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Abstract
Genetic signatures have added a molecular dimension to prognostics and therapeutic decision-making. However, 
tumour heterogeneity in prostate cancer and current sampling methods could confound accurate assessment. 
Based on previously published spatial transcriptomic data from multifocal prostate cancer, we created virtual 
biopsy models that mimic conventional biopsy placement and core size. We then analysed the gene expression of 
different prognostic signatures (OncotypeDx®, Decipher®, Prostadiag®) using a step-wise approach with increasing 
resolution from pseudo-bulk analysis of the whole biopsy, to differentiation by tissue subtype (benign, stroma, 
tumour), followed by distinct tumour grade and finally clonal resolution. The gene expression profile of virtual 
tumour biopsies revealed clear differences between grade groups and tumour clones, compared to a benign 
control, which were not reflected in bulk analyses. This suggests that bulk analyses of whole biopsies or tumour-
only areas, as used in clinical practice, may provide an inaccurate assessment of gene profiles. The type of tissue, 
the grade of the tumour and the clonal composition all influence the gene expression in a biopsy. Clinical decision 
making based on biopsy genomics should be made with caution while we await more precise targeting and cost-
effective spatial analyses.
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Prostate cancer (PCa) progression is unpredictable. Some 
tumours are indolent, whilst others tumours are aggres-
sive with rapid progression and metastasis [1]. Recent 
prognostic genetic signatures have added a molecular 
dimension to therapeutic decision-making [2, 3]. How-
ever, a drawback of biopsy-derived molecular signatures 
is inaccurate sampling and failure to properly consider 
intra-tumoral heterogeneity [2, 4, 5]. Inadequate sam-
pling of multiclonality in prostate cancer can lead to a 
misleading assessment of tumour heterogeneity, poten-
tially resulting in suboptimal treatment decisions. Failure 
to account for diverse clonal populations may hinder the 
identification of aggressive subclones and the develop-
ment of more effective therapeutic strategies. In light of 
these challenges, we sought to investigate the impact of 
tumour heterogeneity on prognostic genomic signatures, 
using the unique spatial resolution of transcriptomic and 

inferred genomic information generated in our previous 
work [6]. We compared three different prognostic signa-
tures (OncotypeDx® [7], Decipher® [8] and ProstaDiag® 
[9]) in virtual biopsy models using spatial transcriptomics 
(ST). These signatures include genes associated with bio-
logical processes that may be fundamental to tumour 
development. In evaluating these signatures, we assessed 
gene expression assigned to these consensus processes.

Gene expression analysis was performed on radical 
prostatectomy tissue from a patient with multifocal PCa. 
We used our recently published organ-wide ST data [6] 
to construct virtual biopsy models that mimic conven-
tional biopsy placement and core size (Fig. 1). The biopsy 
regions were intentionally positioned to represent maxi-
mum heterogeneity. All spots containing less than 500 
Unique Molecular Identifier counts were removed. Genes 
detectable at this threshold in less than 10% of spots were 

Fig. 1 Spatial visualisation of virtual biopsies. We used our recently published organ-wide spatial transcriptomic data [9] to construct virtual biopsy 
models (2 tumour biopsies and 1 benign biopsy) that mimic conventional biopsy placement and core size. Visualisation of histology and tissue status 
(GG: Gleason grade group; PIN: prostatic intraepithelial neoplasia) and tumour clones from each tumour biopsy. Spatial visualisation of gene expression 
(ANPEP, ANO7, TPM2 and REPS2) in each tumour biopsy. Violin plots representing gene expression according to histological status. TRUS = transrectal 
ultrasound guided prostate biospy. LATP = local anaesthetic transperineal prostate biospy. ST = spatial transcriptomics. GG = Gleason grade group. PIN = 
prostatic intra-epithelial neoplasia. 18G = 18 gauge core biopsy needle
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also removed. Overall, we examined the expression of 9 
of the 12 OncotypeDx® genes, 11/19 Decipher® genes, and 
28/36 Prostadiag® genes, excluding housekeeping genes. 
We extracted gene expression data from the barcode 
ID of designed biopsies (LoupeBrowser, v6.3.0) using R 
(v4.22). In all analyses, we normalised the libraries using 
spaceranger aggr (v2.0). Fold changes with false discovery 
rate were analysed using EdgeR (v3.40.1).

We compared the gene expression of virtual tumour 
biopsies to a benign control at increasing levels of resolu-
tion: from whole biopsy, through tissue subtype (benign, 
stroma, tumour) and tumour grade, to clonal level 
(Fig.  1). A consensus pathology underpins this analysis, 
with two pathologists independently annotating each 
55 μm ST spot (approximately 10–15 cells).

We observed clear evidence of variation in the expres-
sion of constituent genes from different prognostic sig-
natures within biopsies (Fig. 2). In tumour biopsy 1, the 
expression of the cellular organisation markers (FLNC, 
TPM2, GSN) of OncotypeDx® signature was decreased 
in a Gleason Grade Group (GG) 1 area (logFC=-0.91; 
-1.05; -0.68 respectively), while it was increased in the 
region of GG2 cancer (logFC = 0.73; 1.09 respectively), 
compared to the control biopsy. Importantly, this distinc-
tion would be lost if either the whole biopsy, or tumour 
areas alone, were analysed in bulk (Fig. 2A). We observed 

similar results when we extended these analyses to other 
prognostic signatures (Supplementary Fig. 1A & 2). Fur-
ther differences in gene expression were found between 
GG1 and GG2 cells compared to the control, such as the 
expression of genes involved in epithelial-mesenchymal 
transition (ANPEP, COL1A1, COL1A2, FMOD, SPARC), 
transport (ANO7, CHRNA2) and cell cycle (NCAPD3, 
ZWILCH).

Previously [6], we interrogated the expression data 
using spatial inferred copy number variations (siCNV) 
and constructed a phylogenetic-tree to describe sequen-
tial clonal events in tumour regions of the tissue. We 
therefore performed clonal-level analyses based on the 
previously identified 11 clonal groups of tumour cells 
(clone A to clone K) [6]. We found expression differences 
between clones of the same histological grade, further 
supporting the need to respect heterogeneity in inter-
preting genomic scores (Fig. 2A; Supplementary Fig. 1A 
& 2).

In tumour biopsy 2, the expression of the cellular 
organisation markers (FLNC, TPM2) and the stromal 
response markers (BGN, COL1A1) decreased in GG2/
GG4 areas compared to the benign control (logFC = 
-0.86/-1.14; -0.62/-2.39; -1.28/-1.08; -1.80/-0.42 respec-
tively). Conversely, these genes demonstrated an inverse 
profile if the biopsy was analysed in bulk (logFC = 0.28; 

Fig. 2 Gene expression profile of the OncotypeDx® signature. Heatmap of gene expression (logFC) of the OncotypeDx® signature at different levels of 
precision (whole biopsy, tissue subtype, tumour grade and clonal level) in tumour biopsy 1 (A), tumour biopsy 2 (B) and section H2_1 (C). The histograms 
represent the number of spatial transcriptomic spots for each entity. False discovery rate (FDR) is indicated: *FDR < 0.01; •FDR < 0.05, °FDR < 0.1. FC: fold 
change; BB: benign biopsy; B1: tumour biopsy 1; B2: tumour biopsy 2; GG: Gleason grade group
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0.79; -0.14; 0.05) (Fig.  2B). Therefore, the overall gene 
expression profile of biopsy 2 as a whole, which com-
prises 46% tumour tissue and 31% stroma, did not reflect 
the gene expression profile of the tumour areas. this is 
because the tumour profile was masked by the stroma 
profile. In addition, the expression of the androgen path-
way markers (FAM13C, KLK2) of OncotypeDx® were 
decreased in a region of GG2 cancer (logFC = -0.74; 
-0.95 respectively) but not in the GG4 area (logFC = 
-0.17; -0.27 respectively) (Fig.  2B). Similar to Biopsy 
1, this information would be missed if either the whole 
biopsy, or tumour areas alone, were analysed in bulk. We 
obtained consistent results when we extended these anal-
yses to the other genomic scores. As with biopsy 1, we 
also observed differences between tumour clones (Sup-
plementary Fig. 1B & 3).

Given our previous finding of early cancer-associated 
events in histo-pathologically benign prostate tissue 
(section H2_1) [6], we proceeded to a detailed examina-
tion of this region (Fig.  2C; Supplementary Fig.  4). We 
interrogated the expression of the different signatures in 
the 7 clonal groups previously identified: clones a and c 
comprise 100% benign cells; clones d to f 25% and clone 
g less than 25%. The gene expression profile of clone c, 
previously identified as ‘altered benign’, was closer to that 
of tumour clones d, e and f than to that of benign clones 
a and b, in the 3 prognostic signatures studied. For the 
OncotypeDx® signature, markers of cell organisation 
(FLNC, GSN, TPM2) and stromal response (BGN and 
COL1A1) decreased in clone c cells (logFC = -0.96; -1.41; 
-1.69; -1.09; -1.41 respectively), in clear distinction from 
clones a/b (logFC = 0.36/0.33; 0.15/0.49; 0.73/0.87; -0.06/-
0.13; -0.50/-0.26 respectively) compared to the benign 
control. These interesting findings from an area of altered 
benign tissue suggest an intermediate state between 
benign and malignant cells, which would not have been 
identified in a bulk analysis.

The effectiveness of prognostic genomic tests depends 
on accurately deciphering the genomic landscape of a 
heterogeneous and unpredictable cancer for each patient 
[3, 10]. Inaccurate measurement of genomic composition 
can lead to an incorrect assessment of the patient’s risk 
level and, consequently, the implementation of an inef-
fective treatment plan.

We are not the first to highlight this problem. Other 
studies have reported the confounding effects of het-
erogeneity in genomic tests [2, 11, 12]. By interrogating 
these issues in a spatial dimension, we can now pro-
vide a detailed rationale for the shortcomings of current 
genomic techniques. Despite their high cost, we believe 
that ST analyses can provide a comprehensive in situ 
transcriptional assessment of heterogeneity. Until we 
advance this understanding alongside more accurate 
targeting methods and cost-effective spatial analyses, 

we recommend caution when making clinical decisions 
based on genomic analysis of prostate biopsies.

We recognise the limitations of presenting data from 
a single patient. We also point out that there are other 
examples of molecular heterogeneity (e.g. point muta-
tions and epigenetic changes) that are not captured by 
the ST approach. It will be interesting to replicate these 
analyses as we put further prostates through our organ-
scale ST pipeline. Longitudinal sampling will also be 
valuable to inform clonal development over time. The 
current cost for organ-scale analysis of a single prostate 
is around £100,000, but as such costs fall, we anticipate 
developing a more comprehensive understanding of 
PCa heterogeneity and lethal clonality. Furthermore, the 
accessibility of insights derived from these spatial molec-
ular technologies will likely improve with the integration 
of machine learning into morpho-molecular studies, pav-
ing the way for a new era of precision medicine.

In conclusion, in this short article we show that tissue 
type, tumour grade, and clonal composition of tissue all 
influence gene expression within a biopsy sample. Bulk 
analyses of prostate biopsies for genomic scores used 
in clinical practice effectively ignore these distinctions. 
To maximise the potential of biopsy-based genomics in 
clinical decision-making, we believe that precise target-
ing will need to be combined with more granular spatial 
analyses, in order to provide accurate scores which will 
better-inform clinical decisions.
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