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Abstract 

The PI3K/AKT/mTOR (PAM) signaling pathway is a highly conserved signal transduction network in eukaryotic cells that pro‑
motes cell survival, cell growth, and cell cycle progression. Growth factor signalling to transcription factors in the PAM axis 
is highly regulated by multiple cross-interactions with several other signaling pathways, and dysregulation of signal trans‑
duction can predispose to cancer development. The PAM axis is the most frequently activated signaling pathway in human 
cancer and is often implicated in resistance to anticancer therapies. Dysfunction of components of this pathway such 
as hyperactivity of PI3K, loss of function of PTEN, and gain-of-function of AKT, are notorious drivers of treatment resistance 
and disease progression in cancer. In this review we highlight the major dysregulations in the PAM signaling pathway in can‑
cer, and discuss the results of PI3K, AKT and mTOR inhibitors as monotherapy and in co-administation with other antineo‑
plastic agents in clinical trials as a strategy for overcoming treatment resistance. Finally, the major mechanisms of resistance 
to PAM signaling targeted therapies, including PAM signaling in immunology and immunotherapies are also discussed. 
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The  PAM pathway in cancer
Introduction
The PAM signaling pathway is a highly conserved major 
transduction network in all higher eukaryotic cells that 
promotes cell survival, growth, and proliferation in 
response to external stimuli [1–3]. The two major func-
tional proteins in this pathway are PI3K and AKT [4–7]. 
Importantly, external growth factors signaling to tran-
scription factors in the PAM pathway is a highly regu-
lated process involving extensive cross-talk with other 
cell signaling networks [8–10]. Dysregulation of the 
PAM pathway is known to drive cancer development and 
progression [11–13]. Indeed, PAM pathway aberration 
occurs in approximately 50% of tumors [14], and is the 
most commonly activated pathway in human cancer [15–
17]. In addition, PAM pathway hyperactivation in can-
cer frequently underpins the development of treatment 
resistance [11, 14, 18]. Aberrant expression or mutation 
of many components of this pathway are known to be 
related to human oncogenesis [19, 20]. Thence, activa-
tion of membrane receptors (RTK or GPCR), induction 
of oncogenes upstream of PI3K [21], mutations or ampli-
fications of kinases such as PIK3CA, reduced expression 
or inactivation of tumor suppressor PTEN [22], and/
or mutations such as amplification and gain-of-function 
missense mutations in AKT oncogene [23], can possi-
bly lead to the onset and/or progression of cancer [11, 
24, 25]. Furthermore, overactivity of PAM pathway also 
promotes epithelial-mesenchymal transition (EMT) 
and metastasis through its remarkable impact on cell 
migration [26, 27]. Herein we highlight the biology and 
biochemistry of the PAM axis, describe its major dys-
regulations in cancer, show its main crosstalks with other 
signaling pathways, and discuss PI3K-, AKT-, mTOR-, 
and PDK1-targeted inhibitors, emphasizing on their 
mechanisms of therapeutic resistance. Thus, our manu-
script is comprehensive on the whole PAM signaling 
pathway including its major effectors AKT and mTOR 
in biology and disease. For more detailed reviews on 
PI3K inhibitors targeting cancer stroma with a focus on 
immune modulation we refer readers to Okkenhaug et al. 
2016 [28], and Vanhaesebroeck et  al. 2022 [29]. Addi-
tional information on past and future PI3K inhibitors 
only we refer the reader to Castel et al. 2021 [30]. More-
over, while our manuscript focuses on multiple PI3K-
driven cancers, for a specific perspective on the relevance 
of the PI3K pathway in estrogen receptor (ER) + breast 
cancer, and the crosstalk between ER and the PI3K path-
way in breast cancer have been extensively reviewed by 
Vasan et  al. 2019 [31]. Furthermore, since the present 
work does not discuss in details the role of PI3K path-
way on metabolism, we direct the reader for this specific 
topic to Vasan and Cantley 2022 [32]. In this review, we 

first focus on major differences of the PAM axis between 
normal cells and cancer cells, and then, describe current 
PI3K, AKT, mTORC1/mTORC2, and PDK1 inhibitors, by 
summarising active and completed trials in a wide range 
of cancers.

PAM signaling in cancer
RTK overactivation in cancer
Growth factor-mediated induction of RTKs [33] or 
GPCRs [34] usually initiates the canonical pathway that 
engenders the activation of AKT, resulting in plasma 
membrane localization and induction of one, or more 
isoforms of the class I PI3K family [35] (Fig. 1a) (Supple-
mentary information 1). Alterations in epidermal growth 
factor receptor (EGFR) [36, 37], fibroblast growth factor 
receptor (FGFR) [38, 39], platelet-derived growth factor 
receptor (PDGFR) [40, 41], vascular endothelial growth 
factor receptor (VEGFR) [42, 43], hepatocyte growth fac-
tor (HGF) [44, 45], leukocyte receptor tyrosine kinase 
(LTK) [46, 47], and insulin receptor (INSR) [48, 49] fam-
ily genes make a significant contribution to treatment 
failure mainly through the activation of PAM pathway 
(Fig. 1b) (Supplementary information 1).

PI3K mutation and amplification in cancer
Among the numerous types of PI3K, only class I can 
exert lipid phosphorylation following growth stimula-
tion [50]. PI3K (class I) is a heterodimer comprising two 
distinct subunits: the regulatory subunit p85, and the 
catalytic subunit p110 [51, 52]. Specifically, the regula-
tory subunit p85 of PI3K can bind to phosphorylated 
tyrosine residues on the activated RTKs through its Src 
homology 2 (SH2) domain. Subsequently, PI3K catalytic 
subunit p110 can form a complete active PI3K enzyme 
[53] (Fig.  1a) (Supplementary information 1). PIK3CA 
activating mutation, encoding the p110α catalytic subu-
nit of PI3K, is the most commonly mutated oncogene 
detected across tumor lineages [15, 54]. Indeed, PIK3CA 
is usually either mutated or amplified in several human 
cancers [55], including colorectal cancer (CRC) [56], 
breast [57], lung [58], gastric [59], prostate [60], and cer-
vical cancer [61, 62]. Most mutations are found close to 
spots E545K (exon 9) and H1047 (exon 20). The hotpots 
E542K and E545K, present in the helical phosphatidylin-
ositol (inositol phospholipid) kinase homology domain, 
decrease suppression of p110α by the p85 regulatory 
subunit, whereas H1047, which is adjacent to the end of 
the catalytic domain, enhances the p110α-lipid mem-
brane interaction [63, 64]. Mutations in p110β, p110γ 
and p110δ subunits are rather uncommon; however, their 
overexpression can easily promote oncogenicity in cul-
tured cells [65]. PIK3CA mutations are present in head 
and neck squamous cell cancer (HNSCC) [66], gastric 



Page 3 of 37Glaviano et al. Molecular Cancer          (2023) 22:138 	

cancer [67], gallbladder cancer [68], and melanoma [69]. 
Besides, mutations of PIK3CA E542K and PIK3CA 
E545K are known to endorse proliferation and glycolysis 
of cervical cancer [64]. Also, PIK3CA mutation leads to 
prostate cancer in mice and correlates with poor prostate 
cancer prognosis. Notably, PIK3CA mutation and PTEN 
loss coexist in prostate cancer patients and synergistically 
can cooperate in  vivo to accelerate carcinogenesis and 
cancer progression via PAM pathway hyperactivation 
[70, 71]. PIK3CA mutations are frequently associated 

with FGFR3 mutations in metastatic non-muscle invasive 
bladder cancer [72]. In line with this, mutations in PAM 
pathway are detected in 25% of osteosarcoma patients. In 
fact, PIK3CA and mTOR are critical for survival and pro-
liferation of osteosarcoma cells [73]. Mutations in PI3K 
family genes, especially PIK3CA or PIK3R1 are often pre-
sent in glioblastoma multiforme [74], testicular germ cell 
tumors [75], and Ewing’s sarcoma [76], resulting in alter-
ation pattern of PAM pathway. Mutations of PIK3CA, 
PIK3R1, and PIK3R2 are frequently detected in small-cell 

Fig. 1  Biochemical mechanism of PI3K, PTEN and AKT regulation. A Mechanism of PI3K, PTEN and AKT regulation in normal cells. Induction 
of RTK or GPCR results in the activation of Ras-regulated PI3K, which interacts with PIP2, and produces PIP3 at the plasma membrane. Inactive 
AKT in the cytoplasmic matrix is recruited to cell membrane and binds PIP3 through a PH binding domain. This drives phosphorylation of T308 
by PDK1, and phosphorylation of S473 by mTORC2, leading to complete activation of AKT (above). Signal termination is determined by loss 
of PI3K-PIP2 interaction, via inhibition by (PIP3) PTEN protein phosphatase, (AKT) PP2A protein phosphatase, and (AKT) PHLPP protein phosphatase, 
leading to AKT detaching from the cell membrane. Due to DNA damage response, p53 activates PTEN, whose function reduces PAM-induced 
cell proliferation (middle). AKT then shifts to off-mode in the cytoplasm (below). B Mechanism of PI3K, PTEN and AKT regulation in cancer cells. 
Mutations in RTK, Ras, PI3K, AKT (above), PTEN protein phosphatase, p53, (AKT) PP2A protein phosphatases and (AKT) PHLPP protein phosphatases 
may occur, resulting in AKT retention to cell membrane (middle). AKT then remains in on-mode in the cytoplasm (below), leading to dysregulation 
of PAM pathway signal transduction, and possibly cancer onset and/or progression (below). Activation (phosphorylation or non-phosphorylation) 
is shown with arrowhead lines, whereas dephosphorylation is indicated with roundhead lines. Red lightning symbol shows mutation for a particular 
gene in the PAM pathway. Red crosses emphasise signaling blockage. P: phosphoryl group
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lung cancer (SCLC), non-small-cell lung cancer (NSCLC) 
[77], hepatocellular cancer [78], and ovarian serous cys-
tadenocarcinoma [79]. Similarly, dysregulation of PAM 
pathway in CRC is mainly due to mutations in PIK3CA, 
and to a lesser extent PIK3R1 and PIK3R2. In addition, 
CRC PIK3CA mutations are generally associated with 
KRAS mutations [80, 81]. The genetic alterations of 
PAM pathway in renal cancer are also due to PIK3CA, 
PIK3R1, and PIK3R2 mutations. Moreover, PIK3R1 can 
regulate EMT, as well as stem-like phenotype, of renal 
cell carcinoma cells via the AKT/GSK3β/β-catenin sign-
aling pathway [82, 83]. Oesophageal squamous cell car-
cinoma present genetic alterations of PI3K family genes 
and PTEN, especially somatic mutations of PIK3CA, 
PIK3CG, PIK3C2A, and PIK3C2G [84]. Furthermore, 
mutations in PAM pathway genes such as PIK3CA, 
PIK3CG, PIK3C2G, PIK3C3, PIK3R1, and PIK3R2 are 
often detected in poorly differentiated thyroid cancer 
and anaplastic thyroid cancer [85]. Thus, mutations in 
the PAM pathway can affect RTKs and growth factors, as 
well as Ras and PI3K p110 subunits, resulting in abnor-
mal signaling activity (Fig. 1b).

PTEN inactivation or loss in cancer
PI3K/PIP3 signal termination is mainly attained by 
tumor suppressor PTEN, which exerts dephosphoryla-
tion on PIP3, thereby switching it back to PIP2. Thus, 
PTEN acts as an essential negative regulator of the PAM 
pathway affecting cell growth survival, whereas loss of 
PTEN results in the sustained output of these intracel-
lular signalings [86] (Fig.  1a) (Supplementary informa-
tion 1). PTEN loss-of-function mutations are present in 
a several tumors [87, 88]. PTEN loss frequently occurs 
in primary and metastatic breast cancer leading to 
hyperactivation of PAM pathway, and consequently, 
enhancing cell proliferation [89, 90]. Both PTEN down-
regulation and PAM pathway activation are related to 
anti-estrogen therapy resistance [91]. Mutations in PTEN 
are often detected in gastric cancer [67]. Besides, over-
expressed [92] and/or amplified [93] PRL-3 downregu-
lates the expression of PTEN through dephosphorylation 
[94], and as a result indirectly increases signals through 
PAM pathway [95] in human gastric cancer [93]. Muta-
tions in PTEN are observed in CRC too [80]. Notably, 
loss of TGF-β signalling results in PRL-3 upregulation 
and PAM pathway activation, which can promote EMT 
and tumor aggressiveness in primary CRC [96]. Muta-
tions in PTEN are also reported in bladder cancer since 
loss of PTEN combined with altered TP53 determines a 
negative effect, enhancing tumor progression [97]. The 
PAM pathway can also function as a pro-survival fac-
tor in leukemia stem cells, and thus, genetic aberrations 
in PTEN are likely to be detected in leukemia. In fact, 

PTEN regulates the activity of hematopoietic stem cell 
via a niche-dependent mechanism, as well as leukemo-
genesis and hematopoiesis [98]. PTEN loss-of-function 
alterations, especially deletion, are also detected in brain 
cancer [87], glioblastoma multiforme [99], anaplastic/
poorly differentiated thyroid cancer [85], SCLC, NSCLC 
[77], melanoma [69], oesophageal cancer [100], gallblad-
der cancer [68], pancreatic cancer [101], renal cell car-
cinoma [102], prostate cancer [103], testicular germ cell 
tumors [75], cervical cancer [104], ovarian cancer [105], 
and many types of sarcoma [106, 76], leading to the typi-
cal pathological effects of PAM pathway (Fig. 1b).

AKT overactivation in cancer
Phosphorylated phosphatidylinositol lipids on the inner 
face of plasma membrane can directly bind intracellular 
proteins which contain PH or FYVE zinc finger domains. 
Indeed, PIP3 binds AKT and PDK1, and as a result, they 
can accumulate near the membrane [107]. Once acti-
vated, AKT migrates from plasma membrane to cyto-
plasm and nucleus, where many substrates are located 
[108] (Fig.  1a) (Supplementary information 1). Muta-
tions in AKT genes are rather infrequent in human can-
cers [1]. However, gain-of-function missense mutations 
and amplification in genes that encode one of the three 
isoforms of oncogenic protein AKT, known to be impli-
cated in regulating cell survival, proliferation, growth, 
apoptosis, and glycogen metabolism [109], have been 
reported [23]. Notably, the most frequent mutation is 
AKT1 point mutation in the PH domain where glutamic 
acid at residue 17 is replaced with lysine (E17K) at resi-
due 17, resulting in enhanced activity of AKT1 by induc-
ing its constitutive localization to the plasma membrane 
[110]. Moreover, other activating mutations include 
E49K (AKT1) substitution occurring in the PH domain, 
and G171R (AKT3) substitution occurring in the kinase 
domain [111]. Indeed, activated p-AKT levels are signif-
icantly increased in cancer cell lines due to these point 
mutations, and levels of p-AKT correlates with sensitivity 
to AKT inhibition [112]. Furthermore, high-resolution 
sequencing studies in breast cancer have also reported 
further somatic variants in the AKT PH domain [113, 
114]. However, due to the relative infrequency of AKT 
mutations, their significance as drivers of oncogenesis has 
not been thoroughly clarified. In fact, changes in AKT 
activity normally occur through the activating mutations 
or amplifications upstream AKT, such as in PIK3CA or in 
PTEN, growth factor or cytokine receptors, and intracel-
lular oncogenes like Ras, which lead to enhanced expres-
sion and activity of one, two or all three isoforms of AKT 
[1]. Unlike AKT mutations, AKT gene amplifications are 
more frequent, and have been detected in breast [115], 
colon, gastric, ovarian, pancreatic, oesophageal and 
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thyroid cancers, with major amplifications usually involv-
ing the AKT2 isoform [116]. In addition, AKT post-
translational modification, such as lysine modifications, 
tyrosine phosphorylation, O-GlcNAcylation, acetylation, 
and sumoylation are important in retaining AKT hyper-
activation in cancers, even in conditions where normal 
PI3K and PTEN activity persists [1, 117, 118]. AKT is ele-
vated in a subset of premalignant breast lesions. Indeed, 
p-AKT is overexpressed in 33% ductal carcinoma in situ 
lesions and in 38% of invasive breast cancers, where most 
tumors (79%) express the oestrogen receptor [119]. Addi-
tionally, phosphorylation of AKT at Ser473 can promote 

breast cancer metastasis [120], and increased AKT1 
activity has been observed in 40% of breast cancers [121]. 
Moreover, AKT overactivation has been observed in sev-
eral other types of cancers [77, 122, 123, 80, 78, 82, 75] 
(Fig. 1b) (Supplementary information 1).

AKT protein targets in cancer
AKT phosphorylation of downstream substrates deter-
mines the regulation of distinct cellular functions 
[124] (Fig.  2a) (Supplementary information 1). In can-
cer cells, AKT overactivation due to mutation of AKT 
or mutations upstream the PAM pathway, can trigger 

Fig. 2  AKT signaling network targets and regulates critical cellular substrates. A AKT regulation of targeted proteins in normal cells. AKT 
phosphorylation of downstream substrates determines regulation of distinct cellular functions. There are several AKT cytoplasmic targets, 
including BAD, IKKα, FOXO, MDM2, CHK1, p21, p27, GSK-3, and TSC2, representing crucial signaling nodes that interlink AKT signaling 
with supplementary cellular regulatory circuits. In normal conditions, PAM pathway moderately promotes essential cellular functions such 
as survival, proliferation, growth and metabolism. B AKT regulation of targeted proteins in cancer cells. Mutations in RTK, Ras, PI3K, PTEN protein 
phosphatase, AKT, and/or other proto-oncogenes, may occur, resulting in AKT overexpression, leading to enhanced inhibition of BAD, FOXO, 
CHK1, p21, p27, GSK3, and TSC2, as well as increased activity of IKKα, MDM2, with consequently higher survival, increased proliferation, enhanced 
growth and boosted metabolism. Activation (phosphorylation or non-phosphorylation) is shown with arrowhead lines, inhibition (phosphorylation 
or non-phosphorylation) is indicated with blocked lines, and dephosphorylation, carried out by phosphatases, is displayed with roundhead 
lines. Red lightning symbol shows mutation for a particular gene in the PAM pathway. Red crosses emphasise signaling blockage, whereas green 
dash-dotted lines (adjacent to arrowhead lines) highlight signaling enhancement. P: phosphoryl group
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phosphorylation on substrates, determining either block-
age or enhancement of their activities [125]. Indeed, in 
cancer, AKT can exert numerous important functions: 
1) increases phosphorylation on BAD, thereby inhibit-
ing apoptosis, and thus, increasing cell survival [126]; 2) 
enhances phosphorylation on IKKα, contributing to cell 
survival and proliferation [127]; 3) increases phospho-
rylation, and thus, inhibits the transcriptional functions 
of FOXO, contributing to cell survival, proliferation, 
growth [128] and reprogramming cell metabolism [129]; 
4) increases MDM2 phosphorylation, thereby regulating 
and inhibiting p53 response, promoting cell survival and 
proliferation, leading to tumorigenesis [130]; 5) enhances 
phosphorylation on Chk1, endorsing cell survival and 
proliferation [131]; 6) increases phosphorylation, and 
thus, inhibition of p21 and p27, thereby increasing cell 
proliferation [132]; 7) enhances phosphorylation on 
GSK3 leading to increase in cell proliferation and growth, 
as well as boosting cellular anabolism [133]; and 8) 
increases phosphorylation on TSC2, and consequently, 
reduces inhibition of mTORC1, resulting in enhanced 
cell growth and cell metabolism [134] (Fig. 2b) (Supple-
mentary information 1).

AKT‑mediated GSK3 inhibition in cancer
AKT-mediated GSK3 inhibition is determined by AKT 
phosphorylation on GSK3 NH2-terminus, forming an 
intramolecular pseudo-substrate that obstructs the 
phosphate-binding pocket, and consequently, suppresses 
substrate availability to GSK3 [135] (Fig. 3a) (Supplemen-
tary information 1). GSK3 closely interacts with the PAM 
pathway and can function both as a tumor promoter and 
tumor suppressor. In fact, abnormal expression of GSK3 
can interfere with the advancement and evolution of 
tumor through dysregulation of cell cycle, apoptosis, and 
senescence, as well as resistance to chemotherapy and 
radiotherapy [133]. GSK3 is a signal integrator that often 
acts at the intersection of several biochemical pathways. 
Indeed, a GSK3-associated signaling transduction path-
way that is often involved in human tumor is the EGFR/
Ras/PI3K/PTEN/AKT/GSK3/mTORC1 axis, which 
exerts an important role in natural cell growth, and is fre-
quently overactivated with mutations mainly occurring in 
PI3K (PIK3CA), Ras, and PTEN [136]. Notably, AKT can 
directly phosphorylate, inactivate and target GSK3 for 
degradation [137]. Consequently, inactivation, or low lev-
els of active GSK-3, can lead to dysregulation of multiple 
signaling pathways. In fact, when mTOR and TSC2 are 
not inactivated by GSK3, the mTORC1 complex results 
active, leading to translation of several growth-regulat-
ing mRNAs [138]. Importantly, the WNT/β-catenin is 
the major pathway regulated by GSK3. The WNT/β-
catenin axis is also critical in cellular proliferation and in 

EMT, which is essential for epithelial tumor metastasis. 
GSK3, when present in its active form, phosphorylates 
β-catenin, resulting in the proteasome degradation of 
β-catenin; and thus, several important genes required for 
cell proliferation are not transcribed. Conversely, AKT 
phosphorylation suppresses GSK3, thereby allowing 
β-catenin to shuttle from the cytoplasm into the nucleus 
to function as transcription factor, and consequently, 
leading to cell proliferation [139] (Fig.  3b) (Supplemen-
tary information 1).

AKT‑induced FOXO regulation in cancer
Several gene targets mainly involved in response to dif-
ferent insulin and insulin-like growth factor 1 (IGF1) 
signaling are regulated by FOXO transcription fac-
tor family [140]. FOXO-targeted genes are associated 
with activation of apoptosis, cell cycle blockage, growth 
inhibition, and tissue-specific metabolic changes [141] 
(Fig. 4a) (Supplementary information 1). In cancer, over-
activation of AKT induces continuous phosphorylation 
of FOXO and binding of FOXO to 14-3-3 protein, which 
consequently results in durable FOXO nuclear export. 
FOXO3 then undergoes ubiquitination in the cytoplasm, 
and thus is degraded by the proteasome. This AKT-medi-
ated activity causes stable blockage of FOXO expression, 
thereby promoting cell survival (e.g. due to BIM inacti-
vation), cell proliferation (e.g. due to p21 inactivation), 
cell growth (e.g. due to ATG4B inactivation) [142], and 
reduction of tissue-specific metabolic changes (e.g. due 
to LPL inactivation) [143]. Thus, due to its pro-apoptotic 
activity, FOXO can also function as tumor suppressor in 
several types of cancer [144] (Fig. 4b).

AKT‑mediated regulation of mTORC1 and TSC2 in cancer
Cell growth is mainly regulated through AKT-mediated 
activation of the protein kinase mTORC1 [145]. Activa-
tion of mTORC1 occurs through nutrient- and AKT-
induced inhibitory phosphorylation of TSC2 [146], which 
acts in a molecular complex (known as the TSC com-
plex) that also incorporates TSC1 and TBC1D7 [145]. 
mTORC1 exerts a dual role: a promoting downstream 
effector of PAM signaling pathway, and an inhibiting 
regulator with remarkable negative feedback effects on 
the induction of AKT by cell surface receptors (RTKs 
or GPCRs) [147] (Fig.  5a) (Supplementary information 
1). In cancer cells, mutations [23] and/or gene ampli-
fications in AKT [116], or mutations upstream genes in 
the PAM pathway, especially PI3K genes [15] and PTEN 
[148], can potentially result in AKT-induced overacti-
vation of mTORC1, leading to increased cell survival, 
growth, proliferation, and metabolism in cancer cells. 
Moreover, altered mTORC1 activation sends critical sig-
nals that enhance tumor cells to metastasize, and invade 
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new healthy tissues [149]. Thus, mutations in PAM path-
way allow TSC complex to be released from Rheb, and 
consequently, Rheb turns into GTP loaded, leading to 
activation of mTORC1, recruited by Rag proteins [150] 
(Fig. 5b).

PAM Signaling network in cancer
Feedback mechanisms in cancer
The PAM pathway is regulated by negative and positive 
feedback to ensure that stimulation signal transductions 

are captured and delivered transiently [151] (Fig.  6a) 
(Supplementary information 1). In cancer, mutations in 
RTK [152], PI3K [153], AKT [23], mTORC2 [154], and/or 
mTORC1 genes [155] can alter the PAM negative feed-
back signal transduction. Likewise, mutations in NF-κB 
[156], PRL-3 [92] and/or PTEN [157] can dysregulate the 
PAM positive feedback loop. Thus, PAM pathway muta-
tions in either negative or positive feedback loops can 
potentially lead to the onset and/or progression of cancer 
[158, 145] (Fig. 6b).

Fig. 3  AKT-mediated GSK3 phosphorylation and regulation. A AKT-mediated GSK3 regulation in normal cells. AKT-mediated GSK3 regulation is exerted 
by AKT phosphorylation on GSK3 amino-terminus, thereby creating an intramolecular pseudo-substrate that occludes the phosphate-binding pocket, 
and inhibits substrate accessibility to GSK3. When in active (on) form, GSK3 can only recognise and phosphorylate substrates previously phosphorylated 
by a priming kinase. Conversely, when in inactive (off ) form, GSK3 results blocked due to AKT phosphorylation, and thus, its access to primed 
substrates is denied. Some GSK3 substrates, with their corresponding cellular function are shown. B AKT-mediated GSK3 regulation in cancer cells. 
Mutations in AKT can enhance phosphorylation, and thus, inactivation of GSK3. Consequently, inactivation or limited amount of active GSK3 can lead 
to dysregulation of several signal transduction, resulting in cancer onset and/or progression. Reduction or absence of phosphorylation, and thence 
decreased proteasomal degradation of molecules (e.g. β-catenin) can arise from excessive inhibition of GSK3 by AKT phosphorylation, which can lead 
to increased survival, enhanced proliferation, and boosted metabolism. Red lightning symbol shows mutation for a particular gene in the PAM pathway. 
TFs: transcription factors. Phosphorylation is shown with arrowhead lines, whereas inhibition is indicated with blocked lines. Red crosses emphasise 
signaling blockage. P: phosphoryl group
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Major PAM pathway cross‑regulation with Ras/ERK and Wnt/
GSK3/β‑catenin pathways
The PAM pathway frequently cross-regulates with the 
Ras/ERK pathway [159] (Fig.  7a) (Supplementary infor-
mation 1). In human tumors, mutations in genes encod-
ing effector molecules of PAM pathway and Ras/ERK 
pathway commonly coexist. Indeed, PI3K genes and 
Ras genes mutations, PI3K genes and BRAF mutations, 
or PTEN and BRAF mutations often occur together in 
numerous cancer types. Interestingly, concurrent muta-
tions in these two pathways can abrogate the depend-
ence on a single pathway in tumor cells due to the 

induction of molecules whose function integrates the 
effects of both these signalling axes. In fact, 4E-BP1, 
a repressor of mRNA translation, is a crucial integra-
tor of PAM pathway and Ras/ERK pathway, acting as a 
key mediator of their effects on malignant transforma-
tion [160]. Importantly, mTOR persistently restrains the 
tumor-suppressive function of 4E-BP1 via phosphoryla-
tion thereby releasing 4E‐BPs from eIF4E and enabling 
cap-dependent translation initiation in cancer [161, 162]. 
In breast tumor cells, which overexpress ErbB-2, PI3K 
inhibition causes an activation of Ras/ERK pathway, as a 
consequence of ErbB receptor induction. Treatment with 

Fig. 4  AKT-induced FOXO phosphorylation and regulation. A AKT-induced FOXO phosphorylation and regulation in normal cells. In normal condition, 
AKT exerts an ordinary moderate FOXO phosphorylation, which allows FOXO to transcribe its target genes. B AKT-induced FOXO phosphorylation 
and regulation in cancer cells. Mutations upstream AKT and/or AKT, with its consequent overexpression, can increase FOXO phosphorylation by AKT, 
resulting in binding of 14–3-3 adapter protein to FOXO, and leading to 14–3-3/FOXO complex being shuttled from nucleus to cytoplasm, thereby 
inhibiting the expression of FOXO gene targets. Therefore, excessive inhibition of FOXO by AKT phosphorylation can ultimately increase survival, 
enhance proliferation, increase growth, and suppress cell metabolism. Activation (phosphorylation or non-phosphorylation), interactions, and nucleus/
cytoplasm shuttling are shown with arrowhead lines, moderate or possible phosphorylation is indicated with dotted-arrowhead lines, and inhibition 
is displayed with blocked lines. Red lightning symbol shows mutation for a particular gene in the PAM pathway. Red crosses emphasise signaling 
blockage. P: phosphoryl group. Survival: Cell survival; Proliferation: Cell proliferation; Growth: Cell growth; Metabolism: tissue-specific metabolic changes
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ErbB-2 inhibitors or MEK inhibitors enhances the activ-
ity of PI3K inhibitors, leading to reduced proliferation 
and improved anticancer efficacy, in comparison to a sin-
gle agent [163]. Further studies have described the cross-
regulation between PAM pathway and Ras/ERK pathway 
in cancer (Fig.  7b) (Supplementary information 1). The 
PAM pathway also often cross-regulates with the Wnt/
GSK3/β-catenin pathway [164] (Fig. 7a) (Supplementary 
information 1). In cancer, AKT is usually overexpressed, 

and consequently, GSK3 is often further inactivated 
[133]. Besides, AKT can directly phosphorylate (Ser552) 
and activate β-catenin, triggering its nuclear transloca-
tion, enhancing its transcriptional activity [139], resulting 
in uncontrolled, cell proliferation and playing a critical 
role in cancer invasion and development [165]. Likewise, 
AKT expression can also be regulated by Wnt/β-catenin 
signaling. In fact, β-catenin is able to increase AKT acti-
vation in colorectal tumors [166]. Moreover, GSK3 can 

Fig. 5  Regulation of mTORC1 through the TSC complex. A Regulation of mTORC1 through the TSC complex in normal cells. The signal integration 
model of mTORC1 is regulated by growth factors and amino acids. Rag heterodimer (RagA and RagC) interacts with Ragulator and V-ATPase 
on the lysosome membrane. Amino acids then allow connection of mTORC1 to Rag heterodimer/Ragulator/V-ATPase complex. The TSC complex 
maintains Rheb in the GDP-bound state. Growth factor-induced AKT phosphorylates TSC2, leading to dissociation from the lysosomal membrane, 
promoting Rheb to become GTP loaded, and thus, activating mTORC1. B Regulation of mTORC1 through the TSC complex in cancer cells. Mutations 
in AKT or upstream genes in the PAM pathway, can potentially lead to overactivation of mTORC1, due to TSC complex being released from Rheb. 
Consequently, Rheb becomes GTP loaded, resulting in activation of mTORC1, recruited by Rag proteins. This dysregulation may promote the onset 
and/or progress of cancer, resulting in enhanced cell survival, proliferation, growth, and metabolism in cancer cells. Activation of mTORC1 
potentially sends critical signals that engender tumor cells to metastasize and invade new tissues. mTORC1: mechanistic target of rapamycin 
complex 1; DEPTOR: DEP domain-containing mTOR-interacting protein; MLST8: mammalian lethal with SEC13 protein 8; PRAS40: proline-rich AKT1 
substrate 1; RAPTOR: regulatory-associated protein of mTOR; RHEB: Ras homolog enriched in brain; TBC1D7: TBC1 Domain Family Member 7; TSC2: 
tuberous sclerosis complex 2. Activation (phosphorylation or non-phosphorylation) is shown with arrowhead lines or dotted-arrowhead lines. Red 
lightning symbol shows mutation for a particular gene in the PAM pathway. Red crosses emphasise signaling blockage. P: phosphoryl group
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phosphorylate TSC complex [167]. Interestingly, TSC 
complex, in turn has been reported to regulate β-catenin 
signaling activity through GSK3, and this crosstalk pro-
motes degradation of β-catenin. In fact, mutations of the 

TSC complex in tuberous sclerosis-patients are often 
associated with incidence of cancers such as subepend-
ymal giant cell astrocytoma (SEGA). Higher levels of 
β-catenin have been detected in tumor tissues of SEGA 

Fig. 6  The PAM signaling pathway and its downstream functions. A PAM pathway downstream functions in normal cells. PI3K activation occurs 
by growth factor-induced receptors or through interaction with scaffolding adaptors, including IRS1/2 proteins. PI3K is then recruited to its substrate 
PIP2, promoting generation of PIP3. Inactive AKT in the cytoplasmic matrix binds to PIP3 on the cell membrane, allowing phosphorylation by PDK1 
and mTORC2, leading to complete activation of AKT, which subsequently phosphorylates several downstream targets, including multiple sites 
on TSC2, which forms a functional complex with TSC1 (TSC Complex). AKT-induced phosphorylation on TSC2 hampers the ability of TSC Complex 
to act as a GAP toward the small GTPase Rheb, endorsing Rheb-GTP accumulation. As a result, Rheb-GTP remarkably activates mTORC1, which 
phosphorylates and activates S6K. In the negative PAM feedback loop, mTORC1 and S6K1 directly phosphorylate IRS1/2, impeding PI3K activation. 
In addition, mTORC1 blocks GRB10-mediated growth factor-induced receptor signaling to PI3K. Conversely, in the positive PAM feedback loop, AKT 
phosphorylates IKKα, which indirectly activates transcription factor NF-κB, allowing PTEN phosphatase inhibition. Besides, PRL-3 phosphatase can 
also inhibit PTEN phosphatase. PAM downstream functions include cell survival, metabolism, anabolism, catabolism, and cell cycle progression. 
B PAM pathway downstream functions in cancer cells. Mutations in RTK, PI3K, AKT, PTEN, and possibly other genes, may occur. Overactivation of AKT 
strongly enhances phosphorylation on TSC2, which further hampers the ability of the TSC Complex to act as a GAP toward the small GTPase Rheb, 
thereby remarkably endorsing Rheb-GTP accumulation. Thus, dysregulation of PAM pathway signal transduction, due to mutations and/or inevitable 
alterations in the negative feedback loop or positive feedback loop, can possibly lead to cancer onset and/or progression. This results in enhanced 
PAM downstream functions, such as increased cell survival, boosted metabolism, enhanced anabolism, reduced catabolism, and increased cell 
cycle progression. Activation (phosphorylation or non-phosphorylation) is shown with arrowhead lines or dotted-arrowhead lines, inhibition 
(phosphorylation or non-phosphorylation) is indicated with blocked lines, and dephosphorylation is displayed with roundhead lines. Red lightning 
symbol shows mutation for a particular gene in the PAM pathway. Red crosses emphasise signaling blockage, whereas green dash-dotted lines 
(adjacent to arrowhead lines or blocked lines) highlight signaling enhancement. Red upper-arrows show increases, whereas blue lower-arrows 
indicate reduction. Red upper-arrows show increases, whereas blue lower-arrows indicate reduction. P: phosphoryl group
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patients, and this augmentation was associated with 
translocation of β-catenin from cytoplasm to nucleus, 
with upregulation of target proto-oncogene c-Myc [168]. 
Thus, when TSC2 complex is not disabled by GSK3, the 
mTORC1 complex is effective and can lead to translation 
and proliferation of several growth-regulating mRNAs 
[138]. More studies have focussed on the cross-regula-
tion between PAM pathway and Wnt/GSK3/β-catenin 
pathway in cancer [169] (Fig. 7b) (Supplementary infor-
mation 1).

Major cross‑regulation between PAM pathway and other 
pathways
Apart from MEK pathway and Wnt pathway, there are 
other signaling pathways interacting directly with PAM 
pathway, including NF-κB pathway [170], G-protein 
pathway [171], integrin pathway [172], intrinsic apop-
totic pathway [173], and p53 pathway [174, 175] (Fig. 8). 
In cancer cells, mutations in RTK and PI3K genes, as 
well as Ras genes, PTEN, AKT, and/or other proto-
oncogenes can occur, leading to PAM signaling pathway 

Fig. 7  Network of signaling cross-regulation between PAM pathway and RAS/ERK pathway or Wnt/GSK3/β-catenin pathway. A Simplified cross-regulation 
between PAM pathway and RAS/ERK pathway or Wnt/GSK3/β-catenin pathway in normal cells. Numerous cross-talk points occur between PAM pathway 
and RAS/ERK pathway or Wnt/GSK3/β-catenin pathway, leading to ordinary cell survival and proliferation, cell cycle progression, cell metabolism, apoptosis, 
and other cellular functions. B Simplified cross-regulation between PAM pathway and RAS/ERK pathway or Wnt/GSK3/β-catenin pathway in cancer cells. 
Mutations in RTK, RAS, PI3K, PTEN, AKT, APC, and possibly other genes, may occur, resulting in cross-talk dysregulations between PAM pathway and RAS/
ERK pathway or Wnt/GSK3/β-catenin pathway. This can lead to enhanced PAM downstream signaling, such as increased cell survival and proliferation, 
enhanced cell cycle progression, boosted cell metabolism, reduced apoptosis, and dysregulation of other important cellular functions. Activation 
(phosphorylation or non-phosphorylation) is shown with arrowhead lines, inhibition (phosphorylation or non-phosphorylation) is indicated with blocked 
lines, interaction is displayed with continuous lines, disassociation is shown with dotted lines, and dephosphorylation, carried out by phosphatases, 
is indicated with roundhead lines. Red lightning symbol shows mutation for a particular gene in the PAM pathway. Red crosses emphasise signaling 
blockage, whereas green dash-dotted lines (adjacent to arrowhead lines or blocked lines) highlight signaling enhancement. Red upper-arrows show 
increases. U: ubiquitination
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overexpression. AKT overactivation can trigger phos-
phorylation of substrates, determining either blockage 
or enhancement of their activities. In addition, signaling 
cross-talks between PAM pathway and other pathways 
exert a significant role in the dysregulation of cellular 
functions in tumor. Importantly, dysregulation of PAM 
signaling pathway can often result in stronger AKT-
induced inhibition of pro-apoptotic proteins, including 
FOXO [128], BAD [126], BAX [176], BAK [173], and/
or enhanced activity of anti-apoptotic proteins such as 

XIAP [177]. Besides, this condition can lead to AKT-
induced higher activity of mTORC1 [134], IKKα [127], 
and MDM2 [130], as well as AKT-induced phosphoryla-
tion and consequent inhibition of GSKβ [133]. Moreover, 
PI3K-mediated increased activity of PKC [178], and Rac 
[179], as well as Ras-induced overexpression of CDC42 
[180], may occur. Altogether, these altered transductions 
signaling can thereafter result in uncontrolled survival, 
proliferation, growth and boosted metabolism in cancer 
cells (Fig. 9).

Fig. 8  Simplified overview of PAM signaling pathway location among other major signal transduction pathways in the network circuit of a normal 
cell. Each component of a signaling pathway is termed according to the role it plays with respect to the initial stimulus, such as ligands (e.g. IGF1), 
receptors (e.g. RTK), and effectors (e.g. PI3K). In normal cells, PAM pathway moderately promotes essential cellular functions such as survival, 
proliferation, growth and metabolism. Signaling cross-talks between PAM pathway and other pathways play a major role in the ultimate function 
of the cell. PI3K pathway, NF-κB pathway, G-Protein pathway, MEK pathway, Integrin pathway, Wnt pathway, Gli pathway, SMAD pathway, extrinsic 
apoptotic pathway, intrinsic apoptotic pathway, STAT pathway, Estrogen pathway, p53 pathway, and Rb pathway are shown. Nuclear membrane 
is delimited by a long-dashed circular dotted line. Arrowhead lines: activation (phosphorylation or non-phosphorylation). Blocked lines: inhibition 
(phosphorylation or non-phosphorylation). Continuous lines: interaction. Dotted arrowhead lines: cross-talk activation (phosphorylation 
or non-phosphorylation) between pathways. Dotted blocked lines: cross-talk inhibition (phosphorylation or non-phosphorylation) 
between pathways. PI3K: PI3K/Ras complex. MEKs: MEK1/2. ERKs: ERK1/2. TFs1: Transcription factors Jun, ATF2, RNPK, p53, NFAT4, Shc. TFs2: 
Transcription factors CHOP, ATF2, MNK, MSK, MEF2, Elk-1. TFs3: Transcription factors Elk-1, Ets-2, RSK, MNK, MSK, cPLA2, Fos, Myc. FAK: FAK/Src 
complex. Fyn: Fyn/Shc complex. Dsh: Dishevelled. Cyclin:CDKs1: Cyclin A:CDK1, Cyclin A:CDK2, Cyclin B:CDK1, Cyclin E:CDK2. Cyclin:CDKs2: Cyclin 
D:CDK4, Cyclin D:CDK6. CKIs: Cyclin-dependent kinase inhibitors (p16, p18, p19)
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Epigenetic regulation of PAM pathway in cancer
Accumulating evidence suggests that epigenetic altera-
tions are as crucial as genetic mutations in dysregulat-
ing PAM signaling pathway in different types of cancer 
[181–184]. In particular, DNA methylation [185], histone 
post-translational modifications [186], and non-coding 

RNAs modulation [187, 188], are three main epigenetic 
mechanisms that affect PAM pathway and have been 
associated with cancer. Accordingly, loss of PTEN tumor 
suppressor gene expression due to aberrant promoter 
hypermethylation has been implicated in the develop-
ment of gastric [189], colorectal [190], and endometrial 

Fig. 9  Simplified overview of PAM signaling pathway location among other major signal transduction pathways in the network circuit of a cancer 
cell. Each component of a signaling pathway is termed according to the role it plays with respect to the initial stimulus, such as ligands (e.g. 
IGF1), receptors (e.g. RTK), and effectors (e.g. PI3K). In cancer cells, mutations in RTK, Ras, PI3K, PTEN protein phosphatase, AKT, and/or other 
proto-oncogenes, may occur, resulting in PAM signaling pathway overexpression. This condition can lead to stronger AKT-induced inhibition 
of pro-apoptotic proteins such as FOXO, BAD, BAX, BAK, NOXA, PUMA, as well as enhanced activity of anti-apoptotic proteins such as XIAP, 
and amplified activity of mTORC1, IKKα, PKC, CDC42, Rac, GSKβ, and MDM2, with consequently uncontrolled survival, proliferation, growth 
and boosted metabolism. Signaling cross-talk between PAM pathway and other pathways play a major role in the dysregulation of functions 
in a cancer cell. PI3K pathway, NF-κB pathway, G-Protein pathway, MEK pathway, Integrin pathway, Wnt pathway, Gli pathway, SMAD pathway, 
extrinsic apoptotic pathway, intrinsic apoptotic pathway, STAT pathway, Estrogen pathway, p53 pathway, and Rb pathway are shown. Nuclear 
membrane is delimited by a long-dashed circular dotted line. Arrowhead lines: activation (phosphorylation or non-phosphorylation). Blocked lines: 
inhibition (phosphorylation or non-phosphorylation). Continuous lines: interaction. Dotted arrowhead lines: cross-talk activation (phosphorylation 
or non-phosphorylation) between pathways. Dotted blocked lines: cross-talk inhibition (phosphorylation or non-phosphorylation) 
between pathways. Red lightning symbol shows mutation for a particular gene in the PAM pathway. Red crosses: signaling blockage. Green 
dash-dotted lines (adjacent to arrowhead lines or blocked lines or dotted arrowhead lines): signaling enhancement. PI3K: PI3K/Ras complex. MEKs: 
MEK1/2. ERKs: ERK1/2. TFs1: Transcription factors Jun, ATF2, RNPK, p53, NFAT4, Shc. TFs2: Transcription factors CHOP, ATF2, MNK, MSK, MEF2, Elk-1. 
TFs3: Transcription factors Elk-1, Ets-2, RSK, MNK, MSK, cPLA2, Fos, Myc. FAK: FAK/Src complex. Fyn: Fyn/Shc complex. Dsh: Dishevelled. Cyclin:CDKs1: 
Cyclin A:CDK1, Cyclin A:CDK2, Cyclin B:CDK1, Cyclin E:CDK2. Cyclin:CDKs2: Cyclin D:CDK4, Cyclin D:CDK6. CKIs: Cyclin-dependent kinase inhibitors 
(p16, p18, p19)
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cancers [191]. Similarly, promoter hypermethylation cou-
pled with transcriptional silencing has been documented 
in loci coding for negative regulators of AKT, including 
tumor suppressor genes SCGB3A1 in NSCLC [192] and 
PPP2R2B in breast cancer [193], therefore contributing 
to cancer onset/progression. In turn, AKT hyperactiva-
tion in cancer cells brings further dysregulation in vari-
ous epigenetic players participating in the PAM pathway, 
such as DNA maintenance methyltransferase DNMT1 
[194], histone acetyltransferase CBP/p300 complex [195], 
histone H3K27 methyltransferase EZH2 [196], and his-
tone H3K4 methyltransferase and demethylase KMT2D 
and KDM5A, respectively [31]. It could be argued that 
the imbalance in histone acetylation and methylation 
at chromatin loci regulated by the PAM pathway fre-
quently occurs during cancer progression. Indeed, expo-
sure of thyroid cancer cell lines to AKT inhibitor B2311 
drastically reduces H3K9ac and H3K4me3 levels, both 
transcription activation marks; and increases levels of 
H3K27me3, a well-known transcription repression mark, 
at the promoter of tumor suppressor tshr gene, leading 
to downregulation of tshr [197]. The epigenetic signa-
ture of different cancers is also linked to the impact of 
multiple long and short noncoding RNAs in the PAM 
pathway. In fact, distinct miRNAs trigger PAM pathway 
by targeting PTEN mRNA, including miR-21 in gastric 
cancer [198], miR-20b and miR-301a-3p in esophageal 
carcinoma [199], and miR-421 in NSCLC [200]. Stepwise 
investigation reveales cooperative roles of distinct com-
ponents of the epigenetic machinery to induce cancer cell 
proliferation through PAM pathway. For instance, altered 
chromatin topology and DNA methylation pattern at the 
imprinted IGF2-AS locus provoke significant decreased 
transcription of the long noncoding IGF-AS RNA in 
prostate [201] and CRC [202], as well as in cervical 
intraepithelial neoplasia [203]. Moreover, patients with 
low IGF2-AS abundance likely develop larger tumor size. 
In contrast, overtranscription of IGF2-AS inhibits breast 
cancer cell proliferation, thereby retarding tumor malig-
nancy and progression in vivo. Mechanistically, IGF2-AS 
inhibits the expression of its sense-cognate igf2 gene in 
an epigenetic DNMT1-dependent manner, leading to the 
inactivation of downstream PAM pathway [204]. Thus, 
identification and understanding of epigenetic changes, 

such as DNA methylation, histone post-translational 
modifications, and non-coding RNA-mediated transcrip-
tional silencing, occurring along the PAM pathway may 
hold a great promise for improving personalized medi-
cine to a larger number of cancer patients.

Clinical developments in PAM inhibitors
PI3K Inhibitors
Along the PAM pathway PI3K is a major drug target for 
cancer treatment since its hyperactivity is remarkably 
correlated with human tumor progression, enhanced 
tumor microvessel formation, and increased number of 
invasive cancer cells [205]. A strenuous effort has been 
committed to improve inhibitors targeting PI3K sign-
aling. Indeed, several pharmaceutical companies have 
developed drug inhibitors of PI3K during the last dec-
ades  [206]. Notwithstanding some inhibitors have been 
approved by the Food and Drug Administration (FDA), 
there is still concern regarding the development of resist-
ance, sensitivity markers, and toxicology [207]. Impor-
tantly, PI3K inhibitors are classified into three main 
groups: pan-PI3K inhibitors (pan-PI3Ki), isoform-spe-
cific PI3K inhibitors (IS PI3Ki), and dual PI3K/mTOR 
inhibitors (dual PI3K/mTORi) [208] (Fig. 10).

Pan‑PI3K Inhibitors
Pan-PI3Ki suppress the cataytic activity of all four 
PI3K class I isoforms: PI3Kα, PI3Kβ, PI3Kγ, and PI3Kδ, 
encoded by PIK3CA, PIK3CB, PIK3CG, and PIK3CD, 
respectively. Thus, these drugs are normally effective 
in tumors producing high level of PIP3, regardless of 
the type of PI3K gene or PTEN alterations implicated. 
Potentially, pan-PI3Ki provide a broader range of activ-
ity by comprising numerous molecular targets, although 
exists increasing risk of on-target and off-target toxicity 
[209]. Several pan-PI3Ki have been in clinical develop-
ment, but only copanlisib, a potent and selective agent 
with targeted activity predominantly against PI3K p110α 
and p110δ isoforms, has reached significant effective-
ness in clinical trials [210]. Indeed, copanlisib has exhib-
ited remarkable clinical benefits in patients with relapsed 
follicular lymphoma (FL) who have received ≥ 2 prior 
systemic therapies, and thus has been FDA-approved 
for use in this cohort (Supplementary information 2) 

(See figure on next page.)
Fig. 10  PI3K-, AKT-, mTOR- and PDK1-targeted inhibitors along the PAM pathway in cancer cells. PI3K inhibitors are divided into Pan-PI3K inhibitors 
(Pan-PI3Ki), Dual PI3K/mTOR inhibitors (Dual PI3K/mTORi), and Isoform-Specific PI3K inhibitors (IS PI3Ki), named Isoform-Specific PI3Kα inhibitors (IS 
PI3Kαi), Isoform-Specific PI3Kβ inhibitors (IS PI3Kβi), Isoform-Specific PI3Kγ inhibitors (IS PI3Kγi), and Isoform-Specific PI3Kδ inhibitors (IS PI3Kδi). Overall 
AKT inhibitors are referred as AKTi. mTOR inhibitors are divided into allosteric (non-competitive) mTOR inhibitors (A-NC mTORi), ATP-competitive mTOR 
inhibitors (ATP-C mTORi), and Bi-Steric mTOR inhibitors (Bi-Steric mTORi). PDK1 inhibitors are referred as PDK1i. Substrate activation (phosphorylation) 
along the PAM pathway is shown with arrowhead lines. Substrate inhibition along the PAM pathway, exerted by Pan-PI3Ki, Dual PI3K/mTORi, IS PI3Kαi, 
IS PI3Kβi, IS PI3Kγi, IS PI3Kδi, AKTi, A-NC mTORi, ATP-C mTORi, Bi-Steric mTORi, and PDK1i, is shown with blocked lines. Ⓐ: FDA-approved inhibitor
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Fig. 10  (See legend on previous page.)
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(Supplementary figure  1). The safety profile of copan-
lisib in FL patients is favourable or acceptable. Treat-
ment-related adverse events of any grade include 
hyperglycaemia, leukopenia, decreased energy, diarrhea, 
hypertension, neutropenia, nausea, thrombocytopenia, 
and infections. Serious adverse reactions comprise pneu-
monia (8%), pneumonitis (5%), and hyperglycaemia (5%) 
[211]. Clinical anticancer activity of copanlisib has been 
shown as monotherapy in hematological malignancies 
[212–215] and in advanced solid tumors [216, 217], as 
well as in combination with either ibrutinib [218], gem-
citabine [219], bendamustine [220], rituximab [221], 
or rituximab + cyclophosphamide + doxorubicin + vin-
cristine + prednisone [220], in hematological malignan-
cies, and in combination with either refametinib [222], 
gemcitabine [223], or gemcitabine + cisplatin [224], in 
advanced solid tumors. Besides, antineoplastic activity 
has been observed with other pan-PI3Ki including bupar-
lisib as monotherapy/in combination in hematological 
malignancies and advanced solid tumors, and pictilisib, 
pilaralisib and sonolisib as monotherapy/in combination 
with other drugs in advanced solid tumors (Supplemen-
tary information 2) (Supplementary table 1).

Isoform‑Specific PI3K Inhibitors
IS PI3Ki have been established to target cancer types 
dependent on either PI3Kα, PI3Kβ, PI3Kγ, or PI3Kδ iso-
forms. Conventionally, these drugs show a wider thera-
peutic index, and lesser off-target-based toxicologic 
effects due to the reduced expression of the diverse 
PI3K isoforms in non-cancerous cells. Notably, PI3Kα 
and PI3Kβ isoforms are ubiquitously expressed, whereas 
PI3Kγ and PI3Kδ isoforms are predominantly restrained 
to leukocytes [225]. Among all IS PI3Ki, only three have 
been approved by the FDA: alpelisib, duvelisib, and ide-
lalisib. Alpelisib, a potent and specific drug with targeted 
efficacy against PI3Kα isoform, in combination with 
fulvestrant, has displayed significant clinical benefits 
in hormone receptor (HR) + /HER2- PIK3CA-mutated 
advanced or metastatic breast cancer patients, and as 
a result has been FDA-approved for use in this cohort 
(Supplementary information 2) (Supplementary figure 1). 
The safety profile of this combination in breast cancer 
patients is favourable or manageable. Grade 1–2 adverse 
events include hyperglycemia, diarrhea, rash, nausea, 
fatigue, diarrhea, anemia, stomatitis, reduced appeti-
tie, vomiting, anorexia, and alopecia [226, 227]. Clinical 
antitumor activity of alpelisib has been shown as mono-
therapy in breast cancer [228] and other advanced solid 
tumors [229, 230], as well as in combination with either 
trastuzumab-emtansine [231], fulvestrant [232–235], 
letrozole [236–239], nab-paclitaxel [240], olaparib [241], 
or trastuzumab + LJM716 [242], in breast cancer, and in 

combination with either imatinib [243], BGJ398 [244], 
binimetinib [245], olaparib [246], cetuximab + intensity 
modulated radiation therapy [247], everolimus + exemes-
tane [248], or cetuximab + encorafenib [249, 250], in 
advanced solid tumors. Duvelisib, a potent and selective 
agent with targeted efficacy against PI3Kγ and PI3Kδ 
isoforms, has exhibited remarkable clinical benefits in 
relapsed or refractory chronic lymphocytic leukemia 
(CLL) or small lymphocytic lymphoma (SLL) patients 
after ≥ 2 prior therapies, and in relapsed or refractory 
FL patients after ≥ 2 prior systemic therapies, and thus 
has been FDA-approved for use in these cohorts (Sup-
plementary information 2) (Supplementary figure 1). The 
safety profile of duvelisib in CLL, SLL, and FL patients 
is favourable or tolerable. The most common adverse 
events include diarrhea, neutropenia, pyrexia, anaemia, 
nausea, and cough. In CLL/SLL patients only, grade ≥ 3 
immune-related toxicities consist of colitis (12%), pneu-
monitis (3%), increased alanine aminotransferase (ALT) 
(3%), and enhanced aspartate transferase (AST) (3%); in 
addition, the most frequently reported serious adverse 
event is pneumonia (15%) [251]. Clinical anticancer 
activity of duvelisib has been shown as monotherapy 
[252–258], as well as in combination with either rituxi-
mab + bendamustine [259], or fludarabine + cyclophos-
phamide + rituximab [260], in several hematological 
malignancies. Idelalisib, a specific drug with targeted 
efficacy against PI3Kδ isoform, has displayed significant 
clinical benefits as monotherapy in SLL and FL patients 
who have received ≥ 2 prior systemic therapies, and in 
combination with rituximab in CLL patients for whom 
rituximab singly would be considered appropriate ther-
apy due to co-morbidities. As a result, idelalisib has been 
FDA-approved for use in these cohorts [261, 262] (Sup-
plementary information 2) (Supplementary figure 1). The 
safety profile of idelalisib in SLL, FL and CLL patients 
is favourable or acceptable. The most frequent ≥ grade 
3 adverse events after idelalisib monotherapy in SLL 
and FL patients include decreased neutrophils (25%), 
increased ALT (18%), pneumonia (16%), diarrhea (14%), 
and enchanced AST (12%) [261]; whereas the incidence 
of ≥ grade 3 adverse events after combination of idela-
lisib and rituximab in CLL patients comprise neutro-
penia (34%), thrombocytopenia (10%), anemia (5%), 
elevation in transaminases (5%), and diarrhea (4%) [262]. 
Clinical antitumor activity of idelalisib has been shown 
as monotherapy [263–269], in different hematological 
malignancies, and in combination with either rituximab 
[270–275], bendamustine [270], tirabrutinib [276], ofa-
tumumab [277], or rituximab + bendamustine [270, 278], 
in chronic lymphocytic leukemia, as well as in combina-
tion with obinutuzumab in Waldenström’s macroglobu-
linemia [279]. Notably, dual inhibitor of PI3Kδ/casein 
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kinase-1-ε umbralisib received its first FDA approval in 
2021 for the treatment of relapsed or refractory marginal 
zone lymphoma (MZL) patients who had received ≥ 1 
prior anti-CD20-based regimen, and relapsed or refrac-
tory FL patients who had received ≥ 3 prior lines of sys-
temic therapy [280]. Nonetheless, due to safety concerns 
the FDA withdrew its approval in 2022. Several clinical 
studies have shown anticancer activity of umbralisib, 
both as monotherapy [281] and in combination [282], in 
different hematological malignancies. Besides, antineo-
plastic activity has been observed with other IS PI3Ki 
such as PI3Kαi taselisib and serabelisib as monother-
apy/in combination with other drugs in advanced solid 
tumors, PI3Kβi GSK2636771 and AZD8186 as mono-
therapy/in combination with other agents in advanced 
solid tumors, PI3Kβ/δi acalisib as monotherapy in 
hematological malignancies, PI3Kγi eganelisib in com-
bination in advanced solid tumors, PI3Kγ/δi tenalisib as 
monotherapy in hematological malignancies, PI3Kδi lin-
perlisib as monotherapy in hematological malignancies, 
and PI3Kδi parsaclisib as monotherapy in hematologi-
cal malignancies and in combination in advanced solid 
tumors (Supplementary information 2) (Supplementary 
table 1).

Dual PI3K/mTOR Inhibitors
Dual PI3K/mTORi are mostly effective against all PI3K 
isoforms, as well as mTORC1/mTORC2, leading to sup-
pression of the three crucial intersections of the PAM 
signaling pathway. There are several ongoing clinical 
trials using dual PI3K/mTORi, including apitolisib, dac-
tolisib and paxalisib as monotherapy in advanced solid 
tumors, gedatolisib and samotolisib as monotherapy/
in combination with other drugs in advanced solid 
tumors, and voxtalisib monotherapy/in combination in 
hematological malignancies and advanced solid tumors. 
However, none of them has reached FDA approval (Sup-
plementary information 2) (Supplementary table 1).

AKT Inhibitors
Numerous drugs can specifically inhibit AKT proteins, 
thereby impeding overactivation of downstream pro-
teins in PAM signalling pathway. Indeed, there are sev-
eral ongoing clinical trials using AKT inhibitors, such as 
capivasertib, ipatasertib and M2698 as monotherapy/in 
combination with other drugs in advanced solid tumors, 
afuresertib and perifosine as monotherapy/in combina-
tion with other agents in advanced solid tumors and in 
combination only in hematological malignancies, and 
MK-2206 as monotherapy/in combination in advanced 
solid tumors and hematological malignancies, and TAS-
117 as monotherapy in advanced solid tumors. How-
ever, none of these agents has been approved by the FDA 

(Fig.  10). Notably, capivasertib, a potent and selective 
inhibitor of all three AKT isoforms [283], is the most 
prominent agent against AKT in advanced solid tumors, 
particularly in breast cancer [284]. Indeed, in the recent 
phase 3 CAPItello-291 study, combination of capivasertib 
and fulvestrant doubled PFS compared to fulvestrant 
singly in HR + , HER2- breast cancer patients who have 
developed resistance to aromatase inhibitors and CDK4/
CDK6 inhibitors [285, 286]. Thus, capivasertib represents 
a new valuable treatment option for these patients and is 
expected to receive FDA approval in due time [227] (Sup-
plementary information 2) (Supplementary table 2).

mTOR Inhibitors
mTOR inhibitors were the first PAM-targeting drugs 
to advance to the clinic [287]. Induction of mTORC1 
enhances the formation of proteins, lipids, nucleotides, 
and decreases autophagy, resulting in cell survival, pro-
liferation, and growth; whereas activation of mTORC2 
regulates protein kinases, including AKT, leading to cell 
survival, and proliferation [288, 289]. Therefore, both 
mTORC1 and mTORC2 functions provide an impor-
tant rationale for targeting mTOR complexes in tumor, 
although the effectiveness of some mTORC inhibitors 
may be compromised by a compensatory feedback loop 
leading to AKT activation [290]. There are three types 
of mTOR inhibitors: first-generation allosteric (non-
competitive) mTOR inhibitors (allosteric mTORi), which 
inhibit mTORC1 only; second-generation ATP-competi-
tive mTOR inhibitors (ATP-competitive mTORi), which 
suppress both mTORC1 and mTORC2, and third-gener-
ation bi-steric mTOR inhibitors (bi-steric mTORi), which 
inhibit mTORC1 only (Fig. 10).

Allosteric mTOR Inhibitors
Allosteric (non-competitive) mTORi act against 
mTORC1. Since allosteric inhibitors can only exert their 
function towards mTORC1 they cannot avoid the feed-
back loop-based induction of AKT determined by the 
suppression of mTORC1 [291]. Besides, allosteric mTORi 
can modestly reduce p4E-BP1 levels through the inhibi-
tion of (4E-BP1) phosphorylation, and consequently, can-
not effectively restrain eIF4E-mediated cap-dependent 
translation initiation in cancer [161]. Therefore, these 
agents exert a weaker PAM signalling inhibition, com-
pared to ATP-competitive mTORi, resulting in decreased 
antitumor activity. The first-generation allosteric mTORi 
includes rapamycin and its analogues, commonly known 
as rapalogs, which only exert a specifical inhibition 
towards mTORC1 [291]. Everolimus, a selective agent 
with targeted efficacy against mTORC1, has exhibited 
moderate clinical benefits in several types of cancers. 
Accordingly, everolimus has been FDA-approved as 
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monotherapy in neuroendocrine tumor (NET) patients, 
TSC-associated SEGA patients, renal TSC-associated 
angiomyolipoma adult patients, and advanced-stage 
renal cell carcinoma (RCC) patients, as well as in com-
bination with lenvatinib in advanced-stage RCC patients 
who have received a prior antiangiogenic therapy, and in 
combination with exemestane in postmenopausal HR + /
HER2 breast cancer patients with recurrence or progres-
sion following prior therapy with letrozole or anastrozole 
(Supplementary information 2) (Supplementary figure 1). 
The safety profile of everolimus in NET, SEGA, angiomy-
olipoma, RCC, and breast cancer patients is acceptable. 
Grade 3–4 drug-related adverse events after everolimus 
monotherapy in NET patients include stomatitis (9%), 
diarrhoea (7%), infections (7%), anaemia (4%), fatigue 
(3%), and hyperglycaemia (3%). The most common grade 
3–4 treatment-emergent adverse event after combina-
tion of everolimus and lenvatinib in RCC patients are 
constipation (37%) and diarrhea (20%) [4, 292]. Clini-
cal anticancer activity of everolimus has been shown as 
monotherapy in advanced solid tumors [293–298], and in 
combination with either exemestane [299–301], letrozole 
[302], exemestane + ribociclib [303], exemestane + xen-
tuzumab [304], letrozole + trastuzumab [305], or pacli-
taxel + trastuzumab [306], in breast cancer, as well as in 
combination with either ribociclib [307], lenvatinib [292], 
letrozole [308], paclitaxel [309], alpelisib + exemestane 
[248], or letrozole + metformin [310], in advanced solid 
tumors. Temsirolimus, an ester of sirolimus (rapamy-
cin), is an intravenous-administered drug that establishes 
a complex with FKBP12, which is then integrated into 
mTORC1, but not mTORC2, thereby inhibiting mTORC1 
[311], and consequently suppressing the generation of 
proteins implicated in cell cycle [312] and angiogenesis 
[313]. Temsirolimus has displayed significant clinical 
benefits as monotherapy in RCC patients, and thus has 
been FDA-approved for use in this cohort (Supplemen-
tary information 2) (Supplementary figure 1). The safety 
profile of temsirolimus in RCC patients is acceptable. 
The most common temsirolimus-induced grade 3–4 
adverse reactions include hypertriglyceridemia (44%), 
anemia (20%), hypophosphatemia (18%), lymphocytope-
nia (16%), hyperglycemia (16%), asthenia (11%), dyspnea 
(9%), neutropenia (5%), rash (5%), and pain (5%) [314]. 
Clinical antitumor activity of temsirolimus has been 
shown as monotherapy in hematological malignancies 
[315, 316], and RCC [287], in combination with either 
lenalidomide [317], etoposide + cyclophosphamide [318], 
or rituximab + cladribine [319], in advanced solid tumors, 
and in combination with either perifosine [320], capecit-
abine [321], bevacizumab [322], or chemotherapy [323], 

in advanced solid tumors. Besides, antineoplastic activity 
has been observed with other agents such as nab-siroli-
mus as monotherapy in advanced solid tumors, as well as 
rapamycin and ridaforolimus as monotherapy/in combi-
nation with other drugs in advanced solid tumors (Sup-
plementary information 2) (Supplementary table 3).

ATP‑competitive mTOR inhibitors
ATP-competitive mTORi (also known as active-site 
mTORi) can act against both mTORC1 and mTORC2, 
avoiding the feedback loop-based induction of AKT 
determined by the suppression of mTORC1 [291]. 
Notably, ATP-competitive mTORi remarkably reduce 
p4E-BP1 levels through the inhibition of (4E-BP1) phos-
phorylation, and as a result, can effectively prevent 
eIF4E-mediated cap-dependent translation initiation in 
cancer. Hence, ATP-competitive mTORi actively pro-
mote dephosphorylation on Thr46 (4E-BP1), thereby 
re-establishing its endogenous functions of growth 
suppression and pro-apoptosis [161]. Therefore, these 
inhibitors induce a stronger PAM signalling inhibition 
compared to allosteric mTORi, leading to enhanced anti-
tumor activity [291]. This difference is mainly due to the 
fact that allosteric mTORi, which represent the first-gen-
eration mTORi, suppress mTORC1 indirectly by bind-
ing to FKBP12; while ATP-competitive mTORi, which 
represents the second-generation mTORi, suppress both 
mTORC1 and mTORC2 by inhibiting the mTOR kinase 
directly [324]. In fact, in regard to allosteric mTORi, there 
is a catalytic cleft within the FKBP12-rapamycin-bind-
ing (FRB) domain of mTOR, enabling limited access to 
4E-BP1 as a substrate; whereas ATP-competitive mTORi 
are able to bind deeper inside the catalytic cleft, thereby 
abolishing the capacity to phosphorylate 4E-BP1 [161]. 
There are several ongoing clinical trials using ATP-com-
petitive mTORi including sapanisertib as monotherapy in 
hematological malignancies and advanced solid tumors, 
as well as in combination in advanced solid tumors, 
especially breast cancer, onatasertib and AZD8055 as 
monotherapy in advanced solid tumors, vistusertib mon-
otherapy in hematological malignancies and in combina-
tion in advanced solid tumors, and OSI 027 monotherapy 
in hematological malignancies. However, mainly due to 
toxicity, none of them has reached approval by the FDA 
(Supplementary information 2) (Supplementary table 3).

Bi‑steric mTOR inhibitors
Since the clinical benefits of ATP-competitive mTORi are 
obstacled by toxicity, a third-generation mTORi named 
bi-steric mTORi (also known as RapaLinks) that selec-
tively inhibit mTORC1 and not mTORC2 has recently 
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been designed [325]. These inhibitors, which contain 
a rapamycin-like core moiety covalently linked to an 
mTOR active-site inhibitor [326], are termed bi-steric 
due to their simultaneous engagement of the allosteric 
FRB domain and orthosteric catalytic domain of mTOR, 
in order to deepen the suppression of mTORC1 while 
also retaining selectivity for mTORC1 over mTORC2 
[325]. Importantly, bi-steric mTORi such as RMC-4627, 
have shown potent and selective inhibition of 4E-BP1 
phosphorylation leading to tumor regression in B-cell 
acute lymphoblastic leukemia xenografts [327] and breast 
cancer xenografts [325, 326]. Besides, bi-steric mTORi 
RMC-6272-mediated inhibition of mTORC1 in ER + /
HER2- breast cancer has displayed significant efficacy in 
hormone therapy-resistant acquired patient-derived xen-
ografts, and in patient-derived xenografts from CDK4/6 
inhibitor-resistant patients [328]. Notably, these com-
pounds cause less relief of AKT-dependent feedback 
inhibition of RTK expression, which notoriously results 
in RTK receptor reactivation-induced adaptive resist-
ance, and toxicity in comparison to ATP-competitive 
mTORi. Also, bi-steric mTORi display a longer dwell-
time on target compared to other types of mTORi, and 
thus can be regularly used in intermittent dosing sched-
ules [327, 325]. Interestingly, bi-steric mTORi RMC-5552 
[329] in combination with Ras inhibitors has exhibited 
clinical anticancer activity with a favourable safety pro-
file in relapsed or refractory RAS-mutated solid tumor 
patients [330]. Thus, according to these pre-clinical and 
clinical data bi-steric mTORi can be considered a major 
candidate to be used as mTORi in future cancer treat-
ments (Supplementary information 2) (Supplementary 
table 3).

PDK1 Inhibitors
PDK1, also known as PDPK1, is a crucial regulator of 
PAM signalling pathway due to its phosphorylation 
on AKT. Indeed, PDK1 can exert a potential role in 
developing chemoresistance in various types of malig-
nancy [331]. Thus, it is reasonable to suggest that 
PDK1 inhibition, singly or in combination with other 
PAM inhibitors, could contribute to the enhancement 
of antitumor efficacy in different types of human can-
cer (Fig. 10). Several PDK1 inhibitors have shown great 
potential as anticancer drugs in vitro and in vivo, but 
none of them has yet reached the clinic. This is mainly 
due to the fact that PDK1 drug discovery efforts have 
been somehow obstracted by the remarkable atten-
tion given to other more characterized kinases such 
as PI3K, AKT and mTOR. Nevertheless, an increasing 
number of patent applications have reported on puta-
tive PDK1 inhibitors since its discovery [332] (Supple-
mentary information 2).

Resistance
The PAM signaling pathway involves numerous feedback 
loops, compensatory pathways, and crosstalk nodes with 
other signal transduction axes that hamper the inhibi-
tion of PI3K, AKT, mTORC1, mTORC2, and PDK1 in 
cancer. Indeed, recent studies have reported that short 
administration of drug inhibitor therapies can deter-
mine feedback loop inductions that consecutively reduce 
the overall response rate (ORR). Additionally, chronic 
administration of inhibitor-based therapies can lead to 
the accumulation of slow-cycling cells that can possibly 
gain genetic mutation contributing to drug resistance 
[333]. The major mechanisms of resistance to PAM sig-
nalling-targeted inhibitors are revised below.

Mechanisms of resistance to PI3K Inhibitors
Even though PAM-targeted agents, particularly PI3K 
drug inhibitors, have demonstrated significant therapeu-
tic activity in human cancer, acquired and intrinsic resist-
ance has hindered their clinical efficacy [334–336]. Thus, 
a rationale for alternative clinical strategies could be pro-
vided by an accurate understanding of the biochemical 
mechanisms whereby resistance to PI3Ki occur. Various 
targeted therapies can induce several possible mecha-
nisms of resistance to PI3Ki as described below.

RTK Reactivation
RTKs are often induced following treatment with spe-
cific inhibitors, and as a result, they promote the activa-
tion of the PAM and Ras/MEK/ERK signalling cascades 
[163, 337]. This feature is determined by the loss of the 
suppression that AKT exerts on mTORC1 and FOXO, 
leading to RTK transcription, and reinduction of these 
signal transduction axes [338, 163]. When the PAM sign-
aling pathway is activated, AKT-induced phosphoryla-
tion and blockage of transcription factor FOXO in the 
cytoplasm reduces the activity of FOXO molecules, and 
consequently, ceases the induction of FOXO target genes 
related to the promotion of cell cycle arrest or apoptosis 
[339]. Concurrently, this mechanism hampers the capac-
ity of FOXO to regularly transcribe different RTKs, rep-
resenting an indirect feedback mechanism that limits 
extracellular stimuli-mediated induction of RTKs. Con-
versely, when PI3K is inhibited, AKT-induced FOXO 
phosphorylation is suppressed, enhancing the expres-
sion of FOXO in the nucleus, which leads to the stimu-
lation of RTKs and partial restoration of PIP3 activity. 
Thus, PAM signaling induction cannot be thoroughly 
suppressed, since PIP3 level is preserved, resulting in cell 
proliferation.

PI3K p110β is the major PI3K isoform that drives 
PI3K-mediated signaling in PTEN-null cancers [340]. 
PI3K p110β inhibitor AZD8186 treatment of PTEN-null 
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cells remarkably reduces PI3K signal transduction and 
cancer cell survival. Accordingly, specific inhibition of 
PI3K p110α in these tumor cells displays no effect since 
their type of cancer only depend on PI3K p110β signal-
ing. Nevertheless, downregulation of AKT and mTOR in 
these tumor cells is transient, since mTOR downregula-
tion leads to FOXO de-repression, and consequently, 
RTK transcription, resulting in PI3K p110α-induced 
AKT signal transduction cascade. Hence, targeted sup-
pression with an IS PI3Ki (e.g. p110β) induces AKT and 
mTOR signaling due to the reinduction of the alternative 
PI3K isoform (e.g. p110α). Notably, this reciprocal activa-
tion has been successfully abrogated through the concur-
rent inhibition of PI3K p110α and PI3K p110β, leading to 
a more significant anticancer efficacy compared to mon-
otherapy with either PI3K inhibitors [341].

Clinical studies with PI3Kα inhibitor alpelisib have 
provided evidence that activation of alternative signaling 
pathways may contribute to primary resistance or early 
emergence of resistance in cancer patients. Gene expres-
sion profile analysis of paired pre-treatment and on-
treatment tumor samples, collected from patients treated 
with alpelisib as a single agent or in combination with an 
aromatase inhibitor, has shown that ESR1 and its target 
gene PGR are among the most highly induced genes upon 
PI3K inhibition. This supports the notion that ER mRNA 
increases during PI3K inhibition, and suggests that acti-
vation of this compensatory pathway may decrease anti-
tumor efficacy [342]. Besides, recent studies have also 
demonstrated that ESR1 activating mutations expand in 
number and allele fraction after combination treatment 
of alpelisib and aromatase inhibitor in HR + metastatic 
breast cancer patients, and their presence is associated 
with resistance [239] Table 1.

IGF1R upregulation has been identified as a poten-
tial resistance mechanism to PI3Kδ inhibition in CLL 
patients without activating MAPK pathway mutations. 
Indeed, IGF1R expression is elevated, both at baseline 
and at the time of disease progression, in RNA samples 
of patients who develop resistance to idelalisib com-
pared to a set of previously untreated CLL samples. This 
indicates a potential role for IGF1R signalling in resist-
ance to PI3Kδ inhibitors [343]. An expanded analysis of 
idelalisib-refractory patients, pooled from three clinical 
trials, has further demonstrated IGF1R overexpression 
in 87.5% of patients, whose paired RNA from treatment 
initiation and refractory time point were available [344]. 
Notably, this analysis has confirmed an enrichment for 
MAPK pathway variants in the primary refractory sub-
set, further discussed below; whereas IGF1R upregula-
tion was present at the point of secondary resistance. 
This emphasizes the importance of understanding the 
specific molecular pathways involved in different settings 

of resistance to define strategies to overcome treatment 
challenges.

Acquired mutation and amplification of PI3K genes
Acquired mutation and/or amplification of PIK3CA or 
PIK3CB, which often result in enhanced overall PI3K 
activity, are notorious to increase resistance to PI3K-
targeted inhibitors [345, 346]. Notably, phosphorylation 
of PI3K regulatory subunit p85 also plays an important 
role in developing resistance against PI3K inhibitors. 
Besides, resistance to PI3K inhibition is also conferred 
by the existence of a regulatory loop between PI3K p85 
and Src [347]. When PTEN is absent, cancer cell prolif-
eration mainly depends on PI3K p110β isoform activity 
[348, 349]. PTEN loss singly is unable to generate resist-
ance to pictilisib, a class I PI3K inhibitor; nevertheless, 
amphiregulin can significantly increase the resistance, 
leading to enhanced EGFR signaling [347]. Moreover, it 
has been shown that continuous mTORC1 activity posi-
tively correlates with intrinsic resistance to PI3K p110α 
inhibitors. In fact, growth factors including IGF1 and 
neuregulin 1 are known to induce mTOR, thereby medi-
ating PI3K p110α inhibitor resistance [350].

Analysis of tumor biopsies from a PIK3CA-mutated 
metastatic breast cancer patient, enrolled on a study of 
alpelisib, has demonstrated the clinical relevance of pro-
gressive loss of PTEN expression and consequent gain of 
dependency on PI3K p110β isoform [351]. In line with 
this, evidence that dependence on PI3K p110β isoform is 
of clinical relevance has also emerged from the analysis 
of multiple tumor biopsies from a patient with PIK3CA-
mutated metastatic breast cancer, enrolled in a human 
study of alpelisib. This patient first achieved a long clini-
cal response and then suffered a relapse with new lung 
metastases. At the time of death, after metastatic sites 
were analyzed, all lesions displayed a copy loss of PTEN 
not present in the pre-treatment sample. Besides, metas-
tases that progressed on therapy had additionally gained 
various PTEN alterations, which consequently, resulted 
in its loss of expression. The same mechanism has been 
identified in a longitudinal analysis of tumor and plasma 
circulating tumor DNA from patients treated with alpe-
lisib and an aromatase inhibitor. Indeed, loss-of-function 
PTEN mutations were observed in 25% of patients with 
resistance [239] Table 1. Recently, an acquired mutation 
in the PIK3R1 gene has been reported in a CLL patient 
who became treatment-refractory to idelalisib after 
4.4 years [352] Table 1.

Other mechanism of resistance
Other mechanism of resistance such as insulin signalling 
and PI3K reactivation [353, 354], altered cell metabolism 
[355, 356], interactions between PAM pathway and other 



Page 21 of 37Glaviano et al. Molecular Cancer          (2023) 22:138 	

pathways [357, 358], and cellular plasticity [359, 360] can 
contribute to drug tolerance (Supplementary information 3).

Constitutive mutational MAPK pathway activation 
has been identified as a clinical mechanisms of primary 
resistance in CLL. In a recent analysis of patient samples 
collected from trials involving various PI3K inhibitors, 

but mostly idelalisib, 60% of CLL patients who had 
no initial response to therapy have shown activating 
MAPK pathway mutations, which are specifically found 
in MAP2K1, KRAS and BRAF [361] Table 1. Recently, a 
study focusing on acquired resistance to idelalisib in CLL 
has revealed, among other alterations, the acquisition of a 

Table 1  Pre-existing and acquired mutations implicated in clinical resistance to PAM inhibitors

This table includes mutations and copy number changes in primary patient samples following clinical treatment with PAM inhibitors. Expression level changes in 
clinical samples and resistance mutations generated in cell lines or ex vivo culture models are not included

A/P Mutation absent/present, P Present (mutation present prior to treatment), A Absent (mutation absent prior to treatment), ATC​ Anaplastic thyroid cancer

Mutations implicated in clinical resistance to PAM inhibitors

PI3K Inhibitors
Agent Type of mutations Genes mutated P/A prior to treatment Type of resistance Disease setting References
Alpelisib ESR1 activating mutations ESR1 E380Q P Primary/Secondary PIK3CA-mutated metastatic 

breast cancer
239

ESR1 L363Q P

ESR1 F461V P

ESR1 H524L P

ESR1 Y537N P

ESR1 Y537C P

ESR1 D538G P

Alpelisib PTEN copy number loss 
and loss of function muta‑
tions

PTEN D97H P Primary/Secondary PIK3CA-mutated metastatic 
breast cancer

239, 351

PTEN L108H P

PTEN A126S P

PTEN R130* P

PTEN M134I A

PTEN A

L139Nfs*3 A

PTEN T167P A

PTEN Q214R A

PTEN E242G A

PTEN S339fs A

K342_splice A

Idelalisib PIK3R1 inactivating muta‑
tion

PIK3R1 A Secondary CLL 352

Idelalisib MAP2K1, BRAF and KRAS 
activating mutations

MAP2K1 Q56P A Primary CLL 361

MAP2K1 A

E203K A

KRAS G13D A

KRAS Q22K* A

BRAF G469A A

BRAF A

N581_splice A

BRAF V600E A

BRAF K601E A

Idelalisib BIRC3 inactivating mutation BIRC3 A Secondary CLL 352

mTOR Inhibitors
Agent Type of mutations Genes mutated P/A prior to treatment Type of resistance Disease setting References
Everolimus Loss-of-binding/drug resist‑

ance mutation
MTOR F2108L A Secondary Metastatic ATC​ 375
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BIRC3 mutation, suggesting the activation of the NF-κB 
pathway as another potential bypass mechanism [352] 
Table 1. Also, there is emerging evidence for the role of 
secreted factors, primarily IL-6, in the development of 
resistance to PI3K inhibitors, with significant clinical rel-
evance in primary and secondary resistance to idelalisib 
in MZL patients [362].

Mechanisms of resistance to AKT Inhibitors
Resistance to AKT inhibitors has been the object of 
several studies in oncology research [363, 364]. AKT 
inhibition has been reported to activate phosphoryla-
tion and expression of several RTKs, and these RTK 
signaling can lead to the attenuation of their antican-
cer activity in breast cancer cells, suggesting that com-
binatorial suppression of AKT activity and HER kinase 
activity exerts a more significant efficacy compared to 
mono-agent therapies [365]. Interestingly, AKTE17K 
mutation is considered a promising biomarker since 
clinical data report a correlation between the pres-
ence of this alteration and a response to AKT inhibi-
tor capivasertib [366]. Importantly, upregulation of 
AKT3, which is epigenetically regulated by extra ter-
minal domain proteins and bromodomain proteins, has 
been found to confer AKT inhibitor MK-2206 resist-
ance in breast cancer, providing a rationale for devel-
oping future drug therapies targeting AKT3 in order 
to evade this acquired resistance [367]. Mutations 
that confer resistance to one allosteric AKT inhibitor 
do not necessarily determine resistance to other AKT 
allosteric inhibitors. In fact, clinically relevant acti-
vating AKT1Q79K mutation can confer resistance to 
miransertib, but not to MK-2206, further emphasising 
the importance of understanding AKT genotype for an 
appropriate treatment selection [368].

Mechanisms of resistance to mTORC Inhibitors
Various mechanisms are involved in the failure of first-
generation allosteric mTORi [369]. Rapalogs are known 
to inhibit only some of the mTORC1 functions since they 
are FKBP12-dependent allosteric inhibitors. In addition, 
rapamycin generally exerts its activity against unstable 
mTORC1 substrates including ribosomal protein S6K, 
instead of stable substrates such as eIF4E-binding pro-
tein 4E-BP1, and consequently, only exerts a partial inhi-
bition of the mTORC1-mediated protein synthesis [370]. 
Since 4E-BP1 is the substrate whereby mTORC1 regu-
lates cell proliferation, the inadequate inhibition of this 
strong and stable molecule can be considered a plausi-
ble explanation of the modest antiproliferative efficacy 
of rapamycin on tumor cells [371, 372]. Another mecha-
nism of escaping rapalogs inhibition is the compensatory 
activation of various signal transduction pathways due 

to mTORC1-induced suppression of negative feedback 
loops. The major effect is determined by PAM signaling 
activation, since rapalogs mitigate the mTORC1-induced 
negative feedback inhibition of insulin and IGF1 recep-
tor mitogenic signalling [373]. Indeed, S6K activates 
phosphorylation of insulin receptor substrate 1 (IRS1), 
thereby leading to IRS1 suppression, or IRS1 degrada-
tion, or IRS1 binding to IGF1 receptor. Thus, rapamy-
cin treatment enhances the level of IRS1 and induces 
the PAM axis by insulin and IGF1 receptor signaling 
[374]. Further studies have described other mechanisms 
involved in the failure of allosteric mTORi (Supplemen-
tary information 3).

Clinically, allosteric mTOR inhibitors have shown 
activity in various malignancies with mTOR-pathway 
activating mutations, and in some cases additional muta-
tions within the pathway have been linked to acquired 
resistance. For instance, a patient with metastatic ana-
plastic thyroid cancer who had an exceptional response 
to everolimus lasting 18  months prior to treatment was 
found to have a nonsense mutation in the tumor sup-
pressor gene TSC2, leading to mTOR pathway activa-
tion, and at progression acquired a mutation in MTOR 
that conferred resistance to allosteric mTOR inhibi-
tion. Importantly, the acquired MTOR mutation did 
not confer resistance to ATP-competitive mTOR inhibi-
tors [375] Table 1. Several studies have demonstrated an 
enrichment for mTOR pathway mutations in respond-
ers or exceptional responders to these agents. Absence 
of mTOR pathway dependence may conversely be con-
sidered a mechanism of primary resistance. Exam-
ples include a study of rapalog-treated metastatic RCC 
patients, which identified an enrichment for MTOR, 
TSC1 and TSC2 mutations in responders [376], a report 
of a single exceptional responder to pazopanib and 
everolimus with urothelial carcinoma who was found 
to have two activating mutations in MTOR [377], and 
two studies of patients with perivascular epithelioid cell 
tumors (PEComas) who responded to sirolimus, some of 
which demonstrated loss of TSC1/TSC2 or TSC2 aber-
rations [378, 379]. As a counterpoint it should be noted 
that a substantial proportion of responders in some of the 
above-mentioned studies [376] had no identifiable altera-
tions in mTOR pathway genes. Likewise, in the setting 
of postmenopausal nonsteroidal aromatase inhibitor-
resistant ER + HER2- breast cancer patients treated with 
everolimus and exemestane, comprehensive sequencing 
analysis did not identify predictive biomarkers, although 
patients with PIK3CA exon 9 mutations experienced a 
quantitative benefit compared to patients with PIK3CA 
exon 20 mutations [380].

Several mechanisms of resistance can hamper the effi-
ciency of second-generation ATP-competitive mTORi 
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[369]. Some kinase domain mutations, including the 
methionine 2327 isoleucine substitution (M2327I), 
enhance mTOR catalytic activity, and therefore, both 
mTORC1/mTORC2 activeness. Consequently, con-
centration of ATP-competitive mTORi (e.g. AZD8055) 
necessary to suppress mTORC1 and mTORC2 sub-
strates must be higher, compared to those required for 
wild-type mTOR kinase [326]. Tumor cells can also 
gain resistance to ATP-competitive mTORi by exert-
ing downregulation of 4E-BPs, such as EIF4E-BP1, 
and EIF4E-BP2. This results in an enhanced EIF4E/4E-
BPs ratio, which limits the suppressive action of these 
agents on the translation of EIF4E-susceptible mRNAs, 
and thus, decreases their anticancer efficacy [381, 382]. 
Interestingly, there is an inverse correlation between 
4E-BP1 expression and Snail level in tumor cell lines 
and in clinical biospecimens. Indeed, Snail can sup-
press 4E-BP1 transcription by binding to three E-boxes 
located in the human 4E-BP1 promoter. Accordingly, 
ectopic expression of Snail in tumor cell lines remark-
ably inhibits 4E-BP1 expression, and consequently, 
reduces the anti-proliferative effect of ATP-competitive 
mTORi [383]. Also, ATP-competitive mTORi are more 
efficacious than rapalogs in numerous tumor models 
since they can act against both mTORC1 and mTORC2, 
avoiding the feedback loop-based induction of AKT 
caused by the suppression of mTORC1 [373]. Neverthe-
less, ATP-competitive mTORi induce overactivation of 
the Ras/MEK/ERK pathway through PI3K-independ-
ent feedback loops. Indeed, in multiple myeloma cells, 
torkinib induces ERK through an mTORC1/eIF-4E/
Raf pathway [384]. More studies have reported differ-
ent mechanisms involved in escaping ATP-competitive 
mTORi (Supplementary information 3). Interestingly, 
third-generation bi-steric mTORi can drive cancer 
regression more significantly than ATP-competitive 
mTORi, due to their potent and selective inhibition 
of 4E-BP1 phosphorylation, while minimizing adap-
tive resistance due to the relief of feedback inhibition 
of RTK expression and signaling, as well as undesir-
able toxicity and glucose intolerance [369]. Thus, bi-
steric mTORi may be useful for treating cancers that are 
driven by activated mTORC1 [325, 327].

PAM signaling in immunology and immunotherapy
PAM signaling has emerged as a dominant regulator of 
the immune response. Indeed, PAM pathway-mediated 
control of the immune system is finely-tuned, allowing 
for precise mobilization or suppression of immune cell 
subsets through tightly-regulated signalings. The role of 
the PAM axis in immunoregulation and the possible roles 
for PAM-directed therapies in combination with immu-
notherapy are outlined below.

Effects of PAM signaling on the immune system and tumor 
microenvironment
PAM signaling plays crucial roles in immune cell 
maturation, differentiation, recruitment, and survival. 
However, each layer of the PAM signaling axis exerts 
its own unique control over the constituent subsets of 
the immune system.

PI3K, especially in the leukocyte-predominant 
PI3Kδ and PI3Kγ isoforms, is an important regulator 
of immune homeostasis. PI3Kδ is unique among the 
PI3K isoforms in its near-monopoly over B-cell recep-
tor signaling, more specifically in CLL and mantle cell 
lymphoma (MCL). Several studies have shown that, in 
explanted human regulatory T-cells (Tregs), murine 
Tregs, and murine models of inactivated PI3Kδ, immu-
nosuppressive Tregs are exquisitely reliant on PI3Kδ 
[385–387]. Consequently, inhibition of PI3Kδ can sup-
press the innate and adaptive immune system, pre-
disposing patients to serious infections, including 
Pneumocystis jirovencii and cytomegalovirus. Accord-
ingly, the observation that immunosuppressive Tregs are 
also uniquely dependent on PI3Kδ may begin to explain 
why autoimmune pneumonitis and colitis often accom-
pany PI3Kδ inhibition [388]. Like PI3Kδ, the PI3Kγ iso-
form is active in lymphocytes. PI3Kγ and its regulatory 
subunits PIK3R5 and PIK3R6 are uniquely overexpressed 
within the myeloid compartment, where PI3Kγ serves as 
the principal catalytic PI3K [389]. Direct inhibition of 
PI3Kγ has been shown to diminish the immunosuppres-
sive myeloid phenotype, notably shifting myeloid cells 
away from the immunosuppressive M2-like phenotype 
and towards the immunostimulatory M1-like phenotype 
[389–391]. Both PI3Kδ and PI3Kγ have also been impli-
cated in the activity of myeloid-derived suppressor cells 
(MDSCs), and blocking the two isoforms impairs MDSC 
immunosuppression [392].

AKT plays key roles in both innate and adaptive immu-
nity. In particular, T-cell receptor (TCR) signaling pro-
motes T-cell survival and cell cycle progression through 
the activation of AKT-dependent transcriptional pro-
grams [393]. AKT1/2 promotes terminal differentiation 
of CD8 + T-cells and blunts the development of central 
memory and effector memory CD8 + T-cell popula-
tions [394, 395]. Additionally, AKT is also important 
in CD4 + T-cells, where it guides T helper (Th) cell dif-
ferentiation in an isoform-specific manner [396]. T-cell 
activation via TCR and CD28 co-stimulation promotes 
downstream induction of T helper type 1 (Th1) cell-
mediated cytokines IL-2 and IFN-γ in an AKT-depend-
ent manner. Notably, regulation of T helper type 2 (Th2) 
cell-induced cytokines IL-4 and IL-5 is AKT-independ-
ent. AKT has also been shown to control Treg homeo-
stasis through inhibitory phosphorylation of FOXO1, 
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which in turn promotes Treg suppression [397]. Titra-
tion of this signaling axis modulates immune tolerance, 
implying that upstream inhibition of PI3K may dis-
rupt tumor immune tolerance [398]. Additionally, it has 
recently been shown that inhibitory signaling through 
PD-1 restricts activation of Treg-mediated immunosup-
pression in an AKT-dependent manner [399]. Moreo-
ver, AKT is also known to modify myeloid cell fate and 
survival through its regulation of β-catenin, NF-κB sign-
aling, and cytokine production [400]. Furthermore, iso-
form-dependent AKT signaling is a key determinant of 
M1/M2 macrophage polarization [401, 402], and AKT 
is required for the maturation of bone marrow-derived 
dendritic cells [403]. mTOR-mediated regulation of 
the immune system is complex and is comprehensively 
reviewed elsewhere [404, 405]. mTOR is the catalytic 
domain of the complementary mTORC1 and mTORC2 
complexes. These complexes co-regulate cellular metabo-
lism, the primary mechanism by which mTOR regulates 
the immune system, as mobilizing immune cells is ener-
getically expensive and requires metabolic reconfigura-
tion. mTORC1, in particular, has been shown to regulate 
memory T-cell differentiation [406] and establish the 
function of immunosuppressive Tregs [407]. Therefore, 
even though rapamycin-induced inhibition of mTORC1 
promotes Treg development from naïve T-cells [408] 
and subsequent Treg expansion [409, 410], rapamycin 
can still promote autoimmunity through the suppres-
sion of Treg function [407]. The role of mTORC2 is more 
subtle, but it has been shown to play an inhibitory role 
in the generation of CD8 + memory T-cells, driven by 
mTORC2-induced inhibition of FOXO-mediated IL-15R 
expression [411]. Importantly, mTORC1 and mTORC2 
are also directly involved in regulating innate immunity. 
mTORC1 controls monocyte/macrophage-mediated 
inflammation by regulating production of inflammatory 
cytokines via inhibition of NF-κB (downstream PI3Kγ) 
[412]. Again, mTORC2 plays a complementary role, 
modifying chemotaxis in mast cells and neutrophils. 
Besides, mTORC2 downregulates IL-12 in dendritic cells, 
due to inhibition of FOXO1 [413], and plays an important 
role in IL-4-dependent, alternative activation of M2 mac-
rophages [414, 415]. Cancer cell-autonomous activation 
of PAM signaling has been shown to promote expres-
sion of immunosuppressive cytokines, chemokines, and 
immune checkpoints, which can be reversed through 
pharmacologic inhibition of PAM signaling [416]. mTOR 
regulates the expression of inflammatory cytokines such 
as IL-10, IL-12, TGF-β, and TNF [417, 418]. Activation 
of neoplastic PAM signaling also promotes expression 
of vascular endothelial growth factor (VEGF), an impor-
tant mediator of angiogenic signaling that also acts as a 
chemoattractant of immunosuppressive MDSCs [419] 

and Tregs [420]. Reciprocally, inhibition of mTOR with 
everolimus, has been shown to partially phenocopy the 
anti-angiogenic effect of VEGF inhibitors [421]. Moreo-
ver, due to the role of PAM and especially mTOR in 
metabolic regulation, PAM inhibition within nutrient-
constrained tumor microenvironments can disrupt the 
balance between CD4 + /CD8 + T-cells, Tregs/T helper 
17 (Th17) cells, and M1/M2 macrophages [417]. Finally, 
many studies have associated activated PAM signaling 
with increased PD-L1 expression [422, 423], and PAM 
inhibition has been shown to be capable of reducing 
PD-L1 expression in PTEN-driven breast and CRC cells 
[424].

Targeting PAM Signaling alongside immunotherapy
Over the last decade, the treatment of cancer has been 
revolutionized by the introduction of immunotherapies. 
New agents that target the PD-1/PD-L1 and CTLA-4 
immune checkpoints, known as immune checkpoint 
inhibitors (ICIs), and cellular therapies designed to seek 
out cancer cells, have demonstrated remarkable effi-
cacy. Yet, despite these successes, many cancers do not 
respond or respond incompletely to immunotherapy, 
underscoring the importance of better understanding the 
mechanisms underlying the resistance to these agents.

Immune checkpoint inhibitors (ICIs)
Many of the mechanisms that underlie ICI treatment 
failure, including defective neoantigen presentation, 
T-cell resistance, excess immunosuppressive cytokines, 
and intratumoral inhibitory MDSCs or Tregs [425], are 
associated with PAM signaling; and thus, may be revers-
ible with PAM inhibition. Indeed, there is increasing 
evidence that targeting the PAM pathway can reduce 
the production of immunosuppressive cytokines and 
restrict the proliferation and penetration of immunosup-
pressive Tregs and MDSCs, thereby boosting the anti-
tumor effects of immune checkpoint blockade [389, 426, 
427]. Activation of oncogenic pathways like PAM and 
MAPK promote transcriptional upregulation of neo-
plastic PD-L1. Accordingly, therapies targeting PAM and 
upstream kinase signaling have been shown to reduce 
intrinsic neoplastic PD-L1 expression. In PTEN-driven 
murine models of melanoma, the efficacy of both anti-
PD-1 and anti-CTLA-4 antibodies has been improved 
by co-inhibition of PI3K [427]. In syngeneic and genet-
ically-engineered mouse models of lung cancer, inhibi-
tion of mTOR bolsters the effects of PD-1 blockade [422]. 
Similar results have been reported with anti-PD-1 and 
anti-CTLA-4 therapies in breast cancer [428]. Combin-
ing PAM inhibition with ICI treatment decreases Treg 
populations and enhances the CD8 + memory T-cell 
response in murine models and in vitro patient cell assays 
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[429]. Many early-phase clinical studies have been test-
ing the aforementioned principles by assessing the tol-
erability and efficacy of combined PAM inhibition and 
immune checkpoint inhibition, primarily in advanced 
solid tumors, and lymphomas [430, 206]. Some of these 
clinical trials are highlighted below. Phase 1/2 clini-
cal trial NCT03131908 is studying the combination of 
PD-1 inhibitor pembrolizumab and PI3Kβ inhibitor 
GSK2636771 in PD-1 refractory patients with meta-
static melanoma and PTEN loss [431]. Besides, phase 1/2 
clinical trial NCT04688658 is focussing on the combina-
tion of PD-1 inhibitor nivolumab and PI3Kδγ inhibitor 
duvelisib in patients with unresectable melanoma that 
have already progressed on PD-1 therapy, with clinical 
response in at least one patient in preliminary results 
[432]. Moreover, phase 2 clinical trial NCT03484819 is 
evaluating the combination of nivolumab and PI3Kαδ 
inhibitor copanlisib in relapsed/refractory diffuse large 
B-cell lymphoma or primary mediastinal large B-cell 
lymphoma. This clinical study is also trying to character-
ize the effects of this combination on the tumor micro-
environment and immune response [433]. Furthermore, 
phase 1 clinical trial (NCT03884998) is investigating the 
the combination of nivolumab and pan-PI3K inhibitor 
copanlisib in patients with Richter’s transformation, with 
to date a favorable safety profile [434].

Chimeric antigen receptor (CAR) T‑cell therapy
Another emerging pillar of immunotherapy is cellular 
therapy, particularly chimeric antigen receptor (CAR) 
T-cell therapy, where synthetically-engineered recep-
tors direct pre-harvested T-cells to cancer cells express-
ing a select antigen. There is evidence that PAM-directed 
therapies could serve as a novel modifier to CAR-T cell 
therapy, possibly at the point of treatment [435], but pri-
marily as a cell culture additive during T-cell expansion 
[430, 436]. Mechanistically, it is reported that anti-CD3/
CD28 stimulation of T-cell receptor during CAR T-cell 
manufacturing process induces PAM signaling, result-
ing in terminal T-cell differentiation and decreased CAR 
T-cell persistence [430]. Earlier studies associate PAM 
activation with CAR T-cell decreased persistence and 
showed that PI3K inhibition with the non-selective PI3K 
inhibitor LY294002 was able to restrict CAR T-cell differ-
entiation. This enables the maintenance of a less-differen-
tiated state and ultimately improving persistence in vivo 
[437]. Subsequently, other groups have shown that tar-
geted PI3K inhibition, focusing on the PI3Kγ and PI3Kδ 
isoforms, is capable of decreasing the expression of T-cell 
exhaustion markers PD-1 and Tim-3 while upregulating 
the lymph node homing marker CD62L [438], decreasing 
the expression of immune checkpoints, and increasing 

the yield of T-stem cell memory and central memory 
CD8 + CAR T-cells [439, 440]. These initial observa-
tions in CAR T-cell therapy may also be applicable to the 
growing field of bispecific antibodies, some of which have 
recently been approved for the treatment of B-cell non-
Hodgkin’s lymphomas.

Conclusion
PI3K inhibition is considered a major target for antitu-
mor therapy. Unfortunately, past and present clinical tri-
als using PI3Ki have exhibited modest anticancer activity 
mainly due to resistance to PI3K inhibition and insuffi-
cient target inhibition at tolerated doses. Indeed, over the 
last few decades, pan-PI3Ki and dual PI3K/mTORi, not 
only have demonstrated limited efficacy but also are asso-
ciated with significant side effects. As a result, few PI3Ki 
have been approved by the FDA. Since selective isoforms 
of PI3K perform pivotal functions in the biology of spe-
cific cancer subtypes, the present-day focus is centered 
on the development of IS PI3Ki. Of late, IS PI3Ki have 
shown promising results in several clinical trials, largely 
exhibiting better target specificity and toxicity profiles as 
compared to conventional pan-PI3Ki and/or dual PI3K/
mTORi. PAM pathway inhibitors have produced limited 
therapeutic efficacy and significant treatment-related 
toxicity particularly when combined with standard treat-
ments or other targeted agents. Hence, most PAM path-
way inhibitors are unsuitable for adoption as mainstream 
oncological treatment strategies. For this reason, com-
bination therapy with two or more agents in conjunc-
tion with other therapeutic strategies, such as surgery, 
hormonal therapy, and other antitumor drugs, has been 
the trend in recent years. In line with this, combination 
of PI3Ki with ncRNAs, or inhibitors of crucial signaling 
nodes in other cross-interacting pathways, may represent 
a future approach to effectively suppress the PAM path-
way, whilst minimizing the risk of developing drug resist-
ance and occurrence of adverse events. In future studies 
it would be ideal to identify stable biomarkers for patient 
stratification, according to cancer types and genetic 
profiles, to better benefit from PI3K inhibition. The 
mechanism exerted by PI3Ki has not been thoroughly 
elucidated, and will require further studies to properly 
delineate its pros and cons as part of the endeavour to 
personalize oncological therapeutics. The design of novel 
PI3K inhibitors structurally-based on different binding 
sites would undoubtedly improve specificity, and reduce 
toxicity of IS PI3Ki. Therefore, demystifying the mecha-
nisms of PI3K signaling and PI3K inhibition is essential 
to improve combination strategy, and patient selection, 
which would in turn enhance the efficacy of these cancer 
drugs.



Page 26 of 37Glaviano et al. Molecular Cancer          (2023) 22:138 

Inhibition of AKT can potentially exert remarkable 
antineoplastic effects, although dose-limiting toxicity 
and insufficient knowledge of the different isoforms have 
impeded its successful pharmacological usage. Indeed, 
pharmacodynamic markers of AKT inhibitors have 
shown incomplete target modulation. Nowadays, there 
are no approved biomarkers that can predict therapeu-
tic responses to specific AKT inhibitors before using a 
particular agent. Thus, it is not possible to predict which 
patients can have adverse effects from AKT inhibition. 
Targeting AKT is considered a critical research area in 
clinical oncology, and possibly, in future studies, AKT 
inhibitors in combination with synergistic cytotoxic 
drugs could probably improve their clinical efficacy.

Several classes of mTORi have been developed, but only 
everolimus and temsirolimus have obtained approval 
as therapy for human tumors. The clinical application 
of these agents is impeded by resistance determined 
through a variety of molecular mechanisms common to 
the different class of drugs, suggesting that co-targeting 
alternative pathways may be a more feasible strategy than 
improving the action of mTORi. Importantly, pre-clinical 
and clinical data suggest that novel bi-steric mTORi can 
drive cancer regression more significantly compared to 
other mTORi, by enhancing inhibition of 4E-BP1 phos-
phorylation, and reducing adaptive resistance due to the 
relief of feedback inhibition of RTK expression. Thus, bi-
steric mTORi may be the most promising inhibitors in 
treating activated mTORC1-driven cancers. Also, devel-
oping novel therapeutic combinations could lead to the 
identification of molecular factors resistant to each class 
of drugs to improve the selection of patients who may 
benefit from a specific treatment. Besides, optimisation 
of treatment sequence using different agents may be use-
ful to delay or overcome resistance to mTOR inhibitors.

Additionally, PAM signaling exert a fine control over 
the immune system-mediated functions, including anti-
tumor response. Ongoing studies are evaluating the 
impact of PAM-targeted treatments on cancer response, 
immune reaction and their synergy with immune-based 
cancer therapies.

The potential of PAM inhibitors clearly depends on the 
combinatorial strategies. However, the main difficulties 
are: 1) defining the ideal combination for each patient, 
and 2) managing toxicity of combination approaches that 
necessitate innovative scheduling. In addition, the bio-
marker development is challenged by the complex inter-
actions of the pathway and in general multiple co-existing 
alterations that help to maintain cancer survial. Finally, 
we must also improve our understanding of the effects 
determined by PAM signaling pathway inhibitors on the 
tumour microenvironment for plausible drug combina-
tions with specific immunotherapies.
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