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Abstract
Interleukin-2 (IL-2) and its receptor (IL-2R) are essential in orchestrating immune responses. Their function and 
expression in the tumor microenvironment make them attractive targets for immunotherapy, leading to the 
development of IL-2/IL-2R-targeted therapeutic strategies. However, the dynamic interplay between IL-2/IL-2R and 
various immune cells and their dual roles in promoting immune activation and tolerance presents a complex 
landscape for clinical exploitation. This review discusses the pivotal roles of IL-2 and IL-2R in tumorigenesis, 
shedding light on their potential as diagnostic and prognostic markers and their therapeutic manipulation in 
cancer. It underlines the necessity to balance the anti-tumor activity with regulatory T-cell expansion and evaluates 
strategies such as dose optimization and selective targeting for enhanced therapeutic effectiveness. The article 
explores recent advancements in the field, including developing genetically engineered IL-2 variants, combining 
IL-2/IL-2R-targeted therapies with other cancer treatments, and the potential benefits of a multidimensional 
approach integrating molecular profiling, immunological analyses, and clinical data. The review concludes that a 
deeper understanding of IL-2/IL-2R interactions within the tumor microenvironment is crucial for realizing the full 
potential of IL-2-based therapies, heralding the promise of improved outcomes for cancer patients.
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Introduction
Interleukin-2 (IL-2) is a cytokine produced by certain 
immune cells, such as T and B cells, which plays a crucial 
role in regulating the immune system by stimulating the 
proliferation and activation of these cells [1]. The Inter-
leukin-2 receptor (IL-2R), a transmembrane glycoprotein 
receptor, is prominently located on the surface of T and 
B cells, among other immune system cells. This recep-
tor has a crucial role in the immune response, as it binds 
to IL-2, instigating a cascade of events that culminate in 
the activation and proliferation of these cells. This pro-
cess underscores the fundamental role of IL-2R in the 
modulation and functioning of the immune system [2]. 
The cooperative action of IL-2 and IL-2R is necessary for 
the proper functioning of the immune system, as it helps 
to maintain the balance between the activation and sup-
pression of the immune response to pathogens [3].

Despite the beneficial role of IL-2 in instigating 
immune responses to attack tumor cells, its ability to 
expand regulatory T cells (Tregs), potentially dampen-
ing anti-tumor immunity, presents a nuanced and para-
doxical situation. The intriguing complexity of the IL-2 
and IL-2R signaling pathways extends beyond routine 
immune regulation, with compelling evidence illumi-
nating their roles within the tumor microenvironment 
(TME). In addition, IL-2 and IL-2R have also been found 
to play a significant role in the development and progres-
sion of cancer [4]. Moreover, IL-2 has been shown to pro-
mote the growth and survival of specific tumor cells, and 
studies have demonstrated that IL-2R is involved in the 
angiogenesis or growth of new blood vessels in tumors 
[5–8]. Furthermore, IL-2 and IL-2R have been implicated 
in the metastatic process, whereby cancer cells migrate 
from the primary tumor to distant body parts [8, 9].

Consequently, therapies targeting IL-2 and IL-2R are 
currently under development and rigorous testing as 
potential oncological treatments, demonstrating encour-
aging outcomes in clinical trials [5, 10, 11]. These inno-
vative therapeutic strategies aim to invigorate the body’s 
immune system, enabling it to identify and subsequently 
eradicate cancer cells. The pivotal role of IL-2 and IL-2R 
in this immunological response underscores their signifi-
cance in the advancement of cancer treatment modali-
ties. IL-2 has been shown to activate T cells, which can 
then target and kill cancer cells, while IL-2R is expressed 
on the surface of certain immune cells, such as natural 
killer (NK) cells, and can help to stimulate these cells to 
fight cancer [12, 13].

Although IL-2 has been utilized in immunotherapy, the 
success of these strategies is variably influenced by the 
differential expression of IL-2 and IL-2R across diverse 
cancer types. For instance, IL-2-based immunotherapy 
has demonstrated increased efficacy in malignancies such 
as melanoma and renal cell carcinoma (RCC), attributed 

to their higher expression of IL-2R ([7, 8]). In addition, 
IL-2 and IL-2R are involved in several cancer-related 
pathways. For example, IL-2 has been shown to regu-
late cell proliferation, apoptosis, and angiogenesis, while 
IL-2R has been implicated in tumor growth, metastasis, 
and immune evasion [5, 14–16]. In targeting IL-2 and 
IL-2R-mediated pathways, there is a promising approach 
for treating cancer, and various IL-2 and IL-2R-targeted 
therapies are currently being developed and tested in 
clinical trials [12, 17, 18].

However, there are still critical challenges in the thera-
peutic targeting of IL-2 and IL-2R in cancer, such as the 
lack of specificity of these molecules and the potential 
for side effects. For instance, IL-2 is known to regulate 
several immune pathways, and targeting it could lead 
to an over-activation of the immune system, resulting 
in adverse effects [19–22]. Therefore, this review article 
aims to delineate the dichotomy of IL-2 and IL-2R’s func-
tions within the tumor milieu and its implications for 
cancer immunotherapy.

Our understanding of the IL-2 and IL-2R pathways 
within the context of cancer has significantly evolved, 
opening avenues for improved and safer therapeutic 
interventions. Nevertheless, there is still much to discern. 
This review seeks to address the key questions: How can 
we balance the dual roles of IL-2 to optimize its anti-
tumor effects? Furthermore, how do the IL-2 and IL-2R 
expression variations among different cancer types influ-
ence the therapeutic response? Moreover, lastly, what is 
the potential of IL-2 and IL-2R as diagnostic, prognostic, 
or predictive markers for cancer? By addressing these 
questions, we aim to provide a comprehensive overview 
of IL-2 and IL-2R’s functions in the TME, catalyzing fur-
ther research toward developing more effective cancer 
immunotherapies.

Deciphering IL-2 and IL-2R: biology, signaling, and 
regulation
Mechanisms of IL-2 and IL-2R signaling
IL-2 is a critical cytokine essential in the adaptive immune 
system’s regulation [23]. Predominantly produced by T 
helper cells and NK cells upon antigen recognition, IL-2 
originates from other immune cells, such as dendritic 
cells [23, 24]. Its primary function is to stimulate the pro-
liferation and differentiation of T and B lymphocytes [23, 
24]. IL-2R is constituted by three unique subunits: CD25, 
also denoted as the alpha chain or IL-2Rα; CD122, identi-
fied as the beta chain or IL-2Rβ; and CD132, referred to 
as the gamma chain or IL-2Rγ [24, 25]. These chains con-
tribute uniquely to the IL-2R’s functionality. IL-2 binding 
initiates via CD25, enhancing the receptor’s affinity for 
the cytokine [24, 25]. CD122, predominantly expressed in 
NK cells, is also found in other immune cells, playing a 
crucial role in cytokine binding and signal transduction1. 
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CD132 assists in assembling the receptor complex and 
participates in signaling, contributing to the overall 
immune response [24, 25].

The IL-2R/JAK/STAT signaling pathway is instrumen-
tal in T and B lymphocyte development and functional 
maturation. Upon activation, this pathway orchestrates 
the nuclear translocation of specific transcription fac-
tors, thereby regulating the expression of multiple tar-
get genes, which notably include IL-2 itself. This results 
in a self-perpetuating positive feedback loop [23, 26]. In 
addition to the JAK/STAT pathway, IL-2R activation also 
instigates two other critical signaling cascades: the Mito-
gen-Activated Protein Kinase (MAPK) pathway [26, 27], 
and the Phosphatidylinositol 3-Kinase (PI3K) pathway 
[28]. While the MAPK pathway is crucial for regulating 
cell proliferation and differentiation processes, the PI3K 
pathway is instrumental in ensuring cell survival and pro-
moting lymphocyte proliferation and differentiation [28]. 
(Figure.1).

IL-2, a potent lymphocyte growth factor, utilizes these 
signaling pathways to govern various aspects of the adap-
tive immune response. For instance, it fosters the pro-
liferation and differentiation of CD4 + T cells into Th1 
and Th2 cells [29, 30], while it aids CD8 + T cells in their 
development into cytotoxic T lymphocytes (CTLs) [31]. 
Additionally, IL-2 influences the B cell lineage by pro-
moting differentiation into plasma cells and contributes 
to the development of Tregs, a subset critical for main-
taining peripheral tolerance [32].

Besides T and B cells, IL-2 also profoundly impacts 
NK cells. By triggering the JAK/STAT pathway, IL-2 
instigates the production of Interferon-gamma (IFN-γ), 
a cytokine essential for the activation and proliferation 
of NK cells [33]. Furthermore, IL-2 aids in the differen-
tiation of NK cells into effector and memory pheno-
types, further expanding its influence over the immune 
response [34] (Fig. 2).

Regulation of IL-2 and IL-2R by transcription factors and 
regulators
The regulation of IL-2 and IL-2R, crucial in governing the 
immune response, is modulated by several transcription 
factors [35–37]. Positive regulators such as the Nuclear 
Factor of Activated T-cells (NFAT) and Activator Pro-
tein-1 (AP-1) bind to the promoter and enhancer regions 
of IL-2, respectively [35, 36]. JAKs, STAT5, and STAT3 
also augment IL-2 receptor signaling [37]. Conversely, 
negative regulators include Suppressor of Cytokine Sig-
naling-1 (SOCS1), which inhibits JAK/STAT signaling 
[38], and Forkhead box protein 3 (FoxP3), a transcrip-
tion factorsuppressing IL-2 production and IL-2 receptor 
expression in regulatory T cells [39, 40] (Fig. 1; Table 1)
([41–65]). Balancing these positive and negative regu-
lators of IL-2 and its receptor is crucial for appropriate 

immune function. Dysregulation can lead to autoimmune 
disorders and cancer, emphasizing the importance of 
understanding the biology, signaling pathways, transcrip-
tion factors, and regulators of IL-2 and IL-2R [35–40].

IL-2/IL-2R in the TME
TME is a complex, dynamic ecosystem comprising 
tumor cells, immune cells, stromal cells, and extracel-
lular matrix components that significantly influence 
tumor growth, invasion, and metastasis [17]. IL-2 and 
IL-2R have garnered attention within this milieu due to 
their intricate role in modulating immune responses to 
tumors [17]. Evidence suggests that dysregulated IL-2/
IL-2R signaling within the TME can profoundly impact 
tumor growth and anti-tumor immune responses. For 
instance, IL-2/IL-2R signaling may promote the expan-
sion of Tregs, which could potentially inhibit anti-tumor 
immune responses, thereby facilitating tumor growth 
[17]. Conversely, other research indicates that IL-2/IL-2R 
signaling may promote CTL and NK cell infiltration into 
the TME, enhancing anti-tumor immune responses and 
impeding tumor growth [66]. It becomes apparent that 
the role of IL-2/IL-2R signaling in the TME is multi-
faceted and complex, and a complete understanding of 
these mechanisms remains a research priority. Promising 
therapeutic strategies are emerging from these insights. 
Recent preclinical models demonstrate that IL-2/IL-2R 
agonists could enhance anti-tumor immune responses 
and reduce tumor growth [18]. Moreover, combined 
targeting of IL-2/IL-2R signaling with other immuno-
therapies may exhibit synergistic effects on tumor growth 
inhibition [17, 67], (Fig. 3; Table 2) [68–96].

IL-2/IL-2R: T-cell regulation within the TME
Within the TME, T-cell function is a critical determinant 
of tumor growth and progression [97, 98]. Dysregulation 
of T-cell function, including impaired T-cell receptor sig-
naling, reduced expression of co-stimulatory molecules, 
and upregulated expression of inhibitory receptors (such 
as PD-1, CTLA-4, and TIM-3), is a common immune 
evasion tactic employed by tumors [99–104]. Further-
more, tumors can induce the accumulation and differ-
entiation of Tregs in the TME through the secretion of 
various cytokines, chemokines, and growth factors [100].

IL-2/IL-2R signaling, an essential player in T-cell regu-
lation, could hold therapeutic potential in rebalancing 
the TME. Activated T-cells produce IL-2, a cytokine cru-
cial for the proliferation, survival, and function of effec-
tor T-cells [29, 105]. IL-2R, expressed on various immune 
cells, mediates IL-2 signaling and is pivotal in deter-
mining the balance between effector T-cells and Tregs 
within the TME [29, 105]. Specifically, IL-2 signaling can 
bolster the proliferation and function of effector T-cells 
while restraining Treg proliferation and function [106]. 
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Fig. 1 This diagram provides a comprehensive illustration of the interleukin-2 (IL-2) and interleukin-2 receptor (IL-2R) pathway within the tumor microen-
vironment, detailing its intrinsic role in tumor immunology. IL-2R, encompassing three distinct chains—IL-2Rα (CD25), IL-2Rβ (CD122), and γc (CD132)—
comes in three unique forms formed by different combinations of these chains. The depicted schematic demonstrates how the IL-2/IL-2R pathway 
activates Janus kinase 1 (JAK1) and Janus kinase 3 (JAK3) following their phosphorylation, thereby prompting the downstream signaling across multiple 
specialized pathways. Each of these pathways displays unique modulation within regulatory T cells (Treg cells), differing distinctly from effector T cells 
(Teff ) or conventional T cells (Tconv). Notable components that demonstrate increased activity within Treg cells, in comparison to Teff or Tconv cells, 
include the signal transducer and activator of transcription 5 (STAT5) and phosphatase and tensin homolog (PTEN). On the other hand, the phosphati-
dylinositol 3-kinase (PI3K)/Akt and mitogen-activated protein kinase (MAPK)/extracellular signal–related kinase (Erk) pathways show enhanced activity 
within Teff or Tconv cells. Additionally, other significant transcription factors and regulators like IL2-inducible T-cell kinase (ITK), inhibitors of nuclear 
factor-κB (IκB), Nuclear factor of activated T-cells (NFAT), Activator protein-1 (AP-1), the C-JUN protein—a signal-transducing transcription factor of the 
AP-1 family, and Protein c-Fos—a proto-oncogene that is the human homolog of the retroviral oncogene v-fos, are also engaged in the IL-2 and IL-2R sig-
naling pathway. These components further modulate the intricate signaling dynamics within the Treg, Teff, and Tconv cells. The Suppressors of Cytokine 
Signaling1 (SOCS1), a critical regulator of cytokine signaling, is also implicated in this pathway and contributes to the complex interplay of signals within 
the tumor microenvironment. This detailed insight into the IL-2/IL-2R signaling pathway, along with the roles of the associated proteins, aims to facilitate 
an enhanced understanding of tumor immunology and could possibly pave the way for novel therapeutic strategies. The figure was created using the 
online tool https://biorender.com/
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In addition, IL-2 signaling also promotes the reprogram-
ming of Tregs into effector T-cells, shifting the TME from 
a pro-tumor to an anti-tumor state [107, 108] (Fig. 3).

Evidence links dysregulated IL-2/IL-2R signaling to 
poor prognosis in various types of cancer, including 
melanoma, RCC, and breast cancer [109–112]. Emerg-
ing IL-2-based therapies show promise in enhancing the 
anti-tumor immune response and improving the efficacy 
of immunotherapy in cancer patients [113].

IL-2/IL-2R regulatory roles on NK cells, macrophages, 
neutrophils, and B cells in the TME
The TME is a dynamic network that integrates vari-
ous cells, including immune and cancer cells, which are 
instrumental in cancer progression and metastasis [114]. 
IL-2/IL-2R signaling plays a pivotal role in modulating 
immune cells, and its dysregulation can contribute to 

tumor evasion [115]. The following sections delve into 
the function of this pathway on specific immune cell 
types in the TME.

Regulation of NK cells by IL-2/IL-2R
NK cells possess an innate capability to recognize and 
eliminate malignant cells, and their function is critically 
modulated by IL-2 [13] (Fig. 2). Zhang et al.‘s study illus-
trated that IL-2 signaling amplifies the cytotoxic potential 
of NK cells, thereby inhibiting tumor growth and metas-
tasis. Notably, NK cells recognize and eliminate tumor 
cells in an MHC-independent manner, distinguishing 
them from T-cell mediated tumor recognition [116]. Fur-
thermore, this research found that IL-2 treatment in a 
mouse model of breast cancer reduced tumor growth and 
metastasis, underscoring the potential for NK cell-based 
immunotherapies [33, 116].

Fig. 2 The schematic diagram illustrates the multifaceted role of Interleukin-2 (IL-2) in the homeostasis and functional dynamics of Natural Killer (NK) 
cells, which are characterized as CD56+CD3− large granular lymphocytes integral to the human innate immune response. IL-2 is instrumental in the differ-
entiation process, facilitating the transformation of NK precursors into mature NK cells. It also maintains the homeostasis of mature NK cells by regulating 
their survival, proliferation, and apoptosis. The diagram further highlights the influence of IL-2 on the functional aspects of mature NK cells. It enhances 
the cytolytic activity of both CD56bright and CD56dim NK cells and significantly amplifies cytokine secretion, particularly within the CD56bright human NK 
subset. In secondary lymphoid tissues such as lymph nodes, IL-2 promotes the acquisition of Killer Cell Immunoglobulin-like Receptors (KIR; also known 
as CD158) and CD16 expression by CD56bright NK cells. The diagram also showcases the characteristics of cytokine-induced memory-like (CIML) NK cells, 
which include increased expression of CD25 (IL-2Ra), decreased expression of KIRs, and Transforming Growth Factor-beta (TGFβ) receptors. These changes 
potentially alleviate inhibitory mechanisms in CIML NK cells. The enhanced production of Interferon-gamma (IFNγ) may augment anti-tumor responses. 
The schematic also highlights the metabolic changes in CIML NK cells. Metabolic alterations, including the roles of glucose transporter and transferrin 
receptor, are emphasized for their critical contribution to the long-term persistence and recall functions of CIML NK cells. Abbreviations: fms-like tyrosine 
kinase 3 ligand (FL), kit ligand (KL).The figure was created using the online tool https://biorender.com/

 

https://biorender.com/


Page 6 of 23Muhammad et al. Molecular Cancer          (2023) 22:121 

IL-2/IL-2R influence on macrophages and neutrophils
Similarly, IL-2 impacts macrophages’ functionality, pro-
moting their differentiation into the M1 phenotype, 
known for their anti-tumor and potent tumoricidal 
activities [117–124]. Furthermore, IL-2/IL-2R signaling 
plays a critical role in neutrophil activity within the TME, 
modulating their recruitment, activation, and lifespan, 
thereby influencing tumor progression [118]. A deeper 
understanding of these mechanisms can pave the way for 
novel strategies targeting IL-2/IL-2R signaling to enhance 
neutrophils’ anti-tumor activities or minimize their pro-
tumor activities [119–127].

The role of IL-2/IL-2R signaling in B cells
In comparison to other immune cells, B cells are often 
overlooked in the TME context. However, recent 

research has demonstrated the importance of IL-2/IL-2R 
signaling in regulating B cells within the TME [128]. IL-2 
can directly stimulate B cells, enhancing their prolifera-
tion, differentiation into antibody-secreting plasma cells, 
and co-stimulatory molecule expression, such as CD80 
and CD86 [128].

However, IL-2/IL-2R signaling can also promote Treg 
expansion, potentially inhibiting the anti-tumor immune 
response [129]. The interplay between Tregs, B-cells, and 
other cytokines and immune cells within the TME adds 
to the complexity of the immune response [130–137]. 
The role of IL-2/IL-2R signaling in B-cell responses 
within the TME requires further exploration to fully 
understand these mechanisms and develop targeted 
immunotherapeutic strategies [138].

Interactions and roles of IL-2/IL-2R in dendritic cells (DCs) 
and myeloid-derived suppressor cells (MDSCs) within the 
TME
Critical to regulating anti-tumor immune responses 
within the TME are immune cells, such as DCs and 
MDSCs, which are influenced by IL-2 /IL-2R signaling 
[139–142]. DCs, as professional antigen-presenting cells, 
initiate and regulate immune responses. IL-2 is pivotal in 
augmenting their maturation and activation, enhancing 
antigen presentation capacity, and increasing T-cell acti-
vation [139] By upregulating co-stimulatory molecules, 
such as CD80 and CD86, IL-2 facilitates the activation 
of naïve T cells [140]. Additionally, IL-2 encourages DC 
migration to lymph nodes, fostering T cell activation and 
instigating anti-tumor immune responses [143].

Contrastingly, MDSCs, a diverse population of imma-
ture myeloid cells, accumulate within the TME and sup-
press the anti-tumor immune response. IL-2 exerts a 
dual role on MDSCs; it stimulates the expansion and 
accumulation of MDSCs, promoting an immunosup-
pressive microenvironment [141] while concurrently 
inducing MDSC differentiation into mature myeloid 
cells. This differentiation reduces suppressive functional-
ity and potentially fosters anti-tumor immune responses 
[142]. The IL-2/IL-2R signaling pathway is central to the 
interplay between DCs and MDSCs within the TME. 
IL-2, by enhancing the maturation and activation of 
DCs, promotes antigen presentation and T-cell acti-
vation. Consequently, these activated T cells produce 
IL-2, which induces MDSC differentiation into mature 
myeloid cells, decreasing immunosuppression within the 
TME [29]. Nevertheless, IL-2 can simultaneously drive 
MDSC expansion and accumulation within the TME, 
creating an immunosuppressive environment [144]. In 
addition, MDSCs express high levels of IL-2Rα or CD25 
[145], implying a possible role for IL-2 signaling in their 
functionality. Indeed, studies suggest that IL-2 promotes 
MDSC expansion and activation [29], while blockade of 

Table 1 Transcription factors and regulators involved in the 
regulation of Interleukin-2 and its receptor
Regulator Type Function References
Nuclear Factor of 
Activated T-cells 
(NFAT)

Transcrip-
tion factor

Binds to the promoter 
region of IL-2 to promote 
its expression

[41], [42]

Activator Pro-
tein-1 (AP-1)

Transcrip-
tion factor

Binds to the enhancer 
region of IL-2 to promote 
its expression

[41], [43, 
44]

Nuclear Factor-
kappa B (NF-kB]

Transcrip-
tion factor

Binds to the promoter 
region of IL-2 to promote 
its expression

[41], [45]

Early Growth 
Response Protein 
1 (EGR1]

Transcrip-
tion factor

Binds to the promoter 
region of IL-2 to promote 
its expression

[41], [46, 
47]

Activating Tran-
scription Factor 3 
(ATF3)

Transcrip-
tion factor

Binds to the promoter 
region of IL-2 to suppress 
its expression

[41], [44, 
48]

Janus kinases 
(JAKs)

Positive 
regulator

Activates Signal Trans-
ducer and Activator of 
Transcription-5 (STAT5) 
to promote IL-2 receptor 
signaling

[49, 50]

Signal Transducer 
and Activator of 
Transcription-5 
(STAT5)

Positive 
regulator

Phosphorylated by JAKs 
to promote IL-2 receptor 
signaling

[49–51]

Suppressor of 
Cytokine Signal-
ing-1 (SOCS1)

Negative 
regulator

Inhibits JAK/STAT signal-
ing, leading to reduced 
IL-2 receptor signaling

[52–54]

Forkhead Box P3 
(FoxP3)

Negative 
regulator

Suppresses IL-2 produc-
tion and IL-2 receptor 
expression in regulatory 
T cells

[55–58]

Interleukin-2 
Inducible T-cell 
Kinase (ITK)

Positive 
regulator

Phosphorylates down-
stream effectors to 
promote IL-2 receptor 
signaling

[59–62]

Protein Kinase 
C-theta (PKCθ)

Positive 
regulator

Phosphorylates down-
stream effectors to 
promote IL-2 receptor 
signaling

[63–65]
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Fig. 3 Interplay of IL-2/IL-2R Signaling in the Tumor Microenvironment (TME): This figure elucidates the multifaceted roles of Interleukin-2 (IL-2) and the 
Interleukin-2 Receptor (IL-2R) within the TME, illustrating the varying influence of IL-2 based on its concentration. Lower levels of IL-2 can foster a regula-
tory microenvironment which potentially augments tumor growth, while higher levels act as stimulants for immune cells, fostering tumor elimination. 
Additionally, the figure underscores the heterogeneous impacts of dysregulated IL-2/IL-2R signaling. On one hand, it can stimulate regulatory T cells 
(Tregs), which may suppress anti-tumor responses, on the other, it can induce infiltration of cytotoxic T cells (CTLs) and NK cells, thus fortifying anti-tumor 
immune responses. It further emphasizes how IL-2 connects the adaptive and innate immune systems, highlighting the role of cells such as T cells, B 
cells, NK cells, and dendritic cells, both as IL-2 producers and responders. The varying sizes of arrows in the figure represent the differential intensity of IL-2 
production and its effects on different cell types within the TME. Despite its intricate nature, modulating IL-2/IL-2R signaling is underscored as a promis-
ing therapeutic avenue, particularly when synergized with other immunotherapies. The figure was created using the online tool https://biorender.com/
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the IL-2/IL-2R pathway may reduce their suppressive 
function within the TME [144]. Recent studies highlight 
the intricate relationship between DCs and MDSCs in 
the TME, regulated by the IL-2/IL-2R pathway. Specifi-
cally, IL-2 produced by activated T cells can stimulate 
MDSC proliferation and differentiation, which may 
inhibit the maturation and antigen-presenting function 
of DCs [146, 147]. This reciprocal regulation is thought 
to contribute to the TME’s immunosuppressive nature, 
where MDSCs hinder the activation and proliferation of 
effector T cells. At the same time, DCs struggle to initiate 
a robust immune response against cancer cells [148].

Contemporary research has probed the role of IL-2 sig-
naling in MDSC differentiation and functionality [149]. 
It was found that IL-2 signaling is critical for MDSC dif-
ferentiation and promotion of their immunosuppressive 
function. This signaling also activates the STAT5 path-
way, driving the upregulation of crucial genes involved 
in MDSC differentiation and functionality [150]. More-
over, IL-2 signaling blockade enhanced the anti-tumor 
immune response and inhibited tumor growth in murine 
models [74]. Another study investigated the DC-MDSC 
interplay within the TME, focusing on the IL-2/IL-2R 
pathway [151]. They discovered that MDSCs could 

Table 2 Approaches and strategies for optimizing IL-2/IL-2R targeted therapies in the context of tumor microenvironment complexity
Approach Description Examples References
Interleukin-2/
Interleukin-2 
Receptor Axis

The use of IL-2 or agents that target the IL-2 receptor to enhance 
antitumor immune responses by activating T cells.

High-dose IL-2 therapy, low-dose IL-2 therapy, 
Treg-depleting antibodies, anti-IL-2 receptor 
antibodies.

(68, 69, 70, 
71)

Combination 
Therapies

Combination therapies that target multiple components of the 
tumor micro-environment can enhance treatment efficacy.

Combination of IL-2 with immune checkpoint 
inhibitors, chemotherapy, radiation therapy, or 
other immunomodulatory agents.

(10, 72, 73)

Interleukin-2/
Interleukin-2 
Receptor-Target-
ed Antibodies

Antibodies that target the IL-2 or IL-2 receptor can enhance antitu-
mor immune responses by blocking inhibitory signals.

Anti-IL-2 antibodies, anti-IL-2 receptor antibod-
ies, anti-CD25 antibodies.

(68, 69, 71, 
74, 75)

Small Molecule 
Inhibitors

Small molecule inhibitors can block signaling pathways that inhibit 
T cell activation and proliferation in the tumor micro-environment.

JAK inhibitors, MEK inhibitors, PI3K inhibitors. (76, 77, 78, 
79)

Adaptive Dosing This approach involves adjusting the dose of IL-2 or other immu-
nomodulatory agents based on patient response, with the goal of 
maximizing treatment efficacy while minimizing toxicity.

Dose escalation or de-escalation of IL-2 based 
on clinical response, or personalized dosing 
based on pharmacokinetic and pharmacody-
namic parameters.

(80, 81, 82)

Localized 
Delivery

Localized delivery of IL-2 or other immunomodulatory agents to 
the tumor micro-environment can enhance treatment efficacy 
while reducing systemic toxicity.

Localized delivery using drug-eluting implants, 
nanoparticles, or viral vectors.

(83, 84, 85, 
86, 87)

Gene Therapy Gene therapy involves modifying immune cells or tumor cells to 
enhance antitumor immune responses. For example, IL-2 gene 
therapy can be used to deliver IL-2 directly to tumor cells, which 
may enhance T cell activation and proliferation in the tumor 
micro-environment.

CAR T cell therapy, tumor-infiltrating lympho-
cyte (TIL) therapy, or gene therapy using viral 
vectors to deliver IL-2 or other immunomodula-
tory agents.

(88, 89, 90, 
91, 92)

Combination 
with Convention-
al Therapies

IL-2-based therapies can be combined with conventional cancer 
treatments, such as chemotherapy or radiation therapy, to enhance 
treatment efficacy.

Combination of IL-2 with cisplatin or vinblas-
tine, or the combination of IL-2 with radiation 
therapy.

(68, 74, 93, 
94, 95, 96)

Table 3 Summarizing the different sub-units of the Interleukin-2 Receptor, their location and Significance
IL-2 re-
ceptor 
subunit

Location Function Soluble 
form

Type of cancer or cell type Additional information Reference

IL-2Rα 
(CD25)

T cells, B cells, NK 
cells, monocytes, 
dendritic cells, 
endothelial cells

High-affinity 
binding of IL-2

sIL-2Rα Various cancers (e.g. leuke-
mia, lymphoma, melanoma, 
breast, lung, bladder, ovar-
ian, and gastric cancer)

Elevated levels of sIL-2Rα have been de-
tected in the serum of patients with these 
cancers, and the levels have been shown 
to correlate with tumor burden, disease 
stage, and prognosis.

(179, 180, 
181, 182, 183, 
184, 185, 186, 
187, 188, 189, 
190)

IL-2Rβ 
(CD122)

T cells, NK cells, 
monocytes, den-
dritic cells

Signal 
transduction

Not 
present

Various cancers (e.g. leuke-
mia, lymphoma, melanoma)

Expression of IL-2Rβ has been reported in 
various cancer types, but its role in cancer 
development and progression is not well 
understood.

(10, 190, 191, 
192, 193, 194, 
195)

IL-2Rγ 
(CD132)

T cells, NK cells, B 
cells, monocytes, 
dendritic cells

Signal 
transduction

Not 
present

X-linked severe combined 
immunodeficiency (XSCID)

Mutations in the IL-2Rγ gene cause XSCID, 
a severe immunodeficiency disorder that 
affects T and NK cell function.

(113, 181, 
186, 190, 196, 
197, 198)
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directly inhibit the function of DCs via the IL-2/IL-2R 
pathway. Intriguingly, MDSCs express high levels of 
IL-2R, which competes with DCs for IL-2 binding. This 
competitive interaction reduces IL-2 signaling in DCs, 
impairing their function and inhibiting the anti-tumor 
immune response. However, blocking IL-2R signaling in 
MDSCs was observed to reverse this effect and enhance 
DC function [151].

IL-2 and IL-2R in Cancer Therapy: a 
balance between immunostimulation and 
immunosuppression
IL-2 and IL-2R play pivotal roles in the immunological 
response against cancer, wielding influence over immune 
regulation and, thus, cancer therapy. Their function 
extends to the activation of immune cells, such as T cells, 
B cells, and NK cells, augmenting immune responses 
against cancer cells. However, their role is dualistic, 
wielding effects of both immunostimulation and immu-
nosuppression. This duality can present both benefits and 
challenges in cancer therapy [152–154].

Immunostimulatory effects of IL-2/IL-2R
IL-2 is instrumental in stimulating the proliferation and 
activation of T cells and NK cells. This activity enhances 
the anti-tumor immune response, mainly by IL-2 bind-
ing to the high-affinity IL-2R (IL-2Rα/β/γ) expressed 
on activated T cells [152]. This interaction results in the 
expansion and activation of effector T cells, responsible 
for the direct or indirect killing of cancer cells, primarily 
through cytokine production such as Interferon gamma 
(IFN-γ) and tumor necrosis factor alpha (TNF-α) [153]. 
In addition, IL-2 can further induce the expansion of NK 
cells, which increases tumor-specific cytotoxicity [154]. 
The efficacy of IL-2 as a cancer immunotherapy has been 
evaluated in various clinical trials. High-dose IL-2 dem-
onstrates potential, inducing objective responses in up 
to 15% of patients with metastatic melanoma and RCC, 
with some patients achieving durable complete responses 
[7, 10, 91, 155, 156].

Immunosuppressive role of IL-2/IL-2R
IL-2/IL-2R signaling plays a pivotal role in the activa-
tion and proliferation of TILs, immune cells that infil-
trate tumors and mediate anti-tumor immune responses. 
However, the influence of IL-2 on TILs is multifaceted 
and largely determined by the TME, the presence of 
Tregs, and the activation state of TILs. These elements 
can promote the expansion of Tregs and MDSCs that 
suppress effector T cell activity, thereby paradoxically 
fostering tumor growth and creating an immunosuppres-
sive effect. Despite the potential of IL-2, the use of high-
dose IL-2 is limited due to severe associated toxicities, 

such as hypotension, pulmonary edema, and renal fail-
ure, which restrict its broader clinical use [157–162].

Strategies for IL-2/IL-2R therapeutic targeting
The intricacies of IL-2 and IL-2R signaling necessi-
tate a delicate balancing act in their therapeutic target-
ing. Key to this balance is the differential expression of 
IL-2R subunits on various immune cells [5]. The ratio 
of IL-2R subunit expression on different cell types can 
influence the overall effects of IL-2 signaling within the 
immune system. For instance, targeting IL-2R selectively 
on effector T cells could enhance the anti-tumor immune 
response [163]. Conversely, targeting IL-2R on Tregs 
could lead to an undesirable promotion of immunosup-
pression and tumor growth [164]. Therefore, IL-2 has 
been used in combination with other immunotherapies, 
such as checkpoint inhibitors, to optimize anti-tumor 
immune responses. For example, high-dose IL-2, com-
bined with ipilimumab (an anti-CTLA-4 antibody), has 
shown promise by inducing durable responses in patients 
with metastatic melanoma [165]. However, combination 
immunotherapy could lead to an escalation in toxicity 
and the induction of autoimmune reactions.

Consequently, the most practical combination of 
immunotherapies requires meticulous evaluation in 
clinical trials. Another promising avenue is using IL-2 as 
an adjuvant in cancer vaccines to bolster the activation 
and proliferation of tumor-specific T cells [166–168]. 
The GVAX vaccine, which consists of irradiated tumor 
cells genetically modified to secrete GM-CSF, is one such 
example that has been paired with IL-2 to enhance the 
anti-tumor immune response [169–171]. Although pre-
clinical models have shown promise, the efficacy of IL-
2-based cancer vaccines remains to be verified in clinical 
trials.

Challenges in therapeutic targeting of IL-2 and IL-2R in 
cancer
Despite their immense potential, therapeutic targeting 
of IL-2 and IL-2R in cancer poses several challenges. A 
significant challenge is the complexity of IL-2 signal-
ing pathways. IL-2 can activate multiple signaling path-
ways, including the JAK-STAT, PI3K-AKT, and MAPK 
pathways, exerting pro- and anti-tumor effects [172, 
173]. In addition, the heterogeneity of IL-2R expression 
on different immune cell populations and the severe 
side effects associated with IL-2 treatment, such as life-
threatening cytokine release syndrome, further compli-
cates the development of effective and safe treatments 
[174]. Moreover, the issues of delivery and dosing present 
additional challenges for IL-2-based immunotherapies. 
As a large protein, IL-2 requires intravenous adminis-
tration and exhibits a short half-life in vivo, making it 
challenging to achieve sustained therapeutic levels [13]. 
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In addition, high-dose IL-2, although linked to higher 
response rates in metastatic melanoma, is associated 
with increased toxicity [175]. Furthermore, the efficacy of 
IL-2 and IL-2R-targeted therapies is limited in particular 
cancer types, such as breast or lung cancer [176].

Soluble IL-2R (sIL-2R) and IL-2Rα: emerging 
biomarkers and therapeutic targets in cancer
The IL-2R complex, composed of IL-2Rα, IL-2Rβ, and 
IL-2Rγ, plays critical roles in the immune system [177, 
178]. Each subunit has specific locations and functions 
within the immune system (Fig.  1; Table  3) [179–198]. 
Importantly, IL-2Rα, primarily expressed in activated T 
cells, regulatory T cells, and activated B cells, initiates 
downstream signaling cascades upon binding to IL-2 [23, 
199]. The soluble form of the receptor, sIL-2R, produced 
by proteolytic cleavage of the membrane-bound IL-2R 
complex, has been identified in the serum of patients 
with Hodgkin’s lymphoma and some non-lymphoid can-
cers [182, 183, 185]. In contrast to its membrane-bound 
counterpart IL-2Rα, this form presents a longer half-life 
and different modes of interaction with IL-2 [186, 187]. 
Both sIL-2R and IL-2Rα have been implicated in numer-
ous immune-mediated diseases, signifying their potential 
as markers of disease activity and progression [186, 188, 
200].

sIL-2R and IL-2Rα as cancer biomarkers
sIL-2R and IL-2Rα have emerged as promising biomark-
ers for cancer diagnosis and prognosis. They are found on 
the surface of cells stimulated by IL-2, with IL-2Rα being 
a low-affinity receptor whose expression is upregulated 
in malignant cells [181, 201–203]. Increased levels of sIL-
2R and IL-2Rα are observed in several cancers, including 
colorectal, prostate, breast, and lung cancer [204–207], 
often indicating a poor prognosis. Moreover, they serve 
as potential diagnostic markers as elevated levels of 
sIL-2R and IL-2Rα have been detected in patients with 
colorectal cancer and those at increased risk of prostate 
cancer [189, 208]. Further, these markers have potential 
utility in monitoring treatment efficacy. For example, 
decreased levels of sIL-2R and IL-2Rα in response to 
chemotherapy and radiation therapy signify a favorable 
prognosis in patients with prostate and colorectal cancers 
[204, 209–211].

Therapeutic potential of sIL-2R and IL-2Rα
Beyond their roles as biomarkers, sIL-2R and IL-2Rα 
are under investigation as therapeutic targets for cancer 
[184, 186, 209, 212, 213]. The ability of sIL-2R to modu-
late the immune system and tumor microenvironment 
underlines its potential as cancer therapeutics [10, 188]. 
It has been proposed that sIL-2R may induce tumor cell 
apoptosis, inhibit tumor angiogenesis, and interfere with 

oncogenic pathways [214]. Similar anticancer effects 
have been attributed to IL-2Rα, including the induction 
of apoptosis in multiple myeloma cells and the inhibition 
of oncogenic pathways, such as the JAK-STAT pathway 
[215–218].

Preliminary clinical studies underscore the therapeutic 
potential of sIL-2R and IL-2Rα. A phase I trial demon-
strated the safety and tolerability of sIL-2R in patients 
with advanced solid tumors and lymphomas [219–221]. 
A subsequent phase I/II trial reported a significant reduc-
tion in tumor burden in patients with advanced meta-
static RCC treated with sIL-2R [222]. Moreover, a phase 
II trial revealed a significant survival benefit in patients 
with advanced non-small cell lung cancer (NSCLC) fol-
lowing IL-2Rα treatment [223].

IL-2 and engineered IL-2 for immunotherapy of 
autoimmunity and cancer
IL-2 and engineered IL-2 for immunotherapy of 
autoimmune disorders
IL-2, a critical cytokine, promotes the growth and acti-
vation of T cells, especially Tregs [153]. Tregs are 
indispensable in controlling immune responses and pre-
venting autoimmune diseases [153]. However, systemic 
administration of IL-2 is associated with adverse effects 
due to its pleiotropic effects on various immune cells 
[71]. A novel strategy developed to mitigate this prob-
lem involves receptor-gated IL-2 delivery through an 
anti-human IL-2 antibody [71]. The receptor-gated IL-2 
delivery is a targeted approach where the engineered 
anti-human IL-2 antibody binds to IL-2 receptors on 
Tregs, effectively delivering IL-2 specifically to these 
cells [71]. This enhances Treg activation and their sup-
pressive activity, selectively impacting these cells without 
disturbing other immune cells [71]. This approach has 
demonstrated potential in activating Tregs across vari-
ous species, such as mice, monkeys, and humans [224]. 
Studies using mouse models of autoimmune diseases like 
type 1 diabetes, multiple sclerosis, and graft-versus-host 
disease have illustrated decreased disease severity and 
improved survival with this approach [71]. Recent stud-
ies have also shown that IL-2 therapy can be effective 
in treating systemic lupus erythematosus by expanding 
Tregs and reducing disease activity [225].

Recognizing the therapeutic potential of IL-2, research-
ers are focused on engineering IL-2 for improved efficacy 
and safety in treating cancer and autoimmune diseases. 
Modifying IL-2 structure and function can increase its 
therapeutic potential [226]. Several strategies include 
designing IL-2 variants to selectively target Tregs [227], 
modifying the IL-2 receptor to increase Treg selectiv-
ity, or creating IL-2 variants with reduced binding affin-
ity to non-specific immune cells [109, 228]. Among the 
engineered IL-2 variants, “aldesleukin” or “recombinant 
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human IL-2” (rIL-2) has been extensively researched. It 
has shown promise in enhancing Treg activity and sup-
pressing autoimmune responses, although associated 
with potential toxicities like vascular leak syndrome 
(VLS), limiting its clinical application [109, 226, 229, 
230].

IL-2 and engineered IL-2 for cancer immunotherapy
The therapeutic potential of IL-2 has also been recog-
nized in the field of cancer immunotherapy. IL-2 can 
enhance the anti-tumor immune response and reduce 
tumor growth, as demonstrated in mouse cancer mod-
els [231]. However, the systemic administration of IL-2 is 
associated with adverse effects, limiting its clinical appli-
cation [71]. To overcome these limitations, researchers 
are engineering IL-2 for improved efficacy and safety in 
cancer treatment.

Further advancements in IL-2 engineering introduced 
IL-2 “superkines“(discussed beloe), such as “NARA1”. 
These molecules exhibit enhanced IL-2 receptor binding 
and improved signaling properties, providing increased 
potency and selectivity for Tregs compared to rIL-2 [179, 
232–234]. However, these superkines may also have the 
potential to induce autoimmune responses due to their 
increased activity [234].

Several clinical trials have evaluated the safety and effi-
cacy of these engineered IL-2 molecules for cancer and 
autoimmune disorders. For example, despite its limita-
tions, Aldesleukin has been FDA-approved for treating 
metastatic melanoma and RCC [153, 235, 236]. Other 
engineered IL-2 molecules, like NKTR-214 and AMG 
592, have demonstrated selectivity for activating Tregs 
and NK cells, showing potential in enhancing immune 
responses against tumors, and are under clinical evalu-
ation [68, 237, 238]. ALT-803, another engineered IL-2 
variant, is under clinical trial for treating various can-
cers, showing promise in preclinical models of multiple 
myeloma [ClinicalTrials.gov Identifier: NCT02099539]. 
Moreover, the IL-2 variant ‘tebentafusp’ has shown 
promise in clinical trials for treating uveal melanoma 
[239]. It selectively binds to T cells that recognize a spe-
cific tumor antigen, leading to their activation and expan-
sion. However, due to its activity on non-tumor-specific 
T cells, it may also induce autoimmune responses.

Recent studies have also shown that engineered IL-2 
molecules can enhance the efficacy of immune check-
point inhibitors in cancer treatment by promoting the 
activation and expansion of tumor-specific T cells [240].

While these engineered IL-2 molecules show promise, 
they also present significant challenges. Potential toxici-
ties, including VLS, can limit their clinical use [109, 239, 
241–243]. Other limitations include the potential for 
inducing autoimmune responses [243], their high cost, 
and complex manufacturing processes [243, 244].

The burgeoning field of engineered IL-2 for cancer 
immunotherapy, though in its infancy, carries immense 
potential, yet it is not devoid of substantial hurdles [243]. 
A key obstacle lies in the creation of IL-2 variants that 
can selectively stimulate Tregs without triggering other 
immune cells [225, 240, 245]. Furthermore, fine-tuning 
the dosage and administration of engineered IL-2 to 
strike a balance between therapeutic effectiveness and 
toxicity presents another significant challenge [243, 246, 
247].

Current efforts are directed towards designing IL-2 
therapeutics with enhanced in vivo half-lives, targeting 
specific IL-2 receptor conformations to stimulate spe-
cific T cell subsets, or delivering localized therapies to 
target tissues [241]. A recent trend in the engineering 
of IL-2 for the therapy of cancer and autoimmunity is 
the development of PD-1-IL-2R agonists. Deak and col-
leagues (2022) effectively highlighted the potential of PD-
1-IL-2R agonists in eliciting robust and selective immune 
responses by promoting the expansion of effector T cells 
without the simultaneous expansion of Tregs. They also 
underscored the synergistic benefits of PD-1-IL-2R ago-
nists with conventional anti-PD-1 therapy, representing 
a novel, promising avenue for cancer immunotherapy 
[248]. Moreover, the study by Zhang et al. (2021) her-
alded the creation of orthogonal IL-2 systems, serving 
as a powerful platform for delineating the complex net-
work of cytokine-receptor interactions and their role in 
immune modulation. By developing murine and human 
IL-2 orthogonal systems, they demonstrated a controlled 
activation of IL-2-dependent signaling pathways, provid-
ing insights into potential therapeutic strategies for both 
autoimmune diseases and cancer [249]. Furthermore, 
Evans et al.‘s work in 1999 on IL-2R-based chimeric mol-
ecules paved the way for a better understanding of how 
IL-2 and its receptor interact, contributing significantly 
to the development of more effective therapies [250]. 
These chimeric molecules can harness the power of the 
immune system more selectively and potently, address-
ing issues such as toxicity and lack of specificity seen with 
the conventional IL-2 therapy.

The primary goal of these advancements is to augment 
therapeutic efficacy while minimizing associated toxic-
ity. Despite these hurdles, engineered IL-2 therapies are 
poised to become a significant addition to our current 
arsenal of cancer treatments [241, 251], provided the 
obstacles of optimizing effectiveness and minimizing 
potential drawbacks are carefully navigated.
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Future outlooks and perspectives on IL-2-based 
therapies for immunotherapy: balancing promise 
and challenges
IL-2, a cytokine critical in T-cell activation and prolif-
eration, serves as a vital component in cancer immuno-
therapy [252]. While FDA-approved for metastatic RCC 
and metastatic melanoma, its clinical application remains 
limited due to associated toxicity [252, 253]. This section 
delves into recent advancements and future directions in 
improving the efficacy of IL-2 therapy. The effectiveness 
of IL-2 therapy can be enhanced by implementing com-
bination therapies. For instance, a phase I trial involv-
ing low-dose IL-2 and anti-PD-1 antibody nivolumab in 
patients with advanced solid tumors yielded a 30% overall 
response rate [253]. Notably, the toxicity experienced was 
manageable. Similarly, a combination of IL-2 and a can-
cer vaccine was evaluated in a phase I trial for patients 
with metastatic melanoma, which produced a response 
rate of 44% without significant toxicity [91].

As we continue to delve deeper into the molecu-
lar mechanisms and the vast cellular influences of IL-2, 
our understanding of its therapeutic potential in treat-
ing autoimmune diseases and cancer continues to 
expand. This section presents a comprehensive over-
view of future outlooks and perspectives, anchored in 
our current understanding of IL-2 and its applications in 
immunotherapy.

The regulation of IL-2 and IL-2R, being crucial in gov-
erning the immune response, is modulated by several 
transcription factors [35–37]. Hence, balancing these 
positive and negative regulators of IL-2 and its receptor is 
crucial for appropriate immune function. Subsequently, 
it follows that dysregulation can lead to autoimmune 
disorders and cancer, emphasizing the importance of 
understanding the biology, signaling pathways, tran-
scription factors, and regulators of IL-2 and IL-2R [35–
40]. In this regard, the IL-2/IL-2R signaling axis, with 
its profound impact on T-cell function and the overall 
immune response within the TME, represents a prom-
ising target for therapeutic intervention. In this con-
text, it stands to reason that by strategically modulating 
this signaling pathway, there is potential to enhance the 
anti-tumor immune response and curtail tumor growth. 
Given this, understanding and manipulating the role 
of IL-2 and IL-2R in the regulation of T-cells within the 
TME may provide potent tools for bolstering the body’s 
natural defenses against cancer. Furthermore, IL-2 and 
IL-2R also play regulatory roles on various immune cells, 
including NK Cells, macrophages, neutrophils, and B 
Cells in the TME. They also interact significantly with 
DCs and MDSCs within the TME. Thus, it follows that 
future investigations should continue to probe the intri-
cate roles and relationships of IL-2/IL-2R, with immune 
cells, DCs, and MDSCs in the TME. It is conceivable that 

this exploration may bolster the development of cancer 
immunotherapies. However, these strategies hinge on a 
complex and context-dependent relationship between 
IL-2/IL-2R signaling, DCs, and MDSCs in the TME. 
Hence, achieving a more profound understanding of this 
interplay and the mechanisms underpinning the effects 
of IL-2/IL-2R signaling on DCs and MDSCs is essential 
[148].

Notably, there is therapeutic potential in sIL-2R and 
IL-2Rα. Future advancements in cancer therapeutics 
involving these proteins are expected to encompass the 
development of novel formulations with improved effi-
cacy and safety. Additionally, ongoing research efforts 
aim to identify reliable biomarkers of response to sIL-2R 
and IL-2Rα therapies [14, 23, 177–198, 200]. It is antici-
pated that such biomarkers could help predict which 
patients would benefit most from these therapies [201–
223, 254, 255]. The burgeoning understanding of IL-2’s 
molecular mechanisms and cellular influences not only 
enhances its therapeutic potential in treating autoim-
mune diseases and cancer but also sets a new paradigm 
in immunotherapy [68, 71, 153, 226–228]. However, the 
challenge lies in fine-tuning the properties of engineered 
IL-2 to stimulate targeted immune responses with-
out provoking adverse effects [109, 225, 240, 243, 245]. 
Accordingly, key developments encompass the engineer-
ing of IL-2 molecules that selectively bind to high-affinity 
IL-2 receptors on effector T cells and avoid low-affinity 
receptors on Tregs [68, 241].

In this regard, techniques involving receptor-targeted 
delivery systems, like anti-human IL-2 antibodies, mark a 
promising strategy in improving therapeutic potential and 
reducing systemic administration drawbacks [71, 224]. In 
turn, the evolution of IL-2 “superkines,“(discussed below) 
such as “NARA1,“ represents an achievement in IL-2 
engineering, featuring enhanced IL-2 receptor binding 
and signaling properties [179, 232–234]. These innova-
tive strategies aim to enhance therapeutic efficacy while 
minimizing toxicity, thus underscoring the potential of 
IL-2-based immunotherapies. However, potential auto-
immune responses due to increased activity highlight 
the need for further investigation [234]. Significantly, 
the clinical success of engineered IL-2 molecules such as 
Aldesleukin, despite its limitations, reinforces the poten-
tial of IL-2 based therapies [153, 235, 236]. Other IL-2 
molecules like NKTR-214 and AMG 592 show promise 
in preclinical trials, yet challenges of potential toxicities, 
manufacturing costs, and complex processes persist [68, 
237, 243, 244]. Therefore, the integration of IL-2 therapy 
with other treatments, such as chimeric antigen receptor 
(CAR) T-cell therapy (discussed below) and anti-PD-1 
antibodies, presents an intriguing landscape for innova-
tive therapeutic strategies. These combined treatments in 
preliminary trials reveal promising outcomes, potentially 
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addressing standalone IL-2 therapy limitations [253, 256, 
257]. Consequently, to navigate the therapeutic potential 
and drawbacks of IL-2 molecules, research is ongoing in 
areas such as designing IL-2 therapeutics with enhanced 
in vivo half-lives, specific IL-2 receptor conformation 
targeting to stimulate particular T cell subsets, and local-
ized therapies [241]. This concerted effort could lead to 
the evolution of more precise and effective IL-2-based 
therapies.

Interestingly, another burgeoning area of research is 
IL-2 therapy’s integration with other targeted therapies, 
such as tyrosine kinase inhibitors (TKIs) [10, 258, 259]. 
A preclinical study demonstrated improved anti-tumor 
activity when IL-2 was combined with a TKI target-
ing the mesenchymal-epithelial transition factor (MET) 
receptor in a mouse model of RCC [260]. Clinical trials 
are now underway to assess the combination of IL-2 and 
TKIs in patients with metastatic RCC [261, 262]. While 
IL-2-based therapies present certain challenges, they 
remain a key frontier in immunotherapy. Unquestionably, 
continuous research and clinical trials are expected to 
expand their scope and improve their therapeutic efficacy 
and safety [241, 251]. Despite the complexities, IL-2 ther-
apies promise to significantly contribute to managing a 
broader range of cancer types and autoimmune diseases 
in the future..

Novel approaches and future perspectives
Receptor-gated IL-2 delivery via anti-human IL-2 antibody 
for regulatory T-cell activation
Receptor-gated IL-2 delivery is a unique therapeutic 
strategy that uses anti-human IL-2 antibodies to acti-
vate Tregs. In this technique, IL-2R functions as the ‘gate’, 
and the anti-human IL-2 antibody serves as the ‘key’ to 
unlock this gate. This selective delivery system ensures 
that IL-2 is selectively delivered to Tregs, promoting their 
activation and immunomodulatory functions [263].

The potential of receptor-gated IL-2 delivery to miti-
gate the side effects associated with conventional IL-2 
administration, such as the unintended activation of 
various immune cells, makes it a promising therapeutic 
technique [263]. Furthermore, it has potential applica-
tions in situations where immune tolerance is compro-
mised, like autoimmune diseases or transplantation 
[264]. A study that warrants particular attention utilized 
a cell-based and dynamic IL-2R platform to identify a 
distinct anti-human IL-2 antibody known as UFKA-20 
[265]. UFKA-20 enabled selective and efficient stimula-
tion of CD4 + Treg cells within freshly isolated human T 
cells ex vivo and in animal models in vivo [265]. However, 
it is crucial to calibrate this technique carefully to avoid 
excessive immune suppression that could potentially ren-
der the host vulnerable to infections or malignancies [71, 
266].

Bispecific antibodies
Bispecific antibodies (bsAbs) represent a novel class of 
bioengineered molecules that can simultaneously engage 
two distinct antigenic epitopes. These uniquely dual-tar-
geting agents demonstrate potential in revolutionizing 
cancer immunotherapy by concurrently interacting with 
IL-2R and tumor-associated antigens (TAAs), thereby 
bolstering T-cell mediated anti-tumor immunity [267–
270]. Preclinical models have shown promising results 
with bsAbs enhancing the efficacy of receptor-gated IL-2 
delivery and improving treatment outcomes in cancer 
[271–273]. For instance, in preclinical studies, a bsAb 
targeting PD-1 and LAG-3 exhibited enhanced T-cell 
activation and anti-tumor efficacy [272]. This dual-tar-
geting approach of bsAbs provides a promising direction 
for cancer immunotherapy [274].

Multi-specific antibodies
Multi-specific antibodies (msAbs) can engage multiple 
antigens simultaneously, making them a valuable tool in 
cancer immunotherapy [268]. By targeting both IL-2 and 
co-stimulatory receptors like CD28 and 4-1BB, msAbs 
can enhance T-cell activation and proliferation, thereby 
improving the effectiveness of receptor-mediated IL-2 
delivery and reinforcing anti-tumor immunity [152, 275]. 
Recent preclinical studies have shown promise in this 
area, demonstrating that msAbs can enhance anti-tumor 
immunity and the efficacy of receptor-gated IL-2 delivery 
[276, 277].

Fc receptor engineering
Fc receptor engineering involves modifications of the 
Fc region of anti-human IL-2 antibodies to augment 
antibody-dependent cell-mediated cytotoxicity (ADCC) 
and complement-dependent cytotoxicity (CDC). This 
can increase the efficacy of receptor-gated IL-2 delivery, 
potentially contributing to more effective therapeutic 
approaches in cancer management [278, 279]. Research-
ers continue investigating the potential of engineering 
the Fc region of anti-human IL-2 antibodies to improve 
ADCC and enhance receptor-gated IL-2 delivery 
[280–283].

Site-specific conjugation
Site-specific conjugation is attaching therapeutic mol-
ecules, such as drugs or toxins, to specific sites on an 
antibody molecule to create an antibody-drug conju-
gate (ADC). This technique can improve the selectivity 
and potency of cancer therapeutics by targeting specific 
antigens on tumor cells [41]. Site-specific conjugation 
has been used to develop several FDA-approved ADCs, 
such as ado-trastuzumab emtansine (Kadcyla) and bren-
tuximab vedotin (Adcetris), for the treatment of HER2-
positive breast cancer and CD30-positive lymphoma, 
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respectively [42, 43].This method of attaching drugs 
or other molecules to specific sites on antibodies can 
improve their pharmacokinetic properties and reduce 
off-target effects. Recent studies have shown that site-
specific conjugation can enhance the efficacy of receptor-
gated IL-2 delivery and improve treatment outcomes in 
preclinical cancer models [44, 45].

Moreover, by enhancing the precision of IL-2 delivery 
through site-specific ADC conjugation, treatment out-
comes can be improved significantly, as demonstrated 
by another recent preclinical cancer model [45, 46]. The 
aforementioned study underscores the potential of ADCs 
in cancer treatment, discussing the strategies for targeted 
drug delivery and how this precision may enhance the 
therapeutic potential of drugs [46]. These findings sup-
port the hypothesis that site-specific ADC conjugation 
can enhance IL-2 delivery, thereby improving treatment 
outcomes in cancer therapy. Further research in this 
domain is warranted to confirm these promising initial 
results and to explore possible applications in clinical 
settings.

CAR T cells and superkines
CAR T-cell therapy is a rapidly evolving therapeutic 
strategy that has been widely recognized for its role in 
harnessing the immune system to combat malignancies 
[90]. A prominent research interest lies in the modula-
tion of CAR T-cell functions and their persistence in 
vivo through a combination therapy approach [284]. 
One such approach is integrating CAR T-cell therapy 
with IL-2 or IL-2R. This combined therapy has gained 
considerable attention in recent years due to its poten-
tial to enhance CAR T-cell performance and augment 
anti-tumor efficacy [285, 286]. In the context of CAR 
T-cell therapy, IL-2 can enhance the function of CAR T 
cells and improve their anti-tumor efficacy [287, 288]. 
Recent studies have shown that the co-administration of 
an anti-IL-2 antibody with CAR T cells improved CAR 
T cells’ persistence and function in a mouse glioblastoma 
model [289]. These advancements suggest that IL-2 or IL-
2R-based therapies can impact the therapeutic success of 
CAR T-cell therapies.

In line with this, recent findings indicate that an 
orthogonal human IL-2 and IL-2Rβnsystem, termed 
Ortho-hIL-2, enhances CAR T cell expansion and anti-
tumor activity in a murine model of leukemia [249]. This 
system not only boosts CAR T cells but also enhances 
their cytotoxicity and promotes their expansion, lead-
ing to leukemia regression [249]. Other orthogonal IL-2/
IL-2R systems have been similarly found to enhance CAR 
T-cell therapy’s effectiveness, aiding in controlling CAR 
T-cell function, maximizing efficacy, and preventing 
acute graft-versus-host disease [290].

Given the growing body of evidence on IL-2/IL-2R’s 
role in enhancing CAR T-cell therapies, some researchers 
are exploring engineering CAR T cells to produce IL-2 
within the tumor microenvironment [291]. This innova-
tive approach could potentially improve the persistence 
and activation of CAR T cells, aiding in the clearance of 
bulky tumors [290, 291]. Further studies are necessary 
to validate this concept and determine its applicability in 
treating different cancer types.

However, it is important to consider that IL-2 thera-
pies may also have limitations, such as promoting T cell 
exhaustion and influencing T cell differentiation [109, 
290]. Therefore, fine-tuning the use of IL-2 in CAR 
T-cell therapies may be necessary to maximize benefits 
while minimizing adverse effects. On this note, targeted 
IL-2 variants have been shown to enhance CD8 + T-cell 
response, improve tumor control, and overcome resis-
tance, suggesting that more personalized IL-2 therapies 
may be feasible [292–294].

Looking ahead, the integration of IL-2/IL-2R into CAR 
T-cell therapies holds substantial promise for cancer 
treatment. As research progresses, it will be important to 
continue exploring optimal combinations and doses, and 
develop strategies to mitigate potential side effects. This 
exciting frontier of cancer therapy stands to transform 
the treatment landscape for various types of cancer.

The field of cancer therapeutics has seen a paradigm 
shift with the introduction of superkines. Superkines 
are derived from diverse cytokine libraries and designed 
for enhanced biological potency, offering an optimis-
tic avenue for cancer treatment [295]. A pivotal focus is 
the integration of IL-2 and IL-2R, which are promising 
therapeutic agents due to their critical role in immune 
cell function, cytotoxicity, and regulatory T cell expan-
sion [109, 216]. However, designing IL-2 superkines has 
necessitated advanced computational methodologies 
to enhance affinity and stability [296]. An engineered 
IL-2 variant, MDNA109, was created to maximize anti-
tumor effects while minimizing immune-related side 
effects [295]. This high-affinity, thermostable variant 
was shown to have an outward conformation that prear-
ranges the IL-2Rβ binding site, optimizing its signaling 
properties [296]. Notably, the integration of IL-2 with 
its receptor, IL-2R, has been engineered for therapeutic 
proteins to bind more efficiently. This enhanced affinity 
for IL-2Rβois a key step in IL-2’s potency in immuno-
therapy [296]. IL-2’s interaction with IL-2R leads to signal 
cascades within the cell that promote proliferation and 
survival of effector T cells and NK cells, essential compo-
nents in immune responses against tumors [109]. Further 
advancements include the development of fusion proteins 
and antibody complexes [109]. IL-2/anti-IL-2 antibody 
complexes, for instance, have been used to manipulate 
the immune system’s response to cancer by selectively 
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expanding desired immune cell populations, such as 
CD4 regulatory T cells, and combating T cell exhaus-
tion, a phenomenon in which T cells lose their functional 
capacities in chronic diseases like cancer [109]. Recent 
studies have demonstrated the potential for reshaping 
the TME using superkines, particularly with MDNA109. 
Delivered by an oncolytic adenovirus, MDNA109 shows 
superior anti-tumor responses in pancreatic cancer by 
enhancing immune cell activity and anti-tumor immune 
memory [297]. Interestingly, superkines like MDNA109 
might be beneficial for treating immunologically “cold” 
tumors, known for their low mutation rates and limited 
immune cell infiltration [297]. Despite the promising 
prospects of superkines, certain issues need addressing. 
While high-dose IL-2 was previously used for melanoma 
and RCC treatment, its efficacy is questioned due to the 
rise of more targeted therapies [298]. Balancing the ben-
eficial and detrimental effects of IL-2-based therapies 
continues to be a challenge in this field. Looking ahead, 
continuous research aims to optimize the potential of 
IL-2/IL-2R integration in superkines. Future perspectives 
include refining the therapeutic application of superkines 
through in silico affinity maturation and structure stabili-
zation strategies, advancing clinical trials for cancer and 
autoimmune diseases, and targeting IL-2 to specific tis-
sues for a more precise therapeutic approach [80, 296, 
298]. The realization of these prospects may hold the key 
to transforming cancer therapeutics, making superkines a 
beacon of hope in the fight against this relentless disease.

Current limitations and challenges of IL-2-based therapies
IL-2 is a key cytokine in the gamma (c) family, with criti-
cal roles in the TME and various therapeutic applica-
tions. Gamma (c) cytokines, including IL-4, IL-7, IL-9, 
IL-15, and IL-21, are vital for immune regulation, with 
shared use of IL-2Rs across these cytokines contribut-
ing to their functional overlap and redundancy [299]. 
This receptor sharing could be a double-edged sword in 
therapeutic utilization, as it allows for broad immuno-
modulatory effects but could potentially lead to unin-
tended off-target effects. IL-2’s primary role in the TME 
is to drive the proliferation and activation of cytotoxic T 
cells, effectively aiding in the elimination of tumor cells 
[300]. Moreover, IL-2 has been widely utilized in immu-
notherapy for its ability to promote the expansion and 
function of Tregs, which are instrumental in maintain-
ing immune homeostasis and preventing autoimmunity 
[23]. However, the pleiotropic nature of IL-2 can also 
contribute to adverse effects such as vascular leak syn-
drome, presenting a challenge to its therapeutic use [91]. 
Comparative studies of gamma (c) cytokines in immu-
notherapeutic settings have demonstrated distinctive 
advantages and limitations. Markley and Sadelain (2010) 
highlighted how different gamma (c) cytokines, despite 

sharing IL-2Rs, can preferentially promote the expansion 
of distinct immune cell subsets [301]. For instance, IL-7 
and IL-15, unlike IL-2, primarily support memory T cell 
survival and proliferation, offering potential benefits in 
long-term tumor control. However, the broad receptor 
sharing across these cytokines might also lead to the acti-
vation of unwanted cell populations, potentially aggra-
vating immune-related adverse events. While IL-2 and 
other gamma (c) cytokines play pivotal roles in the TME 
and hold substantial promise in cancer immunotherapy, 
the therapeutic exploitation of these cytokines requires a 
delicate balance of maximizing antitumor efficacy while 
minimizing off-target effects and toxicity.

IL-2 and IL-2R-based therapies have emerged as sig-
nificant breakthroughs in cancer immunotherapy, their 
role rooted in IL-2’s crucial functions in T cell biology 
and immune regulation [302]. Demonstrating marked 
efficacy in conditions like metastatic melanoma, renal 
cell carcinoma, and synovial sarcoma, they have further 
been enhanced by the advent of new IL-2 formulations 
such as Alb-IL2 and IL2-Fc, providing improved clinical 
outcomes [91, 93, 303]. However, despite these promis-
ing advancements, IL-2-based therapies are not devoid 
of limitations. IL-2’s inherent toxicity, notably its associa-
tion with VLS, can impose restrictions on its therapeu-
tic applications [10]. Factors such as angiopoietin 2 and 
endothelial nitric oxide synthase have been implicated 
in IL-2-induced VLS [93]. The influence of Tregs also 
critically determines the effectiveness of IL-2-based ther-
apies. While IL-2 augments T cell responses, it concur-
rently promotes Tregs expansion, which can counteract 
anti-tumor immune responses [10, 303]. This expansion 
of Tregs could therefore detrimentally affect the efficacy 
of IL-2-based cancer immunotherapies. Moreover, the 
intricate administration protocols and restricted appli-
cability of IL-2 therapy contribute to its limitations, as 
evidenced in the treatment of mRCC [303]. Another 
significant factor influencing the success of these thera-
pies is the individual tumor immune microenvironment. 
Variability in response rates among melanoma patients 
undergoing immunotherapy may be attributable to dif-
ferences in their specific tumor immune microenviron-
ments [91]. Efforts are underway to improve the safety 
and efficacy of IL-2 based therapies by altering the mole-
cule itself or by changing the way it’s administered. (Sup-
plementary Table 1 [291, 304–318] summarizes the novel 
approaches for cancer immunotherapy).

Summary
IL-2 is a cytokine crucial for the activation and prolif-
eration of immune cells, including T cells and natural 
killer cells. In the tumor microenvironment, IL-2 and 
its IL-2R have complex and sometimes opposing roles 
in tumor progression and immune response. While IL-2 
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can stimulate immune cells to attack tumors, it can also 
promote the expansion of regulatory T cells that suppress 
anti-tumor immunity. Hence, maintaining the balance 
between IL-2 and IL-2R signaling is critical for effective 
anti-tumor immunity. In addition, research has demon-
strated that various cancer types exhibit different levels 
of IL-2 and IL-2R expression, which can impact their 
response to immunotherapy. For example, melanoma and 
renal cell carcinoma have been shown to have high levels 
of IL-2R expression, making them more responsive to IL-
2-based immunotherapy.

Moreover, soluble IL-2R and IL-2 alpha have also been 
examined as potential biomarkers for cancer diagnosis, 
treatment, and prognosis. Engineered forms of IL-2 have 
been developed to improve its anti-tumor activity while 
reducing toxicity. For example, pegylated IL-2 has been 
demonstrated to possess a longer half-life and greater 
efficacy than native IL-2. Clinical trials have investigated 
the use of IL-2 alone or in combination with other agents, 
such as checkpoint inhibitors, in treating various types of 
cancer, including melanoma and renal cell carcinoma.

Although IL-2-based therapies have exhibited prom-
ise in some cancer types, the complex interplay between 
IL-2 and the tumor microenvironment necessitates fur-
ther investigation. In addition, future research may focus 
on optimizing dosing and combination strategies to 
enhance the effectiveness of IL-2-based immunotherapy 
and identifying patient populations that are most likely to 
benefit from this approach. Overall, the study of IL-2 and 
its receptor in cancer holds excellent potential for devel-
oping new and effective treatments for a wide range of 
malignancies.

Conclusion
In conclusion, the role of IL-2 and IL-2R within the 
tumor microenvironment remains a fascinating and 
vital area of exploration. Their multifaceted interplay—
mediating both immune activation and regulation—has 
profound implications on the immune response to vari-
ous cancers, suggesting that their targeted manipulation 
holds promise for improving cancer immunotherapy 
outcomes. Emerging evidence supports diverse IL-2 and 
IL-2R expression levels across different cancer types, 
potentially shaping their responses to immunotherapy. 
This heterogeneity underscores the need for a personal-
ized approach to IL-2-based immunotherapy, with future 
strategies potentially requiring tailoring based on indi-
vidual patient characteristics and tumor profiles. The 
development and optimization of engineered forms of 
IL-2, such as pegylated IL-2, mark an exciting advance-
ment in this field. These novel forms promise to enhance 
therapeutic efficacy while curbing systemic toxicity.

Furthermore, exploring combination therapies—IL-2/
IL-2R-targeted therapies coupled with traditional cancer 

treatments like chemotherapy, radiotherapy, or other 
immunotherapies like checkpoint inhibitors—could opti-
mize cancer treatment efficacy. As we continue to inves-
tigate the role of IL-2 and IL-2R in tumorigenesis, there 
is also growing interest in their potential as diagnostic, 
prognostic, and monitoring biomarkers in cancer. Their 
utility in this regard could provide invaluable insights to 
inform therapeutic selection and timing. While substan-
tial progress has been made, much remains to be under-
stood about the intricate dance between IL-2 and the 
tumor microenvironment. Future research should strive 
to elucidate this complexity and translate these insights 
into more effective, safe, and patient-specific therapies. 
As we navigate this challenging yet promising landscape, 
the full therapeutic potential of IL-2 and IL-2R-targeted 
treatments in cancer immunotherapy comes into sharper 
focus. Through this ongoing scientific exploration, we 
may ultimately improve cancer patient outcomes and 
transform the future of cancer treatment.
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