [58]
tumor
Viral antigens Easily recognized  Limited to virus- ~ Variable Moderate to High Unstable Moderate Early-stage trials  [430]
by immune associated
system cancers
Oncofetal anti- High expression  Also expressed Variable  Moderate to High Unstable Moderate Early-stage trials  [734]
gens in tumors in some normal
tissues
Tumor-specific Unique to tumors  Low expression High High Unstable Low to Moderate  Early-stage trials [735]
antigens levels
Mutated self- Patient-specific Potential for off-  Variable  High Unstable Low to Moderate  Early-stage trials [736]
antigens target effects
Shared mutated ~ Common muta-  Potential for auto- Variable  Moderate to High Unstable  Moderate Early-stage trials  [638]
antigens tions in tumors immunity
Overexpressed High expression  Also expressed Variable  Moderate to High Unstable Moderate Early-stage trials  [626]
antigens in tumors in normal tissues
Glycopeptide Unique glycosyla-  Limited Variable  Moderate to High Unstable  Moderate to High  Early-stage trials  [737]
antigens tion patterns understanding
in tumors of immunogenic-

ity

the highest immunogenicity are screened, analyzed, and
identified using MHC class I epitope prediction algo-
rithms [741]. Ranked lists of candidate antigens are fur-
ther confirmed based on in vitro binding assay results.
Various types of variant mutations can be targeted by
neoantigen based vaccine [741]. Multiple delivery strat-
egies have been developed for neoantigens, including
synthetic long peptides (SLPs) and nucleic acid (DNA/
mRNA) based vaccines, either through direct injection
of unformulated antigens, DC-based autologous trans-
fer, or biomaterial-based delivery system [742]. In a pio-
neered phase I clinical study, a selected pool of 20 SLPs
were SC administered together with adjuvant polyICLC
to 6 patients with advanced cutaneous melanoma [743].
These SLPs were shown to induce both CD4" T cells
and CD8* T cells response [744]. Four of the six patients
were cancer-free 25 months post-treatment, demonstrat-
ing the viability of neoantigen vaccination in anticancer
treatment [743]. However, peptides have limited immu-
nogenicity, rapid clearance, and different physical-chem-
ical properties restricting their clinical applications [744].
Most recently, some researchers reported that immu-
nizing advanced melanoma patients in a clinical study
using IVT mRNA encoding neoantigens through intran-
odal (in.) injection [745]. The ultrasound-guided injec-
tion could maximize the capture of antigens by APCs

[746]. Potent T cell responses against multiple neoanti-
gens were achieved in all the patients after vaccination
[219]. Despite the encouraging initial results, the wide
application of IN injection may be limited by the viabil-
ity of the techniques and the difficulties for repeated
dosing [745]. Non-viral platforms have until recently
been applied to the delivery of mRNA encoding neo-
antigens [58]. Multiple clinical trials investigating the
safety and efficacy of mRNA vaccine encoding neoanti-
gens are ongoing [219]. Moderna and Merck collaborated
to develop mRNA-5671, a Kras personalized vaccine
(encoding KRAS neoantigens), alone or in together with
Merck’s PD-1 specific antibody KEYTRUDA (Pembroli-
zumab) to treat patients with pancreatic cancer in Phase
I Trial. LNPs were utilized to deliver mRNA-5671 intra-
muscularly every 3 weeks, 9cycles in total [747]. Results
suggested that anti-tumoral immune response was devel-
oped and the formulation is overall well-tolerated [747].
Another product is mRNA-4157, a personalized vaccine
encapsulated in LNPs, for treating patients with resected
solid tumors including melanoma, bladder carcinoma
and NSCLC, as monotherapy or in combination with
pembrolizumab (NCT03313778) [70]. The mRNA-4157
based mono and combination therapy with pembroli-
zumab showed an acceptable safety profile along with
remarkable neoantigen-specific T cell responses [174].
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Twelve out of thirteen patients treated by monotherapy
were reported to be disease-free [732]. BioNtech collabo-
rated with Genentech to join the campaign and to evalu-
ate the safety and efficacy of mRNA personalized vaccine,
RO7198457 delivered by Lipo-MERIT platform in multi-
ple phase I and II clinical trials [748].

Conclusion and future perspectives

With the recent approval of two mRNA LNP vaccines to
prevent COVID-19, mRNA vaccines are experiencing a
considerable burst in preclinical and clinical research in
both cancer and infectious disease fields. The challenges
of developing cancer vaccines versus infectious disease
vaccines lie in: firstly, most infectious disease vaccines
are prophylactic, whereas cancer vaccines are therapeu-
tic. The cases for preventive cancer vaccines are rare with
only two FDA approved such vaccines, and these two
vaccines are applied to prevent virus-induced malignan-
cies (HPV and HBV). Though anti-cancer prophylac-
tic vaccines are still under pre-clinical investigation, the
clinical translation is limited by the difficulties of antigen
predictions and the suboptimal immunogenicity. Sec-
ondly, most antigens for infectious disease (bacterial or
virus-driven) are exogeneous motifs typically presented
by the MHC|; molecule. Vaccines targeting these exog-
enous antigens induce neutralizing antibodies mediated
humoral response. In some cases, CD4" T cell-mediated
immune response is partially involved and required,
whereas CD8* cytotoxic T cells play crucial roles in the
clearance of malignant cells with somatic mutations.
Thus, the anticancer therapeutic vaccine not only needs
to boost humoral response, CD4+T cell response but
also needs to activate the MHC; mediated CD"8 T cells
responses, which further adds to the difficulties for effi-
cient boosting of a robust antitumor immunity. Another
major hurdle for efficient anticancer vaccine develop-
ment is to identify and efficiently deliver highly immu-
nogenic tumor-specific antigens. Tumor antigens are
highly variable across different individuals, and some
are less immunogenic and can invade the recognition by
the host immune system. Even if the antigen is immu-
nogenic, a suppressive microenvironment could prevent
effective T cells’ infiltration and cause T cell exhaustion.
Lastly, as a therapeutic vaccine for treating a chronic dis-
ease like cancer, multiple/repeatable dosing with higher
dosage than prophylactic vaccines is required, rais-
ing the safety criteria for both mRNAs and the carriers.
Among other cancer vaccines, including DC-based vac-
cines and protein-based vaccines, mRNA stands out for
several reasons: (1) mRNA could simultaneously encode
multiple antigens, or a full protein with both MHC, and
MHC;; binding epitopes to facilitate both humoral and
cellular adaptive immune response, providing a more
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intensified anti-tumor immunity. (2) Compared with
DNA vaccine, mRNA vaccines are non-integrating,
highly degradable, with no insertional mutagenesis
potentials. Compared to protein or cell-mediated vac-
cines, the IVT production of mRNA is free of cellular and
pathogenic viral components, with no infectious pos-
sibilities. Most mRNA vaccines tested in ongoing clini-
cal trials are generally well tolerated, with rare cases of
injection site reactions. Systemic inflammation may be
a major concern for mRNA vaccines due to its intrinsic
immunostimulant-like function to activate the TLR7/8
pathway and to induce the type I IFN responses. How-
ever, type I IFN mediated innate immune response could
be reduced by removal of the dsRNA contaminants,
codon optimizations, and nucleotide modifications. The
innate immune response could also be restricted to the
local injection site by properly designing the delivery sys-
tems and changing the administration routes. The activa-
tion of type I interferon responses is not only associated
with inflammation but also potentially with autoimmun-
ity. Therefore, identifying individuals at an increased
risk of autoimmune reactions before mRNA vaccination
is another precautious step necessary to be taken. (3)
Another advantage of mRNA cancer vaccine is the rapid
and scalable manufacturing. The mature manufacturing
process of mRNA and formulation platform allows pro-
ductions of a same or a new type of vaccine within a very
short period. Although identifying immunogenic TAAs/
TSAs and overcoming suppressive tumor microenviron-
ment still remain major hurdles for mRNA vaccine, the
recent discovery and identification of neoantigens facili-
tate personalized vaccine treatment applications. mRNA
encoded neoantigens have become the frontrunner in the
personalized vaccine campaign. Multiple clinical stud-
ies led by the mRNA LNP pioneers BioNTech and Mod-
erna, already presented promising results (with a readout
of antitumor immunity) using personalized vaccines
in several clinical trials treating multiple solid tumors,
including metastatic melanoma and aggressive pancre-
atic cancers, opening a new era for therapeutic cancer
vaccines.

To further improve the potency of mRNA anticancer
vaccines, multiple clinical trials are ongoing to evaluate
the combination of mRNA vaccines with either cytokine
therapies or checkpoint inhibitor therapies. mRNA is a
powerful and versatile cancer vaccine platform. Its suc-
cessful development towards clinical translation will
remarkably strengthen our ability to combat cancers.
Future investigations should continue focusing on (but
not limited to) understanding and utilizing the para-
doxical inherent innate immunity of mRNA, improving
the efficiency of antigen expression and presentation by
designing advanced and tolerable delivery systems, and
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modifying mRNA structures to achieve extended and
controlled duration of expression.
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