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USP13 drives lung squamous cell carcinoma 
by switching lung club cell lineage plasticity
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Abstract 

Lung squamous cell carcinoma (LUSC) is associated with high mortality and limited targeted therapies. USP13 is one 
of the most amplified genes in LUSC, yet its role in lung cancer is largely unknown. Here, we established a novel 
mouse model of LUSC by overexpressing USP13 on  KrasG12D/+;  Trp53flox/flox background (KPU). KPU-driven lung 
squamous tumors faithfully recapitulate key pathohistological, molecular features, and cellular pathways of human 
LUSC. We found that USP13 altered lineage-determining factors such as NKX2-1 and SOX2 in club cells of the airway 
and reinforced the fate of club cells to squamous carcinoma development. We showed a strong molecular association 
between USP13 and c-MYC, leading to the upregulation of squamous programs in murine and human lung cancer 
cells. Collectively, our data demonstrate that USP13 is a molecular driver of lineage plasticity in club cells and provide 
mechanistic insight that may have potential implications for the treatment of LUSC.

Keywords USP13, c-Myc, Lung squamous cell carcinoma, Lineage plasticity, GEMM

*Correspondence:
Cecil Han
ch1182@georgetown.edu
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12943-023-01892-x&domain=pdf


Page 2 of 24Kwon et al. Molecular Cancer          (2023) 22:204 

Graphical Abstract

Background
Lung cancer is the most common cancer and is the 
leading cause of cancer-related death worldwide [1, 2]. 
Non-small cell lung carcinoma (NSCLC) and small-cell 
lung carcinoma (SCLC) are the two most frequent lung 
cancers. NSCLC accounts for more than 85% of lung 
cancer cases and is classified into lung adenocarcinoma 
(LUAD, 50%), lung squamous cell carcinoma (LUSC, 
30-40%), and large cell carcinomas [1]. Unfortunately, 
most patients with LUSCs are diagnosed at an advanced 
stage with high mortality [3]. The lack of targeted ther-
apy specific to LUSC leaves advanced-stage patients with 
few treatment options. Targeted therapies for LUSC have 
been challenging due to the high level of tumor hetero-
geneity, fewer oncogenic mutations identified, a limited 
mechanistic understanding of oncogenic pathways, and a 
lack of representative mouse models [3, 4]. Recently, line-
age plasticity, the ability of a cell to change from one dif-
ferentiation state to a different identity, has been linked 
to intratumoral heterogeneity, histological transition 
among tumor subtypes, and potential mechanisms of 
therapeutic resistance in lung cancers [5, 6].

Cell-of-origin influences tumor histotypes, malig-
nancy, lineage plasticity, and tumor microenvironment 
[7–10]. Multiple stem/progenitor cells in the lung epi-
thelium with distinct capabilities of lineage plasticity 
have been reported in basal-like stem cells (BSCs) in the 

trachea, secretoglobin family 1A member 1 (SCGB1A1, 
also known as CC10)-positive secretory club cells in 
bronchioles, surfactant protein C (SFTPC, also known 
as SPC)-positive alveolar type 2 (AT2) pneumocyte cells 
in the alveolar ducts, and CC10/SPC dual-positive bron-
chioalveolar stem cells (BASCs) in the bronchioalveolar 
junctions (BADJs) [11–13]. LUSC is characterized by 
the expression of genes centered around squamous cell 
fate decisions and/or the squamous cell differentiation 
program [3, 14]. The cell of origin for LUSC has been 
hypothesized to be BSCs, AT2 cells, BASCs, and club 
cells of small airways [7, 14]. Cell lineage-specifying tran-
scription factors have driven diverse lung cancer types 
[15]. Specifically, SRY-box transcription factor 2 (SOX2) 
is a key determinant of squamous cell fate and promotes 
squamous cell carcinoma of the lung. NK2 homeobox 1 
(NKX2-1, or TTF-1) is another key factor for regulating 
lung lineage transcription programs and is enriched in 
LUAD [16–18].

Human LUSC develops from normal airway epithe-
lium and progresses through hyperplasia, squamous 
metaplasia, dysplasia, and carcinoma [19]. However, not 
all preneoplasia is destined to progress to invasive LUSC, 
and it is not fully understood which molecular changes 
establish each stage and drive progression. More than 
90% of human LUSC tumors exhibit chromosome 3q26 
copy number gains (CNGs) as a genetic hallmark of 
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LUSC [20, 21]. Ch.3q26 CNGs occur in preneoplastic 
lesions and at a higher frequency in subsequent malig-
nant lesions, suggesting that 3q26 CNGs may be asso-
ciated with the transition from the premalignant to the 
invasive LUSC [19, 22]. Notably, this 3q26 amplicon con-
tains SOX2 and a number of additional potential drivers 
or modifier genes that may be of biological and thera-
peutic relevance to LUSC tumorigenesis [20]. While 
KRAS mutations are frequently observed in human 
LUAD, various studies have also discovered KRAS muta-
tions in 1%-6% of LUSC [23–25]. Notably, in up to half 
of human LUSC tumors, the KRAS driving pathway is 
activated, most commonly due to transcriptional upreg-
ulation and amplification of KRAS and the upstream 
receptor tyrosine kinases EGFR (epidermal growth fac-
tor receptor) and FGFR1 (fibroblast growth factor recep-
tor 1) [26]. Nevertheless, it is not known whether KRAS 
mutations contribute to LUSC progression [23].

USP13 is located on chromosome 3q26 amplicon, 
alongside the oncogene PI3CA (phosphatidylinositol-
3-kinase catalytic subunit, α-isoform) and SOX2 in 
human LUSC [20]. As a deubiquitinase enzyme, USP13 
has been implicated in tumor promotion or suppression 
by regulating the stability of various substrate proteins 
via deubiquitination processes [27, 28]. USP13 functions 
as an oncogenic factor during tumorigenesis in ovarian 
cancer by regulating cancer metabolism and metasta-
sis [29, 30]. USP13 promotes tumorigenic potential, cell 
invasion, and cell survival in different human cancers 
[31–33]. Conversely, USP13 acts as a tumor suppressor 
by stabilizing PTEN (phosphatase and tensin homolog) 
in oral squamous cell carcinoma, breast cancer, and blad-
der cancer [34–37]. These findings highlight that the 
function of USP13 can be contextually influenced and 
vary across diverse tumor types. Here, we developed and 
employed a novel GEMM to elucidate the role of USP13 
in lung cancer development. USP13 is sufficient to repro-
gram lineage plasticity in murine bronchiole club cells 
and drive invasive squamous cell carcinoma development 
in the context of oncogenic Kras activation and Trp53 
deletion.

Methods
Mice
Usp13LSL/LSL (U) mouse strain was previously described 
[30]. C57BL/6J KrasLSL-G12D/+ (K) mouse and C57BL/6J 
Trp53flox/flox (P) mouse were purchased from The Jack-
son Laboratory (#008179, #008462). K, KU, KP, and KPU 
mice were established by breeding with different mice 
combinations. Genotypes were confirmed with allele-
specific primers (Table  S1) using tail-tip-derived DNA. 
Similar numbers of male and female mice with desired 
genotypes were used as experimental mice, and no 

histologic differences were observed between male mice 
and female mice. All mice were housed under standard 
housing conditions at the Division of Comparative Medi-
cine animal facilities, and all animal procedures were 
reviewed and approved by the Institutional Animal Care 
and Use Committee of Georgetown University.

Cell culture
Isolation of primary lung cancer cells from KP and KPU 
mice was performed as previously described with minor 
modifications [38, 39]. At the endpoint of experiments, 
tumor-bearing mice were sacrificed, and the lungs were 
perfused by D-PBS. The tissue was briefly rinsed in PBS 
and transferred to PBS-containing Petri dishes. Tumor 
lesions were excised with a scissor and minced with a 
sterile blade. The tumor-containing tissue was incubated 
with DMEM-supplemented collagenase/dispase (100 ul/
ml) (Sigma-Aldrich, Cat#11097113001) and DNase I (40 
ul/ml) (Sigma-Aldrich, Cat#11284932001) for 1 h at 37 
°C in 5% CO2 cell culture incubator. The reaction was 
stopped by the addition of a cold medium and filtered by 
70 µm cell strainer to generate single-cell suspensions. 
This mixture was briefly spun in a benchtop centrifuge 
and the supernatant was discarded. Digested tissue was 
re-suspended in DMEM supplemented with 10% FBS 
and 1% penicillin–streptomycin (PS), and washed three 
times with 1 ml solution prior to plating in a 6-well tis-
sue culture plate. During subsequent culture, fibroblasts 
were counter-selected by selective trypsinization, and 
cell clusters with a homogenous morphology were clon-
ally expanded. These clones were further character-
ized by genotyping PCR and western blotting. Human 
NSCLC cell lines were obtained from ATCC and cul-
tured in DMEM supplemented with 10% FBS and 1% PS. 
Except when a different concentration was indicated, the 
reagents were dissolved in dimethyl sulfoxide (DMSO) 
and added to the cells at the following concentrations: 
cycloheximide (CHX; 100 µg/ml) (Thermo Fisher Sci-
entific, Cat#J6690103), MG-132 (10 µg/ ml) (Cayman 
Chemical, Cat#10012628), Spautin-1 (10 µM) (Selleck-
chem, Cat#S7888), and 10058-F4 (10 µM) (Selleckchem, 
Cat#S7153).

Mouse lung tumor initiation
Anesthetized K, KU, KP, or KPU mice at 7-14 weeks of 
age were infected by intratracheal intubation [40] with 
 3x107 pfu of Ad5-CMV-Cre, 5-10  x107 of Ad5-CC10-Cre, 
or 2.5-5  x109 pfu of Ad5-SPC-Cre adenovirus (University 
of Iowa). Viruses were administered in a Biosafety Level 
2+ room according to Institutional Biosafety Commit-
tee guidelines. For immunohistochemistry of murine tis-
sues, KP and KPU mice were sacrificed at 10-14 weeks 
post-adenoviral infection. K and KU mice were sacrificed 
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at 44-50 weeks post infections to match stages of tumor 
development and burden. Lung histopathological fea-
tures and stages were evaluated by a certified thoracic 
pathologist.

Immunohistochemistry
For formalin-fixed samples, mouse tissues were fixed 
in 10% neutral buffered formalin for 24 h at room tem-
perature (RT), washed in D-PBS and transferred to 70% 
ethanol. Formalin-fixed paraffin-embedded (FFPE) sec-
tions at 5 µm were dewaxed, rehydrated and subjected to 
high-temperature antigen retrieval by boiling 20 min in 
a 2100 Antigen retriever in 0.01 M citrate buffer (Vector 
laboratories) at pH6.0. Slides were quenched of endog-
enous peroxide in 3%  H2O2 for 5 min, then blocked in 
2.5% goat serum in TBS/0.08% Tween-20 (TBS-T) for 
1 h, and then stained overnight with primary antibias in 
blocking buffer (2.5% goat serum). M.O.M Elite® Immu-
nodetection Kit (Vector Laboratories, Cat# PK-2200) was 
used for primary mouse antibodies following the manu-
factural instruction. HRP-conjugated secondary anti-
body (Vector Laboratories) was used at 1:200 dilution 
in TBS-T, incubated for 30 min at RT followed by DAB 
staining (Vector Laboratories, Cat#SK-4100). The primary 
antibodies include: USP13 (Santa Cruz, Cat# sc-514416) 
1:600, NKX2-1 (Abcam, Cat# ab76013) 1:2000, SPC 
(Abcam, Cat# ab211326) 1:500, SOX2 (CST, Cat# 3728) 
1:400, Cytokeratin 5 (Thermo Fisher Scientific, Cat# 
MA5-17057) 1:2000, MYC (Abcam, Cat# ab32072) 1:400. 
Images of H&E and IHC-stained slides were acquired 
on the inverted microscope with microscope cameras 
DFC7000 T (Leica Microsystems). Human tissue micro-
array (TMA) sections were purchased from Biomax 
(Cat#HLugA150CS02, LUAD; Cat#HLug-Squ150Sur-02, 
LUSC; Cat#LC2162, NSCLC). For IHC score quantifica-
tion, images were digitally scanned with Aperio GT 450. 
IHC score was quantified by Fiji software. IHC score = % 
of positive cells multiplied by intensity. IHC-stained slides 
were digitally scanned with Aperio GT 450 to quantify 
human tissue microarray. Tumor regions were manually 
annotated, and image analysis algorithms were applied to 
tumor regions. The algorithms distinguish cells as positive 
or negative based on the staining intensity per cell.

Immunofluorescence
Immunofluorescence staining of mouse lung tumors was 
conducted using primary antibodies of NKX2-1 (Abcam 
cat# ab76013), SOX2 (Santa Cruz, Cat# sc-365823), CC10 
(Santa Cruz, Cat# sc-365992), and SPC (Abcam, Cat# 
ab211326) flowed by Alexa Fluor™ Plus 594 and Alexa 
Fluor™ Plus 488-labeled secondary antibodies (Thermo 
Fisher Scientific, Cat# A32742 and Cat# A32731). Slides 

were then mounted with DAPI-containing Fluoroshield 
Mounting Medium (Sigma-Aldrich, Cat#ab104139), 
visualized under the microscope (Leica Microsystems, 
Cat#DFC7000 T)

Immunoblotting
Cell pellets were directly used or flash frozen and stored 
at -80℃ until use. Total protein lysates were prepared 
with 1% NP-40 lysis buffer, separated via SDS-PAGE, 
and transferred to a PVDF membrane. Membranes 
were blocked for 1 h in 5% milk followed by overnight 
incubation with primary antibodies directed against 
USP13 (Santa Cruz, Cat# sc-514416), NKX2-1 (Abcam, 
Cat#ab76013), SOX2 (CST, cat#14962), MYC (Abcam, 
Cat#ab32072), CK5 (CST, Cat#71536), p63 (Abcam, 
Cat#ab124762), SPC (Abcam, Cat#ab211326), β-actin 
(Santa Cruz, Cat# sc-47778), FLAG-tag (Sigma-Aldrich, 
Cat#F1804), Myc-tag (CST, Cat#2276), HA-tag (Thermo 
Fisher Scientific, Cat#14-6756-63) at 4℃. Membranes 
were washed for 3 x 10 min at RT in TBS-T. Mouse and 
rabbit HRP-conjugated secondary antibodies (Jack-
son ImmunoResearch, 1:10,000) were incubated for 50 
min in 1% milk at RT followed by washing 3 x 10 min 
at RT in TBS-T. Membranes were exposed to Clar-
ity Western ECL Substrate (Bio-rad, Cat# 1705061) and 
detected on ChemiDoc MP Imaging System (Bio-Rad, 
Cat#17001402). Quantification of immunoblots was per-
formed using ImageJ.

Quantitative real‑time PCR
Total RNA was extracted from cells using RNeasy Plus 
Micro Kit (Qiagen), processed for cDNA synthesis 
using the Reverse Transcription Kit (Applied Biosys-
tems, Cat#4374966), and subjected to the quantitative 
RT-PCR using SYBR Green Mix (Applied Biosystems, 
Cat#A25742). The expression genes were normalized to 
the expression of human actin as a housekeeping gene. 
Primers for qPCR: human USP13 (5’-ACA GCC AGG 
AGA GGA AGA AC-3’ and 5’-TCA ATT GGTTC  ATC 
AGG CGA-3’), human MYC (5’- CCT GGT GCT CCA TGA 
GGA GAC-3’ and 5’- CAG ACT CTG ACC TTTT  GCC 
AGG -3’), and human β-actin (5’-CAC CAT TGG CAA 
TGA GCG GTTC-3’ and 5’-AGG TCT TTG CGG A TGT 
CCA CGT-3’).

Knockdown and overexpression of USP13 and MYC
Cells were seeded into a 6-well plate at a 60% confluency 
for transient overexpression and transfected with desired 
plasmids using Lipofectamine 3000 (Thermo Fisher Sci-
entific, Cat#L3000001). The transfection was performed 
according to the manufacturer’s recommended protocol, 
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using a 3:1 ratio of Lipofectamine/DNA. The next day 
after transfection, the medium was changed.

To generate shRNA constructs against USP13, the fol-
lowing sequences are targeted: shUSP13-1: 5’- AAG GGA 
ACA TGT TGA AAG ACAT-3’ and shUSP13-2: 5’-GCA 
TGT CGC AAG GCT GTG T-3’. Those sequences were 
cloned into pLKO.1-puro (Addgen, Cat#8453) plasmid. 
pLKO.1-puro USP13 shRNA plasmids were confirmed 
by direct sequencing. pCDH-puro-cMYC was purchased 
from Addgene (Cat# 46970), and pCDH-puro-USP13 
was previously generated [29]. For the generation of the 
high-titer virus, HEK293T cells were transfected with a 
three-plasmid system including psPAX2 (Addgene, Cat# 
12260), pMD2.G (Addgene, Cat#12259), and lentiviral 
plasmid. Viruses were harvested at 48 and 72 h post-
transfection and stored at -80℃ until use. To establish 
stable cell lines, lentiviral transduced cells were selected 
with puromycin (2–3 µgml–1) 48 h post-infection, and 
individual colonies were propagated and validated by 
western blotting (protein).

To knock down MYC protein, the following control 
siRNA (Cat#sc-37007) and siMYC RNA (Cat#sc-29226) 
were purchased from Santa Cruz and transfected into 
cells using siRNA Transfection Reagent (Cat#sc-29528) 
followed by the manufacturer’s instructions.

Mouse tumor bulk RNA‑seq
Anesthetized KP and KPU mice at 7-14 weeks of age 
were infected by intratracheal intubation with  3x107 
pfu of Ad5-CMV-Cre adenovirus. After 12 weeks, mice 
were sacrificed, and lungs were perfused with 20 mL of 
PBS. Large tumors were dissected and homogenized and 
RNA was extracted using RNeasy Plus Micro Kit accord-
ing to manufacturer’s instructions (Qiagen, Cat#74134). 
Sequence reads were trimmed to remove possible adapter 
sequences and nucleotides with poor quality using Trim-
momatic v.0.36. The trimmed reads were mapped to the 
Mus musculus GRCm38 reference genome available on 
ENSEMBL using the STAR aligner v.2.5.2b. Reads were 
quantified using HTSeqv0.6.1. Rank-log transformed 
normalized counts from DESeq2 were used as inputs for 
PCA, GSEA, and IPA analysis [41].

Pathway enrichment
Gene set enrichment analysis (GSEA) was performed 
using GSEA 4.0 (Broad) with gene-set permutation [42]. 
Gene set annotations were taken from Molecular Signa-
tures Database (MSigDB v7.0.1) [43]. The significance 
level of enrichment was evaluated using permutation 
test, and the p-value was adjusted by Benjamini–Hoch-
berg procedure. Any enriched gene sets with adjusted 
p-value ≤ 0.05 were regarded as significant. Pathway 
and upstream factor analysis were performed through 

Ingenuity Pathway Analysis (IPA) software (Qiagen) [44]. 
Genes were analyzed using Core Analysis to identify sta-
tistically significant canonical pathways via right-tailed 
Fisher’s exact test. IPA pathway databases also estimate 
regulatory direction for a subset of the canonical path-
ways and statistical significance with activation z-score. 
Additionally, using the Comparison Analysis tool, the 
respective datasets (with padj < 0.01) were compared 
and a heatmap illustrating the activation z scores for each 
upstream factor in each dataset.

Immunoprecipitation
HEK293T cells were transiently transfected using 
Lipofectamine 3000. Cell lysis was carried out with 
lysis buffer (50 mM Tris pH 8.0, 150 mM NaCl, 1 mM 
EDTA, and 0.1% NP-40) supplemented with protease 
and phosphatase inhibitors. Immunoprecipitation 
was performed using Protein G agarose beads (Roche, 
Cat#11719416001), 1 µg of the specific Ab, and 500 
µg of protein lysates. Beads were washed three times 
with immunoprecipitation buffer, boiled for 10 min 
in reducing 4X SDS Laemmli Sample Buffer (Bio-Rad, 
Cat#1610747), and denatured at 95 ℃ for 10 min. Total 
cell lysates and immunoprecipitants were separated by 
SDS–polyacrylamide gel electrophoresis and analyzed by 
western blotting

Ubiquitin assay
HEK293T cells were transiently co-transfected with indi-
cated plasmids. After 48 h, cells were treated with 10 µg/
ml MG-132 (Cayman Chemical, Cat#10012628) for 6 h 
before being collected. Cells were lysed and incubated 
with ANTI-FLAG® M2 Affinity Gel (Sigma-Aldrich, 
Cat#A2220). Beads were washed three times with immu-
noprecipitation buffer, boiled for 10 min in reducing 4X 
SDS Laemmli Sample Buffer and denatured at 95 ℃ for 
10 min. Total cell lysates and immunoprecipitants were 
separated by SDS–polyacrylamide gel electrophoresis 
and analyzed by western blotting.

Quantification and statistical analysis
Statistical analyses were conducted using GraphPad 
Prism 8 (GraphPad Software, CA, USA). To com-
pare two groups, a two-tailed Student’s t-test was used 
with significance considered at P < 0.05. Correlation 
between USP13 and MYC at mRNA and protein level 
was measured by Pearson correlation. Data were pre-
sented as means with SEM unless otherwise specified. 
Survival data was obtained from the Kaplan-Meier plot-
ter (https:// kmplot. com/). All histopathological results 
were blinded to pathologists, and the evaluation reports, 
including the classification of different groups, are pro-
vided by pathologists.

https://kmplot.com/
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Results
USP13 is highly amplified in NSCLC and correlated 
with poor prognosis
The USP13 gene copy number is highly amplified in 
human LUSC and several other cancers, including ovar-
ian cancer, esophageal cancer, and head and neck cancer 
(Fig.  1A). Among 50 human ubiquitin-specific pepti-
dases (USPs), USP13 was specifically amplified in LUSC 
patients (Fig. S1A). The Cancer Genome Atlas (TCGA) 
genomics revealed USP13 amplification (≥ 5 copies) or 
gain (1-3 copies) in 91% (427 cases) of LUSC and 29% 
(145 cases) of LUAD (Fig.  1B). USP13 is closely located 
with squamous lineage factors SOX2 and TP63 within 
chromosome 3q26-28 locus and coamplified in LUSC 
and LUAD (Fig.  1B, Fig. S1B). Over half of the USP13 
copy number gain/amplification co-occurred with KRAS 
gene alteration in LUSC and LUAD (Fig.  1B). Interest-
ingly, the mRNA expression of LUSC markers (KRT16, 
KRT17, UPK1B, and ALOXE3) was upregulated in 
USP13-amplified LUAD with KRAS mutations (Fig. S1C). 
The USP13 mRNA level elevated with increasing gene 
copy number in both LUSC and LUAD (Fig. 1C). LUSC 
patients with high USP13 mRNA expression tended to 
have poor relapse-free survival (p < 0.05). LUAD patients 
with high USP13 expression showed reduced overall sur-
vival (p < 0.05) (Fig. 1D). Immunohistochemistry (IHC) 
analysis in human LUSC and LUAD tissue microarrays 
revealed that while USP13 protein is barely expressed in 
normal human lung tissues, LUSC samples have ∼16.7-
fold higher expression levels of USP13 (p < 0.0001). 
USP13 protein was increased in all grades of LUSC 
patients (Fig. 1E). LUAD tissue samples showed an ~1.5-
fold higher expression level of USP13 than normal adja-
cent tissues (p < 0.001) (Fig. 1F).

USP13 drives squamous cell carcinoma development in 
Kras/Trp53‑mutant mouse lung
To investigate the role of USP13 in the 3q26 amplicon 
in lung tumorigenesis, we crossed a conditional Usp13 

knock-in (KI) mouse model (named Usp13LSL/LSL, U) 
with KrasG12D/+ (K) and Trp53flox/flox (P) mice to gen-
erate the KrasG12D/+; Trp53flox/flox; Usp13LSL/LSL (KPU) 
model (Fig. S2A). Lung tumor development was induced 
via intratracheal administration of adenovirus express-
ing Cre recombinase (Ad5-CMV-Cre), leading to activa-
tion of oncogenic Kras, homozygous deletion of Trp53, 
and overexpression of Usp13 in murine lung epithelium 
(Fig.  2A). First, we observed that the survival of KPU 
mice was noticeably shorter than that of KrasG12D/+; Trp-
53flox/flox (KP) mice (Fig. 2B). Tumors were detectable in 
all lung lobes at 10-14 weeks post Ad5-CMV-Cre viral 
induction in both KP and KPU mice. Despite develop-
ing fewer tumor nodules, the sizes of each tumor driven 
by KPU were significantly larger than those driven by 
KP (Fig. 2C and D). Conditional activation of oncogenic 
KrasG12D and homozygous Trp53 targeting in the mouse 
(KP) lung is a well-established mouse model of human 
LUAD [45]. Indeed, LUAD-related histological features 
were observed in KP tumors (Fig. S2B). Surprisingly, 
KPU tumors driven by Usp13 overexpression exhibited 
squamous characteristics in their histology, such as kera-
tin material and intercellular bridges (Fig. S2C). Further-
more, KPU tumors displayed heterogeneous histological 
features, such as SCLC- or sarcoma-like characteristics, 
in a few lesions (Fig. S2C).

We further examined KP and KPU tumors using IHC 
analyses. KP tumors expressed LUAD markers, including 
NKX2-1 and SPC (Fig. 2E). KPU tumors exhibited strong 
expression of squamous markers (SOX2 and CK5), while 
adenocarcinoma markers were dramatically downregu-
lated (Fig. 2E). We also confirmed the differential expres-
sion of LUAD and LUSC markers in KP and KPU tumor 
lysates by immunoblot analysis. NKX2-1 and CK7 signals 
were downregulated, while altered expression of the p63 
isoform and upregulated SOX2 were detected in KPU 
tumor lysates (Fig.  2F). Based on IHC characteristics, 
we classified the tumor subtype in each tumor nodule of 
KP and KPU lungs. All KP tumors were determined to 

(See figure on next page.)
Fig. 1 USP13 is highly amplified in NSCLC and associated with poor survival. A Genomic alteration frequency of USP13 gene in multiple cancer 
types. B Oncoprint mutation profile of KRAS, TP53, USP13, SOX2, and TP63 in LUSC (top) and LUAD (bottom). USP13, SOX2, and TP63 genes are 
co-amplified in NSCLC. C The correlation between mRNA expression and copy number variations (CNVs) of USP13 in LUSC (left) and LUAD (right). 
D Kaplan-Meier plots of NSCLC patients stratified by USP13 expression: Overall survival (top) and relapse-free survival (bottom) in LUSC (left) 
and LUAD (right). p-values were calculated using the log-rank test. E USP13 protein level in human LUSC. Representative IHC-staining images 
in a tissue microarray of adjacent normal tissue and LUSC (top) (scale bar, 200 µm). The red boxed areas on the left images were magnified 
and shown on the right. Relative USP13 protein levels in LUSC (n=75) and normal tissues (n=75) (bottom, left). USP13 expression levels in different 
LUSC grades (bottom, right). Grade 1 (n=5), grade 2 (n=50) and grade 3 (n=20). F USP13 protein level in human LUAD. Representative IHC-staining 
images in a tissue microarray of adjacent normal tissue and LUAD (top) (scale bar, 200 µm). The red boxed areas on the left images were magnified 
and shown on the right. Relative USP13 protein levels in LUAD (n=75) and normal tissues (n=75) (bottom left). USP13 expression levels in different 
LUAD grades (bottom, right). Grade 1 (n=11), grade 2 (n=45) and grade 3 (n=19). a.u., arbitrary unit. In (C), (E), and (F), boxes indicate the 10-90 
percentile. Two-tailed unpaired t-tests, ns = not significant, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001
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be adenocarcinoma (Fig. 2G). Two major lung subtypes, 
LUAD and LUSC, were observed in 100% of KPU mice 
with predominantly squamous histology in the large 
size of tumor nodules (Fig 2G and H). The small size of 
KPU tumors exhibited components of LUAD similar to 

KP tumors (Fig. S2D). Next, we wondered whether over-
expression of USP13 induces LUSC development in the 
KrasG12D/+ background (K). We compared lung tumors 
in K mice [46] and KrasG12D/+; Usp13LSL/LSL (KU) mice 
after Ad5-CMV-Cre viral infection (Fig. S2E). Similar to 
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KPU mice, KU mice developed fewer tumor nodules with 
increased tumor size than K mice (Fig. S2F). However, 
none of the LUSC components was observed in tumors 
of KU mice (Fig. S2G), suggesting that depletion of TP53 
is critical for LUSC development driven by USP13. Col-
lectively, these data revealed that overexpression of 
USP13 drives LUSC development in the context of onco-
genic Kras activation and deletion of Trp53.

Lineage reprogramming pathways are enriched in KPU 
tumors
To analyze the molecular characteristics of KPU tumors, 
we conducted bulk RNA sequencing. Compared to KP 
tumors, the KPU tumor transcriptome exhibited greater 
heterogeneity and was classified into two distinct clus-
ters (KPU type 1 and type 2) (Fig. 3A). Consistent with 
histopathological analysis, the expression levels of LUSC 
marker genes were increased, while the levels of LUAD 
markers were downregulated in KPU tumors (Fig.  3B), 
which resembles the molecular signature of human 
LUSC (Fig. S3A). Notably, KPU type 1 tumors exhibited 
upregulation of SCLC and LUSC marker gene expres-
sion together (Fig. 3B). We identified 1,050 differentially 
expressed genes (DEGs) in KPU tumors compared to 
KP tumors (657 upregulated and 393 downregulated; 
|log2FC| ≥ 3.5, p < 0.01, FDR < 0.01) (Fig. S3B; Table 
S2). Gene set enrichment analysis (GSEA) with hallmark 
gene sets revealed that KPU tumors were highly enriched 
in the epithelial-mesenchymal transition (EMT) path-
way (Fig.  3C; Table S3). Many EMT-related genes, such 
as Calu, Fn1, Vim, and Snai2, were upregulated in KPU 
tumors (Fig.  3D). Enhanced gene sets for KP tumors 
include xenobiotic metabolism, KRAS signaling down, 
and peroxisome (Fig. S3C).

We further found that different signaling pathways 
were enriched in KPU type 1 and type 2. The Hedgehog 
and Notch signaling pathways were enriched in KPU type 
1, and G2/M checkpoint and PI3K/AKT/mTOR signaling 
were enriched in KPU type 2 (Fig. 3E). The human LUSC 
transcriptome showed gene set enrichments related to 

E2F and MYC targets, along with G2/M checkpoint gene 
sets, compared to human LUAD (Figure S3D). Ingenuity 
pathway analysis (IPA) of KP and KPU transcriptomes 
indicated that USP13 overexpression led to alteration 
of gene expression related to CREB signaling, basal cell 
carcinoma signaling, stem cell pluripotency, and EMT 
(Fig. 3F; Table S4). These pathways were also commonly 
enriched in human LUSC data compared to LUAD data 
(Fig. S3E).

In IPA upstream regulator analysis, KPU tumors 
were predicted to activate gene networks regulated by 
TWIST1, SNAI2, SOX2, and MYC transcription factors 
that drive EMT, squamous, and lineage reprogramming 
(Fig.  3G) [47, 48]. On the other hand, LUAD lineage-
specific transcription factors (NKX2-1 and FOXA2) 
[49] were expected to be inactive in KPU tumors 
(Fig.  3G). A comparison analysis of KPU tumors and 
human LUSC found that they share common transcrip-
tion factors that are either coactivated or inactivated 
(Fig.  3G and H, Fig. S3F). Human LUSCs have been 
classified into four subtypes by distinct transcriptomic 
features: primitive, classical, secretory, and basal [50]. 
KPU T1, KPU T3, and KPU T4 exhibited signatures 
similar to those of classical, basal, and primitive human 
LUSCs, respectively (Fig. 3I). In summary, KPU tumors 
exhibit similar molecular characteristics to human 
LUSC and display strong tumor plasticity and lineage 
reprogramming activity, which seems to be associ-
ated with the upregulation of squamous lineage mark-
ers (SOX2), downregulation of NKX2-1 and FOXA2, 
and activation of pluripotency factors such as  MYC, 
NANOG, and KLF4.

USP13 and MYC exhibit a positive correlation in human 
LUSC and KPU squamous tumors
Our transcriptomic analysis suggests enhanced MYC 
activation and its mRNA expression in KPU tumors 
and human LUSCs (Fig.  3H; Table S2); therefore, we 
investigated the relationship between USP13 and MYC 

Fig. 2 USP13 overexpression drives LUSC development in the KP mouse model. A Schematic of the experimental procedure using KP and KPU 
mouse model. KP or KPU mice were infected with the Adeno-CMV-Cre virus (Ad5-CMV-Cre) via intratracheal administration. B Survival analysis of KP 
and KPU mice upon virus infection. The p-value was calculated using a log-rank test. C Representative hematoxylin and eosin (H&E) staining of KP 
and KPU lung at 12 weeks post-viral infection. Dotted lines indicate tumor nodules. Scale bar = 5 mm. D Quantification of individual tumor number 
and area in KP and KPU mice at 10-14 weeks post-Ad5-CMV-Cre virus infection (n=8 mice/group). E Representative images for H&E, USP13, NKX2-1, 
SPC, SOX2, and CK5 IHC stains of the KP and KPU tumors. The red boxed areas on the left images were magnified and shown on the right. Black 
scale bar = 50 µm, White scale bar = 20 µm. (F) Western blot showing the expression of USP13, NKX2-1, CK7, p63, and SOX2 in KP and KPU tumors. 
GAPDH is a loading control. G Quantification of tumor number and area for LUAD and LUSC components in KPU mice. n=8 for each group. H The 
ratio of NSCLC subtypes in each KPU mouse (n=8). In (D) and (G), error bars indicate mean ± SEM. Two-tailed unpaired t-tests, *p < 0.05, **p < 0.01, 
***p < 0.001

(See figure on next page.)
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in human NSCLC. There were positive correlations 
among USP13, MYC, and SOX2 at the protein level in 
human LUSC Clinical Proteomic Tumor Analysis Con-
sortium  (CPTAC) proteomic data (Fig.  4A). MYC and 
SOX2 protein abundance data were not available in the 
LUAD CPTAC dataset. The USP13 mRNA level was also 
positively correlated with MYC or SOX2 expression in 
human LUSC but not in LUAD (Fig. S4A and B). We fur-
ther examined USP13, MYC, and SOX2 protein expres-
sion in human NSCLC tissue microarrays using IHC. 
USP13, MYC, and SOX2 were significantly higher in 
LUSC tissues than in LUAD tissues (Fig. 4B, Fig. S4C-E). 
A positive correlation between MYC and USP13 protein 
expression levels was found in both LUSC and LUAD 
tissues (Fig. 4C and D, Fig. S4F). In addition, there were 
positive correlations between USP13 and SOX2, as well 
as MYC and SOX2, in LUSC tissues (Fig. S4G).

We next investigated the expression of MYC in KP 
and KPU tumors. MYC was strongly expressed in KPU 
tumors, predominantly in the nucleus (Fig.  4E). In par-
ticular, MYC was only elevated in the LUSC components 
but not in the LUAD components of KPU tumors (Fig. 4F 
and Fig. S4H), suggesting that elevated MYC expres-
sion might be implicated in the progression of LUSC in 
KPU lungs. The established primary KPU lung cancer 
cells expressed higher levels of MYC than KP primary 
cells (Fig.  4G). Notably, exogenous USP13 overexpres-
sion induced the upregulation of MYC expression lev-
els in multiple human NSCLC cell lines (Fig. 4H). These 
data reveal that USP13 is associated with the level and/
or activity of MYC in lung cancer and imply the potential 
contribution of USP13 and MYC to LUSC development.

USP13 stabilizes MYC protein via its deubiquitinating 
enzyme activity
Given that USP13 regulates the stability of MYC in 
glioblastoma and hepatocellular carcinoma, contribut-
ing to self-renewal or tumorigenic potential [31, 51], 
we hypothesized that USP13 would be directly asso-
ciated with MYC protein abundance in lung cancer. 

Overexpression of USP13 significantly increased the 
expression of MYC at the protein level but not at the 
mRNA level, indicating post-translational regulation 
of MYC by USP13 (Fig.  5A and Fig. S5A). Exogenous 
MYC expression levels were significantly decreased by 
USP13 knockdown (Fig.  5B). Co-immunoprecipitation 
showed the interaction of USP13 with MYC (Fig.  5C). 
In the cycloheximide (CHX) chase assay, exogenous 
USP13 overexpression enhanced the stability of MYC 
protein (Fig. 5D).

To investigate the impact of USP13’s deubiquitinating 
enzyme activity in stabilizing MYC, we first examined 
the level of FLAG-MYC in HEK293T cells treated with 
Spautin-1, a small molecule inhibitor of the deubiquit-
inase activity of USP10/USP13 [52]. Inhibition of USP13 
resulted in a reduction in FLAG-MYC protein abundance 
(Fig.  5E). It is intriguing to note that treatment with 
Spautin-1 also led to a decrease in USP13 level. USP13 
has delineated functional domains, namely, a zinc fin-
ger domain (ZnF) and two proximal ubiquitin-binding 
domains (UBA1/2) (Fig.  5F) [53]. We sought to deter-
mine which, if any, of these domains were essential for 
the stabilization of MYC. The deletion of either the ZnF 
or UBA1/2 domain of USP13 resulted in a decrease in its 
ability to increase MYC protein, whereas the deletion of 
both domains completely eliminated its ability to upregu-
late MYC protein levels (Fig. 5G).

Overexpression of wild-type USP13 decreased the 
ubiquitin-conjugated MYC level (Fig.  5H). However, 
mutant  USP13∆Znf∆UBA did not have the same effect 
(Fig.  5H and I). In contrast, the knockdown of USP13 
increased the ubiquitin levels of MYC (Fig. 5J). To further 
investigate the chain specificity of MYC deubiquitylation 
by USP13, we co-expressed USP13 with HA-tagged ubiq-
uitin carrying a single lysine residue at positions K48, 
K63, or K48R. Immunoblotting data showed that USP13 
acted on the K48-linked ubiquitin chain on MYC, not 
K63 (Fig. 5K). The K48R mutation abolished USP13 from 
removing the ubiquitin molecule from MYC (Fig. S5B). 
These results indicate that USP13 increases MYC protein 

(See figure on next page.)
Fig. 3 Transcriptomic characterization of KPU tumors. A Principal component analysis on the transcriptome of KP and KPU samples. B Heatmap 
showing the expression of marker genes for LUAD, LUSC, and SCLC in KP and KPU tumors. C GSEA plot of the curated epithelial-to-mesenchymal 
transition (EMT) hallmark gene set from MSigDB using RNA-seq data of tumors from KP and KPU mice. D Heatmap showing genes significantly 
upregulated in the “EMT” gene set from (C). E Enrichment plots of hallmark gene set from MSigDB collection in KP versus KPU type 1 tumors (left) 
and KP versus KPU type 2 tumors (right) by GSEA analysis. F IPA analysis of RNA-seq data showing the top ten canonical pathways enriched in KPU 
tumors compared with KP tumors. Each bar’s color indicates predicted pathway activation or inhibition; Orange, positive z-score (activation); 
white, zero z-score; blue, negative z-score (inhibition); gray, no pattern. G Upstream regulator analysis exhibiting the predicted activation status 
of transcription factors in KPU tumors. A positive z-score indicates activation and a negative z-score indicates inactivation. H Heatmap visualization 
of IPA upstream regulators altered in KP versus KPU tumors and LUAD versus LUSC patients. The z-score predicts activation (orange) and suppression 
(blue). I Heatmap to show the LUSC subtypes of KPU tumors by the signature gene sets. Row for samples, columns for LUSC subtypes. Asterisk 
indicates p < 0.05
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Fig. 4 MYC protein is upregulated in lung cancer by USP13. A Correlation between USP13 and MYC expression (left), USP13 and SOX2 expression 
(center), and MYC and SOX2 expression (right) in LUSC. Data was obtained from cBioportal (CPTAC, Cell 2021) (n=80). Axis represents the protein 
abundance ratio. B IHC score of USP13, MYC, and SOX2 in LUAD and LUSC patients. Data are shown as means ± SEM. **p < 0.01, and ****p < 0.0001 
(unpaired two-tailed t-test). C IHC analysis of USP13 and MYC protein abundance in LUSC samples (left) (n = 130) and their correlation (right). D IHC 
analysis of USP13 and MYC protein abundance in LUAD samples (left) (n = 51) and their correlation (right). E Representative images for IHC staining 
of MYC in the KP and KPU tumors post-Ad5-CMV-Cre infection. The red boxed areas on the left images were magnified and shown on the right. 
Black scale bar = 50 µm, white scale bar = 20 µm. F Expression of NKX2-1, SOX2, and MYC in LUAD and LUSC components in Ad5-CMV-Cre infected 
KPU lungs. Scale bar = 200 µm. See also Figure S4H. G Western blot of endogenous USP13, MYC, SOX2, NKX2-1, and β-actin in KP and KPU mouse 
cell lines. H Western blot of USP13, MYC, and β-actin in human NSCLC cells with or without USP13 overexpression. In (A), (C), and (D), data are 
analyzed using the Pearson correlation coefficient
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stability by cleaving the K48-linked ubiquitin conjugation 
of MYC.

Club cells are the origin of LUSC in the KPU model
In normal murine lungs, AT2 cells  (SPC+) are NKX2-
1-positive but SOX2-negative, while club cells  (CC10+) 
at the bronchioles are double positive for NKX2-1 and 
SOX2 (Fig. S6A and B). To investigate the effect of lung 
progenitors in KPU-driven mixed LUAD and LUSC 
tumor subtypes, we induced restricted expression of Cre 
recombinase in club cells and AT2 cells via intratracheal 
delivery of Ad5-CC10-Cre or Ad5-SPC-Cre adenovirus 
to KPU mice, respectively (Fig.  6A and B). The tumor 
burdens and histopathology of both groups of KPU mice 
were examined 12-14 weeks post-infection. AT2 cells 
targeting Ad5-SPC-Cre-infected KPU lungs showed an 
increase in the number of lung tumor nodules but were 
small in size and revealed the presence of adenocarci-
noma histology. When KPU mice were infected with the 
CC10-Cre virus in the club cells, they developed notably 
larger tumors with squamous histology features (Fig. 6C 
and Fig. S6C). We then analyzed the expression of the 
lung cancer lineage specifiers NKX2-1 and SOX2. Ad5-
SPC-Cre-infected KPU tumors were mostly positive for 
NKX2-1 but negative for SOX2, with only a small num-
ber of tumors showing negative staining for NKX2-1 
(Fig.  6D and E). The majority of tumors in KPU lungs 
by Ad5-CC10-Cre were identified as NKX2-1-negative 
and SOX2-positive (NKX2-1–/SOX2+), although a few 
tumors exhibited NKX2-1+/SOX2– or NKX2-1+/SOX2+ 
characteristics (Fig. 6D and E). Next, we examined how 
those factors are expressed during the tumor develop-
ment in KPU mice after being induced by either Ad5-
SPC-Cre or Ad5-CC10-Cre viruses. Tumors originating 
from AT2 cells continuously showed an NKX2-1+/SOX2– 
pattern from early hyperplastic lesions to invasive carci-
noma (Fig. 6F, left). Following CC10-Cre infection in the 
KPU lung, hyperplasia at bronchioles initially exhibited 

positive expression for both factors; however, NKX2-1 
expression was subsequently downregulated at the car-
cinoma in situ (CIS) stage and remained consistently 
negative in invasive carcinoma (Fig.  6F, right). NKX2-1 
levels were dramatically decreased, while SOX2 levels 
were increased in Ad5-CC10-Cre-infected KPU lungs 
(Fig.  6G). These data suggest that squamous tumors in 
KPU mice originate from club cells, not AT2 cells. Addi-
tionally, USP13 might contribute to the downregulation 
of NKX2-1 during the early stages of LUSC development.

USP13 suppresses NKX2‑1 while upregulating SOX2 in club 
cell‑originated LUSC development
Both AT2 cells and club cells are known as cells of origin 
for KP-induced LUAD development [54, 55]. In previ-
ous studies on KP GEMMs, it was found that bronchiolar 
hyperplasia and adenoma derived from  CC10+ club cells 
showed positive staining for SOX2, but SOX2 expression 
was downregulated in adenocarcinoma, leading to LUAD 
lineage identity [55–57]. In the KPU model, USP13 over-
expression in club cells led to squamous cell carcinoma 
development in the KP genetic alteration background. 
Therefore, we further examined the tumor progression 
of KP and KPU models after delivering Ad5-CC10-Cre 
or Ad5-SPC-Cre virus, respectively (Fig.  7A, Fig. S7A). 
Similar to Ad5-CMV-Cre-infected KP and KPU mice 
(Fig.  2), Ad5-CC10-Cre-induced KPU lungs developed 
a small number of tumor lesions but large tumors com-
pared to KP lungs (Fig. 7B and C). As expected, club cell-
originated KP tumors showed adenocarcinoma histology 
with positive expression of LUAD markers (NKX2-1 
and SPC) (Fig. 7D). In contrast, KPU tumors were nega-
tive for LUAD markers but positive for squamous cell 
markers such as SOX2 and CK5. Interestingly, the AT2 
cell-originated KPU tumors developed a much smaller 
number of tumor lesions with smaller tumor sizes than 
AT2 cell-originated KP adenocarcinomas (Fig. S7B and 
C). Both KP and KPU lesions following Ad5-SPC-Cre 

(See figure on next page.)
Fig. 5 USP13 stabilizes MYC protein via its deubiquitinating enzyme activity. A Immunoblot analyses of HEK293T cells with or without USP13 
overexpression were performed with the indicated antibodies B Western blot showing USP13 and FLAG (MYC) and β-actin in control and USP13 
knockdown cells following transfection with an empty vector or FLAG-MYC. C Co-immunoprecipitation (Co-IP) of exogenous FLAG-USP13 
and HA-MYC in HEK293T cells. D CHX chase assay (100 µg/ml) of control or FLAG-USP13 transfected HEK293T cells for indicated time points. β-actin 
is a loading control. E Immunoblot of USP13 and MYC in transfected HEK293T cells upon treatment with either DMSO or indicated concentrations 
of Spautin-1 for 24 h. F Schematic diagram showing the domain organization of USP13 with deletion constructs used. G Immunoblot analysis 
of HEK293T cells transfected with Myc-tagged WT or deletion mutants of USP13. Lysates were blotted by anti-Myc-tag and anti-MYC antibodies. 
Band intensities were quantified and normalized using β-actin levels. H Lysates from HEK293T cells expressing the indicated plasmids treated 
with MG132 (10 μM) for 6 hr were subjected to IP for FLAG-tagged MYC and then immunoblotting for HA-tagged ubiquitin. Total cell lysates (TCL) 
correspond to 10% of the total protein amount used for the precipitation. I The ∆Znf∆UBA mutant form of USP13 fails to deubiquitinate MYC. J 
USP13 knockdown (KD) increased the ubiquitin level of MYC. HEK293T cells (shNS, KD1, and KD2) were transfected with FLAG-MYC and HA-Ub. K 
HEK293T cells were transfected with FLAG-MYC, HA-Ub (WT, K48, or K63), and Myc-tagged USP13
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Fig. 5 (See legend on previous page.)
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infections exhibited typical LUAD marker (NKX2-1 and 
SPC)-positive expression, with adenocarcinoma histol-
ogy (Fig. S7D).

In KP and KPU tumors following Ad5-CC10-Cre infec-
tion, we classified subtypes of KP and KPU tumors by 
NKX2-1 and SOX2 expression levels (Fig. S7E and F). 
NKX2-1–SOX2+ tumors were predominantly observed 
in the CC10-Cre-infected KPU (Fig. S7F). KPU tumors 
had ~5.2-fold higher expression levels of SOX2 than KP 
tumors (p < 0.0001) (Fig.  7E). Interestingly, CC10-Cre-
induced KP tumors also showed SOX2-positive expres-
sion, and its level was heterogeneous (Fig.  7E and E). 
Two subtypes (NKX2-1+SOX2– and NKX2-1+SOX2+) 
exhibited similar proportions in CC10-Cre-induced 
KP lungs (Fig. S7F). In Ad5-CC10-Cre-infected KP and 
KPU lungs, hyperplastic cells at bronchioles in KP and 
KPU were stained positive for both NKX2-1 and SOX2 
(Fig.  7F). Our data demonstrate that KP-driven hyper-
plastic lesions and adenomas transformed from club cells 
are positive for SOX2, but SOX2 expression becomes sig-
nificantly decreased and partially lost in more advanced 
lesions (Fig.  7F and G). During the CIS stage, there 
were noticeable differences in the expression patterns of 
NKX2-1 and SOX2 between the lungs of KP and KPU 
mice. In contrast to the KP model, NKX2-1 expression 
was dramatically decreased at the CIS stage in KPU mod-
els, while SOX2 levels were high throughout LUSC devel-
opment (Fig. 7F and G).

We next examined the expression of the cell identity 
markers CC10 and SPC during tumor development in KP 
and KPU mice after Ad5-CC10-Cre induction (Fig. 7H). 
Hyperplastic lesions in the bronchioles of both KP and 
KPU showed  CC10+/SPC– staining. Then, KP-trans-
formed club cells underwent stepwise lineage marker 
conversion from  CC10+/SPC– to  CC10–/SPC+ from 
hyperplastic lesions to adenomas and invasive adenocar-
cinoma (Fig.  7H). In contrast, KPU carcinomas did not 
show elevated SPC expression, displaying different line-
age marker conversions of  CC10+/SPC– to  CC10–/SPC– 
(Fig. 7H). In both KP and KPU models, hyperplasia, CIS, 

and adenocarcinoma induced by Ad5-SPC-Cre showed 
AT2 cell-like lineage marker expression  (CC10–/SPC+) 
(Fig. S7G). These data suggest that USP13 is involved 
in cell lineage reprogramming and switching the fate of 
oncogenic KRAS-mediated transformed  CC10+/SPC– 
club cells to  CC10–/SPC–, which leads to squamous cell 
differentiation instead of adenocarcinoma progression 
(Fig. 7I).

The elevation of MYC protein levels by USP13 contributes 
to promoting squamous carcinoma features
5Given the strong connections between USP13 and MYC 
in human LUSC and KPU lung squamous tumors (Fig. 4) 
and the stabilization of MYC protein through the deu-
biquitinating activity of USP13 (Fig. 5), we examined the 
expression pattern of MYC during KP and KPU tumori-
genesis following Ad5-SPC-Cre or Ad5-CC10-Cre infec-
tion. Ad5-SPC-Cre-derived KP and KPU tumors showed 
minimal detection of the MYC protein, regardless of 
USP13 overexpression (Fig. S8A, left). Elevated MYC 
expression was observed in both KP and KPU tumors 
derived from  CC10+ cells (Fig. S8A, right). KP tumors 
showed positive but weaker MYC expression than KPU 
tumors (Fig. S8B and C). Strong expression of MYC was 
detected in both the cytoplasm and nucleus of invasive 
squamous carcinoma in KPU lungs (Fig. 8D). In the CIS 
stage of Ad5-CC10-Cre-infected KP lungs, the portion 
of  MYC+ cells was drastically reduced and continued to 
decrease during adenocarcinoma tumorigenesis (Fig. 8A 
and B). In humans, MYC has been reported to be pre-
dominantly in the cytoplasm in the normal basal cells of 
the airways of patients with lung cancer, but cytoplas-
mic MYC is transferred into the nuclei of premalignant 
lesions and squamous cells [22]. Similarly, in Ad5-CC10-
Cre-infected KPU mice, MYC was translocated into 
the nucleus at the squamous CIS lesion, and the strong 
nuclear expression of MYC persisted during squamous 
carcinoma development (Fig.  8A, Fig. S8E). These find-
ings suggest that USP13’s deubiquitinating activity might 
stabilize MYC protein during the early stage of lung 

Fig. 6 LUSC originates from  CC10+ club cells in the KPU model. A Schematic of two origins of lung adenocarcinoma. Cre recombinase expression 
was restricted to specific cell types in the adult lung by cell type-restricted Ad-Cre viruses; Cre recombinase is expressed in alveolar type II cells 
(orange) and club cells (blue) by Ad5-SPC-Cre and Ad5-CC10-Cre, respectively. Bronchioalveolar stem cells (BASCs, yellow) can express Cre 
recombinase by both viruses B Schematic of the experimental procedure using Ad5-SPC-Cre and Ad5-CC10-Cre viruses. KPU mice were infected 
with cell-type restricted Ad-Cre viruses via intratracheal administration. C Quantification of individual tumor number (left) and area (right) in KPU 
mice at 12-14 weeks post-virus infection (n=7 mice/group). D Representative images of H&E, NKX2-1, and SOX2 staining from lung tumors 
with indicated Cre infection. Scale bar = 25 µm E Quantification of proportion (top) and size (bottom) of lesions as indicated in D F Expression 
of NKX2-1 and SOX2 during cancer development in KPU mice infected with Ad5-SPC-Cre or Ad5-CC10-Cre. Arrow and dotted lines indicate 
hyperplasia and carcinoma in situ (CIS), respectively. Scale bar = 50 µm G IHC quantification for NKX2-1 (top) and SOX2 (bottom). Each dot 
represents one tumor nodule from seven mice per group. a.u., arbitrary unit. In C, E, and G, error bars indicate mean ± SEM. Two-tailed unpaired 
t-tests, ns = not significant, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001

(See figure on next page.)
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squamous tumorigenesis and that this effect is limited to 
squamous tumors originating from club cells.

A recent study proposed MYC as a putative molecular 
driver linked to LUAD to LUSC histological transfor-
mation [58]. To determine whether USP13 can alter the 
lineage characteristics of advanced lung tumors through 
MYC, we overexpressed USP13 in the murine adeno-
carcinoma KP primary cell line and human LUAD cell 
lines followed by immunoblotting for squamous mark-
ers, such as SOX2, p40, or CK5. UPS13 overexpres-
sion alone induced the expression of squamous markers 
(Fig.  8C and D). In addition, MYC overexpression also 
increased the level of squamous markers (Fig.  8C and 
D), implying that USP13 can induce MYC and squamous 
cell lineage programs in murine and human LUAD cells 
and that MYC is sufficient to enhance LUSC characteris-
tics. To determine whether MYC is necessary for USP13 
to upregulate SOX2 expression, we knocked down or 
inhibited MYC and then overexpressed USP13 in H441 
cells. Despite MYC knockdown, the overexpression 
of USP13 still resulted in an increase in SOX2 levels in 
H441 cells (Fig. 8E). In addition, USP13 still upregulated 
the expression of SOX2 under inhibition of MYC using 
a small-molecule c-MYC inhibitor, 10058-F4 treatment 
(Fig. 8F), suggesting that USP13 could be associated with 
squamous cell markers in a MYC-dependent manner and 
MYC-independent manner. Based on these findings, it 
appears that overexpression of USP13 causes an increase 
in MYC protein during the initial stages of tumor devel-
opment originating from club cells, which may contrib-
ute to the development of LUSC. Moreover, we revealed 
that overexpression of USP13 and/or MYC induces squa-
mous cell lineage markers in human and murine LUAD.

Discussion
In this study, we found that USP13 is involved in shift-
ing lung club cell fate in the context of KP genetic altera-
tion by promoting lung lineage reprogramming and 
MYC upregulation, which leads to LUSC tumorigenesis. 

USP13 overexpression suppresses NKX2-1 expression 
while increasing SOX2 at the initial stages of lung tum-
origenesis, suggesting a role for USP13 in lung club cell 
lineage reprogramming for LUSC development (Fig. 8G). 
In addition, strong nuclear MYC expression throughout 
squamous cell carcinoma is a critical feature for KPU-
driven LUSC (Fig. 8G).

The inhibition of TP53 signaling and the activation 
of MYC have been identified as important molecular 
characteristics in early LUSC carcinogenesis in humans 
[22]. TP53 mutations are more prevalent in LUSC than 
LUAD [59, 60]. Lineage plasticity is associated with the 
loss of tumor suppressor genes such as RB1, PTEN, 
and TP53 [6]. The combined loss of RB1 and TP53 
promotes lineage plasticity and transdifferentiation 
in prostate and lung cancer in mouse models [61–63]. 
However, the loss of tumor suppressor genes appears 
insufficient to drive lineage plasticity in the context of 
the lung. RB1 and TP53 abrogation is not enough to 
promote a neuroendocrine feature in lung cancer cells 
[64]. Another study demonstrated that most LUAD 
patients with concurrent RB1 and TP53 alterations do 
not undergo histological transformation into SCLC 
[65]. p53 loss in club cells decreased ciliated cell differ-
entiation and increased self-renewal and proliferative 
capacity [66]. Moreover, club cells have the capacity to 
produce basal-like cells in vitro and, in vivo, give rise to 
bronchioalveolar stem cells as well as ciliated cells fol-
lowing p53 loss. Unlike KPU, which resulted in 100% 
LUSC tumor development, KU mice only developed 
LUAD tumors, similar to the K mice (Fig. S2F). This 
suggests a potential interaction between USP13 and 
TP53 signaling in lineage plasticity, and the functional 
alteration of TP53 could be crucial in LUSC progres-
sion mediated by USP13.

Recently, it has been reported that USP13-mediated 
deubiquitination is associated with MYC in cholangio-
carcinoma [67], glioma stem cells [31], and hepatocel-
lular carcinoma [51]. We identified critical domains of 

(See figure on next page.)
Fig. 7 Enhanced USP13 expression switches lineage factor expression in KP-transformed club cells. A Experiment design: KP or KPU mice received 
a single intratracheal injection of cell-type-restricted Ad5-CC10-Cre virus. The experiment was terminated 11-12 weeks post-viral infection. B 
Representative hematoxylin and eosin (H&E) staining of KP and KPU lung at 12 weeks post-Ad5-CC10-Cre infection. Dotted line indicates a tumor 
nodule. Scale bar = 5 mm. C Quantification of individual tumor number (left) and area (right) in KP and KPU mice at 11-12 weeks post-virus infection 
(n=5 mice/group). D Representative images for H&E, USP13, NKX2-1, SPC, SOX2, and CK5 IHC stains of the KP and KPU tumors post-Ad5-CC10-Cre 
infection. Scale bar = 50 µm. E Quantification of NKX2-1 (left) and SOX2 (right) levels in KP and KPU tumors. F Expression of NKX2-1 and SOX2 
during cancer progression in KP and KPU mice following Ad5-CC10-Cre infection. Hyperplasia (arrow) and carcinoma in situ (CIS) (dotted line) are 
indicated. Scale bar = 50 µm. G IHC quantification for NKX2-1 (top) and SOX2 (bottom). Each dot represents one tumor nodule. a.u., arbitrary unit. 
H SPC and CC10 expression during cancer progression in Ad5-CC10-Cre infected KP and KPU lungs. Hyperplasia (arrow) and carcinoma in situ (CIS) 
(dotted line) are indicated. Scale bar = 50 µm. (I) Schematic summarizing the expressional change of lineage factors and markers in KP and KPU club 
cells  (CC10+) during lung cancer development. In (C), (E), (G), error bars indicate mean ± SEM. Two-tailed unpaired t-tests, ns = not significant, **p < 
0.01, ***p < 0.001, ****p < 0.0001
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Fig. 7 (See legend on previous page.)
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USP13 important for stabilizing MYC, and USP13 acts 
on K48-mediated polyubiquitination on MYC (Fig. 5). In 
addition to MYC stabilization, we also observed distinc-
tive nuclear translocation of MYC in the CIS lesion from 
Ad5-CC10-Cre-infected KPU club cells, and its high level 
was maintained in invasive squamous cell carcinoma, 
suggesting enhanced MYC activity during KPU-driven 

LUSC tumorigenesis. Enhanced MYC target gene expres-
sion together with a concomitant increase in the nuclear 
translocation of MYC were detected in human premalig-
nant lesions and LUSC tumors [22]. This provides strong 
evidence that enhanced MYC activity is associated with 
lung squamous carcinogenesis, even in the absence of a 
significant upregulation in MYC mRNA expression [22]. 

Fig. 8 USP13 elevates MYC expression in lung cancer, contributing to the elevation of LUSC features. A MYC expression during cancer progression 
in KP and KPU mice following Ad5-SPC-Cre (left) or CC10-Cre (right) infection. Hyperplasia (arrow) and carcinoma in situ (CIS) (dotted line) are 
indicated. Scale bar = 50 µm. B IHC quantification for the portion of  MYC+ cells in the lesions. Each dot represents one tumor nodule. Error bars 
indicate mean ± SEM. Two-tailed unpaired t-tests, ns = not significant, ****p < 0.0001. C Western blot of USP13, MYC, SOX2, p40, and β-actin 
on mouse KP cell line expressing exogenous USP13 or MYC. D Western blot showing USP13, MYC, SOX2, p40, CK5, and β-actin in human LUAD 
cell lines expressing exogenous USP13 or MYC. E Western blot of USP13, MYC, SOX2, and β-actin in H441 cells with knockdown of MYC using 
siRNA followed by transfected with mock or USP13. F Western blot of USP13, MYC, SOX2, and β-actin in H441 cells treated with either DMSO or 10 
μM of 10058-F4 (MYC inhibitor) for 24 h followed by transfection with mock or USP13. G Schematic showing the proposed model of how USP13 
promotes LUSC tumorigenesis in club cells
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Intriguingly, in a KrasG12D  activation in combination 
with deletion of F-box/WD repeat-containing protein 7 
(Fbxw7) murine model,  CC10+ bronchiolar club cells give 
rise to LUSC but not from the tracheal basal cells and 
alveolar AT2 cells [26]. FBXW7 encodes a component of 
the SCF ubiquitin E3 ligase complex involved in ubiqui-
tination and proteasome degradation of oncoproteins, 
including MYC, Cyclin E, c-JUN, and NOTCH1 [68, 69]. 
Collectively, these findings suggest that concurrent with 
an appropriate set of oncogenic stimuli, the molecular 
interaction among USP13-mediated deubiquitination, 
increased MYC activity, and p53 functional alteration 
may play a critical role in squamous differentiation from 
oncogenic transformed cells of origin. Moreover, ubiq-
uitin signaling could be directly associated with LUSC 
tumorigenesis by involving lineage reprogramming to the 
squamous cell carcinoma program.

Previous murine models have revealed that SOX2 
overexpression is necessary but not sufficient for lineage 
switching. To induce tumors with squamous histology 
in multiple cells of origin in the lung, SOX2 overexpres-
sion needs to collaborate with loss of NKX2-1 together 
with other oncogenic stimuli or loss of multiple tumor 
suppressor genes, including Pten, Cdkn1a, Cdkn2a/b, 
Lkb1, Keap1, Trp53, and Nkx2-1 [48, 70–76]. Activa-
tion of the Kras mutant in mouse models lacking Nkx2-1 
results in the loss of LUAD features and the subsequent 
acquisition of gut-related traits [16, 74, 77, 78]. FoxA1/2, 
another lineage-specifying transcription factor, drives 
gastric differentiation and suppresses squamous identity 
in NKX2-1-negative lung cancer [49, 79]. Loss of Nkx2-
1 and overexpression of Sox2 was sufficient to generate 
squamous differentiation [74]. Our KPU model dem-
onstrates that the deubiquitinating enzyme USP13 can 
switch on squamous carcinogenesis in club cells without 
direct genetic engineering of key lineage-defining factor 
genes, such as Sox2, Nkx2-1, and FoxA1/2. Interestingly, 
KPU-derived LUSC tumorigenesis showed a distinc-
tive loss of NKX2-1 and increased SOX2, demonstrat-
ing that USP13 is involved in cell lineage reprogramming 
at the initial stage of LUSC development. Therefore, in 
the oncogenic KRAS-mediated transformed club cells, 
USP13 seems to prevent those club cells from adopting 
an AT2-like adenocarcinoma identity, instead switching 
the fate of cells to squamous cell traits. USP13 directly 
deubiquitinates and upregulates MYC protein stabil-
ity (Fig.  5), and MYC overexpression alone upregulated 
SOX2 in NSCLC cell lines (Fig.  8). Therefore, it is pos-
sible that USP13 is associated with SOX2 and NKX2-1 
through MYC stabilization at the early stage of LUSC 
development. Future molecular mechanistic studies are 
required to elucidate whether USP13 is directly involved 
in the interplay between NKX2-1 and SOX2 and how 

USP13-mediated deubiquitination promotes lung lineage 
plasticity reprogramming.

Recently, the histological transformation (transdif-
ferentiation) of LUAD to LUSC or SCLC has emerged 
as a resistance mechanism to tyrosine kinase inhibi-
tor  (TKI)-targeted therapy or chemotherapy in clinics 
[6, 64, 80–84]. Squamous transformation has also been 
described in KRASG12C-mutated LUAD as a mecha-
nism of resistance to targeted therapy for KRAS muta-
tion [85].  Liver kinase B1 (Lkb1) has been proposed as 
a molecular driver of LUAD to LUSC transdifferentia-
tion using a mouse model [86, 87]. The KrasG12D-driven 
LUAD mouse model can progress to LUSC upon subse-
quent deletion of Lkb1. Inactivation of Lkb1 and Pten in 
the mouse lung leads to LUSC features [88]. However, 
due to the scarcity of well-annotated paired pre- and 
post-clinical samples and the lack of preclinical mod-
els, the molecular drivers underlying LUAD to LUSC 
transdifferentiation remain largely unknown. Our find-
ings in this study suggest that the upregulation of USP13 
might contribute to LUAD to LUSC transdifferentiation. 
Chromosome 3q amplification was found in squamous 
transformation tissues in osimertinib-resistant EGFR 
mutant lung cancers [83]. Quintanal-Villalonga et al. 
identified that lineage plasticity mechanisms leading to 
the histological transformation of human EGFR-mutant 
LUAD have been linked to the MYC, NOTCH, Hedge-
hog, PI3K/AKT, and WNT pathways [6, 58]. These path-
ways were enriched in KPU tumors (Fig. 3). KPU tumors 
displayed significant heterogeneity, leading to their cat-
egorization into two distinct clusters, KPU type 1 and 
type 2 (Fig 3A). Both clusters showed LUSC signature 
gene expression. In particular, KPU type 1 demonstrated 
heightened SCLC-like traits along with LUSC charac-
teristics (Fig 3B). Although different signaling path-
ways were enriched in each cluster (Fig 3E), Hedgehog, 
Notch, and PI3K/Akt/mTOR signaling play an important 
role in the development of LUSC and SCLC [89–91]. 
Molecular heterogeneity in KPU tumors can be caused 
by different mechanisms such as high plasticity of club 
cells and tumor microenvironment [92, 93]. Moreover, 
the USP13-mediated deubiquitination process directly 
upregulated MYC protein levels with increased expres-
sion of SOX2 and squamous features in KP mouse and 
human lung adenocarcinoma cells. MYC has been linked 
to histological transdifferentiation in SCLC and pan-
creatic cancer, suggesting a role in tumor lineage plas-
ticity [47, 94]. These findings suggest that the shared 
molecular networks and dysregulated pathways might 
be involved in USP13-mediated LUSC de novo develop-
ment and LUAD-to-LUSC transdifferentiation. Addi-
tionally, it will be intriguing to determine whether the 
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subsequent overexpression of USP13 from oncogenic-
mutant LUAD can lead to LUSC transdifferentiation.

Conclusions
In summary, our novel mouse model showed that 
USP13 switches on squamous carcinogenesis from club 
cells, and USP13-mediated lineage reprogramming is 
crucially defined in the cell of origin and genetic back-
ground. USP13-mediated deubiquitination leads to 
MYC upregulation, which may provide a novel molec-
ular mechanism for LUSC development and LUSC 
transdifferentiation. Future studies are warranted to 
determine how USP13 reprograms lineage plasticity 
in USP13-amplified lung cancers and whether target-
ing USP13 can overcome therapeutic-resistant LUSC-
transformed lung tumors.
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arachidonate lipoxygenase 3 (ALOXE3). X-axis is copy number variation of 
USP13 and the y-axis is log2(x+1) transformed RSEM normalized count. 
Error bars indicate mean ± SEM. Two-tailed unpaired t-tests, *p < 0.05, **p 
< 0.01. Fig. S2. (A) Schematic of KrasLSL-G12D/+; Trp53flox/flox (KP) and 
KrasLSL-G12D/+; Trp53flox/flox; Usp13LSL/LSL (KPU) alleles. (B) KP tumors 
were characterized by glandular formation (representative LUAD feature). 
The bottom is a high magnification of the top. Scale bar = 100 μm. (C) Dif-
ferent histological features in KPU tumors. (a) KPU tumors showed squa-
mous characters such as keratin material (asterisk) and intercellular bridge 
(arrow). A small portion of the tumor exhibited small cell lung carcinoma 
(SCLC) (b) or carcinosarcoma-like histology (c).(a’), (b’) and (c’) are higher 
magnifications of the boxed area in (a), (b), and (c), respectively. Scale 
bar = 100 μm (D) H&E staining of KPU mouse lung from Figure 2C (left). 
Black and red lines indicate LUAD and LUSC lesions, respectively. Scale bar 
= 5 mm. Representative images for H&E, USP13, NKX2-1, SPC, and SOX2 
IHC stains of the LUAD component in KPU tumors (right). Scale bar = 50 
μm. (E) Schematic of KrasLSL-G12D/+ (K) and KrasLSL-G12D/+; Usp13LSL/
LSL (KU) alleles. (F) Quantifying individual tumor number and area in K 
and KU mice at 55-58 weeks post-Ad-CMV-Cre infection (n= 3 and n= 
5, respectively). Error bars indicate mean ± SEM. Two-tailed unpaired 
t-tests, *p < 0.05, **p < 0.01, ***p < 0.01. (G) Representative images for 
H&E, USP13, NKX2-1, SPC, SOX2 IHC stains of K and KU tumors. Scale bar 
= 50 μm. Fig. S3. (A) Heatmap showing the expression of marker genes 
for LUAD, LUSC, and SCLC in TCGA LUAD and LUSC samples. (B) Heatmap 
visualization of differentially expressed genes (DEGs) (log2FC > 3.5, p 
< 0.01, and q < 0.01) between KP and KPU tumor samples. (C) Enrich-
ment plots for hallmark xenobiotic metabolism, KRAS signaling down, 
and peroxisome for KP and KPU tumors. (D) GSEA analysis for hallmark 
G2M checkpoint, E2F targets, and MYC targets version 1 for LUAD and 

LUSC. (E) IPA analysis shows the top ten canonical pathways enriched in 
LUSC compared with LUAD. Each bar’s color indicates predicted pathway 
activation or inhibition; Orange, positive z-score (activation); white, zero 
z-score; blue, negative z-score (inhibition); gray, no pattern. (F) Upstream 
regulator analysis exhibits transcription factors’ predicted activation status 
in human LUSC. A positive z-score indicates activation and a negative 
z-score indicates inhibition. Fig. S4. (A) Correlation between USP13 and 
MYC mRNA expression (left), USP13 and SOX2 mRNA expression (center), 
and MYC and SOX2 mRNA expression (right) in LUSC. Data was obtained 
from cBioportal (TCGA, PanCancer Atlas) (n= 469). mRNA Expression is 
log2(x+1) transformed RSEM normalized count. (B) Correlation between 
USP13 and MYC mRNA expression in LUAD. Data was obtained from 
cBioportal (TCGA, PanCancer Atlas) (n= 507). (C-E) Representative IHC-
staining images of USP13 (C), MYC (D), and SOX2 (E) in LUAD (left) and 
LUSC (right). The red boxed areas on the left images were magnified and 
shown on the right. Black scale bar = 100 μm, Greyscale bar = 50 μm. (F) 
Correlation between USP13 and MYC in the cytoplasm (left) and nucleus 
(right) of NSCLC patient samples. (G) Correlation between USP13 and 
SOX2 expression (left) and MYC and SOX2 expression (right) in LUSC. Data 
was obtained from Figure 4B (n= 130). IHC scores are analyzed using a 
two-tailed Pearson correlation coefficient. (H) Low magnification images 
of Figure 4F. Scale bar = 200 μm. Fig. S5. (A) Quantification of MYC expres-
sion levels relative to the vehicle is shown (left). qPCR of USP13 and MYC 
mRNA expression in HEK293T cells with or without USP13 overexpression. 
mRNA level was normalized to β-actin. Data are shown as means ± SD. 
ns, not significant, **p < 0.01, and ****p < 0.0001 (unpaired two-tailed 
t-test). (B) USP13-mediated deubiquitylation acts upon the Lys48 (K48) 
ubiquitination of MYC. 293T cells were transfected with FLAG-MYC, HA-Ub 
(WT or K48R), and Myc-tagged USP13. Fig. S6. (A) Section of wild-type 
mouse lung stained with anti-SPC (green) and anti-CC10 (red). Scale bar 
= 50 μm. (B) Section of wild-type mouse lung stained with anti-NKX2-1 
(green) and anti-SOX2 (red). Scale bar = 50 μm. (C) Representative 
hematoxylin and eosin (H&E) staining of KPU lung infected by Ad5-SPC-
Cre or Ad5-CC10-Cre virus. Dotted lines indicate tumor nodules. Scale bar 
= 5 mm. Fig. S7. (A) Experiment design: KP or KPU mice received a single 
intratracheal injection of celltype- restricted Ad-SPC-Cre virus. The experi-
ment was terminated 11-12 weeks post-viral infection. (B) Representative 
hematoxylin and eosin (H&E) staining of KP and KPU lung at 12 weeks 
post-Ad-SPC-Cre infection. Dotted line indicates a tumor nodule. Scale 
bar = 5 mm. (C) Quantification of individual tumor number (left) and area 
(right) in KP and KPU mice at 11-12 weeks post-Ad-SPC-Cre virus infection 
(n= 5 mice/group). (D) Representative images for H&E, USP13, NKX2-1, 
SPC, and SOX2 IHC stains of the KP and KPU tumors. Scale bar = 50 μm. 
(E) Representative NKX2-1 and SOX2 staining images from lung tumors in 
Ad-CC10-Cre infectedKP (left) and KPU (right) mice. Scale bar = 50 μm. (F) 
Quantification of lesions with NKX2-1 and SOX2 expression patterns from 
(E). (G) SPC and CC10 expression during cancer progression inAd-SPC-Cre 
infected KP and KPU lungs. Hyperplasia (arrow) and carcinoma in situ (CIS) 
(dotted line) are indicated. Scale bar = 50 μm. In (C) and (F), error bars indi-
cate mean ± SEM. Two-tailed unpaired t-tests, *p < 0.05, **p < 0.01. Fig. 
S8. (A) Representative images for IHC staining of MYC in the KP and KPU 
tumors post- Ad5-SPC-Cre (left) or Ad5-CC10-Cre (right) infection. Scale 
bar = 50 μm (B) IHC quantification for MYC in tumors. Error bars indicate 
mean ± SEM. Two-tailed unpaired t-test, ns = not significant, ****p < 
0.0001. (C and D) Representative images of KP (C) and KPU (D) tumors 
with low, intermediate, and high MYC expression. Scale bar = 50 μm. (E) 
Cellular localization of MYC during tumor progression in KP (left) and KPU 
(right) lungs following Ad5-CC10-Cre infection. The bottom figures are 
higher magnifications of the boxed area in the top figures. Arrows indicate 
the cellular location of MYC protein; Black, cytoplasm; Green, whole cell; 
Orange, nucleus; Cyan, whole cell with nuclear enrichment. Black scale bar 
= 50 μm, white scale bar = 25 μm.
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