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Abstract 

Immunotherapies have revolutionized the treatment paradigms of various types of cancers. However, most of these 
immunomodulatory strategies focus on harnessing adaptive immunity, mainly by inhibiting immunosuppressive 
signaling with immune checkpoint blockade, or enhancing immunostimulatory signaling with bispecific T cell 
engager and chimeric antigen receptor (CAR)-T cell. Although these agents have already achieved great success, 
only a tiny percentage of patients could benefit from immunotherapies. Actually, immunotherapy efficacy is deter-
mined by multiple components in the tumor microenvironment beyond adaptive immunity. Cells from the innate 
arm of the immune system, such as macrophages, dendritic cells, myeloid-derived suppressor cells, neutrophils, 
natural killer cells, and unconventional T cells, also participate in cancer immune evasion and surveillance. Consider-
ing that the innate arm is the cornerstone of the antitumor immune response, utilizing innate immunity provides 
potential therapeutic options for cancer control. Up to now, strategies exploiting innate immunity, such as agonists 
of stimulator of interferon genes, CAR-macrophage or -natural killer cell therapies, metabolic regulators, and novel 
immune checkpoint blockade, have exhibited potent antitumor activities in preclinical and clinical studies. Here, we 
summarize the latest insights into the potential roles of innate cells in antitumor immunity and discuss the advances 
in innate arm-targeted therapeutic strategies.
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Background
During cancer evolution, accumulating point mutations 
and structural alterations drive malignant transforma-
tion and contribute to the immunogenicity of cancer cells 
[1]. Tumor antigens expressed by mutated genes could 
be recognized by host immunity as non-self and initiate 
immune elimination [2]. In immune-mediated elimina-
tion, innate immunity cooperates with adaptive immunity 
to orchestrate a cascade multi-step process, which begins 
with tumor antigen capture and ends with immune kill-
ing [3–6]. Innate immunity serves as the first front line 
of host defense, consisting of physical and chemical bar-
riers and various types of immune cells with pattern-rec-
ognition receptors (PRRs). Innate immune components, 
involving dendritic cells (DCs), macrophages, mono-
cytes, neutrophils, eosinophils, basophils, mast cells, 
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natural killer (NK) cells, natural killer T (NKT) cells, γδ T 
cells, mucosa-associated invariant T (MAIT) cells, retard 
tumor growth mainly by nonspecifically killing malignant 
cells or mobilizing adaptive immune response [7]. In con-
trast with the innate arm, the adaptive arm of host immu-
nity specifically eradicates cancer cells by T and B cells 
[8].

Ideally, all transformed cells are recognized and elimi-
nated by host immunity. However, cancer is a heteroge-
neous disease, and a large scale of genetic and epigenetic 
alterations are unevenly distributed in several parallel 
subclones [9–11]. Under the selective pressure of adap-
tive immunity, tumor subclones with weak immuno-
genicity become the predominant subclones that escape 
immune-mediated tumor clearance [12]. The poor 
immunogenicity, coupled with multiple immunosup-
pressive factors such as immune checkpoint pathways, 
metabolite reprogramming, and dysregulated cytokine 
repertoire, support selected subclones to develop into 
clinically apparent lesions [13–18]. Besides, immuno-
suppressive cell populations in the tumor microenviron-
ment (TME), including tumor-associated macrophages 
(TAMs), regulatory T (Treg) cells, regulatory B (Breg) 
cells, myeloid-derived suppressor cells (MDSCs), tumor-
associated neutrophils (TANs), and cancer-associated 
fibroblasts (CAFs), also promote immune evasion and 
cancer progression [19–23].

Antitumor immunotherapies, including immune 
checkpoint blockade [24] and adoptive cell transfer [25–
27], have been widely validated and clinically approved 
for various cancers. These strategies aim to eradicate 
cancer cells by enabling T cell-mediated antitumor 
responses. Immune checkpoint molecules are commonly 
upregulated in the TME, which hamper T cell activa-
tion by counteracting T cell receptor (TCR) signaling or 
attenuating the costimulatory pathway [28–30]. Immune 
checkpoint antibodies disturb immunosuppressive path-
ways in T cells, especially programmed cell death protein 
1 (PD-1)-programmed cell death ligand 1 (PD-L1) and 
cytotoxic T lymphocyte-associated protein 4 (CTLA-
4)-CD80/CD86 signaling [31, 32]. Up to now, more than 
ten anti-PD-1/PD-L1 antibodies have been approved for 
cancer treatment.

Meanwhile, adoptive cell transfer strategies, mainly 
chimeric antigen receptor (CAR)-T cell therapy, make 
a breakthrough in hematological malignancies [33, 
34]. CAR-T cells are prepared by transducing geneti-
cally engineered receptors into autologous T cells [35]. 
These engineered TCRs contain extracellular domains 
recognizing tumor antigens and intracellular domains 
mimicking TCR activation signaling [36, 37]. At the pre-
sent stage, six CAR-T cell products have been clinically 
approved: Yescarta (anti-CD19), Kymriah (anti-CD19), 

Tecartus (anti-CD19), Breyanzi (anti-CD19), Abecma 
(anti-BCMA), and Carvykti (anti-BCMA) for B cell 
malignancies and multiple myeloma [38–41]. Also, DC-
targeted adoptive cell transfer strategies have made sub-
stantial headway. Provenge, autologous DC loaded with 
the fusion protein of granulocyte–macrophage colony-
stimulating factor and prostatic acid phosphatase, has 
been approved for prostate cancer [42].

Although these immunotherapies have achieved tre-
mendous success in advanced cancers, some thorny 
issues remain to be resolved, including the unsatisfactory 
response rate and lack of accurate predictors. It was esti-
mated that 43.63% of all cancer patients were eligible for 
immune checkpoint blockade, and the overall response 
rate was below 13% in the US [43]. Besides, CAR-T cell 
therapy indications are limited to hematologic malignan-
cies, without significant antitumor activity in solid tumors 
[44–47]. Generally, most clinically approved immuno-
therapies are T cell-centered. However, the effector func-
tions of T cells are non-autonomous. The initiation and 
sustainability of T cell response and the maintenance of 
T cell memory depend on innate immunity [48]. Innate 
immunity detects, captures, and processes cancer anti-
gens and then triggers adaptive immunity. At the same 
time, innate immune cells directly eradicate tumors by 
mounting their effector responses, such as the cytotox-
icity of NK cells and the phagocytosis of macrophages 
[48]. Besides, due to the expression of Fc receptor (FcR) 
on macrophages and NK cells, innate immunity could 
participate in adaptive immunity by launching antibody-
dependent cell cytotoxicity and phagocytosis (ADCC and 
ADCP) [49]. As the essential role of the innate immune 
arm in the onset, propagation, and maintenance of the 
cancer-immunity cycle, it is rationale to harness innate 
response to improve the current immunotherapy perfor-
mance and relieve treatment resistance. In this work, we 
review the roles of innate immune components in anti-
tumor immunity and summarize the advances in innate 
immunity-targeted immunotherapies.

The role of DC in antitumor response 
and DC‑targeted therapy
DCs are a heterogeneous group of myeloid-derived 
populations. According to the developmental origin, 
DCs are commonly classified into several subsets: con-
ventional DC (including cDC1 and cDC2), plasmacy-
toid DC (pDC), monocyte-derived DC (MoDC), and 
tumor-infiltrating DC3 [50]. Among these subsets, cDC1 
is functionally specialized in the cross-presentation of 
cancer antigens [51, 52], while pDC is the specialized 
producer of IFN-I [53]. Besides, based on tissue-specific 
compartmentalization, DCs could be classified as migra-
tory DC (migDC, trafficking from peripheral tissues to 
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draining lymph nodes) and resident DC (resDC, resid-
ing in peripheral lymphoid organs). Notably, the omics 
technique, especially single-cell RNA sequencing, pro-
vides a high-resolution landscape of DC differentiation 
and ontogeny [54]. To trigger and maintain robust anti-
tumor response, DCs orchestrate a cascade of events: 
antigen capture and process, trafficking to tumor-asso-
ciated draining lymph nodes (tdLNs), priming naïve T 
cells, recruiting primed T cells into the TME by secreting 
chemokines, and interacting with effector T cells in the 
TME [55].

Innate sensing and cancer antigen presentation
The presence and accumulation of DCs are the prereq-
uisites of innate immune sensing. The recruitment and 
expansion of DC in the TME are dependent on several 
cytokines and chemokines, such as NK cell-derived 
FLT3L [56], XCL1, CCL5 [57], as well as tumor-derived 
CCL4 [58]. In the presence of damage-associated 
molecular patterns (DAMPs) from stressed or injured 
cancer cells, these immature DCs are activated by vari-
ous PRR pathways [59]. Additionally, chemotherapy and 
radiotherapy could promote DC maturation by induc-
ing the immunogenic cell death (ICD) of cancer cells 
[60]. DAMPs released during ICD stimulate DC matura-
tion and improve DC functions: adenosine triphosphate 
(ATP) facilitating DC recruitment and activation, calreti-
culin (CRT) enhancing cancer antigen engulfment, and 
high-mobility group box 1 (HMGB1) improving antigen 
presentation of DCs [60]. Moreover, genomic instability, 
mitochondrial dysfunction, oxidative stress, and conven-
tional antitumor regimens could support DC maturation 
by inducing DNA damage and activating cytosolic DNA 
sensing signaling, such as cGAS/STING/IFN-I pathway 
(Fig. 1a) [61].

Once upon cancer antigen capture, DCs undergo mat-
uration with the licensing stimuli such as IFN-I. In this 
process, DCs alter their morphology, upregulate costim-
ulatory molecules such as CD40, CD80, and CD86, 
enhance antigen presentation capability, and secret 
proinflammatory cytokines [63]. Then, mature DCs 
migrate to the T cell-rich zone of tdLNs in the CCR7/

CCL21-dependent manner [64, 65]. In tdLNs, mature 
DCs (primarily cDC1s) cross-prime naïve CD8+ T cells 
by DC-T cell immune synapses. Also, cDC1s could prime 
naïve CD4+ T cells by MHC-II, while activated CD4+ T 
cells license cDC1s to trigger cancer-specific CD8+ T cell 
response in turn [66].

Apart from tdLNs, DCs could continue interacting with 
T cells in the TME to support cancer-specific immunity. 
Tumor-infiltrating cDC1 promotes T cell infiltration by 
secreting CXCL9 and CXCL10 (ligands of CXCR3) to 
guide T cell homing [67]. Beyond de novo T cell priming, 
tumor-infiltrating CD103+ DCs maintain T cell response 
by restimulating previously activated or memory CD8+ 
T cells [68, 69]. Recent studies demonstrate a positive 
feedback loop between cDC1s and T cells. After primed 
and activated by cDC1s, CD8+ T cells could secret IFN-γ 
to promote cDC1s to product IL-12 in a non-canonical 
NF-κB-dependent manner [70].

Dysregulated DC functions in the TME
The functions of DCs are disturbed by various immu-
nosuppressive factors in the TME, hampering immune 
surveillance and supporting tumor progression [71]. 
Some tumor and stroma-derived cytokines regulate the 
survival, differentiation, maturation, and antigen pres-
entation of DCs. For example, transforming growth 
factor-β (TGF-β) is a crucial component in maintain-
ing host immune homeostasis [72]. Deleting Tgfbr2 in 
DCs by CD11c-Cre murine models leads to multiorgan 
inflammation [73]. On the one hand, TGF-β inhibits the 
antigen-presentation of DCs by downregulating MHC-II 
expression [74]. Also, the TGF-β-inhibitor of differen-
tiation 1 (ID1) axis induces DC differentiation toward 
an immunosuppressive myeloid cell phenotype [75]. In 
murine melanoma and breast cancer models, activated 
TGF-β signaling increases enzyme indoleamine 2,3-diox-
ygenase (IDO) in pDCs and CCL22 in myeloid DCs, pro-
moting Treg infiltration as well as immune escape [76]. 
On the other hand, these tolerogenic DCs contribute to 
cancer immune evasion by TGF-β secretion. Tumor cells 
educate DCs to generate TGF-β, which in turn facilitates 
Treg differentiation [77].

Fig. 1  DC-targeted cancer therapies. a The maturation of DCs. In the TME, genomic instability, mitochondrial dysfunction, oxidative stress, 
and conventional antitumor regimens could support DC maturation by inducing DNA damage and activating cytosolic DNA sensing signaling, 
such as cGAS/STING/IFN-I pathway. Besides, In the presence of damage-associated molecular patterns from stressed or injured cancer cells, 
these immature DCs are activated by various PRR pathways. Additionally, chemotherapy and radiotherapy could promote DC maturation 
by inducing the ICD of cancer cells. DAMPs released during ICD stimulate DC maturation and improve DC functions: ATP facilitates DC recruitment 
and activation, CRT enhances cancer antigen engulfment, and HMGB1 improves antigen presentation of DCs. b DC-targeted cancer therapies. 
DC-targeted strategies mainly consist of agonists for DC differentiation, expansion, and activation, blockade of immunoinhibitory signals, and DC 
vaccines. Abbreviations: DC, dendritic cell; ICD, immunogenic cell death; ATP, adenosine triphosphate; CRT, calreticulin; HMGB1, high-mobility group 
box 1. Adapted from Yi et al. 2022 [62].

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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Along with TGF-β, other immunoinhibitory mol-
ecules also limit the functions of DCs. IL-10 drives the 
transformation of immature DCs towards the tolero-
genic phenotype [78]. IL-6 undermines DC maturation 
by STAT3-mediated downregulation of MHC-II and 
CCR7 [79]. Besides, IL-6 cooperates with prostaglan-
din E2 (PGE2) to convert cDC2 to the CD14+ immuno-
suppressive phenotype [80]. PGE2 alone could disturb 
NK cell-stimulated cDC1 recruitment by suppressing 
NK cell survival and chemokine receptor expression 
of cDC1 [57]. Moreover, IL-10 inhibits IL-12 produc-
tion of CD103+ cDC1s [81, 82]. Vascular endothelial-
derived growth factor (VEGF) is identified as another 
cytokine hampering the differentiation and antigen 
presentation of DCs [83–85]. Increased VEGF is asso-
ciated with decreased circulating and tumor-infiltrating 
DCs [86]. Some tumor-derived metabolites, such as 
oxysterols and lactic acid, restrain the CCR7-mediated 
migration and antigen presentation capability of DCs 

[87, 88]. Further investigations showed the activation 
of lactate receptor GPR81 specifically downregulated 
MHC-II expression [89]. Generally, the functions of 
DCs are dampened, and antigen presentation machin-
ery is disorganized in the TME [90]. Therefore, reinvig-
orating DC from abnormal status is feasible to boost 
antitumor immunity and overcome immunotherapy 
resistance [91, 92].

Harnessing DC for cancer treatment
As the core component bridging innate immunity and 
adaptive immunity, DC is a valuable target for immuno-
therapy, especially for patients resistant to T cell-based 
therapies. At present, DC-targeted strategies mainly 
consist of agonists for DC differentiation, expansion, 
and activation, blockade of immunoinhibitory signals, 
and DC vaccines (Fig. 1b) (Table 1) [93].

Table 1  Dendritic cell-targeted immunotherapies for cancer patients

DC dendritic cell, STING stimulator of interferon genes, IFN-I type I interferon, TLR toll-like receptor, Flt3L Fms-like tyrokine kinase 3 ligand, GM-CSF granulocyte–
macrophage colony-stimulating factor, GMR GM-CSF receptor, RIG-I retinoic acid inducible gene I, VEGF vascular endothelial-derived growth factor, TGF-β 
transforming growth factor-β, PD-1 programmed death-protein 1, PD-L1 programmed death ligand 1, TIM-3 T cell immunoglobulin and mucin-domain containing-3

Classification Agent Target Therapeutic effects on DCs

Agonists for DC differentiation, 
expansion, and activation

STING agonist cGAS-STING pathway Promoting IFN-I production, DC 
maturation, antigen presentation, 
and cross-priming of T cells

TLR2/4 agonists TLR2/4 Mainly promoting cDC2 activation

TLR3 agonists TLR3 Mainly promoting cDC1 activation

TLR7/8 agonists TLR7/8 Promoting pDC and cDC activation

TLR9 agonists TLR9 Promoting pDC and cDC activation

FLT3L Flt3-FLT3L Expanding cDC

GM-CSF GM-CSF-GMR Promoting cDC moblization 
and activation

RIG-I agonists RIG-I-MAVS pathway Enhancing DC phagocytic potential

Agonistic CD40 antibodies CD40L-CD40 Enhancing cross-priming of T 
cells and educating macrophage 
to degenerate fibrosis

Blockade of immunoinhibitory 
signals

VEGF inhibitors VEGF-VEGFR pathway Increasing functional DCs in the TME

Anti-IL-10 receptor antibodies IL-10 receptor pathway Increasing IL-12 production

Anti-TGF-β antibodies TGF-β signaling pathway Increasing functional DCs in the TME

Anti-PD-L1 antibodies PD-L1-PD1 and PD-L1-CD28 
interactions

Reactivating dysfunctional T cells 
inside tumors and allowing CD80/
CD28 interaction to provide 
costimulatory signaling for T cell 
activation

Anti-TIM-3 antibodies TIM-3 Promoting the activation 
of the cGAS-STING pathway 
and CXCL9 expression in cDC1

Cancer vaccines Tumor-associated antigens or neo-
antigens

Tumor antigens Improving cancer-specific adaptive 
immune response

DC vaccines Autologous cDC precursors 
or monocyte-derived DCs loaded 
with cancer antigens

Improving cancer-specific adaptive 
immune response
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Agonists for DC, differentiation, expansion, and activation
The cGAS/STING signaling is a well-known innate 
immune sensing mechanism responding to infection, 
senescence, DNA damage, and dysregulated cell cycle 
[94]. cGAS recognizes cytoplasmic double-stranded 
DNA and then catalyzes the formation of secondary 
messenger cyclic GMP-AMP (cGAMP). Stimulated by 
cGAMP, STING undergoes conformation changes and 
then translocates from endoplasmic reticulum to Golgi 
body, triggering downstream TBK1/IRF3/IFN-I or TBK1/
NF-κB cascades [61, 95]. STING-dependent TBK1/IRF3/
IFN-I axis licenses DCs to cross-present cancer anti-
gens to CD8+ T cells with MHC-I molecules. At the 
same time, STING-dependent NF-κB activation enables 
DCs to generate proinflammatory cytokines. Notably, in 
some tumor-associated myeloid cells, STING-dependent 
NF-κB signaling could also be initialized by inhibitor of 
kB kinase ε (IKK-ε) in a TBK1-independent manner [96]. 
Based on the immunostimulatory effects of STING-
dependent IFN-I production, pharmacological activation 
of STING by intratumorally injecting cGAMP retards 
tumor growth in multiple murine colon carcinoma and 
melanoma models [97–101]. However, the applications 
of cGAMP and synthetic cyclic dinucleotides (CDNs) are 
limited by poor bioavailability and intratumoral deliv-
ery [102]. Relatively, non-CDN small-molecule STING 
agonists overcome these shortcomings that could be 
systemically delivered. Despite the failure of DMXAA 
[103], some novel STING agonists, such as di-ABZI, 

MSA-2, and manganese, exhibit potent antitumor activ-
ity in murine tumor models, which are undergoing 
clinical evaluations (Table  2) [104–108]. These STING 
agonists effectively upregulate costimulatory mol-
ecules (e.g., CD40, CD80, CD83, and CD86) and MHC 
on DCs. Besides, STING agonists improve the antigen 
presentation of DCs, especially the tumor-specific anti-
gen cross-presentation to CD8+ T cells [95]. As a result, 
STING agonist administration enhances the expression 
of IFN-β and other proinflammatory cytokines (e.g., 
IL-6 and TNF-α) or chemokines (e.g., CCL2/3/4/5 and 
CXCL9/10), the maturation and functions of DCs, and 
the expansion of tumor-infiltrating CD8+ T cells [106]. 
Besides, some STING agonists, such as manganese, could 
strengthen NK cell activation and NK cell-mediated cyto-
toxicity in the TME [107]. STING agonists are a promis-
ing strategy for cancer immunotherapy, mobilizing the 
innate defensive sensor for immunological surveillance 
and promoting cancer-specific T cell priming.

Besides cGAS/STING, Toll-like receptors (TLRs) are 
also damage- or pathogen-sensing pathways contributing 
to DC activation [109]. Up to now, more than ten func-
tional TLRs (TLR1-10) have been identified in humans 
[110]. Human DC subsets have different TLR expression 
patterns: TLR3/8 in cDC1 and TLR7/9 in pDC [93, 111]. 
TLR3 agonist such as Poly(I:C) enhances cDC1 matura-
tion and cytokine production such as IL-12 and IFN-I 
[112]. Additionally, TLR8 agonist, such as Motolimod, 
promotes cDC1 maturation, with encouraging antitumor 

Table 2  STING agonists for cancer immunotherapy

CDN cyclic dinucleotide, IT intratumoral, IM intramuscular, IV intravenous, SC subcutaneous

Agents Delivery Molecular Type Combination therapy Clinical trials Cancer types Phase

ADU-S100 IT CDN analog Pembrolizumab NCT03937141 Advanced head and neck cancer 2

Ipilimumab NCT02675439 Advanced solid tumors or lymphomas 1

PDR001 (Anti-PD-1) NCT03172936 Advanced solid tumors or lymphomas 1

MK-1454 IT CDN analog Pembrolizumab NCT04220866 Advanced head and neck cancer 2

Pembrolizumab NCT03010176 Advanced solid tumors or lymphomas 1

MK-2118 IT or SC Non-CDN Pembrolizumab NCT03249792 Advanced solid tumors or lymphomas 1

SB11285 IV CDN analog Atezolizumab NCT04096638 Advanced solid tumors 1

GSK3745417 IV Non-CDN NA (Monotherapy) NCT05424380 Refractory myeloid malignancies 1

Dostarlimab NCT03843359 Advanced solid tumors 1

BMS-986301 IM or IV or IT CDN analog Nivolumab or Ipilimumab NCT03956680 Advanced solid tumors 1

BI 1387446 IT CDN analog Ezabenlimab NCT04147234 Advanced solid tumors 1

E7766 IT Non-CDN NA (Monotherapy) NCT04144140 Advanced solid tumors or lymphomas 1

NA (Monotherapy) NCT04109092 Bladder cancer 1

TAK-676 IV CDN analog Pembrolizumab NCT04879849 Advanced solid tumors 1

Pembrolizumab NCT04420884 Advanced solid tumors 1

SNX281 IV Non-CDN Pembrolizumab NCT04609579 Advanced solid tumors or lymphomas 1

SYNB1891 IT Engineered bacteria vectors Atezolizumab NCT04167137 Advanced solid tumors or lymphomas 1

Manganese Inhalation Non-CDN Radiotherapy NCT04873440 Advanced solid tumors or lymphomas 1/2
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activity and tolerable toxicity profiles in squamous cell 
head and neck cancer [113–115]. Moreover, TLR7 and 
TLR9 are widely explored due to their capability to 
induce IFN-I generation in pDCs. The immunostimula-
tory effects and antitumor activity of TLR7 agonists such 
as Imiquimod have been confirmed in various types of 
cancer [116–119]. TLR9 agonists also promote cytokine 
production and pDC maturation [120, 121]. Also, other 
novel agents such as granulocyte macrophage-colony 
stimulating factor (GM-CSF), Flt3L agonist, and RIG-I 
agonist improve DC-mediated T cell response by expand-
ing DC population, promoting DC activation or phago-
cytic potential [122–125].

In contrast with the co-inhibitory signaling pathway, 
costimulatory pathways such as CD40/CD40L enhance 
the cross-priming capability of antigen-presenting cells 
[13]. CD40 on DCs is activated by CD40L on CD4+ T 
cells, leading to the upregulation of MHC, costimula-
tory molecules, and various TNF superfamily ligands 
(CD137L, GITRL, and OX40L). Furthermore, CD40-
activated DCs generate more IL-12 to support CD8+ T 
cell activation and skew the following adaptive immunity 
toward Th1 polarization [126]. Overwhelming evidence 
demonstrates that agonistic CD40 antibodies expand 
cancer antigen-specific CD8+ T cells and provide robust 
immune protection by cross-presenting DCs [127]. In 
some murine tumor models, the antitumor activity of 
agonistic CD40 antibodies is T cell-dependent [128–
130]. However, some current studies showed that CD40 
activation-mediated tumor regression was independ-
ent of T cells. On the contrary, agonistic CD40 antibod-
ies activate macrophages (also highly expressing CD40), 
causing stroma depletion and tumor regressions [131]. 
This effect is attributed to systemically released IFNγ 
and CCL2, which redirect Ly6C+CCR2+ monocytes and 
macrophages to infiltrate into the TME and degenerate 
fibrosis [132]. To date, multiple CD40-targeted monoclo-
nal antibodies have been developed and tested in clinical 
trials [133]. Generally, agonistic CD40 antibodies have 
a minimal response rate in cancer patients, except for 
selicrelumab [134]. In the phase 1 study of selicrelumab, 
27% of melanoma patients achieved partial responses 
[134, 135]. For most types of cancers with low immuno-
genicity, it is hard to effectively destroy tumors by agonis-
tic CD40 antibody monotherapy. Combination therapies 
with chemotherapy, radiotherapy, or other immunother-
apies might be worth exploring in the future [126].

Blockade of immunoinhibitory signals
As mentioned above, various immunosuppressive fac-
tors like TGF-β, IL-10, IDO, PGE2, and VEGF hamper 
the functions of DCs, hindering immune surveillance 
and promoting tumor advancement [93, 136]. Therefore, 

neutralizing these immunoinhibitory factors enhances 
the recruitment, survival, activation, and antigen pres-
entation capability of DCs [137]. Anti-VEGF antibodies 
improve the functions of DCs of spleen and lymph node, 
synergizing with peptide-pulsed DCs to prolong the sur-
vival of tumor-bearing mice [138]. In a phase 1 study of 
VEGF-Trap, VEGF inhibition significantly increased the 
ratio of mature DCs, without alterations in populations 
of total DCs [139]. Besides, in the MMTV-PyMT tumor 
model, blocking IL-10 signaling by anti-IL-10 receptor 
antibody enhanced treatment response to carboplatin 
and paclitaxel. This improved efficacy is attributed to the 
strengthened IL-12 production of DC and CD8+ T cell 
response [82]. Also, neutralizing TGF-β by conventional 
or bispecific antibodies increases the number of func-
tional DCs in the TME [140–142]. Furthermore, IDO, 
functioning as an intracellular enzyme within the cytosol, 
transforms tryptophan into kynurenine. This conversion 
disrupts the activities of cytotoxic T cells, elevates the 
presence of Tregs and TAMs, and impedes the matura-
tion of DCs [143–145]. Consequently, IDO contributes to 
rendering the TME more immunosuppressive, facilitat-
ing cancer escape from immune surveillance. Pharmaco-
logic inhibition of IDO or deletion of Ido1 gene induces 
differentiation of inflammatory Ly6c+CD103+ DCs in 
mice, promoting anti-tumor T-cell response and inhib-
iting tumor growth [146]. The application of anti-IDO 
siRNA therapy enhances cytokine production and the 
antigen presentation capabilities of DCs [147]. Tumor 
vaccines that incorporate IDO inhibitors effectively 
enhance the uptake of tumor antigens and the matura-
tion of DCs, ultimately inducing a robust tumor-specific 
T-cell response [148]. Currently, numerous clinical trials 
are underway to assess the effectiveness of immunothera-
pies involving IDO inhibitors [144].

Recent data demonstrate that PD-L1 on DCs dampens 
T cell activation and antitumor immune response. PD-L1 
blockade enhances de novo T cell priming in tdLNs and 
reactivates dysfunctional T cells in the TME [149]. The 
antitumor activity of anti-PD-L1 therapy is more depend-
ent on the renaissance of dysfunctional T cells inside 
tumors rather than newly activated T cell response in 
tdLNs [149]. Moreover, DCs could simultaneously over-
express PD-1, PD-L1, and CD80 [150, 151]. When DCs 
express a large amount of CD80, the cis-CD80/PD-L1 
interactions on DCs prevent PD-L1 binding to PD-1 
on T cells, contributing to the optimal T cell response 
[152]. However, for patients with cancers, the expres-
sion level of PD-L1 is significantly higher than CD80 on 
tumor-associated and peripheral DCs [153]. In this situ-
ation, anti-PD-L1 antibodies dissociate cis-CD80/PD-L1 
binding, allowing CD80/CD28 interaction to provide 
costimulatory signaling for T cell activation [153]. Apart 
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from PD-L1, T-cell immunoglobulin and mucin domain 
3 (TIM-3) expressed on tumor-infiltrating DCs sup-
presses HMGB1-mediated activation of the innate sens-
ing system [154]. Further explorations reveal that TIM-3 
limits HMGB1-dependent DNA uptake, while TIM-3 
blockade promotes the activation of the cGAS-STING 
pathway and CXCL9 expression of cDC1 [155]. Extensive 
preclinical evidence has demonstrated the advantages of 
anti-TIM-3 antibodies, especially in combination with 
anti-PD-1/PD-L1 therapies [156]. The therapeutic poten-
tial of TIM-3 blockade is currently being evaluated in 
multiple types of cancers.

Cancer vaccines and other strategies
The administration of cancer antigens, which could be 
captured and presented by endogenous DCs, is a prom-
ising immunotherapy approach [157]. These cancer anti-
gen vaccines contain synthetic peptides, recombinant 
cancer antigen-expressing viruses, or tumor lysates [55, 
158]. Fuelled by next-generation sequencing and predic-
tion algorithms in silico, the identification of neoanti-
gens increases the specificity of cancer antigen vaccines 

[159–161]. Considering that antigen presentation by DCs 
is the cornerstone for cancer antigen vaccines, antigens 
and adjuvants are usually encapsulated in degradable 
biomaterial or nanoparticles [162, 163]. To date, YS-ON-
001 (rabies virus-based vaccine) has been approved for 
pancreatic cancer and hepatocellular carcinoma in the 
US [164]. Currently, advances have been made in tar-
geted delivery to specific DC subsets [165]. DEC205, lan-
gerin, and CLEC9A are commonly used to target cDC1s. 
In  vitro experiments confirm that the fusion protein of 
anti-DEC205 single-chain fragment variable and peptides 
of cancer antigen MAGE-A3 is presented more efficiently 
than direct peptide pulse [166]. Fusion antibody of anti-
DEC205 and cancer antigen NY-ESO-1 effectively mobi-
lizes CD8+ T cell response [167], showing encouraging 
antitumor activity in phase 1 studies [168]. Besides, more 
DC-targeted cancer antigen vaccines, such as CD209/
DC-SIGN-fusion protein, are still under evaluation 
[169–171].

In addition to cancer antigen vaccines, the application 
of DC vaccines is extensively explored as well (Table  3) 
[157]. Such vaccines consist of manipulated autologous 

Table 3  Representative clinical studies of dendritic cell vaccines for cancer immunotherapy

TNBC triple-negative breast cancer, DC dendritic cell, TARP T-cell receptor gamma chain alternate reading frame protein

Clinical trials Cancer types DC vaccines Phase Status

NCT00006434 Non-Hodgkin’s Lymphoma Tumor lysate-pulsed DCs 3 Completed

NCT03905902 Ovarian cancer, fallopian tube cancer, peritoneal 
carcinoma

Autologous DCs (DCVAC/OvCa) 3 Withdrawn

NCT00779402 Prostate cancer PAP-loaded DC vaccine (Sipuleucel-T) 3 Completed

NCT05100641 Glioblastoma Therapeutic autologous DC vaccine (AV-GBM-1) 3 Not yet recruiting

NCT02503150 Colorectal cancer Antigen-pulsed DCs 3 Unknown

NCT04277221 Glioblastoma Autologous DC/tumor antigen 3 Unknown

NCT00005947 Prostate cancer PAP-loaded DC vaccine (Sipuleucel-T) 3 Completed

NCT01759810 Glioblastoma Proteome-based DC vaccine 3 Unknown

NCT01782287 Lung cancer brain metastases Proteome-based DC vaccine 3 Unknown

NCT01983748 Uveal melanoma Autologous DCs loaded with autologous tumor 
RNA

3 Active, not recruiting

NCT04348747 Brain metastasis from TNBC or HER2+ breast cancer Anti-HER2/HER3 DC vaccine 2 Recruiting

NCT05127824 Kidney cancer Autologous alpha-DC1/TBVA vaccine 2 Not yet recruiting

NCT04912765 Hepatocellular carcinoma or liver metastases From 
colorectal cancer

Neoantigen-loaded DC vaccine 2 Recruiting

NCT01876212 Melanoma Type I-polarized autologous DC vaccine 2 Completed

NCT02285413 Melanoma Mature DC loaded with mRNA encoding tumor-
associated antigens gp100 and tyrosinase

2 Completed

NCT00266110 Breast cancer Therapeutic autologous DCs 2 Completed

NCT02362464 Prostate cancer Multi-epitope TARP peptide autologous DC vac-
cine

2 Completed

NCT01413295 Colorectal cancer Autologous DCs loaded with autologous tumor 
antigens

2 Completed

NCT04487756 Lung cancer Autologous DC vaccine 1/2 Recruiting

NCT02061332 Breast cancer HER-2 pulsed DC vaccine 1/2 Completed

NCT00087984 Kidney cancer RNA-loaded DC vaccine 1/2 Completed
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DCs isolated from cancer patients and expanded in vitro 
[172]. cDC precursors or monocyte-derived DCs are 
loaded with cancer antigens, activated with cytokine 
cocktails, and then reinfused into patients [173]. In 
various types of cancers, including non-small cell lung 
cancer (NSCLC), ovarian cancer, prostate cancer, mela-
noma, renal cell carcinoma, and glioblastoma, DC vac-
cines exhibit potent antitumor activity with a manageable 
safety profile [174–184]. In the latest phase 3 study of 
tumor lysate-loaded DC vaccine (DCVax-L), the com-
bination of DCVax-L and standard of care (temozo-
lomide) significantly extended the survival of patients 
with recurrent (HR = 0.58; P < 0.001) or newly diagnosed 
(HR = 0.80; P = 0.002) glioblastoma, compared to patients 
receiving temozolomide treatment alone [182]. At pre-
sent, the DC vaccine sipuleucel-T (consisting of autolo-
gous DCs pulsed with the recombinant fusion protein 
containing GM-CSF and prostatic acid phosphatase) has 
been approved for prostate cancer [185]. In the phase 3 
study NCT00065442, sipuleucel-T prolonged the sur-
vival of patients with castration-resistant prostate cancer 
(HR = 0.77; P = 0.02) [186]. However, immunosuppres-
sive TME is a great obstacle to DC vaccination. Thus, 
the combination of DC vaccination with other therapies, 
such as immune checkpoint inhibitors, appears ideal for 
fostering de novo cancer-specific T-cell response [187].

Other DC-targeted strategies, such as agents improv-
ing DC migration by the CCR7-CCL19/CCL21 axis, have 
been adopted for cancer immunotherapy. When DCs 
encounter foreign stimuli, they undergo a mature pro-
cess, with the upregulation of costimulatory molecules, 
MHC, and CCR7. The increased CCR7 expression on 
DCs drives their migration toward lymph nodes under 
the guide of the CCL19/CCL21 concentration gradi-
ent. Then, the CCR7-CCL19/CCL21 signaling directs 
DCs to distribute in the T-cell zone, where they prime 
and activate naïve T cells by antigen presentation [188]. 
Theoretically, CCL19 or CCL21 therapy could potenti-
ate antitumor immunity by improving the trafficking of 
cytotoxic T cells and DCs. In multiple murine tumor 
models, intratumoral injection of CCL19 or CCL21 
increases the numbers of tumor-infiltrating DCs and T 
cells, retards tumor growth, and prolongs the survival 
of tumor-bearing mice [189–193]. Besides, inducing 
tumor cells to overexpress CCL19 or CCL21 by trans-
fection also enhances the functions of DCs and tumor 
control [194–197]. Also, autologous DCs engineered to 
overexpress CCR7 exhibit stronger migration capabil-
ity and antitumor properties in murine tumors [198]. 
Besides immune response, CCR7 signaling also contrib-
utes to tumor progression, especially metastasis to the 
lymph nodes [199]. As a result, approaches inhibiting 
lymph node metastasis through CCR7 antagonism might 

unintentionally hinder the immune response to cancer. 
Conversely, strategies enhancing CCR7 expression or 
introducing CCL19/CCL21 into the TME could inadvert-
ently promote metastasis. Therefore, several unresolved 
questions remain, necessitating answers before maximiz-
ing the therapeutic potential of the CCL19/CCL21-CCR7 
axis. The initial pivotal question stems from the paradox 
between CCR7’s roles in enhancing the immune response 
to tumors and facilitating lymph node migration and 
metastasis.

Besides, IL-12 is a proinflammatory cytokine that 
activates both the innate and adaptive arms of the host 
immune system. In preclinical investigations, recombi-
nant IL-12 has demonstrated strong antitumor effects 
[200]. It has been observed that the success of anti-PD-1 
therapy relies on the presence of IL-12-producing DCs 
[70]. To address the challenges associated with the tox-
icity of systemic IL-12 administration, various localized 
delivery methods for IL-12 have been developed. These 
approaches include immunocytokine fusion, cell-based 
delivery, nucleic acid-based delivery, and virus-based 
delivery [201–204]. Clinical studies have confirmed the 
safety of intratumoral injections involving an adeno-
viral vector encoding IL-12 or DCs transfected with an 
adenovirus encoding IL-12 [205, 206]. Additionally, viro-
therapy through the intratumoral injection of a Semliki 
Forest virus encoding IL-12 (SFV-IL-12) has been shown 
to induce an inflammatory response and synergize effec-
tively with anti-PD-1 therapy in tumor models [207]. 
Furthermore, SFV-IL-12 has been found to enhance the 
therapeutic effects of a 4-1BB agonist antibody [208]. In 
multiple preclinical investigations, the adoptive transfer 
of tumor-specific CD8+ T cells transiently expressing 
IL-12 has also demonstrated significant antitumor activ-
ity [209, 210]. Together, the outcomes of localized IL-12 
immunotherapies, particularly in preclinical studies, have 
shown significant potential, meriting further investiga-
tion in clinical studies.

Macrophage‑targeted cancer immunotherapy
Macrophages are a heterogeneous population of cells 
with high plasticity, showing diverse phenotypes under 
different stimuli [211]. Historically, macrophages are 
classified into two phenotypes, commonly referred to as 
M1 (classically activation, stimulated by IFN-γ and TLR 
ligands) and M2 (alternatively activation, stimulated 
by IL-4 and IL-13) [212]. M1 phenotype contributes to 
macrophage-mediated inflammatory tissue injury and 
tumor cell clearance, while M2 phenotype participates in 
damage repair and remodeling, as well as defense against 
parasites [213]. In the process of inflammation, the acti-
vation and polarization of macrophages are dynamically 
changed: M1 cells in triggering and propagating immune 
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response, M2 or M2-like populations in inflammation 
resolution, or smouldering chronic inflammation [214–
216]. However, with the development of omics technol-
ogy, more and more novel macrophage subsets have been 
identified, and mixed expression of M1 and M2 biomark-
ers is also observed in tumor-infiltrating macrophages 
[217–220]. It is realized that the M1-M2 classification 
system is too simplistic to present complex phenotypes 
of macrophages.

Tumor‑associated macrophage (TAM)
Tumor-infiltrating macrophage (termed TAM) is an 
important player in antitumor immune response and 
cancer progression [221]. Although some studies have 
opposite results [222], high infiltration of TAM is gen-
erally considered a risk factor in most preclinical and 
clinical studies [223]. Notably, signals regulating the 
polarization and education of TAMs change in different 
tumors and even in different stages or spatial locations of 
the same tumor, leading to various phenotypes of TAMs 
[224–226]. Therefore, TAM subsets should be preciously 
redefined to elaborate on the distinct roles of TAMs 
under specific circumstances.

Macrophages are recruited and educated by multiple 
factors in the TME, including colony-stimulating fac-
tor-1 (CSF1), GM-CSF, TGF-β, IL-1, IL-4, CCL2, CCL5, 
immune complexes, complement, histamine, tumor-
derived non-coding RNAs [213, 227–230]. Besides, 
increased TNF-α and IL-1β in the TME could induce 
IL-8 expression, which recruits immunosuppressive 
myeloid leukocytes including macrophages and predicts 
poor outcomes in patients treated with immune check-
point inhibitors [231, 232]. As a result, TAMs are com-
monly set in the protumor M2-like phenotype [233]. 
It has been validated that TAMs have substantial influ-
ences on tumor initiation and progression, especially by 
enhancing immune escape [234–239]. TAM-derived sol-
uble molecules such as IL-10, IL-23, TGF-β, IDO, PGE2, 
and arginase 1 (ARG1) directly suppress the functions 
of tumor-infiltrating T and NK cells (Fig. 2a) [240–245]. 
Besides, autocrine IL-10 and TNF-α stimulate PD-L1 
upregulation on TAMs [246]. These increased immune 
checkpoint ligands, such as B7-H4 and PD-L1/2, induce 
T cell exhaustion [247, 248]. Furthermore, TAMs inhibit 
the functions of T cells and NK cells by HLA-G/ILT2 and 
HLA-E/CD94 pathways [249]. Also, TAMs directly sup-
press the antitumor immune response by recruiting Tregs 
and supporting their differentiation [250]. Chemokines 
produced by TAMs, including CCL5, CCL20, and 
CCL22, recruit Treg into TME, while TGF-β and IL-10 
induce Treg differentiation [249, 250].

In parallel with the immunosuppressive effects, TAMs 
also promote tumor progression in immune-independent 

ways, including angiogenesis, stemness, treatment resist-
ance, and distant metastasis [251]. In gastric and colon 
cancers, chronic inflammation and oncogenic signals 
enhance the activities of multiple inflammation-asso-
ciated transcription factors such as NF-κB, STAT3, and 
HIF-1α, recruiting macrophages into the TME [211]. 
Subsequently, these recruited macrophages gener-
ate a panel of molecules (e.g., EGF, proinflammatory 
cytokines, and ROS) to reshape the microenvironment 
and facilitate tumor initiation [252–256]. Also, TAMs 
induce epithelial-mesenchymal transition (EMT) of 
cancer cells by secreting CCL2, CCL5, CCL18, COX-2, 
MMP9, EGF, TGF-β, and IL-6 [254, 257–263]. These par-
acrine cytokines from TAMs endow cancers with greater 
invasive and metastatic capacities [264]. Furthermore, 
TAM-derived soluble molecules and TAM-tumor inter-
actions maintain the stemness of cancer cells [265–268]. 
Moreover, TAMs support tumor growth by producing 
proangiogenic factors, including VEGFA, EGF, and TGF-
β1 [269–271]. Given the pivotal roles of TAMs in can-
cer development, intensive attempts have been made to 
delete TAMs or reprogram TAM behaviors.

TAM‑targeted therapies
Numerous studies have confirmed the protumor roles 
of TAM in the majority of human tumors. As a result, 
targeting TAMs has emerged as a promising therapeu-
tic strategy for cancer patients (Table 4). In the ensuing 
paragraphs, we summarize several TAM-based thera-
peutic strategies, including targeting TAM recruitment, 
activation, and metabolism (Fig.  2b). Besides, myeloid 
checkpoint inhibitors and macrophage cell therapies are 
promising, especially with present immune checkpoint 
blockade.

Inhibiting TAM recruitment and expansion
As mentioned above, TAM recruitment is driven by 
chemokines and CSF1. Although therapeutic antibod-
ies or inhibitors targeting attractants such as CCL2-
CCR2 (e.g., Lenalidomide and Trabectedin) have 
exhibited antitumor activities in preclinical studies, 
there are rare clinical trials with positive data [272]. 
Relatively, clinical trials of CSF1-CSF1R inhibitors 
(e.g., Cabiralizumab and Pexidartinib) are experiencing 
improved efficiency and progress. CSF1-CSF1R block-
ade deletes the TAM population, retards tumor growth, 
and increases treatment sensitivity [273–275]. Besides, 
the CSF1R inhibitor BLZ945 could reprogram TAM 
from a tumor-promoting toward a tumor-suppress-
ing phenotype, enhancing antigen presentation and 
T or NK cell activation [273]. Moreover, in the phase 
1 study of diffuse-type tenosynovial giant-cell tumor 
(NCT01494688), anti-CSF1R antibody emactuzumab 
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decreased tumor-infiltrating CD68/CD163+ mac-
rophages and achieved pronounced activity (response 
rate: 71%) [276]. At present, more clinical studies of 
CSF1R inhibitors combined with other therapies are 
still ongoing. Some novel TAM depletion strategies, 
such as CAR-T cells recognizing folate receptor-β, 

eliminate M2-like TAM subsets and promote tumor-
specific T-cell response [277]. Furthermore, Lurbi-
nectedin, which is a synthetic alkaloid, remodels the 
TME by prompting apoptosis in TAMs and diminish-
ing the expression of CCL2. Lurbinectedin has received 
approval for the treatment of small-cell lung cancer 

Fig. 2  The protumor activities of TAMs and TAM-targeted cancer therapies. a The protumor properties of TAMs. TAMs are commonly set 
in the protumor M2-like phenotype and have substantial influences on tumor initiation and progression. On the one hand, TAM-derived soluble 
molecules directly suppress the functions of tumor-infiltrating T cells and NK cells. Besides, autocrine IL-10 and TNF-α stimulate PD-L1 upregulation 
on TAMs. Also, TAMs directly suppress the antitumor immune response by recruiting Tregs and supporting their differentiation. On the other 
hand, TAMs also promote tumor progression in immune-independent ways, including tumor initiation and growth, angiogenesis, stemness, 
EMT, and distant metastasis. b TAM-targeted therapies. TAMs could be harnessed by targeting their recruitment, activation, immune checkpoint 
pathways, and metabolism. Besides, macrophage-based cell therapies, such as nanoparticle-loaded monocytes, CAR-M, and genetically engineered 
hematopoietic progenitors, also show potent antitumor activities. Abbreviations: TAM, tumor-associated macrophage; EMT, epithelial-mesenchymal 
transition; CSF1, colony-stimulating factor 1; CSF1R, CSF1 receptor; TLR, Toll-like receptor; STING, Stimulator of interferon genes; LILRB, Leukocyte 
immunoglobulin-like receptor B; SIRPα, Signal regulatory protein-α; IDO, Indoleamine 2,3-dioxygenase; CAR, Chimeric antigen receptor
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[278]. Also, there have been recent advancements in 
the use of M2 macrophage-targeting peptides (M2peps) 
to specifically target and deliver pro-apoptotic agents to 
M2-like TAMs in preclinical tumor models [279]. These 
therapeutic agents associated with M2peps demon-
strate preferential toxicity towards M2-like TAMs and 
exhibit potent anti-tumor effects, holding promise for 
potential clinical applications in TAM-focused immu-
nomodulation [280].

Regulating TAM activation
Classical activation endows macrophages with antitumor 
properties. Agents enhancing classical activation path-
ways, including CD40, STING, and TLR, reset TAMs in 
the antitumor M1-like phenotype. As described above, 
CD40L-CD40 is the core pathway to activate antigen-
presentation cells [281]. Preclinical studies demonstrate 
that agonistic CD40 antibodies effectively arm mac-
rophages with cytostatic activity against tumor cells, 

Table 4  Macrophage-targeted immunotherapies for cancer patients

TNBC triple-negative breast cancer, CSF1R colony-stimulating factor 1 receptor, TLR toll-like receptor, STING stimulator of interferon genes, LILRB2 leukocyte 
immunoglobulin like receptor B2

Classification Target Agent Representative 
clinical trials

Cancer type Phase

Inhibiting TAM recruitment and expansion CCL2 Carlumab NCT00992186 Prostate cancer 2

Carlumab NCT01204996 Solid tumors 1

Carlumab NCT00537368 Solid tumors 1

Trabectedin NCT03085225 Soft-tissue sarcomas and ovarian carcinomas 1

CCR2 PF-04136309 NCT01413022 Pancreatic neoplasms 1

MLN1202 NCT01015560 Bone metastases 2

CSF-1 MCS110 NCT02435680 TNBC 2

NCT00757757 Prostate cancer, Bone Metastases 1/2

CSF-1R IMC-CS4 NCT01346358 Solid tumors 1

AMG 820 NCT01444404 Solid tumors 1

Emactuzumab NCT02323191 Solid tumors 1

ARRY-382 NCT02880371 Solid tumors 1/2

Pexidartinib NCT02777710 Pancreatic and colorectal cancers 1

SNDX-6352 NCT03238027 Solid tumors 1

BLZ945 NCT02829723 Solid tumors 1/2

Cabiralizumab NCT03158272 Malignancies 1

PLX7486 NCT01804530 Solid tumors 1

Regulating TAM activation CD40 CP-870,893 NCT02225002 Advanced solid tumors 1

NCT01103635 Melanoma 1

NCT00607048 Neoplasms 1

NCT01456585 Adenocarcinoma pancreas 1

RO7009789 NCT02760797 Neoplasms 1

NCT02588443 Pancreatic cancer 1

NCT02665416 Solid tumors 1

TLR7/8 NKTR-262 NCT03435640 Solid tumors 1

STING ADU-S100 NCT02675439 Advanced solid tumors and lymphomas 1

Targeting immune checkpoints CD47 Hu5F9-G4 NCT03922477 Acute myeloid leukemia 1

TTI-621 NCT02663518 Hematologic malignancies and
solid tumors

1

CC-90002 NCT02641002 Acute myeloid leukemia 1

LILRB2 JTX 8064 NCT04669899 Solid tumors 1/2

IO-108 NCT05054348 Solid tumors 1

TAM metabolism regulators Glucose 
metabo-
lism

2-Deoxyglucose NCT0063308 Advanced cancer and hormone refractory 
prostate cancer

1/2

Macrophage cell therapy Her-2 CT-0508 NCT04660929 Her-2+ tumors 1

IFN-α2 TEMFERON NCT03866109 Glioblastoma 1/2
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stimulating antitumor response and slowing tumor 
growth [282, 283]. Furthermore, agonistic CD40 anti-
bodies improve the antigen presentation capability of 
TAMs by upregulating costimulatory molecules and 
MHC expression [213]. Besides CD40, agents target-
ing TLR exert immunostimulatory effects by enhanc-
ing the cytotoxic activity and chemokine production of 
TAMs [284, 285]. The TLR4 agonist monophosphoryl 
lipid A combined with IFN-γ drives the transformation 
from CD206+ TAMs to iNOS+ macrophages, activat-
ing T cells by inducing macrophages to secret IL-12 and 
TNF-α [285]. Additionally, STING agonists promote 
IFN-I secretion and macrophage polarization toward the 
M1-like phenotype. In murine tumor models, STING 
agonists increase the ratio of M1/M2 ratio and synergize 
with anti-PD-1/PD-L1 therapies [105, 106, 286].

Targeting immune checkpoints
The phagocytosis and cross-presentation capabilities of 
TAMs are constrained by immune checkpoints such as 
signal regulatory protein-α (SIRPα), SLAM family recep-
tors (SFRs), sialic acid-binding immunoglobulin-like 
lectin (Siglec), and leukocyte immunoglobulin-like recep-
tor B (LILRB) families [287–289]. CD47 is the ligand 
of SIRPα, also known as the “not eat me” signal. In the 
TME, overexpressed CD47 on cancer cells bind to SIRPα 
on myeloid cells, especially macrophages, monocytes, 
granulocytes, and CD4+ DCs, limiting phagocytosis 
and intracellular degradation [290]. Agents blocking 
the CD47-SIRPα axis improve macrophage phagocy-
tosis, enhance programmed cell death of cancer cells, 
and promote macrophage-mediated ADCP or ADCC 
effects [291–296]. Besides, anti-CD47 antibody-medi-
ated phagocytosis facilitates antigen presentation and 
cross-priming of CD8+ T cells [297]. In the phase 1 study 
of non-Hodgkin’s lymphoma NCT02953509, the anti-
CD47 antibody Hu5F9-G4 combined with rituximab 
showed promising activity (response rate: 50%; complete 
response rate: 36%) [298]. Besides, more anti-CD47 anti-
body-involved strategies achieve encouraging results in 
solid and hematological malignancies [299–301].

Besides the CD47-SIRPα axis, other immune check-
points, such as Siglec receptors, are also vital targets for 
cancer immunotherapy [302]. Similar to PD-1 signal-
ing, sialoglycan ligands bind to inhibitory Siglec recep-
tors (e.g., Siglec-7 and Siglec-9), suppressing intracellular 
immune signaling by recruiting SHP1/2 phosphatases 
[303]. Innate immune cells, especially TAMs, highly 
express Siglec receptors [304]. In various cancers, tumor-
derived ligands (e.g., CD24 and sialoglycans) induce 
monocyte differentiation toward protumor TAM pheno-
type by Siglec-7, Siglec-9, Siglec-10, Siglec-15, and Siglec-
E [287, 305–311]. Actually, Siglec signaling undermines 

the functions of multiple immune cells, including but not 
limited to DCs, NK cells, and T cells. Degenerating sialic 
acid residues by sialidase improves lymphocyte phago-
cytosis [312]. Preclinical studies have demonstrated 
that Siglec-15 blockade boosts antitumor immunity and 
inhibits tumor growth [310, 313]. Interrupting CD24-
Siglec-10 interaction by anti-CD24 antibody improves 
phagocytic clearance of cancer cells by macrophages 
[287]. Moreover, other immune checkpoints and scav-
enger receptors are also identified as important regula-
tors for TAM polarization and functions, such as LILRB, 
PD-1, and P-selectin glycoprotein ligand 1 (PSGL1) 
[314–319]. At present, most agents targeting these path-
ways are in clinical evaluation except for anti-PD-1/
PD-L1 antibodies.

TAM metabolism regulators or other novel agents 
reprogramming TAM
Driven by nutrient deprivation and hypoxia, dysregulated 
metabolic conditions in the TME promote the accumu-
lation of TAMs [320]. The by-product of glycolysis is 
lactic acid, which could promote the polarization of mac-
rophages toward the M2-like phenotype [321]. Agents 
targeting glycolysis, such as 2-deoxy-D-glucose (2-DG), 
reverse M2 polarization [322]. Moreover, the respiratory 
complex I inhibitor metformin reprograms the TME: 
increasing immunoinhibitory CD11c+ but decreasing 
immunosupportive CD163+ TAMs, and strengthen-
ing macrophage phagocytosis against cancer cells [323]. 
Inhibiting tumor-derived retinoic acid induces the dif-
ferentiation of monocytes toward immunostimulatory 
DCs rather than TAMs [324]. Also, glutamine metabo-
lism inhibitors retard tumor growth by rewiring TAMs 
toward the M1-like phenotype [325]. Furthermore, 
IDO1-mediated tryptophan metabolism, tumor-derived 
PGE2, and oxysterol receptor LXR transcription factor 
also maintain the immunoinhibitory functions of TAMs 
[213, 326, 327]. Agents blocking these molecules have 
immense potential and broad prospects. Apart from 
regulating tumor metabolites, other novel agents, such 
as anti-IL-1 antibodies and nanoparticles containing 
mRNAs encoding IRF5-IKKβ or miRNA-155, effectively 
reprogram TAMs toward antitumor effectors [328–330].

Macrophage‑based cell therapy
The TAM pool is dynamically replenished by peripheral 
circulating monocytes, which are constantly trafficked 
into the TME. Therefore, monocytes could be used as 
Trojan horses to delivery agents into tumors [331–333]. 
Nanoparticle-loaded monocytes exhibit superior antitu-
mor activity to free nanoparticles [334]. Also, genetically 
engineered hematopoietic progenitors with high expres-
sion of Tie-2 and IFN-α effectively migrate to tumors and 



Page 14 of 55Yi et al. Molecular Cancer          (2023) 22:187 

reshape the TME by releasing IFN-α [335]. Genetically 
engineered myeloid cells highly expressing IL-12 improve 
T cell response and inhibit tumor growth [336]. Further-
more, engineered particles (containing cytokines such as 
IFN-α) adhering to macrophage surfaces could facilitate 
TAMs to maintain their antitumor phenotype in the hos-
tile TME [337].

Apart from engineering macrophages for drug delivery, 
macrophage engineered with CAR (CAR-M) therapy is 
also a promising manner to mobilize antitumor immune 
response [338, 339]. Similar to CAR-T cells, CAR-M con-
tains extracellular antigen-recognizing, transmembrane, 
and intracellular domains. However, ZAP-70, a kinase for 
T cell activation, is not available in macrophages. Instead, 
CAR-M transduces phagocytic signals by another kinase 
Syk, which contains tSH2 domain and binds to CD3ζ 
[340]. Besides CD3ζ, other domains with immunorecep-
tor tyrosine-based activation motifs (ITAMs), such as 
multiple epidermal growth factor-like domains protein 
10 (Megf10) and Fc receptor (FcRγ), also elicit phagocy-
tosis of macrophages [341, 342]. CD3, CD147, FcR, and 
Megf10 are commonly utilized intracellular signaling 
domains in CAR-M products [343].

The first CAR-M product was developed in 2018, 
initially referred to as CAR-phagocytes (CAR-Ps), by 
employing a lentiviral vector to introduce a CAR with 
either Megf10 or FcRγ as the cytosolic domain into 
mouse macrophages [342]. These CAR-Ps displayed spe-
cific engulfment of entire human cancer cells, particu-
larly when a tandem PI3K p85 subunit was integrated 
into the CAR. Although this study primarily focused 
on the impact of CAR on phagocytosis while excluding 
other essential anti-tumor functions carried out by mac-
rophages, it marked a significant milestone in CAR-based 
immunotherapy [342]. Moreover, CAR-M cells possess 
the capacity to stimulate the transformation of M2 mac-
rophages into M1 and release proinflammatory cytokines 
in the TME. It was reported that anti-HER2 CAR-M cells 
not only displayed tumor-killing capabilities but also 
induced a proinflammatory TME. Additionally, CAR-M 
products could enhance the activity of tumor-specific 
T cells by generating proinflammatory chemokines and 
cytokines, reprogramming M2-like into M1-like mac-
rophages, and increasing the expression of antigen pres-
entation machinery [341]. Furthermore, the extracellular 
matrix (ECM) hampers immune cell infiltration into the 
TME, limiting the efficacy of immunotherapy. In con-
trast, macrophages are naturally attracted to the TME, 
break down the ECM, and consequently represent the 
most abundant immune cell population in tumors by 
secreting MMPs. Shen et  al. engineered CAR-M cells 
utilizing CD147 as the intracellular signaling domain 
(referred to as CAR-147  M). They observed that when 

these CAR-147  M cells were co-cultured with target 
cells, there was a significant increase in MMP expression. 
Although this boost in MMPs did not affect tumor cell 
proliferation in vitro, CAR-147 M cells rapidly accumu-
lated at the tumor site when administered in  vivo. This 
led to a reduction in tumor collagen deposition and pro-
moted the infiltration of immune cells, ultimately result-
ing in significant tumor suppression [344]. Generally, 
CAR-M has some advantages over CAR-T cells in solid 
tumors, especially enhanced trafficking and infiltration 
into the TME [345, 346]. At present, most CAR-M prod-
ucts are at the preclinical stage, and only one autologous 
CAR-M targeting Her-2 is in clinical evaluation (CT-
0508, NCT04660929, Phase 1) [339, 347].

In addition to Trojan horse strategies and CAR-M, 
there exist combinations that merge elements from both 
strategies. Nanocomplexes comprised of nanocarriers 
designed for macrophage targeting and plasmid DNA 
encoding CAR-interferon-γ, when administered in  vivo, 
induce the development of CAR-M1 macrophages. These 
specialized macrophages exhibit the ability to engage 
in CAR-mediated cancer cell phagocytosis, orchestrate 
anti-tumor immunomodulatory responses, and effec-
tively impede the growth of solid tumors [348].

Harnessing MDSC for cancer therapy
MDSCs are a heterogeneous population of cells with 
immunosuppressive effects [349]. Under normal physi-
ological conditions, bone marrow cells differentiate 
into mature subsets, including DCs, macrophages, and 
granulocytes (also termed terminally differentiated cells) 
[350]. However, the differentiation process of MDSC is 
disturbed by the TME, arresting it in an immature state 
[351]. The immunosuppressive nature of MDSCs con-
tributes to cancer progression by promoting immune 
evasion and treatment resistance. For several solid 
tumors and hematologic malignancies, elevated levels of 
MDSCs have been associated with poor prognosis and 
treatment response [352–360]. Understanding the role 
of MDSCs in cancer is crucial for developing effective 
therapeutic strategies. Targeting MDSCs and modulating 
their immunosuppressive functions may hold promise in 
enhancing antitumor immune responses and improving 
patient outcomes.

MDSCs and their protumor effects
MDSCs could be mainly classified into two cell sub-
sets named polymorphonuclear MDSC (PMN-MDSC, 
similar to neutrophils in phenotype and morphology) 
and monocytic MDSC (M-MDSC, similar to mono-
cytes in phenotype and morphology) [361]. PMN-
MDSCs typically account for more than 80% of all 
MDSCs in various cancers [361]. Besides, within the 
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overall population of MDSCs, there is a small subset 
comprising less than 3% of cells that possess myeloid 
colony-forming capability [361]. In mice, MDSCs are 
distributed in peripheral blood, bone marrow, spleen, 
lung, liver, and tumors. Murine PMN-MDSC is com-
monly defined as CD11b+Ly6G+Ly6Clo, while murine 
M-MDSC is defined as CD11b+Ly6G−Ly6Chi [362]. In 
humans, MDSCs are distributed in peripheral blood and 
tumors. Predominantly, human PMN-MDSC is defined 
as CD11b+CD15+HLA-DRloCD66b+, while human 
M-MDSC is defined as CD11b+CD14+CD33+HLA-DRlo/− 
[363]. Moreover, Lin−HLA-DR−CD33+ cells (early-stage 
MDSC or e-MDSC) are a mixture of MDSCs containing 
more immature progenitors [364].

The primary characteristic of MDSCs is immune sup-
pression. Although MDSCs have been implicated in 
undermining the functions of multiple immune cells, 
their main targets are T cells. MDSCs cause immune 
suppression by upregulating TGF-β, IL-10, IDO, iNOS, 
ARG1, PEG2, reactive oxygen species (ROS), PD-L1, 
and depleting cystine and cysteine in the TME (Fig. 3a) 
[21, 365, 366]. Besides, the ADAM17 on MDSCs exerts 
immunosuppressive effects by downregulating L-selectin 
(T cell homing receptor) on naïve T cells [367, 368]. It 
has been confirmed that PMN-MDSCs and M-MDSCs 
prefer different manners to inhibit T cell response. PMN-
MDSCs preferentially produce ARG1, ROS, peroxyni-
trite, and PGE2, while M-MDSCs preferentially generate 
NO, TGF-β, and IL-10 [351, 369, 370]. Apart from cyto-
toxic T cells, MDSCs impair other tumoricidal immune 
cells, including DCs, B cells, and NK cells [371–373]. 
Furthermore, MDSCs weaken antitumor immunity by 
inducing the differentiation or enhancing the functions 
of immunosuppressive cells such as TAMs and Tregs 
[374–376].

In addition to exerting immunosuppressive effects, 
MDSCs contribute to tumor progression by promoting 
tumor angiogenesis, maintaining cancer stemness, induc-
ing EMT, and facilitating premetastatic niche formation 
[377]. On the one hand, MDSCs support vascularization 
by generating VEGF and MMP-9 [378]. On the other 
hand, some MDSCs have the potential to differentiate 
toward endothelial-like cells, directly incorporating into 

tumor endothelium [379]. Moreover, exosomal S100A9 
released by MDSCs increases the stemness of colorectal 
cancer in a HIF-1α-dependent manner [380]. MDSC-
endowed stemness qualities are also observed by trigger-
ing STAT3-NOTCH crosstalk and inducing miRNA-101 
in breast and ovarian cancer cells [381, 382]. Besides, in 
murine colorectal cancer models, increased CXCL1 in 
premetastatic tissues attracts CXCR2+ MDSCs, which 
support cancer cell survival and promote metastatic 
niche formation [383].

MDSC‑targeted therapies
The significant involvement of MDSCs in tumor devel-
opment has sparked the exploration of MDSC-targeted 
therapies. These strategies can be categorized into four 
groups: (1) suppressing the recruitment and expansion 
of MDSCs; (2) facilitating the differentiation of MDSCs 
into mature myeloid cells; (3) counteracting the functions 
of MDSCs; and (4) directly depleting MDSCs (Table  5) 
(Fig. 3b) [21, 384].

Suppressing the recruitment and expansion of MDSCs
MDSCs migrate to tumors under the guidance of 
chemokine pathways such as CXCLs-CXCR1/2 and 
CCL2-CCR2 [385, 386]. CXCLs-CXCR1/2 blockade 
improves the antitumor activities of immunotherapies 
in various murine models by preventing the traffick-
ing of PMN-MDSCs into the TME [387–389]. So far, 
CXCR1/2 inhibitors (e.g., AZD5069, Reparixin, Nav-
arixin, and SX-682) and anti-CXCL8 antibodies neu-
tralizing IL-8 (also termed CXCL8 in humans) (e.g., 
HuMax-IL8 and ABX-IL8) are undergoing clinical 
evaluation [390, 391]. Besides, IL-1β contributes to the 
recruitment and expansion of MDSCs and modulates 
their immunoinhibitory functions in the TME [392]. 
Inhibiting IL-1β or NLRP3 inflammasome (a key com-
ponent for IL-1β maturation) reduces MDSCs and 
enhances antitumor immunity in head and neck squa-
mous cell carcinoma models [393–397]. Additionally, 
GM-CSF leads to MDSC accumulation and weakens 
cancer antigen-specific T-cell response [398]. At the 
same time, G-CSF initiates MDSC mobilization and 
promotes tumor angiogenesis [399]. GM-CSF/G-CSF 

Fig. 3  MDSC-mediated T cell suppression and MDSC-targeted therapies. a MDSC-mediated T cell suppression. Although MDSCs have 
been implicated in undermining the functions of multiple immune cells, their main targets are T cells. MDSCs cause immune suppression 
by upregulating TGF-β, IL-10, IDO, iNOS, ARG1, ROS, PD-L1, and depleting cystine and cysteine in the TME. Besides, the ADAM17 on MDSCs exerts 
immunosuppressive effects by downregulating L-selectin (T cell homing receptor) on naïve T cells. b MDSC-targeted therapies can be categorized 
into four groups: suppressing the recruitment and expansion of MDSCs; facilitating the differentiation of MDSCs into mature myeloid cells; 
counteracting the functions of MDSCs; and directly depleting MDSCs. Abbreviations: MDSC, myeloid-derived suppressor cell; ASC, asctype amino 
acid transporter; CAT-2B, cationic amino acid transporter 2B; Xc−, cystine-glutamate transporter; IDO, indole-2,3 dioxygenase; NO, nitric oxide; iNOS, 
inducible nitric oxide synthase; TCR, T cell receptor; ROS, reactive oxygen species

(See figure on next page.)



Page 16 of 55Yi et al. Molecular Cancer          (2023) 22:187 

Fig. 3  (See legend on previous page.)
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blockade with antibodies reduces MDSC accumula-
tion and overcomes cancer immune escape [400, 401]. 
Moreover, MDSCs simultaneously express S100A8/
A9 and their receptors RAGE, forming a positive feed-
back loop that promotes the recruitment of MDSCs 
and amplifies their immunosuppressive capabilities. 

S100A8/A9 inhibitors disturb this positive feedback 
loop, diminish MDSC accumulation, and retard tumor 
growth in various murine models [402–404]. Further-
more, anti-VEGF-VEGFR therapies also inhibit MDSC 
recruitment by blocking VEGFR1 signaling of MDSCs 
[405, 406].

Table 5  MDSC-based therapeutic strategies

MDSC myeloid-derived suppressor cell, SCLC small cell lung cancer, NSCLC non-small cell lung cancer, TNBC triple-negative breast cancer, TLR toll-like receptor, VEGF 
vascular endothelial growth factor, IDO indoleamine 2,3-dioxygenase, PDE5 phosphodiesterase 5, HDAC histone deacetylase, COX2 cyclooxygenase-2

Classification Target Agent Representative 
clinical trials

Cancer type Phase

Suppressing the recruitment 
and expansion of MDSCs

CXCR1/2 Reparixin NCT02370238 TNBC 2

Navarixin NCT03473925 Solid tumors 2

SX-682 NCT04574583 Solid tumors 1/2

CXCR2 AZD5069 NCT03177187 Prostate cancer 1/2

CXCL8 HuMax-IL8 NCT02536469 Solid tumors 1

S100A8/A9 Tasquinimod NCT01234311 Prostate cancer 3

VEGF Bevacizumab NCT02669173 Glioblastoma 1

VEGFR Pazopanib NCT00866697 Gynecologic cancer 3

Cabozantinib NCT01605227 Prostate cancer 3

Regorafenib NCT01853319 Colorectal cancer 3

Sorafenib NCT01234337 TNBC 3

Facilitating the differentiation 
of MDSCs

Nuclear retinoid receptors All-trans retinoic acid NCT00617409 SCLC 2

STAT3 AZD9150 NCT03421353 NSCLC 1

IONIS-STAT3Rx NCT01563302 Solid tumors and lymphoma 1/2

TLR9 CpG ODN NCT04952272 Solid tumors 1

TLR7/8 Resiquimod NCT00821652 Solid tumors 1

TLR7/8 Motolimod NCT02431559 Ovarian cancer 1/2

TLR3 NS-9 Poly (I:C) NCT00094003 Solid tumors with liver metas-
tases

1

Suppressing the functions 
of MDSCs

COX-2 Celecoxib NCT03026140 Colon cancer 2

PDE5 Tadalafil NCT03993353 Head and neck cancer 2

Sildenafil NCT00752115 NSCLC 2/3

HDAC1/3 Entinostat NCT02708680 TNBC 1/2

HDAC6 Ricolinostat NCT02091063 Lymphoma 1/2

Nrf2 CDDO-Me NCT00529438 Lymphoma 1

COX-1 Nitroaspirin NCT00331786 Colon cancer 1

mTOR Everolimus NCT04203901 Renal cell carcinoma 2

Glycolysis Metformin NCT03709147 Lung cancer 2

IDO Indoximod NCT01792050 Breast cancer 2

CD73 MEDI9447 NCT02503774 Solid tumors 1

Directly depleting MDSCs CD33 Gemtuzumab ozogamicin NCT03531918 Acute myeloid leukemia 1/2

BI 836858 NCT01690624 Acute myeloid leukemia 1

Cytotoxic drugs 5-Fluorouracil NCT03299660 Rectal cancer 2

Gemcitabine NCT03302247 NSCLC 2

Carboplatin NCT05841472 NSCLC 2

Paclitaxel NCT04815408 Ovarian cancer 2

Capecitabine NCT03111732 Biliary tract carcinoma 2
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Facilitating the differentiation of MDSCs into mature myeloid 
cells
All-trans retinoic acid (ATRA) regulates cell differen-
tiation, proliferation, and apoptosis by nuclear retinoid 
receptors [407]. Differentiation therapy with ATRA 
has altered the therapeutic paradigm of acute promye-
locytic leukemia and significantly improved patient 
outcomes [408]. Similarly, ATRA could promote the 
differentiation of immature MDSCs toward terminated 
differentiated myeloid cells (DCs, macrophages, and 
granulocytes) [409]. In patients with metastatic renal 
cell carcinoma, ATRA treatment substantially reduces 
MDSC in peripheral blood, increases the cDC/pDC ratio, 
and enhances antigen presentation and antigen-specific 
T-cell response [410]. In multiple clinical trials of lung 
cancer (NCT00617409) and melanoma (NCT02403778), 
additional ATRA treatment significantly augments 
immunotherapy and chemotherapy [411–413]. Moreo-
ver, constitutive STAT3 activation prevents the differ-
entiation of immature myeloid cells and maintains their 
immunosuppressive properties [414, 415]. In patients 
with advanced lung cancers, Cucurbitacin B (JAK2/
STAT3 inhibitor) decreases the ratio of immature-
to-mature myeloid cells in peripheral blood [416]. In 
patients with diffuse large B-cell lymphomas, AZD9150 
(antisense oligonucleotide of STAT3) reduces periph-
eral PMN-MDSCs as well [417]. The synergistic effects 
between STAT3 inhibitors and immunotherapies have 
been validated in a series of preclinical and clinical stud-
ies [418–422].

TLRs also play an important role in the maturation and 
differentiation of MDSCs. CpG oligodeoxynucleotides 
(termed CpG ODN, TLR9 agonist) stimulates antitumor 
immunity by activating CD8+T/NK cells, inducing the 
differentiation of M-MDSC toward M1-like macrophages 
[423–425]. In  vivo experiments demonstrate that CpG 
effectively promotes the maturation of MDSC and abro-
gates MDSC-mediated T-cell suppression by triggering 
IFN-α production of pDCs [426]. Also, TLR7/8 and TLR3 
agonists, such as resiquimod, motolimod, and Poly (I: C), 
relieve MDSC-induced immune evasion and revive anti-
tumor immune response [114, 427–429]. Furthermore, 
some novel agents, such as curcumin, β-glucans, and 
icariin, drive the differentiation of MDSCs into DCs and 
macrophages and undermine their suppressive functions 
[430–432].

Counteracting the functions of MDSC
The COX-2-PGE2 axis is the key pathway to maintain 
the immunosuppressive functions of MDSCs [433–435]. 
On the one hand, PGE2 in the TME attracts MDSCs by 
CXCL12-CXCR4 [436]. On the other hand, PGE2 from 
tumor cells triggers the nuclear p50/NF-κB signaling in 

M-MDSCs, which reprograms their response to IFN-γ 
and decreases TNF-α generation [437]. Besides, par-
acrine PGE2 induces MDSCs to upregulate COX-2 
expression, which could stimulate autocrine PGE2 pro-
duction, forming a positive feedback loop [438]. This 
PGE2-COX-2 positive feedback loop facilitates to stabi-
lize MDSC phenotype [438]. Agents targeting COX-2-
PGE2 signaling hamper the immunoinhibitory functions 
of MDSCs and improve the sensitivity to immunothera-
pies [439, 440]. For example, celecoxib (COX-2 inhibitor) 
decreases the production of ROS and NO in MDSCs and 
reverses T-cell tolerance [441]. Besides, celecoxib com-
bined with CD40 agonist therapy effectively increases 
CXCL10 but reduces ARG1 in MDSCs. As a result, anti-
tumor immunity is restored, and tumor growth is sup-
pressed in glioma-bearing mice [442].

Additionally, phosphodiesterase 5 (PDE5) inhibi-
tors such as tadalafil and sildenafil reduce the levels 
of ARG1, iNOS, and IL-4Rα (myeloid suppressor cell 
suppressive marker) [443, 444]. In clinical studies of 
melanoma (EudraCT: 2011–003273-28) and head and 
neck squamous cell carcinoma (NCT00843635 and 
NCT00894413), tadalafil reduces MDSC frequency, ham-
pers the immunoinhibitory properties of MDSCs, and 
augments cancer-specific immunity [445–447]. Moreo-
ver, epigenetic regulators such as histone deacetylase 
inhibitors (HDACis) have substantial influences on the 
functions of MDSCs. In murine tumor models, HDACi 
treatment significantly downregulates the expression 
of COX-2, ARG1, and iNOS in MDSCs [448, 449]. The 
class I HDACi entinostat mainly modulates the functions 
of PMN-MDSCs, while class II HDAC6 inhibitor ricolin-
ostat primarily regulates the functions of M-MDSCs 
[450]. Moreover, other novel agents such as Nrf2 acti-
vator (CDDO-Me), vitamin D3, and nitroaspirin (the 
derivative of aspirin with nitro moiety) are identified as 
negative regulators for MDSC-mediated immunosup-
pression [451–453].

The functions of MDSCs could be suppressed by dis-
turbing their metabolism. Due to the high consumption 
and active fatty acid oxidation (FAO) of MDSC, inhibiting 
some key molecules in FAO impedes MDSC-mediated 
immune suppression [454]. Agents targeting FAO rate-
limiting enzymes such as etomoxir (targeting enzyme 
CPT1) and lipofermata (targeting enzyme FATP2) 
remarkably abrogate the immunosuppressive activities of 
MDSCs in the TME [455, 456]. In addition to fatty acid 
metabolism, glycolysis also has positive effects on the 
survival and activity of MDSCs. In murine tumor mod-
els, tumor-infiltrating MDSCs have more active glycolysis 
and mTOR signaling [457]. Rapamycin (mTOR inhibitor) 
downregulates the quantity and activity of M-MDSCs 
in mice [458]. Also, a glycolysis modulator (metformin) 
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counteracts the inhibitory functions of MDSCs by 
impeding the expression and enzymatic activity of CD39/
CD73 [459]. Furthermore, targeting other metabolic 
enzymes or metabolites such as IDO (converting tryp-
tophan to kynurenine) inhibitors and CD39/CD73 (con-
verting ATP to adenosine) inhibitors also reprograms 
MDSCs and contributes to the renaissance of antitumor 
response [384, 460, 461].

It is important to note that certain agents affect-
ing metabolism can also impact immune cells within 
the TME apart from MDSCs. For instance, the activa-
tion of STAT3 signaling leads to a metabolism biased 
toward FAO in CD8+ T cells, which impairs their func-
tionality and contributes to the development of obesity-
related breast cancer. On the other hand, inhibiting FAO 
enhances the performance of CD8+ T effector cells and 
inhibits tumor growth [462]. Additionally, the peroxi-
some proliferator-activated receptor agonist Bezafibrate 
stimulates mitochondria, enhancing oxidative phos-
phorylation, glycolysis, and FAO, ultimately leading to 
improved functionality in T cells infiltrating tumors 
[463]. Furthermore, the costimulatory signal 4-1BB 
enhances the glucose and fatty acid metabolism in T cells 
to meet their growing energy demands. The effects on 
the T cell cycle and anti-apoptotic activity mediated by 
4-1BB signaling are entirely nullified by the FAO inhibi-
tor etomoxir [464]. Moreover, there is evidence that Met-
formin therapy restores the impaired metabolic function 
of hepatic CD8+ T cells in non-alcoholic steatohepatitis 
(NASH) and enhances the efficacy of anti-PD-1 treat-
ment in liver tumors associated with NASH [465]. Fur-
thermore, the impact of immunometabolism on other 
immune cells, such as DCs and macrophages, has been 
confirmed. The anabolic and catabolic processes sub-
stantially influence the immunogenicity and tolerogenic-
ity of DCs, while succinate and citrate directly regulate 
macrophage functions [466]. Hence, it is essential to 
comprehensively consider the effects of metabolism-
modulating agents on various components of the TME 
beyond MDSCs to achieve optimal immunotherapy 
efficacy.

Directly depleting MDSCs
Some chemotherapeutic agents could selectively eradi-
cate regulatory immune cells, especially MDSC, and 
alleviate immune suppression [467]. For example, 5-fluo-
rouracil and gemcitabine induce the MDSC apoptosis 
and restore tumor-specific CD8+ T cell response [468]. 
Carboplatin and paclitaxel cause MDSC depletion 
and boost therapeutic vaccination-mediated immune 
response [469]. Besides, low-dose capecitabine reduces 
circulating MDSCs and increases cytotoxic immune infil-
tration in the TME [470]. It is notable that some cytotoxic 

agents might also have positive effects on MDSCs, such 
as cyclophosphamide (CTX). The difference could be 
attributed to agents, administration schedules and doses, 
and heterogeneity of sampling [471]. Generally, these 
agents are not MDSC-specific, with cytotoxic effects on 
all rapidly proliferating, even lymphocytes in the TME. 
Relatively, therapies targeting CD33 have better speci-
ficity for MDSCs [472]. Fc-engineered anti-CD33 anti-
bodies (BI 836858) and anti-CD33 antibody-conjugated 
drug (gemtuzumab ozogamicin) could specifically elimi-
nate MDSCs [472, 473]. Additionally, agonists of TNF-
related apoptosis-induced ligand (TRAIL) receptors and 
anti-angiogenesis tyrosine kinase inhibitor sunitinib are 
regarded as MDSC eliminators as well [474, 475].

Collectively, MDSCs play a crucial role in tumor devel-
opment, leading to the exploration of four main cat-
egories of MDSC-targeted therapies. These approaches 
include (1) suppressing MDSC recruitment and expan-
sion through blockade of chemokine pathways and 
cytokines, (2) promoting MDSC differentiation into 
mature myeloid cells using agents like ATRA, STAT3 
inhibitors, and TLR agonists, (3) countering MDSC 
functions by targeting the COX-2-PGE2 axis and meta-
bolic pathways, and (4) directly depleting MDSCs, often 
through chemotherapeutic agents like 5-fluorouracil and 
gemcitabine or specific MDSC-targeting therapies like 
anti-CD33 antibodies. Notably, some metabolic modu-
lators can affect other immune cells in the TME. These 
strategies offer potential in enhancing cancer immuno-
therapy by either reducing MDSC numbers or neutraliz-
ing their suppressive functions, but their broader effects 
on immune cells need to be considered for optimal 
outcomes.

Targeting NK for cancer immunotherapy
NK cells are a type of immune cell that make up the 
innate lymphoid cellular defense and surveillance system 
[476, 477]. When encountering tumor cells, it serves as 
the primary sentinel in safeguarding organismal health. 
In humans, NK cells lack membranal TCR and CD3 mol-
ecules but have neural cell adhesion molecule (NCAM, 
also known as CD56), along with activating and inhibi-
tory receptors [478, 479]. Particularly, unlike other sur-
face biomarkers only found in the bloodstream, CD335 
is an activating receptor that can also identify NK cells 
in formalin-fixed paraffin-embedded tissue specimens 
[480]. Commonly, NK cells take up approximately 
5%-20% of circulating lymphocytes in humans [481]. NK 
cells can be activated and exert cytotoxic effects inde-
pendent of specific antigen recognition, as they recognize 
foreign organisms and malignancies through the afore-
mentioned stimulatory and inhibitory receptors [476].
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The biology of human NK cells
It is well established that human NK cells proceed 
through five discrete stages in lineage derivation and 
development [482]. Human NK cells, together with other 
kinds of innate lymphoid cells (ILCs), are derived from 
multipotent CD34+ hematopoietic progenitors [483, 
484]. A subset of these progenitors is committed into 
α-lymphoid precursor (αLP) cells by expressing integ-
rin α4β7 [485, 486]. Subsequently, αLP cells expressing 
CXCR6 are able to develop into precursor NK and ILC-3 
subtypes [487]. The symbolic event of precursor NK 
occurrence is the IL-1R1 expression on αLP cells [488, 
489]. Predominant precursor NK cells undergo further 
development and maturation in bone marrow, while a 
minority of cells undergo maturation in peripheral lym-
phoid organs [490, 491]. In these sites, NK cells gradu-
ally express specific surface receptors driven by multiple 
transcription factors, including T-bet, Id2, E4BP4, and 
Eomesodermin (Eomes) [492–495]. In brief, NK cell 
development involves dynamic changes in lineage-spe-
cific biomarkers, with a gradual decrease in progeni-
tor and precursor markers and an increase in bioactive 
receptors.

The trafficking, homing, and activation of NK cells 
are mutually reinforcing processes that complement the 
maturation of these cells. Specifically, immature NK cells 
require certain factors to facilitate their trafficking during 
maturation. Most NK cells undergo maturation within 
a specialized niche located in bone marrow, where they 
are surrounded and nourished by parenchymal sinusoidal 
vessels [496]. Only after CXCR4 is downregulated, NK 
cells migrate from bone marrow into the sinusoidal ves-
sel and subsequently into peripheral blood [497]. Addi-
tionally, various chemokines and integrins, along with 
their corresponding receptors and ligands, are involved 
in this process. Therefore, distinct types of chemokines 
and integrins can be identified as biomarkers for circulat-
ing or tissue-resident NK cells [498, 499]. The migration 
of NK cells from sinusoidal vessels into circulation also 
needs the participation of various factors, particularly 
CX3CR1, S1P5, and CXCR6 [500–505]. Additionally, 
CX3CR1 boosts the infiltration of NK cells into the cen-
tral nervous system, which is traditionally considered the 
forbidden zone for immune cells [504, 506].

The mature NK cells can be further classified 
into two major subtypes: CD56brightCD16dim/− and 
CD56dimCD16+ [490], while rare cells differentiate into 
memory NK cells under specific stimuli [507, 508]. The 
CD56brightCD16dim/− subset possesses poor cytotoxic-
ity and minor circulating proportion, which could fur-
ther differentiate into CD56dimCD16+ cells [481]. The 
CD56brightCD16dim/− subset is more commonly observed 
in lymph nodes, the gastrointestinal tract, and tonsils, 

where the overall proportion of NK cells is lower [478]. 
In these sites, they exert more secretory biologic function 
rather than cell lysed function [509–511]. On the con-
trary, the CD56dimCD16+ subset is regarded as cytotoxic 
NK cells, which could directly eradicate tumor cells by 
death receptor signaling or cytotoxic effector molecules 
[512].

After licensing, NK cells are directly activated, 
equipped with a diverse array of inhibitory and activat-
ing surface receptors, independent of MHC-restricted 
antigen recognition when encountering detrimental 
factors [492]. In the TME, NK cells are activated by the 
construction changes or expression downregulation 
of MHC-I molecules [513]. Also, NK cells can be acti-
vated by stimulatory receptors such as NKp30, NKp44, 
and NKp46 [514]. Additionally, the CD16 receptor on 
NK cells exerts separate activating functions after being 
engaged by the immunoglobulin-opsonized cells. This 
process elicits the phosphorylation of the ITAM domain 
of FcεRIγ and CD3ζ on the surface of NK cells, ultimately 
culminating in ADCC [515, 516].

The roles of NK cells in antitumor immunity
However, the antitumor activity of NK cells is limited 
by multiple factors, such as insufficient NK cell infiltra-
tion and the hostile TME [517, 518]. It has been validated 
that cancer-derived exosomes and hypoxia could blunt 
NK cell activity [519, 520]. Besides, some modulatory 
immune cells and cytokines, such as TGF-β, activin-A, 
and adenosine, also contribute to the immunosuppres-
sion of tumor-infiltrating NK cells [521–525].

High NK cell abundance in the TME predicts a favora-
ble prognosis in a myriad of cancers [241, 526–528], and 
NK cells suppress tumorigenesis by executing immuno-
surveillance [529, 530]. In the TME, NK cell activation is 
determined by activating and inhibiting signals, such as 
NKG2D, 2B4, DNAM1, LFA1, CD28H, IL-12, IFN-α and 
TGF-β (Fig. 4) [531–533]. Notably, HLA-E exerts dualis-
tic immunoregulatory effects on NK cells when binding 
to different receptors [534–538]. Activated NK cells can 
eliminate tumor cells by releasing perforin and gran-
zymes, as well as by inducing apoptosis via ADCC, FasL, 
or TRAIL [531, 539]. Besides, NK cells secrete cytokines, 
including IFN-γ and TNF-α, which lead to tumor growth 
arrest [540]. The ruptured tumor cells will unleash neo-
antigens, subsequently prompting the adaptive immune 
response [541]. As the communicative bridge between 
innate and adaptive immunity, DC plays crucial and intri-
cate roles in antitumor immune responses. Additionally, 
NK cells promote the recruitment of cDCs into the TME 
[57]. A novel type of NK cells, termed induced pluripo-
tent stem cells (iPSCs)-derived NK cells, is reported to 
recruit T cells into the TME and augment the therapeutic 
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effect of immune checkpoint inhibitors [542]. Apart from 
executing immune surveillance and elimination func-
tions by tissue-resident NK cells, circulating NK cells can 
also prevent tumor metastasis by activating the NKp46/
NCR1 signaling [478, 543]. The mechanisms underlying 
the recognition of tumor cells by NK cells highlight the 
perspectives for NK cell-targeted strategies, particularly 
in cold tumors lacking neoantigens.

Developing NK cell‑targeted therapies
The antitumor activity of NK cells has been unequivocally 
demonstrated through in  vitro experiments and animal 

models, providing a solid rationale for investigating their 
potential as anticancer agents [544–546]. Generally, NK 
cell-based therapeutic strategies can be categorized into 
five distinct groups based on the sequential processes of 
NK cells, including trafficking, activation, effector func-
tion execution, and secondary adaptive immune priming, 
which synergistically reinforce each other (Fig. 5).

NK cell adoptive transfer
The most primitive conception of the employment of 
NK cells for cancer treatment is the transfer of healthy 
allogenous NK cells in patients with malignancies. In the 

Fig. 4  Interaction between NK cell and the TME. Schematic diagram depicting primary receptors expressed by NK cells and their corresponding 
ligands on tumor cells or cytokines in the TME. Activating stimulative receptors triggers an intracellular signaling cascade that activates NK cells 
and vice versa. The two factors dynamically modulate the behavioral pattern of NK cells, whose disequilibrium may lead to immune evasion 
or clearance. Abbreviations: NK cell, natural killer cell; TME, tumor microenvironment; Ecto-CRT, ecto-calreticulin; A2AR, A2a adenosine receptor; 
ACVR1, activin receptor type 1
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1980s, NK cell adoptive transfer technology was used to 
conquer hematological malignancies [544]. However, 
the antitumor activity of autogenous natural NK cells 
is moderate. To overcome the limitations of natural NK 
cells, engineered NK cells are developed by augment-
ing stimulating receptors and dampening inhibitory 
receptors [547, 548]. The innovation has revitalized the 
application of adoptive NK cell transfer. Since then, it 
has become a dominant therapeutic strategy [549–551], 
with superior safety relative to other adoptive cellular 
transfer therapies [552]. Despite the rosy perspective, 
more efforts are needed to improve NK cell infiltration 
and tumor specificity [553]. Furthermore, autologous 
activated and expanded natural killer cells, referred to 
as NKAE, offer a highly effective and low-toxicity strat-
egy for multiple myeloma. In a phase 1 clinical trial, two 
out of five patients achieved a clinical objective response 
after receiving two infusions of NKAE [554]. The growing 
body of preclinical and clinical research in multiple mye-
loma has positioned NK adoptive cell therapy as a com-
parable treatment approach to CAR-T [551, 555, 556].

NK cell‑stimulating lymphokine regimen
The cytokine regimen, which could enhance the cyto-
toxic activity of killer cells, was originally clinically used 

for renal cell carcinoma [557]. In this clinical study, NK 
cells became the predominant lymphocyte subset of 
peripheral blood mononuclear cells (PBMC) after the 
IL-2 combined IFN-γ treatment, indicating the promis-
ing application perspective of NK cell-stimulating lym-
phokine strategies [557]. Further investigations have been 
conducted to explore the efficacies of NK cell-stimulating 
cytokines, particularly IL-15, IL-2, and IFN-α [558–565]. 
These lymphokines enhance the tumor-killing activity of 
NK cells. Administrating exogenous cytokines might be a 
promising complement to other NK cell-based therapies.

Harnessing ADCC of NK cells
Antibodies targeting molecules on the surface of NK 
cells were developed at the end of the last century [566]. 
The classical antitumor agents, such as trastuzumab, 
cetuximab, and rituximab, are capable of eliciting the 
ADCC of NK cells [540]. Mechanically, these antibodies 
act as a physical bridge, linking the NK and tumor cells. 
For example, trastuzumab binds to CD16 on NK cells 
via its immunoglobulin G1 (IgG1) Fc portion and binds 
to HER2 on tumor cells via its Fab portion, mediating 
ADCC either synchronously or subsequently [567–569]. 
Besides, some immune checkpoint inhibitors like ave-
lumab could trigger ADCC as well [570]. For tumor cells 

Fig. 5  NK cell-based therapeutic strategies. a NK cell-based therapeutic strategies could enhance multiple biological processes, 
including trafficking, activation, tumor-killing activity, and NK cell-mediated secondary adaptive immune priming. b NK cell-based therapeutic 
strategies. The green box denotes the biological process targeted by the corresponding strategy, while the red box denotes the biological process 
not involved in the corresponding strategy. Abbreviations: ADCC, natural killer cell-mediated antibody-dependent cellular cytotoxicity; CAR, 
chimeric antigen receptor
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with high PD-L1 expression, avelumab directly guides 
NK cells to execute immune clearance, independent of 
the PD-1/PD-L1 signaling [570].

Immune checkpoint blockade of NK cells
Moreover, immune checkpoint inhibitors targeting NK 
cells, which could boost the activation and cytotoxic 
functions of NK cells, have emerged as a promising 
approach in cancer immunotherapy. Several receptors on 
NK cells have been recognized as immune checkpoints, 
including NKG2A/CD94, KIR family, LIR1, TIGIT/
CD96, B7H3, PD-1, CTLA-4, LAG-3, TIM-3, CD200R, 
and SIRPα [532, 571]. The anti-inhibitory KIR antibody 
IPH2101 (1-7F9) effectively triggers NK cell-mediated 
killing of multiple myeloma in murine tumor models 
[572, 573]. Besides, anti-NKG2A antibodies could simul-
taneously enhance the cytotoxicity of NK and T cells 
against tumor cells [538, 574–576]. A recent clinical trial 
indicated that monalizumab (anti-NKG2A antibody) or 
oleclumab (anti-CD73 antibody, inhibiting adenosine 
production) synergized with PD-L1 blockade in advanced 
NSCLC patients [577]. Also, blocking TIGIT/CD96 can 
prevent NK cell exhaustion and trigger a potent NK cell-
dependent tumor-specific T cell response [578]. Two 
early-stage clinical trials utilizing anti-TIGIT antibod-
ies (vibostolimab or etigilimab), either as a monotherapy 
or in combination with the anti-PD-1 antibodies, pre-
sented encouraging activities in refractory solid tumors 
[579, 580]. Furthermore, another anti-TIGIT monoclonal 
antibody (tiragolumab) combined with anti-PD-L1 anti-
body (atezolizumab) showed a significant advantage over 
atezolizumab monotherapy in progression-free survival 
(5.4 vs. 3.6  months, HR = 0.57, P = 0.015) [581]. Moreo-
ver, the poor prognosis associated with B7H3 overexpres-
sion in multiple types of cancers, coupled with enhanced 
functions of NK cells resulting from B7H3 inhibition, 
is evidential for targeting B7H3 to enhance NK cell-
mediated immune protection [582, 583]. ChT-1A5, a 
human-mouse chimeric monoclonal antibody of B7H3, 
can effectively trigger ADCC of NK cells against leuke-
mic cells while sparing normal hematopoietic cells. Other 
immune checkpoints, such as PD-1, CTLA-4, LAG-3 
[584], TIM-3 [585], CD200R [586], and SIRPα [587], are 
predominantly expressed in other immune cells and will 
not be expounded upon within this section. The major 
corresponding checkpoint inhibitors associated with NK 
cells are presented in Table 6.

CAR‑NK therapy
Theoretically, chimeric antigen receptor-engineered nat-
ural killer cells (CAR-NK) technology represents the lat-
est generation of NK cell adoptive cellular transfer (ADT) 
[541, 588, 589]. As mentioned earlier, allogeneic NK cell 

ADT provides notable safety advantages over allogeneic 
T cell ADT treatment in terms of minimizing the risk 
of developing graft-versus-host disease (GVHD) or a 
cytokine storm and neurotoxicity [590–592]. The off-the-
shelf CAR-NK products, readily available for preparation 
in advance, hold immense potential in the battle against 
cancer [541]. CAR-NK cells can be prepared based on 
a diverse array of donor cells, including the NK-92 cell 
line, PBMCs, umbilical cord blood (UCB), hematopoi-
etic progenitor cells (HPCs), and iPSCs [593]. Among 
these various options, the irradiated NK-92 cell line is 
the most commonly employed in clinical trials due to its 
characteristics of immortality, rapid proliferation rate, 
and commercial availability [594, 595]. In addition to the 
diverse origins of cell components, CAR-NK could be 
constructed to target different cancer-specific antigens, 
such as CD19, CD5, CD123, GFR, GD2, and Mesothelin 
[592]. Engineering CAR-NK cells commonly depends on 
viral vehicles [596–601]. Besides, exogenous CAR frag-
ments are introduced by electroporation and liposome, 
with lower genetic toxicity and shorter initiation time for 
gene expression [601]. Afterward, the reformative trans-
poson system is developed and exploited in clinical trials, 
which possesses increased safety, decreased expenditure, 
and enhanced editable flexibility [602, 603].

Notably, NKG2D plays a crucial role in the detection 
and elimination of cancer cells [604]. Typically, thera-
peutic approaches targeting NKG2D primarily revolve 
around CAR technology. Preclinical investigations have 
illustrated that the utilization of NKG2D-CAR-engi-
neered NK cells, known as NKAE, effectively hindered 
the progression of tumors in MM models [556]. Clini-
cal findings have shown that the application of NKG2D-
CAR-NK cells, created through RNA electroporation, 
not only reduced the formation of ascites but also led to 
tumor regression in metastatic lesions among patients 
with colorectal cancer [605]. Furthermore, the combi-
nation of NKG2D-CAR-NK cell therapy with an anti-
HER2/NKG2D bispecific antibody exhibited remarkable 
anti-cancer effectiveness, even in cases of HER2-positive 
tumors lacking NKG2DL expression [606].

Thus far, numerous clinical trials involving CAR-NK 
cells have been implemented for various cancer types. 
In the phase 1/2 clinical study of anti-CD19 CAR-NK 
therapy for lymphoid tumors, the administration of 
CAR-NK cells achieved a response rate of 73%, with-
out cytokine release syndrome, neurotoxicity, or GVHD 
[599]. In order to improve readability, we have compiled 
a comprehensive list of ongoing or completed clinical tri-
als, excluding those withdrawn or terminated (Table  7). 
The findings of multiple studies have demonstrated that 
CAR-NK represents a promising therapeutic approach 
for both hematological malignancies and solid tumors 
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Table 6  Completed or undergoing clinical trials on inhibitors of several predominant NK cell-associated checkpoints

Targets Agents Cancer types Phase NCT number Status

NKG2A Monalizumab Hematological or solid tumors 2 NCT04333914 Completed

LA-HNSCC 2 NCT03410030 Not yet recruiting

S095029 Solid tumors 1 NCT05162755 Recruiting

HY-0102 Solid tumors 1 NCT04914351 Active, not recruiting

KIR IPH2101 MM 1 NCT01217203 Completed

2 NCT00999830 Completed

2 NCT01222286 Completed

AML 1 NCT01256073 Completed

Lirilumab Solid tumors 1/2 NCT01714739 Completed

Hematological malignancy 2 NCT02481297 Completed

IPH4102 T Cell Lymphoma 2 NCT03902184 Recruiting

LIR1 AGEN1571 Solid tumors 1 NCT05377528 Recruiting

TIGIT Belrestotug Solid tumors 2 NCT03739710 Recruiting

1/2 NCT05060432 Recruiting

MM 1/2 NCT05289492 Recruiting

BMS-986207 MM 1/2 NCT04150965 Recruiting

Solid tumors 1/2 NCT04570839 Active, not recruiting

Vibostolimab Melanoma 1/2 NCT04303169 Recruiting

1/2 NCT04305041 Recruiting

1/2 NCT04305054 Recruiting

3 NCT05665595 Recruiting

Domvanalimab NSCLC 3 NCT04736173 Recruiting

2 NCT04791839 Recruiting

2 NCT05676931 Recruiting

Melanoma 2 NCT05130177 Recruiting

Gastrointestinal tract carcinoma 2 NCT05329766 Recruiting

Upper gastrointestinal tract adenocarcinoma 3 NCT05568095 Recruiting

NSCLC 2 NCT04262856 Active, not recruiting

M6223 Urothelial carcinoma 2 NCT05327530 Recruiting

CHS-006 Solid tumors 1/2 NCT05757492 Recruiting

Tiragolumab Solid tumors 2 NCT03708224 Recruiting

NSCLC 3 NCT04294810 Recruiting

ESCC 3 NCT04543617 Recruiting

Rectal cancer 2 NCT05009069 Recruiting

Renal cell carcinoma 2 NCT05805501 Recruiting

NSCLC 2 NCT03563716 Active, not recruiting

SCLC 3 NCT04256421 Active, not recruiting

Gastric cancer 2 NCT04933227 Active, not recruiting

1/2 NCT05251948 Active, not recruiting
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[607–610]. In conclusion, abundant evidence indicates 
that NK cell-based therapeutic strategies for tumor treat-
ment occupy a prominent and substantial position in 
cancer immunotherapy.

Targeting granulocytes or other innate immune 
cells for cancer treatment
Granulocytes encompass a diverse group of leukocytes, 
namely neutrophils, basophils, eosinophils, and mast 
cells [611]. These cells are part of the innate immune sys-
tem and, upon activation, release molecules that stimu-
late the immune response to defend against infections 
[612]. Besides, granulocytes are implicated in various 
conditions such as asthma, allergies, autoimmune dis-
eases, and cancers [613]. Among the granulocytes, neu-
trophils are the most abundant (50–70% of circulating 
leukocytes in humans), followed by eosinophils [614]. 

Basophils are the least common, constituting less than 
1% of circulating leukocytes [615]. Mast cells, on the 
other hand, predominantly reside in tissues [616].

Neutrophil‑targeted therapies
Neutrophils play a crucial role as the first line of defense 
against microbial infections and are also implicated in 
various inflammatory diseases [617–619]. Recently, there 
has been growing interest in understanding the versatile 
roles of neutrophils in cancer initiation and progres-
sion [620]. Specifically, tumor-associated neutrophils 
(TANs) exhibit diverse behaviors influenced by exter-
nal stimuli from the TME [621]. These TANs can switch 
antitumor (N1) and protumor (N2) phenotypes [622]. 
N1 neutrophils could eliminate tumor cells by direct 
cytotoxic activities and indirectly stimulating adaptive 
immune responses. Contrarily, N2 neutrophils promote 

Table 6  (continued)

Targets Agents Cancer types Phase NCT number Status

Ociperlimab ESCC 2 NCT04732494 Recruiting

NSCLC 3 NCT04746924 Recruiting

3 NCT04866017 Recruiting

2 NCT05014815 Recruiting

Biliary tract carcinoma 2 NCT05023109 Recruiting

Cervical cancer 2 NCT04693234 Active, not recruiting

Limited-stage SCLC 2 NCT04952597 Active, not recruiting

SEA-TGT​ NSCLC 2 NCT04585815 Active, not recruiting

Etigilimab Solid tumors 1/2 NCT04761198 Active, not recruiting

Ovarian, primary peritoneal, or fallopian tube cancer 2 NCT05026606 Active, not recruiting

AZD2936 NSCLC 2 NCT04995523 Recruiting

Gastric cancer 2 NCT05702229 Recruiting

HLX301 Solid tumors 1/2 NCT05102214 Recruiting

Lymphoma or solid tumors 1/2 NCT05390528 Recruiting

HB0036 Solid tumors 1/2 NCT05417321 Recruiting

B7H3 Omburtamab CNS tumors 1 NCT01502917 Completed

Peritoneal cancer 2 NCT04022213 Recruiting

CNS tumors 2/3 NCT03275402 Active, not recruiting

2 NCT04743661 Active, not recruiting

Ifinatamab deruxtecan Solid tumors 1/2 NCT04145622 Recruiting

Extensive-stage SCLC 2 NCT05280470 Active, not recruiting

Vobramitamab duocarmazine Prostatic cancer 2/3 NCT05551117 Recruiting

Enoblituzumab Prostate cancer 2 NCT02923180 Active, not recruiting

LA-HNSCC Locoregionally advanced head and neck squamous cell carcinoma, AML Acute myeloid leukemia, MM Multiple myeloma, NSCLC Non-small cell lung cancer, 

ESCC Esophageal squamous cell carcinoma, SCLC Small cell lung cancer, CNS Central nervous system
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cancer cell proliferation, angiogenesis, and immune eva-
sion [623, 624]. It has been confirmed that IFN-I polar-
izes neutrophils toward the antitumor N1 phenotype, 
while TGF-β drives the polarization toward the protumor 
N2 phenotype [625–629]. The N1/N2 nomenclature for 
TAN is inspired by the classification of activation states 
observed in TAM. However, specific surface markers reli-
ably distinguishing between N1 and N2 TANs are una-
vailable, unlike TAM [630]. The plasticity of neutrophil 
polarization underscores the dynamic alterations of their 
functions in the TME. Neutrophils can adopt different 
activation states and functions depending on the specific 
cues and signals they encounter [631–633]. Understand-
ing the precise mechanisms and factors that drive neu-
trophil polarization in the TME is a research hotspot, 
that provides insights into potential therapeutic strate-
gies by modulating neutrophil functions [628]. Recent 
studies have suggested that targeting neutrophils could 
be a potential strategy in cancer therapy, mainly by inhib-
iting their protumoral capabilities [634, 635].

The roles of TANs in cancer development
TAN is generally regarded as a protumor factor in mul-
tiple types of cancers [636]. Numerous studies have 
demonstrated that the high neutrophil-to-lympho-
cyte ratio correlates with poor outcomes [637–640]. 
TAN-derived molecules, including ROS, protumor 
cytokines/chemokines, and enzymes, contribute to 
cancer initiation, progression, and metastasis [633]. 
ROS released by neutrophils leads to DNA damage 
and mutations, which are important to carcinogenesis 
[641, 642]. Besides, ROS from neutrophils promotes 
HIF-1α-VEGF axis-mediated angiogenesis and trig-
gers oncogenic pathways in cancer cells such as MAPK, 
PI3K-AKT, and IKK/NF-κB [643]. Additionally, ROS is 
associated with immune escape, cancer-related inflam-
mation, EMT, and treatment resistance in multiple 
types of cancers [643–645]. Apart from ROS, neutro-
phils secret other protumor cytokines and chemokines 
such as TGF-β, oncostatin M (IL-6 superfamily mem-
ber), CCL4, CXCL8, BV8, and HGF to facilitate the 

Table 7  Ongoing or completed clinical trials of CAR-NK therapies

UCB Umbilical cord blood, ALL Acute lymphoblastic leukemia, HPCs Hematopoietic progenitor cells, NHL Non-Hodgkin lymphoma, PBMCs Peripheral blood 
mononuclear cells, GEJ Gastroesophageal junction, AML Acute myeloid leukemia; SCLC: Small cell lung cancer; iPSC: Induced pluripotent stem cell

NCT number CAR target NK cell source Targeting tumor Phase Status

NCT03056339 CD19 UCB Hematological malignancies 1/2 Completed

NCT05563545 CD19 Non-referred ALL 1 Completed

NCT05654038 CD19 HPCs B-cell lymphoma 1/2 Recruiting

NCT05092451 CD70 UCB Hematological malignancies 1/2 Recruiting

NCT05703854 CD70 UCB Solid tumors 1/2 Recruiting

NCT05842707 CD19/CD70 UCB B-cell NHL 1/2 Recruiting

NCT05410717 Claudin6 PBMCs Reproductive system tumors 1/2 Recruiting

NCT04847466 PD-L1 NK92 GEJ cancers or HNSCC 2 Recruiting

NCT05472558 CD19 UCB B-cell NHL 1 Recruiting

NCT04887012 CD19 Non-referred B-cell NHL 1 Recruiting

NCT05213195 NKG2D Non-referred Colorectal cancer 1 Recruiting

NCT05528341 NKG2D NK92 Solid Tumors 1 Recruiting

NCT05645601 CD19 Non-referred Hematological Malignancies 1 Recruiting

NCT05008575 CD33 Non-referred AML 1 Recruiting

NCT05507593 DLL3 NK92 Extensive-stage SCLC 1 Recruiting

NCT05410041 CD19 Non-referred Hematological Malignancies 1 Recruiting

NCT04623944 NKG2D ligands Non-referred Hematological Malignancies 1 Recruiting

NCT05020678 CD19 Non-referred Hematological Malignancies 1 Recruiting

NCT05667155 CD19/CD70 UCB B-cell NHL 1 Recruiting

NCT04796675 CD19 UCB Hematological Malignancies 1 Recruiting

NCT05665075 CD33 iPSC AML 1 Recruiting

NCT05601466 CD33 iPSC AML 1 Recruiting

NCT05379647 CD19 iPSC B-cell Malignancies 1 Recruiting

NCT05182073 BCMA iPSC Multiple myeloma 1 Recruiting

NCT05336409 CD19 iPSC Hematological Malignancies 1 Recruiting

NCT03383978 HER2 NK92 Glioblastoma 1 Recruiting
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malignant properties of cancer cells [646–652]. More-
over, some enzymes in neutrophil granules, includ-
ing neutrophil elastase (NE), cathepsin G (CG), and 
MMP8/9, participate in extracellular matrix remod-
eling, EMT, and activation of oncogenic pathways such 
as EGFR-MAPK and PI3K-AKT signaling [653–656].

Significantly, extracellular traps (NETs) released by 
neutrophils have emerged as a pro-tumor factor. On 
the one hand, NETs assist in tumor growth and dis-
tant metastasis by entrapping circulating tumor cells 
[657–661]. On the other hand, NETs facilitate immune 
evasion and shield tumor cells from immune cytotox-
icity [662]. Research has shown that tumor-produced 
CXCR1/2 ligands stimulate the generation of NETs, 
which envelop tumor cells, impeding their interactions 
with NK cells and CD8+ T cells. Consequently, tumor 
cells wrapped in NETs evade immune attacks. Disrupt-
ing NET formation with inhibitors of protein arginine 
deiminase 4 counteracts NET-mediated immune eva-
sion and synergizes with immune checkpoint inhibitors 
in mouse models of cancer [663]. Similarly, in pancre-
atic ductal adenocarcinoma, IL-17 promotes neutro-
phil recruitment, NET formation, and the exclusion of 
CD8+ T cells. Blocking NET formation through IL-17 
inhibition enhances the efficacy of immune checkpoint 
inhibitors [664].

Although TAN is identified as a risk factor for cancer 
patients in a majority of studies, TAN plays antitumor 
roles in certain circumstances. TANs could directly erad-
icate tumor cells by H2O2-mediated lethal Ca2+ influx, 
FasL-Fas interaction, and nitric oxide release [665–667]. 
Besides, TANs enhance the antitumor immune response 
by triggering ADCC, recruiting and activating T cells, 
and acquiring antigen presentation capabilities in some 
subsets [668–670]. TANs support T cell activation and 
priming not only by secreting proinflammatory factors 
such as TNF-α and CathG but also by NET-mediated 
downregulation of T cell activation threshold [671]. Col-
lectively, TANs play complex roles in tumorigenesis and 
tumor progression. Further research is needed to fully 
understand the precise contributions and potential thera-
peutic targeting of TANs in cancer.

Manipulating TANs for cancer therapies
Various strategies for targeting TANs have been devel-
oped, including inhibiting their recruitment, inhibit-
ing their functions, and reprogramming them toward 
the antitumor phenotype. These strategies aim to either 
eliminate or reprogram TANs to exert beneficial effects 
in cancer therapy (Table 8). Similar to PMN-MDSCs, the 
recruitment of TANs into the TME is mainly driven by 
CXCR2/CXCR4 signaling [672–674]. Agents blocking the 
CXCLs/CXCR2 axis effectively retard tumor progression 

by abrogating TAN-mediated protumor effects in pre-
clinical models [675–677]. CXCR2 selective antagonists 
such as Navarixin and SCH527123 decrease neutrophil 
levels in patients [678–680]. Besides, CXCR4 silence in 
myeloid cells enhances NK cell-mediated immune sur-
veillance against tumor cells, and systemic CXCR4 antag-
onist administration effectively suppresses tumor growth 
in melanoma models [681]. In the phase 2 study of pan-
creatic ductal adenocarcinoma (NCT02826486), CXCR4 
antagonist BL-8040 combined with pembrolizumab and 
chemotherapy significantly reduces PMN-MDSC/TAN 
but increases T cell infiltration in the TME [682]. Also, 
suppressing TAN accumulation by lorlatinib treatment 
improves anti-PD-1 therapy in murine tumor models 
[683]. Moreover, tumor-derived oxysterols, the IL-23/
IL-17/G-CSF axis, and the complement component 5-a 
(C5a) are also identified as neutrophil attractants [684–
686]. Therefore, therapies blocking oxysterols, G-CSF, 
and C5a might be promising TAN-targeting strategies in 
the future [687].

Besides, some therapies increase the antitumor activ-
ity of TANs but undermine their protumor capabilities. 
In murine colon tumor models, PD-L1+ TANs dampen 
the cytotoxic activities of PD1+ NK and T cells, lead-
ing to cancer immune escape [683, 688, 689]. Blocking 
the PD-1/PD-L1 axis relieves the immunosuppressive 
functions of PD-L1+ TANs and strengthens the tumor-
killing activities of TANs [690]. Parallelly, anti-CD47/
SIRPα immunotherapy magnifies TAN-mediated 
ADCC and inhibits tumor growth [691–693]. Moreo-
ver, S100A9+ neutrophils propel M2 polarization in 
a COX-2-dependent manner [694]. Nuclear S100A9 
binds to C/EBPβ, which cooperatively activates Cox-2 
promoter and initiates the expression of PGE2, lead-
ing to M2 polarization [694]. In patients with advanced 
solid tumors, COX inhibitor combined with immune 
checkpoint inhibitor shows superior antitumor activ-
ity to immune checkpoint inhibitor monotherapy [695]. 
Theoretically, strategies targeting S100A9 or COX 
could prevent TAN-mediated immunosuppression, 
needing further clinical validations.

As we mentioned above, TGF-β is the core compo-
nent stimulating TAN polarization toward the protumor 
N2 phenotype. Hence, neutralizing TGF-β in the TME 
reprograms the TAN phenotype and promotes immune 
clearance against tumor cells [629]. At present, several 
TGF-β blockade therapies have been undergoing clini-
cal evaluation, especially anti-PD-L1/TGF-β bispecific or 
bifunctional antibodies [696, 697]. In the preclinical and 
clinical studies, anti-PD-L1/TGF-β bispecific antibodies 
such as M7824, YM101, and BiTP exhibit potent activi-
ties and achieve higher response rates in multiple types 
of cancers, relative to historical data [698–700]. Besides, 
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nicotinamide phosphoribosyltransferase (NAMPT) con-
tributes to the switch toward N2 TAN, while NAMPT 
inhibitors impair TAN-mediated tumorigenesis in 
murine tumor models [701]. In summary, by understand-
ing the intricate interactions between TANs and the 
TME, novel therapeutic approaches can be developed to 
harness the antitumor potential of neutrophils while mit-
igating their protumoral effects. Targeting TANs holds 
promise for enhancing the efficacy of cancer treatments 
and improving patient outcomes. Future studies and clin-
ical trials will be instrumental in translating these find-
ings into practical and effective therapeutic strategies for 
cancer patients.

Additionally, neutrophils have shown the potential as 
carriers for drug delivery [702]. As the most abundant 
white blood cells, neutrophils can effectively traverse 
formidable barriers like the blood–brain barrier, facilitat-
ing the transport of drugs or nanoparticles to inflamed 
tissues such as tumors [703]. Preclinical research has 
demonstrated that neutrophils loaded with liposomes 
containing paclitaxel can effectively infiltrate the murine 
brain and suppress glioma recurrence following tumor 
resection. Enhanced inflammatory signals in the brain 
post-surgery promote the release of liposomal paclitaxel 

from neutrophils, enabling the effective delivery of pacli-
taxel to the remaining tumors [704]. Besides, Chang and 
colleagues have devised anti-glioblastoma CAR-neutro-
phils derived from human pluripotent stem cells, which 
can load and transport glioblastoma-targeted nanodrugs 
without necessitating the induction of additional inflam-
mation in tumors, such as that resulting from surgery 
[705]. Collectively, these systems for drug and particle 
delivery utilizing neutrophils exhibit potent antitumor 
activity and a reduced risk of off-target effects, holding 
significant promise for clinical translation.

Eosinophil‑targeted therapies
Eosinophils are originally believed to play a vital role 
in parasitic infection and allergic diseases [706, 707]. 
Although tumor-infiltrating eosinophils (termed tumor-
associated tissue eosinophils, TATEs) were observed a 
century ago, their roles in cancer development are still 
unclear and controversial [708, 709]. For instance, TATEs 
are a favorable prognosis predictor for head and neck 
cancer and colon cancer [710, 711] but a risk factor for 
Hodgkin’s lymphoma [712]. This controversy could partly 
be explained by insufficient patient quantity and techni-
cal differences, especially staining methods for TATEs 

Table 8  Tumor-associated neutrophil (TAN)-targeted cancer therapies

NSCLC non-small cell lung cancer, TNBC triple-negative breast cancer, TAN tumor-associated neutrophil, TGF-β transforming growth factor β, NAMPT nicotinamide 
phosphoribosyltransferase, COX-2 cyclooxygenase-2, TME tumor microenvironment

Classification Target Agents Representative 
clinical trials

Cancer types Phase

Inhibiting TAN recruitment into the TME CXCR1/2 Reparixin NCT02370238 TNBC 2

Navarixin NCT03473925 Solid tumors 2

SX-682 NCT04574583 Solid tumors 1/2

CXCR2 AZD5069 NCT03177187 Prostate cancer 1/2

CXCL8 HuMax-IL8 NCT02536469 Solid tumors 1

CXCR4 BL-8040 NCT02826486 Pancreatic adenocarcinoma 2

BMS-936564 NCT01120457 Leukemia 1

MSX-122 NCT00591682 Solid tumors 1

Plerixafor NCT01236144 Leukemia 1/2

MB1707 NCT05465590 Solid tumors 1

Increasing the antitumor activity of TANs but under-
mining their protumor capabilities

PD-1/PD-L1 Nivolumab NCT02713867 NSCLC 3

Pembrolizumab NCT02555657 TNBC 3

Atezolizumab NCT03125902 TNBC 3

CD47/SIRPα Hu5F9-G4 NCT03922477 Leukemia 1

TTI-621 NCT02663518 Hematologic and solid malignancies 1

CC-90002 NCT02641002 Leukemia 1

COX-2 Celecoxib NCT03026140 Colon cancer 2

S100A8/A9 Tasquinimod NCT01234311 Prostate cancer 3

Reprogramming TAN toward the antitumor pheno-
type

TGF-β M7824 NCT03631706 NSCLC 3

BiTP NCT05028556 Solid tumors 1

SHR-1701 NCT05179239 Cervical cancer 3

NAMPT ATG-019 NCT04281420 Hematologic and solid malignancies 1
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[713, 714]. Besides, the heterogeneity and plasticity of the 
eosinophils also lead to opposing functions in response 
to diverse stimuli [715, 716].

The mechanisms of TATE recruitment are still not fully 
understood, which might be mediated by IL-5-CCR3 
signaling and chemokines such as eotaxin [717–719]. 
Once eosinophils infiltrate into the TME, they could 
exert cytotoxic activities by secreting granule proteins, 
including major basic protein (MBP), eosinophil-derived 
neurotoxin, peroxidase, and cationic protein [720]. 
Besides, the co-culture experiments using eosinophils 
and colon cancer cells demonstrate that TNF-α and gran-
zyme-A also participate in eosinophil-mediated tumor 
killing [721]. Further explorations indicate that IL-18 
facilitates the antitumor effects of eosinophils by increas-
ing the expression of adhesion molecules [722]. Eosino-
phils express functional natural killer cell-associated 
killing receptors such as CD244, and eosinophil activa-
tion by CD244 cross-linking induces cytotoxicity against 
tumor cells [723, 724]. Besides, IL-12 and IL-10 from 
eosinophils downregulate the migration and enhance the 
adhesion of tumor cells by increasing their E-cadherin 
expression [725]. Furthermore, eosinophils could medi-
ate antitumor response in indirect manners. TATEs 
attract CD8+ T cells into the TME by secreting CCL5, 
CXCL9, and CXCL10 [726]. Additionally, activated 
TATEs promote macrophage polarization toward the 
antitumor phenotype [726]. Also, the antitumor prop-
erties of TATEs are associated with TATE-orchestrated 
vasculature normalization [727].

On the contrary, TATEs possess protumor capabilities 
in some cancer contexts. TATEs increase Treg accumula-
tion by secreting CCL22 and undermine T cell response 
by generating IDO in the TME [728, 729]. Moreover, 
thymic stromal lymphopoietin generated by tumor cells 
could induce TATEs to produce multiple cytokines (e.g., 
IL-10, IL-4, IL-5, and IL-13), promoting cancer cell pro-
liferation and inducing macrophage polarization toward 
the protumor M2-like phenotype [730, 731]. Thymic 
stromal lymphopoietin also promotes TATEs to secret 
VEGFA, improving tumor angiogenesis [732]. TATE-
derived molecules such as EGF, FGF, and PDGF directly 
support tumor growth [733]. TATEs also accelerate 
tumor metastasis and metastatic seeding by TGF-β-
induced EMT and MMP2/9-mediated matrix remodeling 
[734, 735].

Eosinophil level has been identified as a potential bio-
marker for cancer immunotherapies. Increased eosino-
phil abundance (absolute eosinophil count) is associated 
with higher response rates and more prolonged survival 
in patients treated with ipilimumab [736–738]. Besides, 
eosinophilia is positively correlated to the efficacy of anti-
PD-1 treatment in patients with advanced melanoma 

and Hodgkin’s lymphoma [739–742]. Mechanistically, 
immune checkpoint inhibitors stimulate CD4+ T cells 
to produce IL-5, promoting systemic eosinophil prolif-
eration [743]. Then, treatment-induced IL-33 improves 
eosinophil infiltration into the TME and CD8+ T cell 
activity in an eosinophil-dependent manner [743, 744].

While the current understanding of eosinophils in the 
TME is limited, there is an urgent need to delve into their 
roles to develop effective strategies for cancer treatment. 
Due to the heterogeneity and plasticity of the eosinophils 
in different types of cancers, eosinophil-targeted thera-
pies might need to be carried out individually. For tumors 
where eosinophils with protumor properties, targeting 
them becomes an attractive avenue. In this circumstance, 
eosinophil-depleting agents such as anti-IL-5 and anti-
eotaxin antibodies might be an optional strategy. How-
ever, targeting eosinophils becomes more complex when 
they exhibit antitumor activities, as extensive antigen-
independent degranulation may result in severe adverse 
effects. It is crucial to design drugs that selectively target 
tumor cells while sparing normal cells [708, 727, 745].

Targeting basophils and mast cells
Basophils and mast cells share certain features, such as 
the presence of basophilic granules in the cytoplasm, the 
expression of the high-affinity IgE receptor (FcεRI), and 
the release of proinflammatory substances like cysteinyl 
leukotrienes and histamine [746, 747]. These similarities 
initially led to the mistaken notion that basophils were 
the circulating counterparts or precursors of tissue-res-
ident mast cells. However, extensive evidence now dem-
onstrates clear disparities between human basophils and 
mast cells in terms of their morphology, ultrastructure, 
immunological characteristics, biochemical composition, 
and pharmacological responses [615]. As a result, the 
previous concept that basophils serve as the precursor 
or counterpart to tissue mast cells is no longer accepted 
[748, 749]. Recent studies demonstrate that these cells 
not only participate in allergic diseases, chronic or auto-
immune inflammation, and defense against infections, 
but also play a vital role in cancer development [750, 
751].

In specific human solid tumors, alterations in the count 
of circulating basophils are associated with disease pro-
gression. Basophilia, an increase in basophil count, is 
linked to improved prognosis of patients with NSCLC, 
melanoma, ovarian cancer, and glioblastoma [752–756]. 
On the contrary, basopenia, a decrease in basophil count, 
is associated with an unfavorable prognosis of colorec-
tal cancer [757–759]. Indeed, the effects of basophils are 
diverse in different tumor settings: either in protumor 
or antitumor roles [760]. Basophils and their mediators 
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may exhibit antitumor effects in specific contexts. Baso-
phil recruitment is facilitated by factors like VEGF and 
IL-3 released by cancer and immune cells in the TME 
by VEGFR2 and IL-3Rα pathways [761, 762]. Intratu-
moral basophils release CCL3 and CCL4, which recruits 
CD8+ T cells to the TME, resulting in tumor regression 
in murine melanoma models [763]. Tumor-derived IL-33 
activates basophils and enhances their ability to kill can-
cer cells [764, 765]. In ovarian cancer patients, the pres-
ence of an activated basophil signature is associated with 
better outcomes [755].

In contrast, basophils have been identified as protumor 
factors under certain circumstances. A key player in this 
process is Galectin-3 (Gal-3), a protein highly expressed 
by cancer cells and linked to poor prognosis. Gal-3 pro-
motes immunosuppression within the TME [766]. Labo-
ratory studies have demonstrated that Gal-3 on cancer 
cells can activate basophils, leading to the release of 
significant amounts of IL-4 and IL-13 [767, 768]. These 
cytokines, in turn, stimulate the polarization of M2-like 
TAMs, further undermining antitumor immune response 
[769]. Besides, IL-4-producing basophils accumulate 
in tumor-draining lymph nodes, regulating the TME 
and promoting the protumor Th2 inflammation [770]. 
Additionally, basophils promote tumor angiopoiesis by 
secreting VEGF-A [771]. Developing a comprehensive 
framework of the molecular mechanisms controlled by 
basophils within the TME may pave the way for the crea-
tion of innovative pharmacological and immunological 
approaches. These strategies could be utilized to regulate 
basophil activities, potentially impeding cancer develop-
ment. So far, some basophil-targeted therapies, such as 
anti-IL-3Rα/CD123 antibodies, show promising activities 
in hematologic malignancies [762].

Similar to basophil, mast cell is a double-edged sword in 
cancer development as well [772–774]. Although tumor-
infiltrated mast cells were reported a hundred years ago, 
it is still unclear whether these innate cells contribute to 
tumor progression or regression [775–779]. Recent stud-
ies have demonstrated that mast cells act as a protumor 
or antitumor factor depending on cancer types, tumor 
stages, and TME statuses [780]. On the one hand, mast 
cells exert protumor activity through secreting proan-
giogenic factors, releasing growth factors, reshaping the 
extracellular matrix, and suppressing antitumor immune 
response [616, 781]. Specifically, accumulated mast cells 
in the TME generate multiple proangiogenic molecules 
(such as VEGF-A/B, heparin, FGF, histamine, and stem 
cell factor) and lymphangiogenic cytokines (VEGF-C/D), 
promoting tumor angiogenesis and metastasis [782–787]. 
Besides acting as an important source of proangiogenic 
cytokines, mast cells also participate in cancer immune 
evasion. Mast cells secret anti-inflammatory cytokines 

like IL-10 and TGF-β and mobilize Tregs and MDSCs 
[788, 789]. On the other hand, mast cells possess antitu-
mor properties under certain conditions. They not only 
induce cytotoxic effects on tumor cells but also attract 
immune effector cells [772, 790, 791]. Mast cells selec-
tively recruit other immune cells by regulating cell adhe-
sion and vascular permeability and releasing chemokines. 
CCL3, CCL5, CXCL10, and LTB4 from mast cells guide 
T-cell infiltration into the TME [792, 793]. Also, mast 
cells induce the chemotaxis of neutrophils and NK cells 
by secreting IL-8 [794, 795].

Hereto, manipulating the recruitment, activation, 
and status of mast cells would be valuable in control-
ling tumor growth [796, 797]. UV radiation induces the 
migration of skin mast cells by CXCR4-CXCL12 signal-
ing while interrupting the CXCR4-CXCL12 pathway pre-
vents sunlight-caused skin cancers [798]. Besides, mast 
cell-stabilizing drugs such as infliximab (anti-TNF anti-
body) suppress colorectal tumor progression [799]. SCF-
c-kit pathway is the core signaling regulating mast cell 
development, and the c-kit inhibitor imatinib mesylate 
abrogates the influences of mast cells on tumor progres-
sion [800]. However, the role of mast cells changes along 
with cancer types, tumor stages, and mast cell statuses. 
Therefore, inhibiting the accumulation or functions of 
mast cells might not benefit all types of cancers.

Exploiting other innate immune cells
Recently, the importance of other innate immune cells 
in tumor progression is beginning to come into focus, 
especially unconventional T cell subsets γδ T cells, NKT 
cells, and MAIT cells [801]. Relative to conventional T 
cells, these innate T cells possess limited or semi-invar-
iant TCR repertoires [802–804]. The unconventional T 
cells activate, mediate, and regulate antitumor response, 
becoming promising targets for cancer immunotherapy 
[805].

Human γδ T cells commonly exert antitumor prop-
erties upon activation [806]. Activated γδ T cells 
directly kill tumor cells by releasing cytolytic granules 
or expressing ligands of death receptors such as FASL 
and TRAIL [807–809]. Besides, γδ T cells improve 
the recruitment and functions of other immune cells, 
including αβ T cells, B cells, NKs, and antigen-presen-
tation cells [810–815]. However, in some specific con-
ditions, γδ T cells possess protumor activities [816]. 
For example, γδ T cell-derived IL-17 induces the for-
mation of immunoinhibitory TME, supports angiogen-
esis, and promotes tumor progression [817–820]. Most 
clinical studies demonstrate that γδ T cell is a favorable 
biomarker for the prognosis and treatment response 
of cancer patients [821–825]. Considering their potent 
antitumor activity, manageable safety profile, and 
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potential in allogeneic adoptive cell therapy, γδ T cells 
have become promising candidates for cancer immuno-
therapy [826]. At present, the development of CAR-γδ 
T cell, TCRγδ-transduced T cell, and γδ T cell-specific 
engagers has substantially innovated the blueprint for 
cancer immunotherapy. Multiple bispecific antibodies, 
such as TRGV9/CD40, TRGV9/CD1d, TRGV9/CD123, 
TRGV9/EGFR, and TRGV9/HER-2, exhibit potent 
activity in preclinical hematological and solid malig-
nancy models [827–831]. Besides, anti-butyrophilin 3A 
(BTN3A) antibody could activate γ9Vδ2 T cells to erad-
icate tumor cells, and the preliminary data demonstrate 
that anti-BTN3A therapy is well-tolerated in patients 
with advanced solid tumors [832]. Moreover, adoptive 
cell therapies with expanded γδ T cells, CAR-γδ T cells, 
and γδTCR-engineered T cells also show encouraging 
activities in preclinical and clinical studies (Table  9) 
[833–842]. For instance, allogeneic Vδ1 T cells, geneti-
cally engineered to express anti-GPC-3 CAR and solu-
ble IL-15, could effectively sustain self-proliferation 
and inhibit antitumor activity, representing a promising 
antitumor agent warranting clinical evaluation [843].

MAIT cells are a cluster of evolutionarily conserved 
unconventional T cells, with enormous potential in can-
cer immunotherapy [844]. MAIT cells could kill tumor 
cells by MHC-related molecule 1 (MR1)-TCR or NK cell-
activating receptors [845, 846]. Apart from direct antitu-
mor activity after activation, some basic studies indicate 
that MAIT cells also possess immunomodulatory func-
tions, especially enhancing the functions of NK cells 
[847]. Also, accumulated MAIT cells are closely associ-
ated with improved response to anti-PD-1 treatment 
[848–850]. Due to their potent antitumor ability, high 
safety profile, and the ability to undergo genetic modi-
fication, MAIT and CAR-MAIT cells have emerged as 
encouraging options for cancer immunotherapy [844]. 
The high abundance of MAIT cells in the gastrointestinal 
tract, lung, and cervix suggests that cancers originating 
in these mucosal-associated peripheral tissues might be 
more likely to benefit from MAIT cell-based treatment 
[844].

NKT cells are a group of unconventional T cells that 
recognize glycolipids presented by CD1d [851]. Type 
I NKT cells, also termed invariant natural killer T cells 
(iNKTs), express invariant TCR α chain (Vα24-Jα18), 
with antigen specificity to synthetic glycolipid alpha-
galactosylceramide (αGalCer) [852]. On the contrary, 
type II NKT cells have diverse TCR repertoires with 
poorly defined antigen specificity [853]. Commonly, most 
NKT-involved immunotherapies are based on iNKT cells 
[854]. Upregulated functions or levels of iNKTs are posi-
tively correlated with improved outcomes in lung can-
cer, colon cancer, neuroblastoma, and multiple myeloma 

[855–858]. iNKT cells could directly kill CD1d+ cancer 
cells [859–864]. Besides, iNKT cells boost antitumor 
response by regulating other immune cells. For exam-
ple, tumor-infiltrating iNKT cells induce the polarization 
of CD1d+ TAMs toward antitumor M1-like or directly 
deplete them [865, 866]. Moreover, iNKT cells promote 
the maturation of DCs and convert MDSC to immu-
nostimulatory antigen-presentation cells [867–869]. At 
present, unmodified and engineered NKT therapies have 
been developed for cancer immunotherapy (Table  10). 
Redirected NKT therapies endow NKT cells with cancer 
specificity and antitumor capability by CARs, cancer-
specific TCRs, and anti-CD1d antibody fusion proteins 
[854]. NKT cells expressing CARs recognizing cancer-
associated antigens exhibit potent activity in several 
murine tumor models [870–875]. In the phase 1 clinical 
study of neuroblastoma (NCT03294954), anti-GD2 CAR-
NKT cells achieve encouraging efficacy with a tolerable 
safety profile [876]. Moreover, the efficacies of TCR-mod-
ified NKT and anti-CD1d antibody fusion proteins have 
been validated in a series of preclinical tumor models, 
needing further validation in clinical studies [877–881]. 
Generally, the powerful antitumor properties of uncon-
ventional T cells have been well-accepted, and regulating 
these components might provide an effective immuno-
protection against cancers [882].

Perspective and conclusion
Immunotherapies have revolutionized cancer treatment, 
offering promising outcomes and prolonged survival 
for patients across various cancer types. Current immu-
nomodulatory strategies predominantly focus on har-
nessing adaptive immunity, utilizing approaches such as 
immune checkpoint blockade and CAR-T cell therapy. 
While these approaches have shown remarkable success 
in some cases, the overall response rates remain limited, 
highlighting the need for novel therapeutic avenues. In 
recent years, accumulating evidence has emphasized the 
crucial role of the innate immune system in orchestrat-
ing antitumor immune responses. By recognizing and 
eliminating cancer cells, as well as modulating adaptive 
immunity, innate immune cells present a fertile ground 
for innovative immunotherapeutic interventions.

Beyond their well-established roles in immune surveil-
lance and clearance of pathogens, innate immune cells 
actively participate in cancer immune evasion and sur-
veillance. Macrophages, DCs, MDSCs, neutrophils, and 
NK cells are key components of the innate immune arm 
that influence the TME and shape antitumor immune 
responses (Fig.  6). Understanding the intricate interplay 
between innate immune cells and tumor progression is 
crucial for developing effective therapeutic interventions. 
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Moreover, exploiting the potential of innate immunity 
opens new avenues for cancer immunotherapy. Several 
strategies have emerged that focus on modulating innate 
immune cells to enhance antitumor responses. STING 
agonists have shown promising preclinical results by 
enhancing antitumor immunity and triggering the pro-
duction of IFN-I. Another promising avenue is the geneti-
cally engineered innate cells, such as CAR-macrophages or 
CAR-NK cells, which have demonstrated potent antitumor 
activities in preclinical models. Additionally, TLR agonists 
have been explored to induce the maturation of antigen-
presenting cells, augmenting their ability to present tumor 
antigens to T cells and promote antitumor responses.

Recognizing the interconnectedness of innate and 
adaptive immunity, combination therapies that simul-
taneously target both arms of the immune system hold 
great promise. Immune checkpoint blockade, a main-
stay of current immunotherapies, primarily focuses on 
reversing T cell exhaustion and reinvigorating adap-
tive immune responses. However, the effectiveness of 
immune checkpoint inhibitors can be enhanced by incor-
porating strategies that activate innate immune cells. 
For instance, combining immune checkpoint blockade 
with STING agonists can amplify both innate and adap-
tive immune responses, resulting in synergistic antitu-
mor effects [62]. Similarly, STING agonists can improve 

Table 9  γδ T cell-based cancer immunotherapies

MM multiple myeloma, AML acute myeloid leukemia, MGMT methylguanine DNA methyltransferase, HCC hepatocellular carcinoma, TCR​ T cell receptor, DOT Delta One 
T, TCR​ T cell receptor, CAR​ chimeric antigen receptor

Classification Targets/Cells Agents Preclinical models or clinical trials

γδ T cell engagers TRGV9/HER2 (Her2)2xVγ9 Preclinical pancreatic cancer model

TRGV9/EGFR LAVA-1223 Preclinical colon cancer model

TRGV9/CD1d LAVA-051 Leukemia and MM (NCT04887259)

TRGV9/CD40 LAVA-1278 Preclinical MM model

TRGV9/CD123 LAVA-1266 Preclinical AML model

BTN3A ICT01 Solid and hematological malignancies 
(NCT04243499 and NCT05307874)

Expanded γδ T cell transfer Allogeneic Vγ9Vδ2 T cells Unnamed product Lung and liver cancers (NCT03183232 
and NCT03183219)

Allogeneic Vδ1 T (DOT) cells GDX012 AML (NCT05001451)

MGMT-modified γδ T cells INB200 Glioblastoma (NCT04165941)

γδTCR-engineered T cell transfer Vγ9Vδ2 TCR-engineered αβ T cells TEG002 MM (NCT04688853)

αβ T cells with anti-CD19 AbTCR​ ET190L1 Lymphoma (NCT03415399)

αβ T cells with anti-α-fetoprotein AbTCR 
and glypican-3-targeted co-stimulatory molecule

ET140203 HCC (NCT04502082 and NCT04634357)

CAR-γδ T cells NKG2DL-targeting CAR-γδ T cells CTM-N2D Solid tumors (NCT04107142)

CD20-targeting CAR-γδ T cells ADI-001 B Cell Malignancies (NCT04735471 
and NCT04911478)

Glypican-3-targeting CAR-γδ T cells expressing 
soluble IL-15

ADI-002 Preclinical HCC model

CD19-targeting CAR-γδ T cells Unnamed product Preclinical CD19+ leukemia model

MUC1-Tn-targeting CAR-γδ T cells Unnamed product Preclinical gastric cancer model

CD123-targeting CAR-DOT cells Unnamed product Preclinical AML model

Table 10  Representative clinical trials of CAR-NKT therapies

CAR​ chimeric antigen receptor

Clinical trials Agents Cancer types Phase Status

NCT03294954 Anti-GD2 CAR and IL-15 expressing NKTs Neuroblastoma 1 Active, not recruiting

NCT03774654 Anti-CD19 CAR and IL-15 expressing NKTs B cell malignancies 1 Recruiting

NCT05487651 Anti-CD19 CAR and IL-15 expressing NKTs B cell malignancies 1 Recruiting

NCT04814004 Anti-CD19 CAR and IL-15 expressing NKTs B cell malignancies 1 Recruiting

NCT02439788 Anti-GD2 CAR expressing NKTs Neuroblastoma 1 Withdrawn
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CAR-T cell trafficking and persistence in the TME, 
effectively enhancing the efficacy of CAR-T cells in solid 
tumors [883–885].

While harnessing innate immunity presents exciting 
opportunities, several challenges need to be addressed to 
fully unleash its potential. A comprehensive understand-
ing of the intricate crosstalk between innate immune cells 
and the TME is crucial for designing effective therapies. 
Furthermore, strategies targeting innate immunity should 

carefully consider potential off-target effects and avoid 
excessive systemic inflammation. Developing robust bio-
markers to predict patient response to innate immune-
based therapies and selecting optimal combination 
regimens are additional challenges that warrant attention.

In conclusion, the advent of cancer immunotherapies has 
revolutionized cancer treatment, but the full potential of the 
immune system in eradicating tumors is yet to be realized. 
Exploiting the power of innate immunity offers a promising 

Fig. 6  Harnessing innate immunity to improve antitumor immune response. The involvement of innate immunity is crucial for initiating 
and sustaining adaptive immunity, and it plays a significant role in the overall cancer-immunity cycle. When a tumor is detected, innate immune 
cells are activated, leading to the enhancement of their effector functions and the destruction of tumor cells. Apart from directly killing tumor 
cells, innate immune cells participate in priming, expanding, and infiltrating tumor-specific T-cells. Manipulating innate immunity by therapeutic 
strategies could effectively stimulate antitumor immune response and overcome immune evasion. Abbreviations: DC, dendritic cell; TAM, 
tumor-associated macrophage; NK cell, natural killer cell; MDSC, myeloid-derived suppressor cell; TME, tumor microenvironment; TCR, T cell 
receptor; MHC, major histocompatibility complex
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approach to overcoming current limitations. Innate 
immune cells play multifaceted roles in modulating anti-
tumor immune responses and can be harnessed through 
various approaches, including but not limited to STING 
agonists, CAR-macrophage or -NK cell therapies, metabolic 
regulators, and innate immune checkpoint blockade. Syn-
ergistic combination therapies that simultaneously activate 
innate and adaptive immunity hold great promise for future 
advancements in cancer immunotherapy. By expanding our 
focus beyond adaptive immunity and embracing the poten-
tial of the innate immune system, we can develop more 
effective and personalized treatments for cancer patients. 
Unrevealing the multifaceted contributions of innate 
immune cells and exploring their therapeutic potential will 
propel the field of cancer immunotherapy forward.
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