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Abstract 

Treatment for renal cell carcinoma (RCC) has improved dramatically over the last decade, shifting from high-dose 
cytokine therapy in combination with surgical resection of tumors to targeted therapy, immunotherapy, and com-
bination therapies. However, curative treatment, particularly for advanced-stage disease, remains rare. Cell therapy 
as a “living drug” has achieved hematological malignancy cures with a high response rate, and significant research 
efforts have been made to facilitate its translation to solid tumors. Herein, we overview the cellular therapies for RCC 
focusing on allogeneic hematopoietic stem cell transplantation, T cell receptor gene-modified T cells, chimeric anti-
gen receptor (CAR) T cells, CAR natural killer (NK) cells, lymphokine-activated killer (LAK) cells, γδ T cells, and dendritic 
cell vaccination. We have also included perspectives for using other recent approaches, such as CAR macrophages, 
dendritic cell-cytokine induced killer cells and regulatory CAR-T cells to shed light on preclinical development of cell 
therapy and advancing cell therapy into clinic to achieve cures for RCC.
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Introduction
Renal cell carcinoma (RCC) represents approximately 
3% of adult cancers and has been widely recognized as a 
heterogeneous disease encompassing different subtypes 
[1]. About 70–80% of RCC cases have clear cell histology 

(ccRCC) [1, 2], which has a relatively poor progno-
sis, with 30% of patients developing metastatic ccRCC. 
ccRCC is characterized by inactivation of the von-Hip-
pel-Lindau (VHL) gene. The dysfunction of VHL leads to 
hypoxia-inducible factor (HIF) hyperactivation, resulting 
in overexpression of many downstream genes involved 
in angiogenesis, metabolism, and cell-cycle regulation, 
which represent critical therapeutic targets for patients 
with ccRCC [3, 4] (Fig. 1). Papillary renal cell carcinoma 
(pRCC) is the second most common kidney cancer, 
accounting for ∼15% of kidney cancers [5]. pRCC has two 
major types, type 1 and type 2, categorized by the pres-
ence or absence of prominent nucleoli, respectively. 80% 
of type 1 pRCC have an alteration in MET proto-onco-
gene (MET) genetic sequence or copy number, making 
MET a potential target pathway [6].

 Treatment of RCC has improved dramatically over 
the last decade, shifting from high-dose cytokine ther-
apy in combination with surgical resection of tumors to 
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extensive stage-dependent therapy regimens based on 
targeted therapies, highlighting the efficiency of antian-
giogenic agents that targets the vascular endothe-
lial growth factor (VEGF) pathway [7, 8] and immune 
checkpoint inhibitors (ICIs). In the European society 
for medical oncology (ESMO) clinical practice guide-
line, dual immunotherapy (ICI-ICI) or a combination 
of immunotherapy and antiangiogenic tyrosine kinase 
inhibitor (ICI-TKI) are recommended as the main first-
line therapies for patients with advanced ccRCC. These 
therapies, their category, targets and comparative effi-
ciency were summarized in Table  1 [9–11]. Despite 
all of these advances, curative treatment for advanced 
RCC remains rare [12] and the evolution of cell thera-
pies, summarized in Fig.  2 and detailed in the text, 
represent a promising area for these cases. Moreover, 
Tables  2 and 3 summarize the results from the main 
pre-clinical and clinical adoptive cell therapies for RCC 
described below.

Preclinical and clinical applications of adoptive 
cell therapies for RCC: acquired knowledge 
and perspectives
Allogeneic hematopoietic stem cell transplantation
Allogenic hematopoietic stem cell (HSC) transplanta-
tion, named allo-HSCT, has succeeded against primary 
and metastatic RCC due to an immune graft-versus-
tumor (GvT) effect [49]; however, graft-versus-host dis-
ease (GvHD) challenges its application. Bregni et  al. 
summarized the findings of 14 clinical studies on HSC 
transplantation for RCC patients, showing response rates 
ranging from 0 to 71% [49]. In half of the patients, acute 
and chronic GvHD were present, with transplant-related 
mortality observed in 0–33% of patients [49, 50]. These 
two post-transplant events, GvT and GvHD, are consid-
ered “two faces of the same coin” [51]. In the treatment 
of leukemia, administration of short-term immunosup-
pressive agents, camphorsulfonic acid (CsA) or metho-
trexate (MTX) at 10 mg/week, post allo-HSCT has 
been shown to significantly reduce GvHD without an 

Fig. 1 Hypoxia-inducible factor (HIF) pathway. Under normoxia, von-Hippel-Lindau (VHL) binds to HIF1α, leading to HIF1α degradation. While 
under hypoxia or in clear cell renal cell carcinoma (ccRCC), the dysfunction of VHL results in HIF1α-HIF1β dimer formation and HIF hyperactivation, 
resulting in overexpression of many downstream genes involved in angiogenesis, metabolism, and cell-cycle regulation, including carbonic 
anhydrase IX (CAIX), platelet-derived growth factor (PDGF) and vascular endothelial growth factor (VEGF). Created with BioRender.com
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appreciable impact on the GvT [52], which is promising 
to be translated to tame the immune overactivation in 
RCC treatment.

Alkylating agents alone or with total body irradiation 
(TBI) are the most used agents for myeloablative con-
ditioning in clinical allo-HSCT. However, they are very 
cytotoxic and frequently induce and amplify GvHD. 
Some recent alternative approaches have been explored 
in a review paper by Saha and Blazar [53]. The use of 
radioimmunoconjugates in the conditioning has shown 
clinical benefits, with decreased relapse and no changes 
in transplant-related mortality. One interesting strategy 

allowed transplantation tolerance to fully major his-
tocompatibility complex (MHC) mismatched donor 
marrow using nonmyeloablative preconditioning with 
busulfan or irradiation with lower systemic doses com-
bined with costimulatory pathway blockade and/or 
immunosuppressive drugs. In preclinical setting, the use 
of antibodies and immunoconjugates as precondition-
ing methods for allo-HSCT have been tested, with the 
advantage of more specific targeting of hematopoietic 
stem and immune cells, reducing global toxicity. These 
antibodies can be used alone in high doses or in lower 
doses associated with traditional conditioning agents in 

Table 1 Current targeted molecular agents recommended for the treatment of advanced/metastatic ccRCC 

ccRCC  Clear cell renal cell carcinoma, CTLA-4 Cytotoxic T-lymphocyte associated protein 4, FGFR Fibroblast growth factor receptor, ICI Immune checkpoint inhibitors, 
mTOR Mammalian target of rapamycin, ORR Overall response rate, OS Overall survival, VEGFR Vascular endothelial growth factor receptor, PD-1 Programmed cell death 
receptor-1, PD-L1 Programmed cell death ligand-1, PFS Progression free survival, TKI Tyrosine kinase inhibitor

Name Category Target Therapeutic Notes

Pembrolizumab Monoclonal antibody PD-1 First-line for advanced ccRCC when used in combination with TKI lenvatinib 
or axitinib. Higher PFS and OS for pembrolizumab + lenvatinib, with more serious 
adverse events than pembrolizumab + axitinib or nivolumab + cabozatinib [13]. 
Combination with lenvatinib has higher incidences of blood, lymphatic system, 
metabolism, and vascular disorders, while the combination with axitinib has higher 
incidence of cardiac and hepatobiliary toxicity, axitinib has a shorter half-life [14], 
usually with more easily manageable toxicities.

Nivolumab Monoclonal antibody PD-1 First-line therapy when used in combination with TKI cabozantinib or ipilimumab. 
Nivolumab + cabozantinib has slightly superior PFS, OS than nivolumab + ipili-
mumab, with more serious adverse events [13].

Ipilimumab Monoclonal antibody CTLA-4 First-line for intermediate- and poor-risk advanced ccRCC when combined 
with nivolumab, lower rate of severe adverse events than more potent combina-
tions [13].

Avelumab Monoclonal antibody PD-L1 First-line for PD-L1 positive advanced ccRCC when used in combination with TKI 
axitinib. Avelumab is cleared faster and has a shorter half-life than other anti–PD-L1 
antibodies, such as atezolizumab and durvalumab [15].

Lenvatinib TKI (multi-kinase) VEGFR, FGFR, (oth-
ers)

First-line for advanced ccRCC when used in combination with pembrolizumab. 
Very potent TKI. Less selective. Higher PFS and OS for pembrolizumab + len-
vatinib, with more serious adverse events than pembrolizumab + axitinib 
or nivolumab + cabozatinib [13].

Axitinib TKI VEGFR Highly selective for VEGFR, the first line for advanced ccRCC when combined 
with avelumab or pembrolizumab. Better ORR, OS, and PFS compared to sunitinib 
[16]. Shorter half-life compared to other TKIs.

Cabozantinib TKI (multi-kinase) VEGFR (others) First-line for advanced ccRCC when combined with nivolumab and used alone 
when ICI therapies are not indicated. Prolonged PFS compared with sunitinib 
for intermediate- or poor- risk advanced RCC [17]. Very potent TKI. Less selective. 
In combination with nivolumab, it has lower rates of serious adverse events com-
pared with lenvatinib or axitinib in combination with pembrolizumab.

Sunitinib TKI VEGFR Widely used previously as a first-line agent. Inferior performance alone compared 
to most first-line combinations of ICI-TKI or ICI-ICI. Option for patients for whom ICI 
therapy is not indicated. Superior to Sorafenib in PFS, with a similar OS [18].

Pazopanib TKI VEGFR An alternative when ICI therapy is not indicated. Developed as a newer, more selec-
tive agent. Better patient-reported outcomes over sunitinib [19].

Sorafenib TKI VEGFR An alternative when ICI therapy is not indicated. Inferior to sunitinib in PFS, 
with a similar OS. Superior to tivozanib considering OS [20].

Tivozanib TKI VEGFR Alternative to relapsed or refractory advanced RCC following at least two prior sys-
temic therapies. Superior PFS and ORR but inferior OS when compared to sorafenib 
[20].

Everolimus Small molecule inhibitor mTOR Everolimus with lenvatinib was superior to sunitinib alone, considering PFS, with-
out OS benefit [21] and can be recommended after first-line treatments.
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Fig. 2 Cell therapies for renal cell carcinoma. A Allogeneic hematopoietic stem cell transplantation, presenting acute and chronic graft 
versus host disease (GvHD) with high transplant-related mortality; B Interleukin-2 (IL-2) and IL-2 receptor (IL-2R) variants, where mutants allowing 
only hIL-2Rβ activation on adoptive T cells but not the hIL-2Rα prevent T cells differentiation into Tregs and induce expansion of effector T 
cells against the tumor; C T cell receptor gene-modified T cells (TCR-T), which is consisted of a chimeric switch receptor (CSR) combining 
a ligand-binding domain (e.g., PD-1) with an alternative signaling domain (CD28) able to prevent T cell exhaustion and improve expansion; 
D Chimeric antigen receptor (CAR) T cells, and E CAR natural killer (NK) cells, both expressing engineered receptors designed against one or more 
antigens allowing immune cells activation against the tumor; F Lymphokine-activated killer (LAK) cells, that are T and NK cells, mainly expressing NK 
markers. Despite some efficiency against RCC metastasis, LAK cell therapy has been replaced by more specific cell-based immunotherapies; G γδ T 
cells, a subset of T cells with non-MHC‐restricted cytotoxic activity. These cells can be engineered for adoptive therapies, and the PD-1/PD-L1 axis 
does not abrogate their function; H Dendritic cell vaccination, where autologous DCs pulsed with peptides or tumor lysate-derived proteins can 
stimulate the generation of cytotoxic T cells in cancer patients. Created with BioRender.com
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reduced doses, inducing lower toxicity compared with 
the traditional methods and achieving comparable allo-
engraftment [53].

Interleukin‑2 (IL‑2) and IL‑2 receptor variants applied 
in adoptive cell therapies
Despite the importance of IL-2 against metastatic cancer 
[54], this cytokine has various limitations, including its 
dual action on regulatory T cells (Tregs) and effector T 
cells. IL-2 can induce CD4+ CD25+ Foxp3+ Treg expan-
sion, especially in the immunosuppressive ICOS+ popula-
tion [55]. In 2021, Motzer et al. engineered an orthogonal 
IL-2/IL-2R pair that do not cross react with their wild-
type counterparts to specifically activate adoptively 
transferred T cells [56]. This method only activates the 
hIL-2Rβ on adoptive T cells but not the hIL-2Rα (CD25), 
preventing T cells differentiation into Tregs, thus ame-
liorating complications associated with conventional 
IL-2 therapy. Several IL-2 fusion proteins and variants 
are showing considerable promise in pre-clinical and 
clinical trials. PD-1-IL-2v, a new immunocytokine that 
binds PD-1 and IL-2Rβγ in cis, recovers the ability to 
differentiate PD-1+ T cell factor 1 (TCF-1)+ stem-like 
CD8+ T cells [57], which are critical for the success of 
PD-1 blockade based immunotherapies [58–61]. Another 
fusion protein, ALKS-4230, consisting of IL-2 and the 
extracellular domain of IL-2Rα, inhibiting interaction 
with IL-2Rα and preferentially binding to IL-2Rβγ [62, 
63], is currently being investigated in Phase I/II clinical 
trial (NCT02799095). GI-102 has a CD80-ectodomain 
N terminal and IL-2Rβ targeted C terminal domain, is 
being tested in Phase I/II trials (NCT05824975) as a 
single agent. An IL-2 mutant (F42A, Y45A and L72G), 
fused to an anti-fibroblast activation protein mAb 4B9 
[64], named FAP-IL-2v (simlukafusp alfa) is in Phase I/
II clinical trials for RCC and other various carcinomas 
through combination therapies with trastuzumab, cetuxi-
mab, bevacizumab, and pembrolizumab (NCT02627274, 
NCT03193190, NCT03063762, NCT03386721, and 
NCT03875079). Cergutuzumab, sharing the same IL-2 
mutein, fused with a carcinoembryonic antigen (CEA) 
targeted antibody [65], is also being tested in the clinic as 
a single therapeutic (NCT02004106), or in combination 
with atezolizumab (NCT02350673) for the treatment of 
metastatic solid tumors.

T cell receptor gene‑modified T cells
T cell receptor‑engineered T cells targeting 5T4 Tumor 
antigen
Trophoblast glycoprotein (TPBG, 5T4) is a heav-
ily N-glycosylated antigen, a member of the family of 
proteins containing leucine-rich repeats (LRRs). The 
elevated prevalence of this protein is seen in human 

trophoblasts and across many primary and metastatic 
cancers, and its expression is restricted in adult systemic 
tissues [66]. The overexpression of 5T4 in ovarian, gas-
tric, pancreatic, renal, and colorectal malignancies has 
been associated with poor prognosis and reduced OS of 
patients [22, 67–70]. Griffiths et al. have shown 5T4 pos-
itivity on three RCC cell lines (2220R, 2245R, and 2246R) 
and 20 RCC patient samples [22]. This study also proved 
that 5T4-targeted T cells could elicit cytotoxic activ-
ity on RCC tumor cells, paving the way for exploring T 
cell-based therapeutic strategies targeting 5T4-enriched 
tumors. A first line of 5T4 redirected CD8+ T cells selec-
tively eliminated 5T4+ kidney, breast, and colorectal 
cancer cells in vitro [23].

Chimeric PD‑1:28 receptor
One of the main obstacles to achieving a durable anti-
tumor response with T-cell-mediated therapy is the 
exhaustion/inactivation of the T cells due to immuno-
suppressive factors in the tumor microenvironment 
(TME) [71] (Fig. 3). Multiple workarounds for this prob-
lem have been proposed and executed, including con-
structing CAR-T cells with various payloads to prevent 
or revert T cell exhaustion. A chimeric switch receptor 
(CSR) combines a ligand-binding domain with an alter-
native signaling domain. Several such constructs have 
been used for enhancing and altering signaling pathways 
in adoptive cell therapy (ACT) [72–75]. The PD-1:28 CSR 
is a fusion of the extracellular domain of PD-1 and the 
signaling domain of the costimulatory receptor CD28. 
In highly immunosuppressive TMEs, activation through 
the costimulatory domain has been shown to prevent T 
cell exhaustion and improve expansion [76]. At the same 
time, blocking immune checkpoint signals such as the 
PD-1/PD-L1 interaction is crucial to avoid T cell inac-
tivation and restore effector function [77]. The PD-1:28 
CSR restored effector functions essential for tumor cyto-
toxicity, preventing Th2 polarization and blocked PD-1 
function in cell lines derived from various malignancies, 
including RCC, squamous cell carcinoma, melanoma, 
and glioblastoma [24]. CAR-T cells expressing this chi-
meric receptor reduced the susceptibility to tumor-
induced hypofunction in various solid malignancies 
compared to CAR-T cells that do not carry the receptor 
[78]. The results from such studies and others are encour-
aging and point to the potential of chimeric receptors to 
increase the efficacy of immunotherapeutic strategies.

Chimeric antigen receptor (CAR) T cells
CARs are genetically engineered receptors designed 
against one or more antigens and expressed on 
immune cells (Fig.  4). Their extracellular domain is 
usually an scFv capable of specifically binding antigens 



Page 10 of 21Wang et al. Molecular Cancer            (2024) 23:8 

overexpressed at the surface of tumor cells, linked to 
a hinge domain (e.g., CD8, CD28, IgG1, or IgG4) and 
a transmembrane domain (e.g., CD28, 4-1BB or CD8), 
fused to one or more variable intracellular costimula-
tory domains (e.g., CD28, 4-1BB, or OX40 – not present 
in first generation CARs) and a CD3ζ activation domain, 
leading to full T cell activation after contact with the 
target antigen [27]. CAR-T cell therapy has led to signif-
icant advances in cancer cell immunotherapy, resulting 
in great success in treating hematological malignancies 
[79], with recent advances for solid tumor treatments 
[80], including RCC [81].

Lessons learned from the first CAR‑T cell therapy (G250)
Carbonic anhydrases (CAs) are metalloenzymes that 
catalyze the reversible hydration of carbon dioxide to 
bicarbonate and hydrogen ions, controlling the pH of 
different body compartments. CAIX is a CA isoform 
overexpressed in hypoxic conditions and constitutively 
expressed in the majority of cases of the most common 
type of RCC, the ccRCC, due to mutations of the VHL 
gene, CAIX is being used as a ccRCC biomarker and has 
been shown to have prognostic implications [82, 83].

The first anti-CAIX CAR-T cells clinically tested for the 
treatment of metastatic ccRCC were CD4TM-γ express-
ing the first-generation CAR based on murine mono-
clonal antibody (mAb) G250 applied in high sequential 
doses in combination with IL-2. Patients showed disease 
progression, and liver toxicity was attributed to a spe-
cific scFv CAIX G250 attack against bile duct epithe-
lial cells [41]. In a subsequent clinical protocol with the 
same CAR-T cells, the authors extended their observa-
tions to attenuate the on-target off-tumor cytotoxicity 
against bile duct epithelial cells, by testing the use of chi-
meric G250 mAb as a pre-treatment strategy. However, 
no effective antitumor response was obtained; but the 
results suggested that using a human scFv anti-CAIX and 
other generations of CAR vectors could enhance their 
efficiency [42].

Carbonic anhydrase IX‑specific CAR‑T cells alone 
or in association
In preclinical studies, Lo et  al. tested two main con-
structs preclinically: a 1st generation humanized anti-
CAIX scFv G36 CAR with only CD3ζ activation domain 
(G36-CD3ζ); and a 2nd generation G36 CAR containing 

Fig. 3 Immunosuppressive tumor microenvironment (TME). The TME is comprised of tumor cells, stroma, and exhausted immune cells, 
including dendritic cells (DCs), T cells, NK cells, B cells and macrophages. Created with BioRender.com



Page 11 of 21Wang et al. Molecular Cancer            (2024) 23:8  

the costimulatory cassette CD28 (G36-CD28ζ). The G36-
CD28ζ CAR-T cells exhibited superiority compared to 
the first-generation equivalent CAR, with partial tumor 
regression observed in 67% of the cases [25]. To improve 
the efficacy of G36-CD28ζ against ccRCC, Suarez et  al. 
tested armored anti-CAIX G36 CAR-T cells secreting 
anti-programmed cell death ligand-1 (PD-L1) IgG1 or 
IgG4 mAb, which target PD-L1 positive ccRCC cells and 
block the PD-1/PD-L1 pathway. These CAR-T cells, in a 
dose equivalent to  108 CAR CD8 T cells/kg, were able to 
reverse T cell exhaustion, decreasing 30–70% expression 
of exhaustion markers in tumor-infiltrating lymphocytes 
(TILs). There was an improvement in antitumor activ-
ity, with a robust decrease in tumor weight by 50–80% 
compared to a parental anti-CAIX CAR-T cell [26]. The 
anti-CAIX G36 CAR CD28 or BBζ peripheral blood 
mononuclear cells (PBMCs) secreting anti-PD-L1 IgG4 

were recently tested in low doses in a similar orthotopic 
ccRCC model, equivalent to ≅  107 CAR-T PBMCs/kg, 
and the CD28-based construction was superior to BBζ 
when immune checkpoint blockade via PD-L1 was used 
in combination. This treatment reduced tumor weight by 
60%, avoided the occurrence of metastasis, and showed a 
50% reduction in the co-expression of T cell exhaustion 
markers on viable TILs. The authors suggest a synergistic 
effect of CD28-based CARs with a PD-L1 blockade con-
cerning the reversal of immunosuppression. No hepato-
toxicity or nephrotoxicity was observed [84].

Recently, Wang et  al. compared different anti-CAIX 
G36 CAR constructs (BBζ, 28ζ, 28BBζ) and CD4/CD8 
cell compositions in an orthotopic mouse model bear-
ing human ccRCC. The results showed that anti-CAIX 
G36 BBζ CAR-T cells with a CD4/CD8 ratio of 2:1 dem-
onstrated complete tumor regression and exhibited 

Fig. 4 Chimeric antigen receptor (CAR) structure. The CAR consists of an extracellular-hinge region, usually based on a single chain viable 
fragment (scFv), linked to a transmembrane region and intracellular costimulatory (e.g., 4-1BB, CD28) and stimulatory domains (CD3z). The CAR 
can be expressed in different immune cells (e.g., T cells, NK cells, Macrophages) and recognize specific tumor antigens independently of the major 
histocompatibility complex (MHC) presentation. This image summarizes all the molecules that are currently being evaluated as potential targets 
for CAR in RCC: carbonic anhydrase IX (CAIX), CD70, tyrosine-protein kinase Met (c-Met), mucin-1 (MUC1), receptor orphan tyrosine kinase receptor 
2 (ROR2), epidermal growth factor receptor (EGFR). Created with BioRender.com
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decreased exhaustion genes revealed by single-cell RNA 
sequencing (scRNAseq) [28].

The combination of the TKI sunitinib with another 
anti-CAIX CAR-T containing a CD8α transmembrane 
domain and the intracellular domains of 4-1BB and 
CD3ζ in a subcutaneous mouse lung metastasis model 
of human RCC has led to the survival of all mice at the 
end of the experiment (day 60), with decreased tumor 
burden compared to anti-CAIX CAR-T cells or suni-
tinib alone. Sunitinib enhanced the proliferation and 
infiltration of CAIX-CAR-T cells, with decreased fre-
quency of myeloid-derived suppressor cells in tumors 
[29]. Another study combined an oncolytic adeno-
virus (OAV) carrying decorin with CAIX-targeted 
CAR consisting of an scFv, a CD8α transmembrane 
domain, and 4-1BB/ CD3 zeta signaling intracellular 
domains. The CAIX CAR-T and OAV-Decorin (OAV-
DEC) construct proved to have a significant specific 
killing effect on CAIX-positive RCC cells in  vitro and 
displayed synergistic antitumor effects. In a subcutane-
ous xenograft model of human RCC, the combination 
OAV-DEC + CAIX-CAR-T reduced the tumor volume 
by 87%, while OAV + CAIX-CAR-T reduced the tumor 
volume by 54% [39].

CD70 targeted CAR‑T cells
CD70 is a membrane protein that binds to the tumor 
necrosis factor receptor (TNFR) known as CD27. Hema-
tologic malignancies and solid tumors, including about 
40% of RCC cases, may constitutively express CD70 in 
high levels [85, 86]. Anti-CD70 CAR-T cells have shown 
an antitumor effect on RCC in preclinical studies lead-
ing to lysis of target cells and increased levels of IL-2, 
TNF-α, and IFN-γ released by CAR-T cells. Also, in the 
same study, the addition of the poly (ADP-ribose) poly-
merase (PARP) inhibitor olaparib (OLA) associated with 
CD70 CAR-T showed an increase in CD8 + infiltration 
and a better survival rate among tumor-bearing mice 
[30]. Another preclinical study evaluating allogeneic cells 
identified CD70 CAR-T binding epitopes that exhib-
ited important antitumor activity against RCC cell lines 
and in a xenograft mouse model of RCC derived from 
patients [31]. Moreover, we developed dual-targeted anti-
CAIX/CD70 CAR-T cells to enlarge the target cell popu-
lation and mitigate tumor heterogeneity [87, 88].

Clinical trials are in progress to investigate the 
safety and efficacy of CD70-targeted CAR-T cells 
(NCT02830724) against several solid tumors includ-
ing RCC. The food and drug administration (FDA) has 
granted fast-track designation to the Phase I (TRAV-
ERSE) study to investigate the efficacy of an allogeneic 
CAR-T cell therapy that targets CD70 (NCT04696731). 

A Phase I multicenter trial (COBALT-RCC) of CRISPR-
(CTX-130) in fourteen subjects with stage IV CD70 posi-
tive ccRCC, from which six presented refractory disease, 
has led to 8% durable CR (18+ months) and 69.2% SD. 
The treatment induced an acceptable safety profile, with 
most patients presenting low cytokine release syndrome 
(CRS) grades. No patients had GvHD, neurotoxicity, or 
hemophagocytic lymphohistiocytosis [40].

Other CAR‑T cells for RCCs
In an orthotopic mouse model, CAR-T cells targeting 
tyrosine-protein kinase Met (c-Met) were presented as 
an option for treating pRCC. Administration of CAR-T 
cells induced an apparent suppression of tumor growth, 
and complete tumor regression was achieved in approxi-
mately 60% of the mice. In addition, the study verified 
the synergistic increase in therapeutic efficacy when 
in combination with axitinib [32]. However, the clini-
cal study did not show an objective response to treat-
ment (NCT01218867). Other clinical trials of c-Met 
CAR-T cells based on different vectors are advancing 
(NCT03638206).

An allogeneic CAR-T cell therapy designed to tar-
get cancer cells that express the cell surface-associated 
C-terminal antigen Mucin-1 (P-MUC1C-ALLO1) will 
be tested for safety, tolerability, and response to treat-
ment in patients with solid cancers, including RCC 
(NCT05239143). Phase I/II clinical trial is investigat-
ing the therapeutic effects of CAR-T CCT 301-38 or 
CCT 301-59 cells in stage IV metastatic patients at dif-
ferent molecular targets, that RCC patients with recep-
tor orphan tyrosine kinase receptor 2 (ROR2) receive 
CCT31-59 while AXL-positive patients undergo CCT 
301 − 38 (NCT03393936).

CAR‑NK cells or other genetically engineered NK cells
A wide range of sources can provide NK cells, such as 
peripheral blood, cord blood, induced pluripotent stem 
cells (iPSC), and an established NK cell line (such as 
NK92) can also be used [89]. Allogeneic NK cells can be 
infused back into patients regardless of donor-patient 
human leukocyte antigen (HLA) type matching, being an 
exciting alternative to reduce the cost of CAR-based cell 
therapy [90–92]. The positive rationale for using CAR-
NK cell therapy includes that it is less likely to cause side 
effects like CRS and GvHD [89, 91] and this CAR-NK can 
overcome endogenous resistance mechanisms in tumor 
cells [93]. Nevertheless, some difficulties have been 
reported, such as low transduction efficiency compared 
to T cells and poor expansion when peripheral-blood-
derived NK cells are used (Fig. 5) [94]. When the source 
of NK cells is from umbilical cord blood, these issues 
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appear to be minimized; however, the relative immaturity 
of these cells constitutes a possible disadvantage. The use 
of NK-92 cell lines facilitates engineering and expansion, 
but it faces some challenges due to safety considerations, 
the necessity of special cell processing [33, 94], and poor 
long-term persistence [94, 95].

Other challenges in CAR-NK cell therapy production 
include prolonging the cell survival post-infusion with 
significant persistence in the peripheral blood, optimiz-
ing cell cytotoxic capabilities [90], and increasing CAR-
NK cell traffic to the tumor site [89]. A review of six male 
RCC patients between 50 and 70 years old and no previ-
ous treatment has shown that RCC can alter the classi-
cal characteristics of NK cells towards a decidua NK-like 
program, limiting their cytotoxic capacity and inducing 
angiogenesis [96], pointing out a possible new challenge 
to use CAR-NK therapy against RCC.

CAIX‑specific NK92 cells
NK92 is an IL-2-dependent immortalized cell line 
derived from a patient with lymphoma. As such, despite 
the already established general safety of infusion, NK92 
must be irradiated before its clinical use [34, 97]. The the-
oretical advantages of NK92 include its easy expansion 
and availability, resulting in reduced time to start treat-
ment with lower costs [34].

CAIX-specific CAR-NK92 cells have been described 
as a potential killer of RCC cells in  vitro and in  vivo 
in a mouse model of human RCC. This 3rd generation 
CAIX-CAR includes an anti-CAIX scFv (LV5), CD8 
hinge and transmembrane regions, and CD28, 4-1BB, 
and CD3ζ intracellular domains [34]. CAIX-specific 
CARNK92 at an effector: target (E:T) ratio of 30:1 
induced specific cell lysis varying from 25-55% for dif-
ferent RCC cell lines, with an unobtrusive 10% increase 
when CAIX-specific CARNK92 was combined with 
bortezomib, a proteasome inhibitor [34]. The combina-
tion induced a very significant tumor volume decrease 
in a mouse model of subcutaneous human RCC [34].

EGFR‑Specific CAR‑NK92
An epidermal growth factor receptor (EGFR)-specific 
3rd generation CAR was tested against EGFR+ RCC 
cells in vitro and in a subcutaneously human RCC-bear-
ing mouse model. When these CAR-T cells are com-
bined with low doses of cabozantinib – a tyrosine kinase 
inhibitor (TKI) that significantly decreases PD-L1 
expression and increases EGFR expression in RCC cells 
in vitro – 5-fold lower tumor volume were found when 
compared with CAR-NK92 cells or cabozantinib treat-
ment alone [35].

Fig. 5 Natural killer (NK) cells for adoptive cell therapies. Description of advantages and drawbacks of NK cells used for adoptive cell therapies 
against RCC, showing the possible sources of these cells. Created with BioRender.com
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CD70‑directed CAR‑NK cells
CD70 has also been explored as a target for therapies 
based on NK cells. A recently opened Phase I/II clini-
cal trial evaluates cord blood-derived NK cells express-
ing a CD70-targeting CAR engineered to secrete IL-15. 
This treatment has been performed in association 
with lymphodepleting chemotherapy for the treat-
ment of advanced RCC, mesothelioma, and osteosar-
coma (NCT05703854), with no published results up to 
November 2023.

NK92 expressing CXCR2
Chemokines regulate immune cell migration by bind-
ing to their corresponding chemokine receptors. Many 
solid tumors, including RCC, release ligands for the 
C-X-C motif chemokine receptor 2 (CXCR2), but NK 
cells in peripheral blood seem to lose CXCR2 expres-
sion [36]. For this reason, patients with solid tumors that 
received adoptive NK cell infusion exhibited poor migra-
tion of NK cells to the tumor. Genetically modified NK 
cells re-expressing CXCR2 showed an increased ability 
to migrate toward CXCR2-ligand-expressing tumors, 
with better adhesion properties and more significant kill-
ing of target cells [36]. NK cells transduced with CXCR2 
showed a 2-fold increase in their migration ability to 
CXCR2 ligands secreted by RCC cell lines compared to 
NK cells transduced with NGFR [36]. Elevated numbers 
of tumor infiltrating NK (TINK) cells are related to a bet-
ter RCC prognosis [36].

Dendritic cell (DC) vaccination
DC vaccines work through induction and endorsement 
of an immune reaction to eradicate tumor cells. Autolo-
gous DCs pulsed with peptides or tumor lysate-derived 
proteins can stimulate the generation of cytotoxic T cells 
in cancer patients. Four main methods were applied to 
use DCs as cell-based vaccines against cancer: co-culture 
of DCs with isolated autologous tumor tissues, co-culture 
of DCs with synthetic peptides or recombinant proteins 
of a tumor antigen, transfection of DCs with a specific 
plasmid to express tumor antigens, or fusion of DCs with 
complete tumor cells via polyethylene glycol [98–103]. 
The result of a Phase I/II trial showed DCs pulsed with 
telomerase and surviving-derived HLA-A2 binding pep-
tides in association with low dose IL-2 was able to pro-
mote stable disease for more than 8 weeks in 13 out of 27 
patients with RCC [43].

Other adoptive cell therapies for RCC 
Lymphokine‑activated killer (LAK) cells (NK‑like T cells)
Cappuzzello et  al. reported the cytotoxic effector func-
tions of NK-resistant tumor-killing cells, termed LAK 
cells [104]. LAK cells constitute T and NK cells, mainly 

expressing NK markers such as CD3-CD56 + and 
NKG2D for HLA-independent killing mechanisms [105, 
106]. Autologous-activated LAK cells were infused in 
metastatic RCC (mRCC) patients with IL-2, and the 
response rate reported was relatively low with specific 
side effects [107]. A feasibility clinical trial was then con-
ducted on 10 mRCC patients treated using lymphokine-
activated natural killer (LANAK) cells associated with 
IL-2. The trial yielded 3/10 PR, 4/10 CR, and 1/10 SD 
with immunotherapy alone, and 2/10 CR after immu-
notherapy plus surgery, with IL-2 toxicities observed in 
all treated patients [44]. This better antitumor response 
allow us to conclude that using well-defined effector cells 
like NK cells rather than a heterogenous cell population is 
better for effective treatment [108] Tumor reduction and 
clinical toxicity were not correlated with LAK cell lytic 
activity or dose in RCC [109]. A Phase II trial recruited 
94 patients with advanced RCC and treated them with 
LAK cells associated with IL-2 or bolus IL-2 injection 
with continuous infusion. The two groups achieved 
objective responses (OR) of 19% and 15%, respectively 
[46]. In another study for advanced RCC, LAK cells were 
systemically administered to patients between one to 
three times a week, followed by a bolus injection of 5000 
IU IL-2 twice daily. These cells were localized in the lung 
but not in the tumor tissue and used to treat pulmonary 
RCC metastasis. In this study, 50% of the metastatic 
sites, such as bone, muscle, and lymph node metastases, 
showed regression in 9 patients treated by arterial LAK 
therapy, with no severe side effects [110]. LAK cell ther-
apy has been replaced by more specific cell-based immu-
notherapies [111].

γδ T cells (from TIL and PBMCs)
γδ T cells are a distinct subset of T cells abundant in 
mucosal organs that constitute less than 5% of the 
peripheral blood lymphocytes [112, 113]. γδ T cells 
are non-HLA‐restricted cytotoxic cells and play an 
important immune role in innate and adaptive immu-
nity by directly recognizing and killing pathogens and 
activating T and B lymphocytes by releasing certain 
cytokines [114]. Clinical trials have reported the safety 
and efficacy of activated γδ T cells in patients with 
non small cell lung cancer (NSCLC), RCC, melanoma, 
and breast cancer [45, 115–117]. Vγ9Vδ2 T cell sub-
set is the most convenient to isolate and expand, espe-
cially from human PBMCs. Many studies have shown 
that these γδ T cells can be genetically engineered to 
have superior and specific cytotoxic effects against 
tumors, resulting in advanced adoptive immunothera-
pies. Chemotherapy-resistant γδ T cells have been 
developed by introducing  O6-alkylguanine DNA alkyl 
transferase, a DNA repair enzyme, into Vγ9Vδ2 T cells 
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by lentiviral transduction to confer resistance to the 
chemotherapeutic drug temozolomide (TMZ) to treat 
glioblastoma. Chemotherapy-resistant γδ T cells were 
reported to have a superior antitumor potential in the 
presence of TMZ [118]. CD19-specific CAR-T cells 
employing ex  vivo expanded Vγ9Vδ2 T cells showed 
cytolytic effects against CD19+ cancer cells [119]. Dif-
ferent approaches have been studied and reviewed to 
engineer γδ T cells to overcome their clonal heteroge-
neity for optimal functionality. T cells engineered with 
defined γδ T cell repertoires are the autologous αβ T 
cells transduced with high-affinity Vγ9Vδ2 TCRs. These 
engineered cells have been subjected to a clinical trial 
for safety and efficacy assessment [120]. Another excel-
lent feature of Vγ9Vδ2 T cells is that the PD-1/PD-L1 
axis does not abrogate their function [121]. Based on 
all these properties, γδ T cells can be a good immuno-
therapy source for immunosuppressive solid tumors 
such as ccRCC. In a recent study, IL-15 activated γδ 
T cells showed an improved cytotoxic effect in RCC 
patient-derived xenograft (PDX) mouse model [37]. 
Lee et  al. have characterized CD3low Vγ9Vδ1 T cells 
and explored their effector and cytotoxic function in 20 
treatment naive RCC tumor samples from patients sug-
gesting them as novel therapeutic candidates for RCC 
treatment in high-risk patients [38].

Cytokine induced killer (CIK) cells
CIK is a novel strategy of cancer cell immunotherapy 
based on modification, manipulation, and co-opting 
of autologous or allogeneic primary CD3+ CD56- T 
cells and CD3+ CD56+ NKT cells [122–124], in which 
NKT cells can recognize tumor cells in a HLA-unre-
stricted manner [122, 125, 126]. The results of clini-
cal trials have shown all 40 enrolled patients treated 
with autologous CIK cells with significantly improved 
overall health conditions and OR [127]. Autologous 
CIK cells in combination with ICIs (pembrolizumab) 
[128], inflammatory cytokines (IL-2) [128], and TKIs 
(sorafenib) [129] have exhibited synergistic effects 
on RCC tumors in the clinic. Moreover, co-culturing 
DCs and CIK cells, termed DC-CIK, have improved 
anti-tumor activity and proliferation of CIK cells, 
might resulting from the capacity of DCs to decrease 
Tregs [130]. The combination therapies of DC-CIKs 
with ICIs (pembrolizumab) [48] (NCT03190811), and 
TKIs (sunitinib/sorafenib) [47] in RCC clinical trails 
further increase therapeutic efficacy compared to the 
monotherapy. Combining CIK cells with a DC vac-
cine also has displayed more robust antitumor activ-
ity and less severe side effects in RCC treatment [131] 
(NCT01924156).

Discussion
In this manuscript, we reviewed the history of cell ther-
apy for RCC, presenting the advances and perspectives 
that describe a promising scenario for the use of cell 
therapies to treat RCC. However, several challenges must 
be overcome to enable safer and more effective perfor-
mances of these treatments.

CAIX has recently been reborn as an exciting target for 
RCC cell therapy, mainly when CAR-T cells were used. 
Our in vitro and in vivo preclinical studies using human-
ized mice bearing human RCC [132] have been encour-
aging from the standpoint of antitumor efficacy and 
minimal on-target off-tumor side effects [28, 133–135]. 
Besides CAIX, oncofetal antigen 5T4 (with overexpres-
sion found in over 75% of RCC patient samples) [22] and 
the CD70 (overexpressed in about 40% of RCC patients) 
[86, 88, 136], are relevant targets to be further explored 
for the development of new cell immunotherapies for 
RCC management.

T cell exhaustion due to immunosuppressive factors 
in the TME of solid tumors, including RCC, is a sub-
stantial obstacle to improve its therapeutic efficiency. 
There are some prominent cell therapies in the preclini-
cal development for RCC. Among them, we highlight 
the PD-1:28 CSR, which improved CAR-T cell efficiency 
and upgraded low-avidity T cells, blocking T cell inac-
tivation via PD-1 to restore their effector functions and 
enhance tumor cytotoxicity [24]. Further development 
of the PD-1:28 CSR could create a first-line treatment 
strategy against solid malignancies that are refrac-
tory to conventional immunotherapeutic techniques. 
Anti-CAIX G36 CAR-T cells were also tested in a con-
figuration capable of blocking immune checkpoint via 
releasing ICI in the TME.

Despite the undeniable potential of NK cells as an 
anti-cancer therapeutic tool and the known correlation 
between NK infiltration and improved survival of RCC 
patients [137], there are still challenges that must be sur-
passed to improve the efficiency of NK therapies against 
RCC, such as the tendency of NK cells to move to a 
decidua NK-like program in RCC, characterized by lim-
ited cytotoxicity and proangiogenic functions [96]. There 
are ongoing clinical trials with CAR-NK cell therapies for 
RCC treatment, such as CD70 targeted IL-15 CAR-NK 
cells. Also for other solid tumors, target MUC1, NKG2D 
ligands, and ROBO1 [89, 95]. DC-based vaccination in 
combination with low-dose IL-2 is a current regimen for 
advanced RCC.

Some recent approaches with exciting results for treat-
ing other solid tumors but underexplored in the context 
of RCC cellular therapies, such as CAR macrophages 
(CAR-M) and CAR-Treg [138]. Macrophages are 
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abundant in solid tumors especially RCC [71, 139], and 
display superior capacities of tumor tissue homing com-
pared to T cells [140]. CAR-M targeting CD19, CD22, 
HER-2, CD5, and carcinoembryonic antigen-related cell 
adhesion molecule 5 (CEACAM5) have been developed 
to fight against solid tumors and hematopoietic malig-
nancies with improved tumor control and significant 
activation of TME [141–144]. Recently, it reported a 
Phase I first in human study of an anti-HER2 CAR-M in 
patients with HER-2 overexpressing solid tumors [145], 
shedding the light on translating CAR-M for RCC ther-
apy. CAR regulatory T cells (CAR-Treg) could also be 
an interesting strategy to be applied in RCC treatment, 
especially in circumstance of immunosuppression, such 
as in GvHD. Anti-EGFR CAR-Treg with CD28 has shown 
antigen-specific infiltration as well as suppresses the 
function of T effector cells (Teffs) in vivo [146], provid-
ing a potential treatment for eliminating toxicities post 
CAR-T infusion [147]. 
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