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Abstract 

Dysregulation of R-loop homeostasis is closely related to various human diseases, including cancer. However, the cau-
sality of aberrant R-loops in tumor progression remains unclear. In this study, using single-cell RNA-sequencing 
datasets from lung adenocarcinoma (LUAD), we constructed an R-loop scoring model to characterize the R-loop 
state according to the identified R-loop regulators related to EGFR mutations, tissue origins, and TNM stage. We then 
evaluated the relationships of the R-loop score with the tumor microenvironment (TME) and treatment response. 
Furthermore, the potential roles of FANCI-mediated R-loops in LUAD were explored using a series of in vitro experi-
ments. Results showed that malignant cells with low R-loop scores displayed glycolysis and epithelial–mesenchymal 
transition pathway activation and immune escape promotion, thereby hampering the antitumor therapeutic effects. 
Cell communication analysis suggested that low R-loop scores contributed to T cell exhaustion. We subsequently vali-
dated the prognostic value of R-loop scores by using bulk transcriptome datasets across 33 tumor types. The R-loop 
scoring model well predicted patients’ therapeutic response to targeted therapy, chemotherapy, or immunotherapy 
in 32 independent cohorts. Remarkably, changes in R-loop distribution mediated by FANCI deficiency blocked 
the activity of Ras signaling pathway, suppressing tumor-cell proliferation and dissemination. In conclusion, this study 
reveals the underlying molecular mechanism of metabolic reprogramming and T cell exhaustion under R-loop score 
patterns, and the changes in R-loops mediated by R-loop regulators resulting in tumor progression. Therefore, incor-
porating anticancer methods based on R-loop or R-loop regulators into the treatment schemes of precision medicine 
may be beneficial.
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Introduction
R-loops are dynamic triple-stranded nucleic acid struc-
tures that form during transcription when a nascent 
guanine-rich RNA transcript segment invades the DNA 
template [1]. R-loops, which are ubiquitous in mam-
malian genomes, participate in multiple biological pro-
cesses, leading to both positive and negative outcomes. 
Physiological R-loops contribute to DNA repair, cell 
proliferation and differentiation, and RNA transcription 
and processing, as well as regulating gene expression and 
DNA methylation [2, 3]. However, changes in the R-loop 
homeostasis disrupt R-loop-regulated processes, causing 
replication stress and genomic instability; hence, such 
changes may be associated with various human diseases, 
including cancer [4–6]. Thus, the R-loop must be regu-
lated finely. Currently, over 1,000 R-loop regulators that 
control R-loop structures and levels have been reported 
[7]. Bhatia et  al., found that the loss of BRCA2, an 
R-loop regulator, results in unscheduled accumulation of 
R-loops, suggesting that R-loops are responsible for trig-
gering chromosome abnormalities in BRCA2-deficient 
cells [8]. Wang et  al. suggested that ZFP281 has a criti-
cal role in inhibiting R-loop formation and maintaining 
DNA replication [9]. Robbiani et al., showed that RNase 
H overexpression degrades R-loops, thereby suppressing 
genomic instability related to CFS [10]. The findings of 
the functional roles of R-loops in health and disease may 
contribute to the development of new targeted treatment 
strategies for human diseases.

Given that R-loops contribute to genomic instability 
and replication stress, which are the hallmarks of pre-
neoplastic and neoplastic cells, they are viewed as poten-
tial cancer drivers [11]. Numerous studies have correlated 
the alterations of R-loop frequency, stability, or genomic 
position with cancerous states such as proto-oncogene 
activation and tumor suppressor gene inactivation. For 
instance, an R-loop produced through translocations 
between MYC proto-oncogene and Ig S region promotes 
tumorigenic process [12]. R-loop dissolution driven 
by inositol auxotroph 80 facilitates the proliferation of 
multiple cancer cell types, including prostate, breast, 
and melanoma cancer cells [13, 14]. R-loop accumula-
tion induced by topoisomerase III beta  gene deletion 
predisposes individuals to renal cancer [15]. Further-
more, abnormal R-loops generated by the loss of BRE1, 
a tumor suppressor gene, are related to carcinogenesis 
[16]. Methyltransferase-like 8-mediated 3-methylcytidine 
modification in RNA also modulates R-loops to facili-
tate carcinogenesis [17]. However, direct evidence that 
R-loops themselves lead to tumorigenesis and tumor pro-
gression is limited.

Cancer cells exist in a tumor microenvironment (TME) 
composed of stromal cells such as fibroblasts, endothelial 

cells, epithelial cells, and myeloid cells, and TME regu-
lates both tumor progression and tumor response to 
therapy [18]. R-loop accumulation in the cytoplasm has 
been reported to activate an innate immune response 
that contributes to diseases such as neurodegenera-
tion and cancer [19]. During chronic inflammation and 
carcinogenesis, R-loops regulate cytokine-mediated 
inflammatory cascades by inducing the reorganization 
of immune cell interactions [20]. Ten-eleven transloca-
tion is a methylcytosine dioxygenase that is responsible 
for the optimal differentiation and function of inducible 
regulatory T cells, and it also maintains the steady state 
of mature B cells by degrading accumulated R-loops [21, 
22]. Nevertheless, function of R-loops in TME remains 
unclear. Therefore, a single-cell analysis should be con-
ducted to provide insights into the roles of R-loops within 
and between malignant and nonmalignant cells inside the 
tumor tissue at a single-cell resolution.

Using single-cell RNA-sequencing (RNA-seq) data-
sets from lung adenocarcinoma (LUAD), this study con-
structed an R-loop scoring model to characterize the 
R-loop state based on the identified R-loop regulators 
related to EGFR mutations, tissue origins, and TNM 
stage. Our results imply that R-loop scoring can charac-
terize TME features and predict the antitumor treatment 
effects. Low R-loop scores were linked to unfavorable 
outcomes, resistance to anticancer therapies (e.g., tar-
geted therapy and chemotherapy), and nonresponse to 
immunotherapy. Importantly, we revealed the causal role 
of changes in R-loop distribution mediated by an R-loop 
regulator for LUAD development. Altogether, our study 
provided a theoretical basis for targeting R-loops or 
R-loop regulators to improve clinical responses to cancer 
therapy.

Material and methods
Data acquisition and processing
Three single-cell RNA-seq (scRNA-seq) datasets of 
patients with LUAD and associated clinical informa-
tion were collected from the Gene Expression Omni-
bus (GEO) database (http:// www. ncbi. nlm. nih. gov/ 
geo/: GSE123904, GSE131907, and GSE146100). More-
over, an independent dataset containing the data of 
LUAD samples that underwent tyrosine kinase inhibitor 
(TKI) therapy was collected from the National Center 
for Biotechnology Information (NCBI)  BioProject 
(PRJNA591860).

Based on a previous reported method [23], 
we obtained four lung cancer scRNA-seq data-
sets (GSE123904, GSE131907, PRJNA591860, and 
GSE146100). The dataset selection procedure in 
the PubMed was summarized as follows: (((((lung 
cancer[Title]) OR (lung adenocarcinomas[Title])) 
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OR (NSCLC[Title/Abstract])) OR (lung tumor[Title/
Abstract])) OR (neoadjuvant immunotherapy[Title])) 
AND (((single-cell transcript*[Title/Abstract]) OR (sin-
gle-cell RNA[Title/Abstract])) OR (scRNA-seq[Title/
Abstract])) AND (y_5[Filter]). The results were shown 
in Figure S1. Finally, four scRNA-seq datasets from 
published studies of LUAD patients based on the 
above criterion were identified and further analyzed in 
followed study (Table S1).

Lung cancer scRNA-seq data were processed using the 
scRNA-seq package ‘Seurat’ in R. We first created a Seu-
rat object using CreateSeuratObject function in ‘Seurat’. 
The raw data were filtered by removing cells express-
ing less than 300 genes and genes that were expressed 
in fewer  than three cells, and by removing cells with 
the total mitochondrial gene expression more than 8%. 
Counts were normalized by the LogNormalize method 
and were scaled using the ScaleData function for down-
stream analysis. We identified the highly variable genes 
based on the the Seurat function FindVariableFeatures 
with a cut-off value (2000). We integrated the GSE123904 
and GSE131907 datasets. The batch effect was eliminated 
by RunHarmony function in ‘Harmony’ R package.

To evaluate the clinical performances of the R-loop 
score according to the independent  bulk data, we col-
lected samples with RNA-seq expression profiles and 
complete clinical information from The Cancer Genome 
Atlas (TCGA, https:// www. cancer. gov/tcga) database 
across the following 33 tumor types: thyroid carcinoma 
(THCA), prostate adenocarcinoma (PRAD), pancreatic 
adenocarcinoma (PAAD), adrenocortical carcinoma, 
bladder urothelial carcinoma (BLCA), breast cancer 
(BRCA), cervical squamous cell carcinoma and endocer-
vical adenocarcinoma, cholangiocarcinoma (CHOL), 
colon adenocarcinoma, lymphoid neoplasm diffuse large 
B-cell lymphoma (DLBC), esophageal carcinoma, glio-
blastoma multiforme (GBM), head and neck squamous 
carcinoma (HNSC), kidney chromophobe, kidney renal 
clear cell carcinoma, acute myeloid leukemia, kidney 
renal papillary cell carcinoma, brain low-grade glioma, 
liver hepatocellular carcinoma (LIHC), lung squamous 
cell carcinoma, mesothelioma, ovarian serous cystad-
enocarcinoma (OV), pheochromocytoma and paragan-
glioma, rectal adenocarcinoma, sarcoma, skin cutaneous 
melanoma (SKCM), stomach adenocarcinoma, testicular 
germ cell tumor, thymoma, uterine corpus endometrial 
carcinoma, uterine carcinosarcoma, uveal melanoma, 
and LUAD. Furthermore, 38 published high-through-
put microarray datasets were obtained from GEO and 
NCBI BioProject databases for  subsequent analysis. 
The fragments per kilobase million (FPKM) values from 
RNA-seq data were acquired. For  each gene,  RNA-
Seq  data read  counts were normalized as  FPKM 

using log2-transformation. The code used in analysis for 
this study is provided in Supplementary Code.

Weighted gene coexpression network analysis (WGCNA) 
of single‑cell data for identifying gene network modules
To determine groups of cells sharing similar origin, 
we conducted WGCNA applying the functions in the 
‘WGCNA’ R package [24]. We used R-loop regulators 
for building a signed network and selected the smallest 
beta value that satisfies the scale-free topology crite-
rion (optimal beta = 14). We set minModuleSize = 10 as 
a parameter for the dynamic tree-cut function. Highly 
similar modules were determined through clustering and 
were further merged, with a height cutoff value of 0.25. 
According to the function “Eigengenes,” we found that 
coexpressed gene modules were related to several clinical 
characteristics; the modules that were significantly asso-
ciated with mutation, stage, origin, and smoking were 
chosen.

Construction of an R‑loop scoring model based on R‑loop 
regulators
According to a previously reported algorithm [23], R-loop 
score was calculated based on the cal_CRDscore func-
tion from R package ‘CRDscore’. Briefly, we first calcu-
lated the average expression levels of genes in all cells or 
samples. Subsequently, a random R-loop score  (Sramdom) 
was obtained using a random sampling strategy. Next, 
we analyzed a score for the centered expression data of 
each sample or cell  (Scenter). Finally, we subtracted  Sramdom 
with  Scenter to obtain the R-loop score. In the bulk sam-
ples, R-loop score was calculated based on the expression 
profiles of prognosis-associated differentially expressed 
R-loop regulators. Cells or samples were divided into 
high- and low-score subgroups in terms of the median 
value of R-loop scores.

Analysis of cell–cell interaction and cytokine signaling 
activity
Clustering analysis was conducted according to the inte-
grated joint embedding generated by Harmony with the 
Louvain algorithm. Cell clustering results were then vis-
ualized through uniform manifold approximation and 
projection (UMAP) or t-Distributed stochastic neighbor 
embedding (t-SNE) analysis. The cell populations were 
annotated as  known  cell  types based on the expression 
of cells’ typical marker genes. Moreover, cell communi-
cation was analyzed using CellphoneDB [25]. According 
to the annotated ligand-receptor pairs gained from the 
STRING database [26], their average expression levels 
were calculated. Subsequently, we collected the ligand-
receptor pairs with significant (p < 0.05) values returned 
by CellphoneDB. Finally, we used these identified pairs to 
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analyze the interaction between two cell types. Consider-
ing the critical role of cytokines in cell communication, 
the activity of cytokine signaling from transcriptomic 
profiles was determined using CytoSig [27].

Gene set variation analysis (GSVA)
The difference in the signal pathways involving genes 
between the high and low R-loop score subgroups was 
investigated by extracting the Kyoto Encyclopedia of 
Genes and Genomes (KEGG)  pathways and conducting 
GSVA enrichment analysis using these pathways [28]. An 
adjusted p value less than 0.05 suggests statistically sig-
nificant differences.

Cell lines and cell culture
Human non-small-cell  lung  cancer  (NSCLC) cell lines 
PC-9 and A549 were purchased from National Collec-
tion of Authenticated Cell Cultures. Cells were cultivated 
in glucose-containing Roswell Park Memorial Institute 
1640 (RPMI-1640) medium (1185093, Gibco, Waltham, 
USA) with 10% fetal bovine serum (C04001, Biological, 
Industries, Beit, HaEmek, Israel) in a humidified incu-
bator at 37  °C with 5%  CO2. To generate stable FANCI-
knockdown cells, we transiently transfected PC-9 and 
A549 with lentiviral vectors  harboring the shRNA vec-
tor GV493 (hU6-MCS-CBh-gcGFP-IRES-puromycin) 
acquired from GeneChem (Shanghai, China). The shRNA 
sequences were as follows: sh-con, 5′-TTC TCC GAA 
CGT GTC ACG T -3′; shRNA-1, 5′-ATG TAA GCT CGG 
AGC TAA TAT-3′; shRNA-2, 5′-CTA GTT CCT CAT AGA 
TCT TAT-3′.

Gene expression analysis
Gene mRNA levels were quantified using a quantita-
tive real-time PCR (Q-PCR) method. The total RNA 
was extracted using an  RNA  extraction reagent (9108, 
Takara, Osaka, Japan). The 2X Super SYBR Green qPCR 
Master Mix (OP220, ES Science, Guangzhou, China) was 
used to analyze mRNA levels. The primer sequences for 
FANCI were: forward, 5′-CCA CCT TTG GTC TAT CAG 
CTTC-3′; reverse, 5′-CAA CAT CCA ATA GCT CGT 
CACC-3′. The primer sequences for GAPDH were: for-
ward, 5′-GGA GCG AGA TCC CTC CAA AAT-3′; reverse, 
5′-GGC TGT TGT CAT ACT TCT CATGG-3′.

In addition, protein expression levels were determined 
by western blot  analysis. Proteins from the collected 
cells were  resolved by 12% sodium dodecyl sulfate–pol-
yacrylamide gel electrophoresis and then transferred 
onto polyvinylidene fluoride membranes (IPVH00010, 
Sigma, St. Louis, USA). These membranes were blocked 
with 5%  nonfat dry milk for 2  h at room temperature, 
followed by overnight incubation with the first anti-
body, such as rabbit anti-FANCI (1:1,000, 20,789–1-AP, 

proteintech, WuHan, China), rabbit anti-NFκB-p65 
(1:1,000, YT3108, ImmounWay Biotechnology, Plano, 
TX, USA), rabbit anti-Phospho-PI3-kinase p85/p55 
(Y467/199) (1:1,000, YP0224, ImmounWay, Biotech-
nology, Plano, TX, USA), rabbit anti-phospho-IKKα/β 
(Ser176/177) (1:1,000,YP0141, ImmounWay Biotechnol-
ogy, Plano, TX, USA), rabbit anti-Phospho-Akt (S473) 
(1:1,000, YP0006, ImmounWay Biotechnology, Plano, 
TX, USA), rabbit anti-phospho-MEK-1/2 (Ser218/222) 
(1:1,000, YP0167, ImmounWay Biotechnology, Plano, TX, 
USA), rabbit anti-phospho-ERK1/2 (Tyr204) (1:1,000, 
YP0101, ImmounWay Biotechnology, Plano, TX, USA), 
rabbit anti-RasGRF1(1:1,000, YT4009, ImmounWay 
Biotechnology, Plano, TX, USA), rabbit anti-phospho-
Raf-1(S259) (1:1,000, YP0239, ImmounWay Biotechnol-
ogy, Plano, TX, USA), and rabbit anti-GAPDH (1:10,000, 
ab181602, Abcam, Cambridge, UK) at 4  °C. After wash-
ing, the membranes were further incubated for 1 h using 
the corresponding secondary antibody conjugated with 
horseradish peroxidase goat anti-rabbit IgG antibody 
(1:10,000, abs20040ss, Absin, Shanghai, China).

Cell functional experiments
For proliferation assays, cells (3,000 per well) were grown 
in 96-well plates containing 100 μL of complete media at 
37  °C. At selected time points (0, 24, 48, 72, and 96  h), 
10 μL of Cell Counting Kit-8 (BS350B, Biosharp, Beijing, 
China) reagent  was added, followed by incubation for 
2 h. The optical density was read at 450 nm. For scratch 
assays, we starved confluent cells for 24  h and created 
a linear wound by using a 10 µL pipette tip. After cell 
scratching, we collected the images at 24 and 48 h. With 
regard to transwell migration, cells (5 ×  104) were plated 
into the upper chamber for 24 h. For invasion tests, cells 
were suspended in a serum-free medium and inoculated 
into a transwell plate precoated with  Matrigel. After 
24  h, cells in the bottom chambers were fixed with 4% 
paraformaldehyde and stained with 0.1% crystal violet. 
According to the manufacturer’s protocol, apoptosis cells 
were investigated using the Annexin V-PE/7-ADD Apop-
tosis Kit (MA049-1, Meilunbio, Dalian, China). For clone 
formation assays, cells were cultured for 14  days in a 
complete medium. Cell colonies were fixed with 4% para-
formaldehyde for 15  min and further stained with 0.1% 
crystal violet for 10 min. For tumorigenicity assays, four-
week-old nude mice (BALB/c-nude) were randomly dis-
tributed into three groups (5 mice each) according to the 
type of cells injected subcutaneously, namely, the stable 
sh-con and FANCI-depleted cells such as sh-FANCI-1 
and sh-FANCI-2 cells. Every other week, we measured 
mice’s weight and tumor volume. After 5 weeks, the 
mice were euthanized, and the tumor volume and tumor 
weight were further measured.
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DNA/RNA immunoprecipitation and sequencing (DRIP‑seq) 
analysis
DRIP-seq was performed by Aksomics (ShangHai, 
China) according to a previously reported method [29]. 
For DRIP-seq analysis, the DNA chain containing the 
R-loop structure was enriched in vitro using an S9.6 
antibody that can specifically recognize the DNA:RNA 
hybrids. Adequate amount of DNA (10  μg) was used 
and sequencing depth of 6G were carried out. The NGS 
data were repeated twice. The peak calling regions sig-
nal boundaries were determined based on the window 
size (300 bp), signal-to-noise ratio (5 ~ 50), and p-value 
(< 0.001). The distribution of the R-loops was then deter-
mined by high-throughput sequencing.

Statistical analysis
The differences of continuous variables between two 
groups were assessed by Student’s t-test (parametric) 
using GraphPad Prism 8 software or Wilcoxon rank sum 
test (nonparametric) using R software package. Experi-
ments were repeated thrice, and all results are shown as 
mean ± standard deviation. For all analyses, a p-value less 
than 0.05 indicated a significant difference.

Results
R‑loop score for malignant cells correlates with the disease 
outcome in LUAD
The workflow of our study is shown in Figure S2. To 
explore the relationship between R-loops and LUAD 
progression, we first integrated two separate single-cell 
RNA-seq datasets (GSE123904 and GSE131907). As 
shown in Fig. 1A, 30 cancer samples were included in the 
combined dataset, among which three underwent neoad-
juvant chemotherapy. Furthermore, 17 samples displayed 
primary tumor characteristics, and 10 had distant meta-
static tumors (untreated patients during surgical resec-
tion or endobronchial ultrasound/bronchoscopy). In 
these samples, 12 contained EGFR mutations (oncogenic 
drivers) across all tumor development stages.

Using a quality control method, we extracted 26,248 
RNA transcripts from 92,842 cells. The propor-
tion of cells in each patient was shown in Figure S3A. 

Subsequently, 57 cell clusters were obtained through 
principal component analysis (PCA) followed by the 
UMAP method (Figure S3B-C). According to the expres-
sion levels of gene markers, these cell clusters were 
annotated into 10 known cell types, namely, B cells, DC 
cells, macrophage cells, mast cells, NK cells, T cells, 
endothelial cells, epithelial cells, fibroblasts, and oligo-
dendrocytes (Figure S3D and Fig.  1B). To differentiate 
conclusive malignant cells from potentially nonmalignant 
cell populations, we assessed chromosomal copy num-
ber variations (CNVs) in the whole transcriptome data 
(Figure S3E). Malignant cells and epithelial cells showed 
significantly higher epithelial scores than nonmalignant 
cells (Figure S3F), indicating that malignant cells origi-
nated from epithelial cells. As anticipated, the number of 
malignant cells increased as the cancer stage progressed 
(Fig. 1A). Furthermore, malignant cells were gathered to 
different clusters corresponding to their sample origin, 
whereas nonmalignant cells did not show distinguishable 
differences between patients (Fig. 1B-C and Figure S3C). 
Thus, the heterogeneity of malignant cells was the main 
contributor to the interpatient heterogeneity.

According to the expression data of 1,185 R-loop regu-
lators [7], we conducted WGCNA and screened out four 
modules related to EGFR mutations, tissue origins, and 
TNM stage (Fig. 1D and Figure S3G). The KEGG enrich-
ment analysis revealed that 92 regulators from the four 
modules were remarkably enriched in DNA damage/
repair-associated pathways (Fig.  1E, Figure S3H, and 
Table S2). Based on the expression profiles of these iden-
tified genes, a scoring model was then constructed to 
characterize the R-loop state. Malignant cell subgroups 
(e.g., subgroups 2, 4, 6, 8, and 10) originating from meta-
static samples showed low R-loop scores, indicating that 
low-scoring cells predominated in the malignant-cell 
composition of advanced tumors (Fig. 1F and Figure S3I). 
Clearly, the R-loop score in malignant cells was lower 
than that in other cell types (Figure S3J). We further 
observed that malignant cell clusters could be evidently 
separated according to the R-loop score, indicative of 
R-loop heterogeneity (Fig. 1F). Moreover, malignant cells 
from patients who received chemotherapy had distinctly 

Fig. 1 R-loop score from malignant cells related to lung adenocarcinoma (LUAD) progression. A Clinical and molecular characteristics of the 30 
LUAD samples obtained from GEO datasets (GSE123904 and GSE131907), and the proportion of cell types in each sample. B Uniform manifold 
approximation and projection (UMAP) plot of 92,842 cells colored according to cell types or individual patients. C UMAP plot of 27 identified 
subgroups from malignant cells. D Weighted gene coexpression network analysis (WGCNA) of 1,185 R-loop regulators. A deeper color indicates 
a stronger interaction. E Interaction plots of 92 R-loop regulators from purple, brown, magenta, and pink modules. F Malignant cells are divided 
into high- and low-score groups according to the median value of the R-loop scores. The line graph shows the number of malignant cells in each 
subgroup, and malignant cells with high scores are in orange. G The differences in the R-loop score for malignant cells in various conditions 
(Wilcoxon rank test). H Gene set variation analysis (GSVA) showing the differences in the enrichment pathways between malignant cells with high 
R-loop score and those with low R-loop scores (Bayesian t-test). (*p < .05, **p < .01, ***p < .001)

(See figure on next page.)
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Fig. 1 (See legend on previous page.)
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high R-loop scores (Fig. 1G). The R-loop score of malig-
nant cells was distinctly inversely associated with clinical 
tumor stage, and the score was significantly low in both 
patients with KRAS and TP53 mutations. The malignant 
cells were subsequently classified into groups with high 
or low R-loop scores according to the median R-loop 
score. Both groups presented a significant difference 
in the enriched pathway, of which tumor progression–
related signaling pathways were mainly enriched in the 
low-score group (Fig.  1H). Meanwhile, malignant cells 
with low R-loop scores showed an enhanced proliferative 
state, with noticeably upregulated cell cycle–related pro-
teins (Figure S3K), indicating cell cycle activation in these 
cells. Collectively, R-loops may play a key role in tumor 
progression.

R‑loop score characterizes tumor immune escape 
phenotypes
Given that immune escape is a critical factor in the ina-
bility of the immune system to control tumor progres-
sion [30], we investigated whether R-loops can affect 
immune escape according to the single-cell RNA-seq 
datasets (GSE123904 and GSE131907). Figure  2A illus-
trates changes in the molecular profiles of immune 
escape between the high and low R-loop score sub-
groups. Low R-loop scores downregulated the expression 
of tumor-associated antigens (TAA) and major histo-
compatibility complex (MHC) molecules but upregu-
lated tumor-associated immunosuppressive factors in 
malignant cells. Using single-sample gene set enrich-
ment analysis (GSEA), we discovered that the low R-loop 
subgroup had significantly low scores of immunogenic 
cell death pathway (Fig.  2A), suggesting a weak immu-
nogenic ability [31]. The results revealed that malig-
nant cells with low R-loop scores are potentially more 
likely to escape from immune response than those with 
high R-loop scores. Regarding functional consequences 
of the low-scoring R-loop in LUAD patients, dysfunc-
tional CD4 + and CD8 + T cells, as well as the exhaus-
tion scores of NK cells, remarkably increased (Fig. 2B-D). 

Considering that T and NK cell depletion in tumors is 
closely related to the immune escape of tumor cells [32], 
we validated these findings by collecting and examin-
ing bulk RNA-seq datasets from TCGA-LUAD samples. 
Patients with low R-loop scores had low-level infiltra-
tion of immune cells and displayed downregulation  of 
immune response-related factors, costimulatory mole-
cules, and MHC molecules and upregulation of coinhibi-
tory molecules (Figure S4A-F), supporting the findings 
described above at the single-cell level. Malignant tumors 
may utilize multiple regulatory mechanisms to build a 
robust immunosuppressive microenvironment that sup-
ports tumor growth, promotes tumor immune escape, 
and impairs immunotherapy efficacy; hence, we evalu-
ated the relationship of R-loop scoring with immuno-
therapy response, adopting the single-cell RNA-seq data 
(GSE146100). After dimensionality reduction clustering 
and annotation (Fig.  2E), the R-loop score for each cell 
type was calculated. As shown in Fig. 2F, malignant cells 
had a considerably low R-loop score as compared with 
the other cell types, including epithelial cells. In addi-
tion, malignant cells from patients who were responsive 
to anti-PD-1  immunotherapy were almost  completely 
clustered into the high R-loop score subgroup (Fig. 2G). 
Notably, the R-loop scores of malignant cells in these 
patients were significantly higher than those in patients 
who were nonresponsive to such therapy (Fig. 2H). Alto-
gether, R-loop score could characterize tumor immune 
escape phenotypes and serve as a predictor of the out-
come of immunotherapy in LUAD.

R‑loop reshapes the intercellular interactions and cytokine 
signaling activity in TME
Considering that intercellular interactions were a critical 
determinant of antitumor efficacy, we annotated T cell 
subtypes and macrophages (Figure S5A-F), followed by 
cell communication analysis using the single-cell RNA-
seq datasets (GSE123904 and GSE131907). R-loop score 
remarkably positively correlated with chemokine lev-
els from malignant cells such as CXCL16 and CXCL2 

(See figure on next page.)
Fig. 2 R-loop score positively correlated with anti-PD-1 immunotherapy response. A Changes in immune escape molecular profiles of malignant 
cells from GEO datasets (GSE123904 and GSE131907) between subgroups with high and low R-loop scores, and the difference in the score 
of enriched immunogenic cell death (ICD) pathways between two different scoring subgroups, using single-sample gene set enrichment analysis 
(ssGSEA, Wilcoxon rank test). B Proportions of immune cells, malignant cells, and other cells from samples with high R-loop scores and those 
with low R-loop scores. C Proportions of eight immune cell types and naive, cytotoxic, and dysfunctional T cells from patients with high R-loop 
scores and those with low R-loop scores (Wilcoxon rank test). D The difference in the NK cell exhaustion score between malignant cells with high 
and low R-loop scores (Wilcoxon rank test). E T-distributed stochastic neighbor embedding (t-SNE) plot of 11,515 cells from the single-cell 
RNA-sequencing data (GSE146100) colored according to cell types or individual patients. F R-loop scores for each cell type such as malignant cells, 
endothelial cells, fibroblasts, epithelial cells, and immune cells (Wilcoxon rank test). G Uniform manifold approximation and projection (UMAP) 
of malignant cells colored according to the treatment response or R-loop score. H The difference in the R-loop score between patients who 
responded to cancer treatment and those who did not (Wilcoxon rank test). (*p < .05, **p < .01, ***p < .001)
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(Fig.  3A). Additionally, high R-loop scores clearly pro-
moted costimulatory molecules including TNFSF12, 
ICAM1, and TNFRSF14 produced by malignant cells 
(Fig.  3B); meanwhile, coinhibitory signals in cells with 
R-loop high scores decreased appreciably (Fig.  3C). The 
communication between malignant cells and T cells 

through their coinhibitory molecules such as FAM3C 
and PDCD1, CD47 and SIRPG, and LGALS9 and CD47 
was enhanced, contributing to T cell exhaustion. Moreo-
ver, CCL20 mediated the crosstalk between T cell sub-
types and macrophages (Fig.  3D). Further analysis of 
the intercellular interaction between macrophages and 

Fig. 2 (See legend on previous page.)
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T cells revealed that macrophages under R-loop score 
patterns showed differential effects on coinhibitory and 
costimulatory signals to T cells (Fig. 3E-F). Figure 3G-H 
depicts the difference in the malignant cell–macrophage 

cell communication under R-loop score patterns. Mac-
rophages could act  cooperatively  with malignant cells 
to activate T cells with low R-loop scores, including 
exhausted T and Treg cells. Considering the essential role 

Fig. 3 Cell communication and cytokine-associated pathway network analysis. A-C Intercellular interactions between malignant cells and T 
cell subtypes through chemokines (A), costimulatory molecules (B), and coinhibitory molecules (C). Circle size showing p values, and the color 
indicating the expression levels of ligand-receptor molecules. D-F Intercellular interactions between M1/M2-like macrophages and T cell 
subtypes via chemokines (D), costimulatory molecules (E), and coinhibitory molecules (F). G-H Ligand-receptor connections between malignant 
cells/macrophages and T cell subtypes under R-loop high-score (G) or low-score (H) conditions. Ligand-receptor molecules colored in yellow 
(chemokines), brown (costimulatory molecules), and cyan (coinhibitory molecules). I The activity of 21 cytokine pathways identified from malignant 
cells with high R-loop scores or patients with LUAD shows a positive relationship with macrophage marker and T cell marker genes (r > .2, p < .05). 
Circle size indicates the proportion of marker genes. J Signaling activities of multiple cytokines in malignant cells with high and low R-loop scores, T 
cells, and macrophages. The values of the activity of each cytokine are distinguished by color
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of cytokines in mediating intercellular communication, 
we explored whether cytokine signaling activity can be 
regulated by R-loops at single-cell levels. Consequently, 
we found 21 cytokine-related pathways that were con-
siderably activated in malignant cells with high R-loop 
scores, and the levels of marker genes in T cells and/or 
macrophages were significantly positively associated with 
the activation of these pathways (Fig.  3I). For instance, 
CXCL2 overexpression in T cells was positively related 
to cytokine signaling in malignant cells such as FGF2 
and IFNL. Especially, the differences in the activation 
of cytokine signaling pathways such as GDF11, VEGFA, 
and IL6 between high and low R-loop scores contributed 
to the synergistic regulatory effect within T cells and/or 
macrophages (Fig.  3J). Taken together, R-loop diversity 
indicates a difference in the immune composition of the 
TME, and R-loop could act as the main regulator of T cell 
activation by remodeling cell communication in LUAD.

R‑loop influences LUAD response to TKI therapy
Given that drug resistance limits the clinical efficacy 
of drugs such as TKI through metabolic reprogram-
ming [33], we explored whether the therapeutic effect 
of drugs could be impacted by R-loops. We collected a 
single-cell dataset containing 49 tissue samples from 30 
patients with LUAD treated with TKI from NCBI Bio-
Project (PRJNA591860). These patients were divided into 
three subgroups according to the following time points: 
before initiating the targeted therapy (TN; n = 15), com-
plete or partial response state (RD; n = 14), and progres-
sive disease state (PD; n = 20). Tumor samples from the 
PD subgroup had gained resistance to TKI. Next, several 
cell clusters were obtained and respectively annotated to 
endothelial cells, epithelial cells, fibroblasts, hepatocytes, 
immune cells, and melanocytes (Fig. 4A). From the epi-
thelial cells, 2,719 malignant cells were identified using 
inferCNV (Figure S6A-B). Analysis of cell cluster distri-
butions among the TN, RD, and PD subgroups revealed 

that malignant cells were markedly highly specific for 
TKI and were significantly enriched in the PD subgroup 
(Fig. 4B-C and S6C-F). However, the immune cell distri-
butions did not differ considerably between these sub-
groups. Subsequently, the R-loop scores of malignant 
cells were calculated according to the expression profiles 
of 92 R-loop regulators. Malignant cells with low R-loop 
scores mainly came from PD samples (Fig. 4D). Further-
more, patients with tumor (n = 22) were divided into two 
subgroups according to the R-loop scores of malignant 
cells. Patients with high R-loop scores had a significant 
advantage for survival (Fig.  4E). Conversely, metastatic 
and advanced tumors displayed a remarkably lower 
R-loop score, and the R-loop score of patients with RD 
was significantly high (Fig. 4F). However, the differences 
in the R-loop score were not influenced by patients’ age 
or sex (Figure S6G). Therefore, the R-loop score could be 
a strong predictor of TKI therapy efficacy.

Moreover, GSEA was separately conducted accord-
ing to stratification factors such as the R-loop score and 
TKI result. The inflammatory response pathways and 
immune-related pathways were clearly enriched in RD 
samples with high R-loop scores, whereas metabolism-
related pathways were significantly enriched in RD sam-
ples with low R-loop scores (Fig. 4G). Of these pathways, 
the activated inflammatory response signaling was asso-
ciated with the R-loop score, regardless of the TKI result. 
Meanwhile, the metabolism-related pathways showed a 
clear difference in the activation between the PD and RD 
subgroups (Fig.  4G). We then focused on metabolism-
related pathways and conducted GSVA according to the 
gene set of the previously defined pathways. The energy 
metabolic pathways responsible for tumor progression 
were significantly enriched in samples with low R-loop 
scores (Fig.  4H). Energy metabolism–associated genes 
such as ATP5F1B and UQCRFS1 were upregulated in the 
malignant cells of samples with low R-loop scores, and 
their expression was negatively related to R-loop score 

(See figure on next page.)
Fig. 4 R-loop score positively correlated with tyrosine kinase inhibitor (TKI) treatment response. A Uniform manifold approximation and projection 
(UMAP) plot of 23,420 cells of 30 samples from the National Center for Biotechnology Information (NCBI) BioProject (PRJNA591860); they are 
colored according to cell type. B Epithelial scores for each cell type such as malignant cells, epithelial cells, melanocytes, immune cells, fibroblasts, 
and endothelial cells according to the expression of epithelial marker genes. The distribution of these cell types in patients with initiating 
targeted therapy (TN), complete or partial response state (RD), and progressive disease (PD). The differences in the R-loop score among these 
cell types (Wilcoxon rank test). C T-distributed stochastic neighbor embedding (t-SNE) plot of malignant cells or immune cells colored according 
to TKI subgroup. D UMAP plot of malignant cells colored according to TKI subgroup or R-loop score. E The difference in the overall survival rates 
between patients with high and low R-loop scores (log-rank test). F R-loop scores of cancer samples calculated according to the mean value 
of the total number of cells (Wilcoxon rank test). G The enriched pathways of malignant cells with high R-loop scores in PD and RD samples. 
Normalized enrichment score (NES) indicates the score for enriched signal pathways. H Gene set variation analysis (GSVA) showing the differences 
in the enriched metabolism–related pathways between malignant cells with high and low R-loop scores (Wilcoxon rank test). I Energy metabolism–
associated genes negatively related to R-loop score. The scatterplot displaying the relationship between identified genes such as ATP5F1B 
and UQCRFS1, and R-loop score. The marginal boxplots on x-axis and y-axis show the distribution of R-loop scores and the expression level 
of identified genes, respectively. (*p < .05, **p < .01, ***p < .001)
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Fig. 4 (See legend on previous page.)
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(Fig. 4I). Therefore, the determined link between energy 
metabolism and R-loop score possibly explains the drug 
tolerant state in malignant cells.

R‑loop score is closely linked to the prognosis of all cancers
Considering that R-loop plays a significant role in tumor 
progression, we evaluated the prognostic value of R-loop 
patterns. We first plotted the hazard ratio (HR) curve 
related to the R-loop score and found that the prognostic 
value of the R-loop score in seven independent cohorts of 
LUAD (TCGA-LUAD, GSE13213, GSE30219, GSE31210, 
GSE41271, GSE50081, and GSE72094) was linear 
(Fig. 5A and Figure S7A). The median value of the R-loop 
scores was set as the reference line. The 95% confidence 
interval (CI) of the Ln (HR) region was below the refer-
ence line when the R-loop score was less than the median 
value, and vice versa. Patients were classified into high- 
and low-score subgroups according to the median R-loop 
score. Kaplan–Meier survival analysis revealed that the 
high-score group had remarkably better outcomes than 
the low-score group in all LUAD cohorts (Fig.  5B and 
Figure S7B). Accordingly, R-loop score can act as a valu-
able prognostic marker for LUAD patients.

Moreover, we evaluated 9,757 tumor samples from 33 
tumor types, including THCA, PRAD, PAAD, and inva-
sive BRCA, from the TCGA dataset. The R-loop score 
for most of the tumor types was distributed similarly 
(Fig.  5C). Next, we divided these tumor samples into 
high- and low-score subgroups according to the median 
value of R-loop scores for each tumor type. Of note, 
tumor samples had a prominently reduced R-loop score 
compared with their matched adjacent normal tissues 
(Fig.  5D). Univariate and multivariate survival analyses 
further indicated that the low-score group consistently 
correlated with unfavorable outcomes in almost all tumor 
types (Fig.  5E). Thus, R-loop score classification could 
markedly predict cancer prognosis.

R‑loop score predicts therapeutic prognosis 
and therapeutic response
To explore the  capacity  of the R-loop score model to 
predict therapeutic effect in patients with cancer, we 
extracted 32 tumor RNA-seq datasets (including 11 
tumor types) with  chemotherapy, targeted therapy, or 
immunotherapy. Then, we divided the patients into two 
different score subgroups according to the cutoff value 
of the R-loop scores. Survival probabilities significantly 
differed between the two subgroups in six independ-
ent cohorts, namely, GSE42127 (NSCLC), GSE14814 
(NSCLC), GSE25055 (BRCA), GSE25065 (BRCA), 
GSE32603 (BRCA), and GSE63885 (OV), undergo-
ing chemotherapy (Fig.  6A). The overall survival of the 
high-score group was significantly superior to that of 

the low-score group. The performance of our model was 
then evaluated by analyzing the difference in the R-loop 
scores between patients with different degrees of chemo-
therapy response. Consistent with the results described 
above, the R-loop scoring displayed good classification 
performances on five cohorts such as GSE25055 (BRCA), 
GSE25065 (BRCA), GSE20194 (BRCA), GSE41998 
(BRCA), and GSE3964 (CRC) undergoing chemotherapy 
(Fig.  6B). We also evaluated the predictive performance 
of the R-loop score model in patients receiving targeted 
therapy, and the independent cohorts included GSE61676 
(NSCLC), GSE31428 (NSCLC), GSE41994 (BRCA), and 
GSE16391 (BRCA). As shown in Fig. 6C, the outcomes of 
the high-score group were significantly better than those 
of the low-score group. In addition, the RD group scored 
consistently higher than the other response-type groups 
in five cohorts, namely, GSE61676 (NSCLC), GSE68871 
(MM), GSE16391 (BRCA), GSE109211 (LIHC), and 
GSE99898 (SKCM) (Fig.  6D). Moreover, patients who 
received immunotherapy in the high-score subgroup had 
a clearly favorable prognosis than those in the low-score 
group across five independent cohorts such as GSE91061 
(SKCM), GSE78220 (SKCM), GSE135222 (NSCLC), 
IMvigor210 (BLCA), and PMID32472114 (ccRCC) 
(Fig. 6E). In five cohorts, namely, GSE135222 (NSCLC), 
IMvigor210 (BLCA), GSE78220 (SKCM), GSE91061 
(SKCM), and PMID32472114 (ccRCC), the R-loop scores 
of the RD group were significantly higher than those in 
the NR or PD group (Fig. 6F). Figure 6G shows the area-
under-the-curve values for the reliable performance of 
the R-loop scoring model in predicting immunother-
apy  prognosis and response. Collectively, the R-loop 
score could be an effective predictor of tumor treatment 
effects.

FANCI affects R‑loop distribution resulting in tumor 
progression in LUAD
To plot the R-loop landscape of LUAD cells, we con-
ducted DRIP-seq using S9.6, an anti-DNA/RNA hybrid 
antibody. In LUAD cell lines (PC-9), genome-wide R-loop 
signal profile showed that the number of reads at the peak 
was higher in promoter regions than in other regions 
(Fig.  7A). Out of the 26,534 R-loop peaks genome-
wide, approximately half of the peaks were in intergenic 
regions, while 11.57% were located at promoter and 
terminator regions (Fig.  7B). FANCI, an R-loop regula-
tor, was upregulated in almost all TCGA tumor types, 
including LUAD, and its high expression correlated 
with poor prognosis (Fig.  7C and Figure S8A-B). We 
next tested the effect of FANCI deficiency on R-loop 
distribution (Fig.  7D) and found that FANCI knockout 
clearly altered the R-loop landscape, showing a strong 
loss trend (Fig. 7E). We then analyzed the differences in 
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Fig. 5 R-loop score correlated with prognosis. A Nonparametric estimates of the dependence of the all-time risk of mortality on R-loop scores 
using smoothHR, and the difference in the overall survival rate between patients with high and low R-loop scores (log-rank test). B Hazard ratios 
(HRs; 95% confidence intervals) based on Cox proportional hazard models (log-rank test). C R-loop scores across 33 tumor types in TCGA. D 
The difference in the R-loop score between tumor tissues and adjacent normal controls across 22 TCGA tumor types (log-rank test). E HRs (95% 
confidence intervals) based on univariate or multivariate Cox proportional hazards models in 33 tumor types (log-rank test)
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the number of R-loop peaks (Fig. 7F). Such changes were 
observed in over all types of genic regions, such as inter-
genic (40.46%), genebody (42.53%), promoter (9.81%), 
and terminator (7.20%) regions. Furthermore, genes with 
R-loop changes were significantly enriched in cancer pro-
gression–associated pathways, such as Ras and MAPK 
signaling pathways (Fig. 7G, and Table S3); thus, FANCI 
may be involved in LUAD progression by regulating the 
R-loops. We further detected the activity of the Ras sign-
aling pathway and found that silencing FANCI clearly 
attenuated the activity of Ras, leading to the strong inhi-
bition of its downstream PI3K/AKT/NF-κB and MAPK/
ERK signaling cascades in LUAD cells (Fig.  7H-I, and 
Figure S9). Finally, cell-function experiments revealed 
that FANCI depletion significantly suppressed cell pro-
liferation, colony formation, migration, and invasion 
abilities, and promoted apoptosis in both PC-9 and A549 
cells (Fig.  8A-F). Xenotransplantation studies indicated 
that FANCI silencing limited the capacity of PC-9 cells 
to form tumors in vivo (Fig. 8G). Altogether, changes in 
R-loop distribution mediated by an R-loop regulator such 
as FANCI could lead to LUAD development.

Discussion
Although increasing evidence indicates that aber-
rant R-loops are closely linked to the progression of dif-
ferent cancer types, including LUAD [11, 34, 35], the 
causality  remains unknown. This study demonstrated 
that R-loop scores from malignant cells could predict 
survival outcomes and treatment responses, and it also 
provided insights into the mechanisms of low-scoring 
R-loops mediating immune escape and drug resistance. 
Moreover, our analysis revealed that changes in R-loop 
distribution mediated by FANCI deficiency blocks the 
activity of the Ras signaling pathway, thereby suppressing 
tumor-cell proliferation and dissemination. Importantly, 
our study highlights the causal role of FANCI-mediated 

changes in R-loop distribution that leads to LUAD 
development.

R-loop-mediated replication stress and genomic insta-
bility may actively drive tumor development [36, 37]. In 
this study, we constructed an R-loop scoring model based 
on the identified R-loop regulators that lie within four 
modules related to EGFR mutations, tissue origins, and 
TNM stage. The R-loop score of malignant cells was sig-
nificantly distinct from that of nonmalignant cells, indi-
cating that the R-loop score is associated with the degree 
of cell malignancy. In addition, the R-loop score strik-
ingly correlated with KRAS and TP53 mutations, tumor 
metastasis, tumor stage, cancer-related pathways, and 
prognosis. Therefore, R-loops are responsible for tumor 
progression. Furthermore, the R-loop score was found to 
be associated with patient outcomes and responsiveness 
to anticancer treatments.

As a dynamic system orchestrated by cell–cell commu-
nications, the TME is necessary for cancer progression 
and metastasis [38]. We built the cellular communica-
tion network of malignant cells and immune cells under 
R-loop scoring patterns within the TME according to the 
gene expression profile of individual LUAD cells. Among 
the immune cell types in the TME, Treg cells, which are 
essential for immune homeostasis, maintain immune 
self-tolerance and inhibit anticancer immunity [39], 
while CD8 + T are cytotoxic T lymphocytes killing tumor 
cells and may become exhausted during tumor progres-
sion [40]. Our results showed that low-scoring R-loops 
promoted CD8 + T cell exhaustion and CD4 + Treg cell 
formation. The enhanced levels of chemokines and coin-
hibitory molecules between M2-like macrophages and 
T cells in the low-score subgroup also suggested that 
tumor-associated macrophage accumulation inhibited T 
cell responses, leading to compromised tumor immune 
surveillance, anticancer efficacy, and even poor response 
to immune checkpoint blockade therapy. Our results also 
imply that an immunosuppressive microenvironment 

(See figure on next page.)
Fig. 6 R-loop score correlated with prognosis and therapeutic response. A Comparison of overall survival probability according to R-loop 
score in chemotherapy-treated patients from GSE42127 (NSCLC), GSE14814 (NSCLC), GSE25055 (BRCA), GSE25056 (BRCA), GSE32603 (BRCA), 
and GSE63885 (OV) cohorts (log-rank test). B Comparison of R-loop score between the progressive disease/nonresponse (PD/NR) groups 
and the response (RD) group from GSE25055 (BRCA), GSE25056 (BRCA), GSE20194 (BRCA), GSE41998 (BRCA), and GSE3964 (CRC) cohorts who 
underwent chemotherapy (Wilcoxon rank test). C The difference in the overall survival probability between patients with high R-loop scores 
and those with low R-loop scores from GSE61676 (NSCLC), GSE31428 (NSCLC), GSE41994 (BRCA), and GSE16391 (BRCA) cohorts who received 
targeted therapy. D The difference in the R-loop score between PD/NR and RD samples from GSE61676 (NSCLC), GSE68871 (MM), GSE16391 (BRCA), 
GSE109211 (LIHC), and GSE99898 (SKCM) cohorts who underwent targeted therapy (Wilcoxon rank test). E The difference in the overall survival 
probability between patients with high and low R-loop scores from GSE78220 (SKCM), GSE135222 (NSCLC), IMvigor210 (BLCA), and PMID32472114 
(ccRCC) cohorts who received immunotherapy. F The difference in the R-loop score between PD/NR and RD samples from GSE135222 (NSCLC), 
IMvigor210 (BLCA), GSE78220 (SKCM), GSE91061 (SKCM), and PMID32472114 (ccRCC) cohorts who underwent immunotherapy (Wilcoxon rank 
test). G The overall predictive accuracy of the R-loop scoring model for immunotherapy in 16 dependent datasets across 6 tumor types. (*p < .05, 
**p < .01, ***p < .001)
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Fig. 6 (See legend on previous page.)
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mediated by R-loops contributes to tumor immune 
escape and that tumor immune escape mechanisms 
restrict immunotherapy responses. One of the major 
challenges in tumor immunotherapy is that its effects 
are limited to a subset of patients [41]. In our study, 
low-scoring R-loops mediated multiple immune escape 
mechanisms, and patients who were nonresponsive to 
cancer treatment had significantly low R-loop scores. 

Thus, R-loop score can offer guidance to develop a per-
sonalized treatment plan for immune therapies, provid-
ing a complement to markers that are currently used to 
identify patients eligible for immunotherapy.

Moreover, molecularly targeted treatment against 
malignant cells reportedly can promote tumor evolution 
by targeting the drug-resistant clones [42]. Malignant 
cells known as drug-tolerant persister cells can enter a 

Fig. 7 FANCI knockdown affected R-loop distribution inhibiting the Ras signaling pathway. A Genome-wide R-loop signal profile for PC-9. 
B The percentages of R-loop peaks are distributed as intergenic, promoter, genebody, and terminator regions. C The difference in FANCI 
expression between tumor and normal control tissues from TCGA-LUAD (Wilcoxon rank test), and the difference in the overall survival probability 
between patients with high and low FANCI expression (log-rank test). D shRNAs induced gene silencing, reducing FANCI mRNA and protein levels 
(Student’s t-test). E Comparison of R-loop signal profile between PC-9 and PC-9 with FANCI knockdown. F The proportion of different R-loop peaks 
in intergenic, promoter, genebody, and terminator regions between PC-9 and PC-9 with FANCI knockdown. G The Kyoto Encyclopedia of Genes 
and Genomes (KEGG) analysis for genes with a statistically significant difference in the R-loop distribution between control and FANCI-knockdown 
PC-9 cells. H-I FANCI silencing decreased the protein levels of RasGRF1, p-PI3K, p-AKT, p-IKK, p-65 (H), and p-Raf1, p-MEK, and p-ERK in PC-9 cells (I). 
Transcription start site (TSS) and transcription termination site (TTS). (*p < .05, **p < .01, ***p < .001)
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Fig. 8 FANCI knockdown limited cell proliferation, colony formation, migration, invasion, and tumor-forming ability and promoted cell apoptosis. 
A shRNAs induced gene silencing, reducing FANCI mRNA and protein levels in A549. (B-E) FANCI knockdown clearly inhibited the proliferation 
(B), colony formation (C), scratch healing (D), migration, and invasion (E) abilities of PC-9 and A549. F FANCI silencing promoted apoptosis of PC-9 
and A549. G FANCI silencing suppressed the tumor-forming ability of PC-9. (Student’s t-test; *p < 0.05; **p < 0.01; ***p < 0.001)
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drug-tolerant state in response to lethal stress such as 
TKI therapy, thereby escaping apoptosis and surviv-
ing [43]. Our results showed that malignant cells with 
low R-loop scores displayed elevated levels of oxidative 
phosphorylation and tricarboxylic acid cycle, activa-
tion of epithelial–mesenchymal transition, and immune 
escape signatures such as the downregulation of TAA 
and MHC-I molecules and the upregulation of tumor-
associated immunosuppressive factors, suggestive of a 
persister cell phenotype. Hence, we hypothesized that 
drug resistance mediated by metabolic reprogramming 
under R-loop score patterns is associated with malignant 
cell transformation and that low-scoring R-loops boost 
the development of drug resistance in malignant cells.

Our results showed that R-loop score was a potential 
prognosis predictor of LUAD, and it also could be used 
to predict the prognosis of pan-cancer patients. Moreo-
ver, the R-loop score model constructed in this study 
performed well on multiple independent datasets for pre-
dicting therapeutic  prognosis and therapeutic  response, 
including seven targeted therapy, six chemotherapy, and 
five immunotherapy cohorts. Therefore, our study high-
lights the potential promotion value of R-loop scoring in 
contributing to the establishment of precision medicine 
for cancer.

R-loops are associated with the progression of many 
cancer types [34, 35], including LUAD. Knowledge on 
the causal relationship between R-loops and disease 
etiology provides theoretical support for the develop-
ment of R-loop-based targeted cancer therapeutic strat-
egies [44–46]. FANCI family has been reported to play 
an important role in R-loop regulation [47]. Liang et al. 
found that FANCI, one of the members of the FANCI 
family, forms a FANCI-FANCD2 complex by binding to 
FANCD2, consequently regulating the R-loop balance 
[48]. FANCI is also actively involved in LUAD progres-
sion [49, 50]. Our results showed that FANCI knockout 
triggered changes in R-loop distribution and that genes 
with R-loop changes were strikingly enriched in tumor 
progression–associated pathways, including Ras, HIF, 
and VEGF signaling pathways. R-loops in the promoter 
and/or terminator regions can regulate gene expression 
through multiple mechanisms [12]. Furthermore, silenc-
ing FANCI attenuated the activity of oncogenic Ras sign-
aling that acts as a tumor progression marker, thereby 
strongly inhibiting its downstream MAPK/ERK and 
PI3K/AKT/NF-κB signaling cascades in LUAD cells; it 
also suppressed the ability of tumor-cell proliferation and 
dissemination. Thus, R-loop distribution mediated by 
FANCI could participate in LUAD progression by affect-
ing the Ras signaling pathway. Moreover, various ligands, 
such as netropsin and paramomycin, can recognize 
RNA/DNA hybrids by binding to the nucleic acid groove, 

thereby targeting these hybrids [51, 52]. RNase H2, an 
RNA–DNA degrading enzyme, is a well-recognized anti-
cancer drug target [53]. Therefore, R-loops and R-loop 
regulators are both potential targets for LUAD therapy.

Conclusion
In conclusion, we comprehensively analyzed R-loop 
distribution patterns in TME and uncovered that the 
distribution of low-scoring R-loops displayed an immu-
nosuppressive microenvironment mediated by T cell 
exhaustion, thereby promoting tumor progression, and 
provided insights into the mechanisms of immune escape 
and metabolic reprogramming–mediated drug tolerance 
under low-scoring R-loop distribution. The results of this 
study improve our understanding on metabolic hetero-
geneity and TME reshaping mediated by R-loop distri-
bution. This study further highlighted the causal role of 
abnormal R-loops in cancer development. Such knowl-
edge is critical for designing individualized treatment 
strategies and may guide the development of more effec-
tive treatment options for LUAD on the basis of R-loop 
or R-loop regulators.
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DRIP-seq  DNA/RNA immunoprecipitation and sequencing
PCA  Principal component analysis
CNVs  Copy number variations
TAA   Tumor-associated antigens
MHC  Major histocompatibility complex
GSEA  Gene set enrichment analysis
TN  Initiating targeted therapy
RD  Complete or partial response state
PD  Progressive disease state
HR  Hazard ratio
CI  Confidence interval



Page 19 of 21Zhang et al. Molecular Cancer           (2024) 23:11  

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s12943- 023- 01924-6.

Additional file 1. Supplementary Code.

Additional file 2: Figure S1. Systematic literature search in the databases 
PubMed. Numbers show the results acquired for each step.

Additional file 3: Figure S2. Overview of study design.

Additional file 4: Figure S3. Determining cell types for integrated 
cohorts (GSE123904 and GSE131907). (A) The proportion of cells in each 
patient. (B) The number of principal components for clustering. (C) Uni-
form manifold approximation and projection (UMAP) plot of 92,842 cells 
colored according to cell subgroup. (D) Average and percentage of the 
expression of marker genes in 57 subgroups. (E) Relative expression inten-
sity in each chromosome identified by inferCNV. Amplifications and dele-
tions on the indicated chromosomes shown in red and blue, respectively. 
(F) Epithelial scores for each cell type such as malignant cells, epithelial 
cells, melanocytes, immune cells, fibroblasts, and endothelial cells accord-
ing to the expression of epithelial marker genes (Wilcoxon rank test). 
(G) Association between module eigengenes and clinical characteristics 
examined using weighted gene coexpression network analysis (WGCNA; 
Pearson’s correlation test). (H) Gene Ontology (GO) biological process (BP) 
terms enriched in 92 R-loop regulators. (I) UMAP plot of malignant cells 
colored according to sample origins. (J) R-loop score in each cell type 
(Wilcoxon rank test). (K) Proportions of malignant cells in G1, G2M, and S 
stages from high- and low-score groups, and the difference in the expres-
sion of cyclin genes between these two groups (Wilcoxon rank test). (*p < 
.05, **p < .01, ***p < .001).

Additional file 5: Figure S4. Differences in the immune microenviron-
ment of patients from TCGA-LUAD in the R-loop score subgroups. (A) 
Patients with LUAD were divided into high- and low-score subgroups 
according to the median value of R-loop scores. Comparison of immune 
score, stromal score, ESTIMATE score, and tumor purity between the high- 
and low-score subgroups. (B) The difference in the enrichment scores of 
immune cells between the two subgroups. (C-F) The expression profiles 
of immune response–related factors (C), costimulatory molecules (D), 
antigen presentation molecules (E), and coinhibitory molecules (F) in the 
high- and low-score subgroups. (Wilcoxon rank test; *p < .05, **p < .01, 
***p < .001).

Additional file 6: Figure S5. Subpopulations of T cells and macrophage 
cells from GSE123904 and GSE131907. (A) Uniform manifold approxima-
tion and projection (UMAP) plot of 31,201 T cells colored according to 
cell subclusters. (B) Average and percentage of the expression of marker 
genes in the T cell subclusters. (C) UMAP plot of T cells colored according 
to T cell type. (D) T-distributed stochastic neighbor embedding (t-SNE) 
plot of 14,737 macrophage cells colored according to cell subclusters. (E)  
Average and percentage of the expression of marker genes in the macrophage 
subclusters. (F) Subpopulations of the identified macrophage cells.

Additional file 7: Figure S6. Identification of malignant cells from 
patients who underwent tyrosine kinase inhibitor (TKI) therapy 
(PRJNA591860). (A) Relative expression intensity in each chromosome 
identified by inferCNV (all cell types). Amplifications and deletions on the 
indicated chromosomes shown in red and blue, respectively. (B) Copy 
number variation (CNV) scores for each epithelial cell subgroup. (C) Rela-
tive expression intensity in each chromosome (epithelial cells). (D) The 
difference in the CNV scores among patients classified into the initiating 
targeted therapy (TN), complete or partial response state (RD), and pro-
gressive disease (PD) subgroups. (E) CNV levels calculated by the quadratic 
sum of CNV regions for malignant and nonmalignant subgroups. (F) 
Uniform manifold approximation and projection (UMAP) plot of the PD, 
RD, and TN subgroups colored according to cell type. (G) R-loop scores of 
age, sex, and smoking status subgroups according to the mean value of 
all malignant cells. (Wilcoxon rank test; *p < .05, **p < .01, ***p < .001).

Additional file 8: Figure S7. Clinical characteristics of multiple factors in 
the independent cohorts. (A) Nonparametric estimates of the depend-
ence of all-time risk of mortality on R-loop score using smoothHR, and the 

difference in the overall survival rate between patients with high and low 
R-loop scores. (B) Hazard ratios (HRs; 95% confidence intervals) based on 
Cox proportional hazard models (log-rank test).

Additional file 9: Figure S8. FANCI was highly expressed in all cancer 
types, and its high expression was associated with poor outcomes. (A) The 
difference in FANCI expression between tumor and normal control tissues 
in 31 cancer types (Wilcoxon rank test). (B) The difference in the overall 
survival probability between patients with high and low FANCI expression 
(log-rank test). (*p < .05, **p < .01, ***p < .001).

Additional file 10: Figure S9. FANCI silencing decreased the protein lev-
els of RasGRF1, p-Raf1, p-MEK, p-ERK, PI3K, p-PI3K, p-AKT, p-IKK, and NFκB 
in PC-9 cells. (Student’s t-test; *p < 0.05; **p < 0.01; ***p < 0.001).

Additional file 11: Table S1. Details of datasets used in this study.

Additional file 12: Table S2. The list of R-loop regulators.

Additional file 13: Table S3. Differential R-loop peaks.

Authors’ contributions
S.Z., F.T., Z.Z., and Y.O. conceived the study and performed the literature search. 
S.Z., Y.L., and Y.G. performed bioinformatics analysis and prepared the figures. 
Q.L. and Y.H. performed the experiments in vitro. Y.S., Z.Z., and Y.O. helped with 
data collection, analysis, and interpretation. T.F., Y.O., and S.Z. wrote and revised 
the manuscript. All authors read and approved the final manuscript.

Funding
This work was supported by the [the National Natural Science Foundation 
of China] under Grant [number 31960139, 31860244, 12132006, 32100442, 
and 32260234]; [the Science and Technology Foundation of Guizhou 
Province] under Grant [[2020]1Z016, [2019]1275, ZK[2021]025, [2021]431, 
and [2020]1Y087]; [Excellent Young Talents Plan of Guizhou Medical Univer-
sity] under Grant [2020(105)].

Availability of data and materials
The data of the relevant dataset in this study can be obtained by contacting 
the corresponding author. The basic raw NGS has been uploaded to the GEO 
database (GSE248308).

Declarations

Ethics approval and consent to participate
Animal experiments were approved by the Ethics Committee of Guizhou 
Medical University.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Author details
1 Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou 
Province, Engineering Research Center of Cellular Immunotherapy of Guizhou 
Province, Guizhou Medical University, Guiyang, China. 2 Immune Cells 
and Antibody Engineering Research Center of Guizhou Province, Key Labora-
tory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, 
China. 

Received: 13 July 2023   Accepted: 20 December 2023

References
 1. Crossley MP, Bocek M, Cimprich KA. R-Loops as cellular regulators and 

genomic threats. Mol Cell. 2019;73(3):398–411.

https://doi.org/10.1186/s12943-023-01924-6
https://doi.org/10.1186/s12943-023-01924-6


Page 20 of 21Zhang et al. Molecular Cancer           (2024) 23:11 

 2. Yasuhara T, Kato R, Hagiwara Y, Shiotani B, Yamauchi M, Nakada S, et al. 
Human rad52 promotes XPG-mediated R-loop processing to initi-
ate transcription-associated homologous recombination repair. Cell. 
2018;175(2):558–70.

 3. Sun Q, Csorba T, Skourti-Stathaki K, Proudfoot NJ, Dean C. R-loop stabi-
lization represses antisense transcription at the arabidopsis FLC locus. 
Science. 2013;340(6132):619–21.

 4. Richard P, Manley JL. R Loops and links to human disease. J Mol Biol. 
2017;429(21):3168–80.

 5. Tan SLW, Chadha S, Liu Y, Gabasova E, Perera D, Ahmed K, et al. A class 
of environmental and endogenous toxins induces BRCA2 haploinsuf-
ficiency and genome instability. Cell. 2017;169(6):1105–18.

 6. Chen L, Chen JY, Huang YJ, Gu Y, Qiu J, Qian H, et al. The augmented 
R-Loop is a unifying mechanism for myelodysplastic syndromes induced 
by high-risk splicing factor mutations. Mol Cell. 2018;69(3):412–25.

 7. Lin R, Zhong X, Zhou Y, Geng H, Hu Q, Huang Z, et al. R-loopBase: a 
knowledgebase for genome-wide R-loop formation and regulation. 
Nucleic Acids Res. 2022;50(D1):303–15.

 8. Bhatia V, Barroso SI, García-Rubio ML, Tumini E, Herrera-Moyano E, Aguil-
era A. BRCA2 prevents R-loop accumulation and associates with TREX-2 
mRNA export factor PCID2. Nature. 2014;511(7509):362–5.

 9. Wang Y, Ma B, Liu X, Gao G, Che Z, Fan M, et al. ZFP281-BRCA2 prevents 
R-loop accumulation during DNA replication. Nat Commun. 2022;13(1):3493.

 10. Robbiani DF, Nussenzweig MC. Chromosome translocation, B cell 
lymphoma, and activation-induced cytidine deaminase. Annu Rev Pathol. 
2013;8:79–103.

 11. Wells JP, White J, Stirling PC. R-Loops and their composite cancer connec-
tions. Trends Cancer. 2019;5(10):619–31.

 12. Santos-Pereira JM, Aguilera A. R loops: new modulators of genome 
dynamics and function. Nat Rev Genet. 2015;16(10):583–97.

 13. Prendergast L, McClurg UL, Hristova R, Berlinguer-Palmini R, Greener S, 
Veitch K, et al. Resolution of R-loops by INO80 promotes DNA replica-
tion and maintains cancer cell proliferation and viability. Nat Commun. 
2020;11(1):4534.

 14. Poli J, Gerhold CB, Tosi A, Hustedt N, Seeber A, Sack R, et al. Mec 1, INO80, 
and the PAF1 complex cooperate to limit transcription replication 
conflicts through RNAPII removal during replication stress. Genes Dev. 
2016;30(3):337–54.

 15. Zhang T, Wallis M, Petrovic V, Challis J, Kalitsis P, Hudson DF. Loss of TOP3B 
leads to increased R-loop formation and genome instability. Open Biol. 
2019;9(12): 190222.

 16. Chernikova SB, Razorenova OV, Higgins JP, Sishc BJ, Nicolau M, Dorth JA, 
et al. Deficiency in mammalian histone H2B ubiquitin ligase Bre1 (Rnf20/
Rnf40) leads to replication stress and chromosomal instability. Cancer 
Res. 2012;72(8):2111–9.

 17. Zhang LH, Zhang XY, Hu T, Chen XY, Li JJ, Raida M, et al. The SUMOylated 
METTL8 induces R-loop and tumorigenesis via m3C. iScience. 
2020;23(3):100968.

 18. Quail DF, Joyce JA. Microenvironmental regulation of tumor progression 
and metastasis. Nat Med. 2013;19(11):1423–37.

 19. Crossley MP, Song C, Bocek MJ, Choi JH, Kousorous J, Sathirachinda A, 
et al. R-loop-derived cytoplasmic RNA-DNA hybrids activate an immune 
response. Nature. 2023;613(7942):187–94.

 20. Weinreb JT, Ghazale N, Pradhan K, Gupta V, Potts KS, Tricomi B, et al. 
Excessive R-loops trigger an inflammatory cascade leading to increased 
HSPC production. Dev Cell. 2021;56(5):627–40.

 21. Yue X, Rao A. TET family dioxygenases and the TET activator vitamin C in 
immune responses and cancer. Blood. 2020;136(12):1394–401.

 22. Shukla V, Samaniego-Castruita D, Dong Z, González-Avalos E, Yan Q, 
Sarma K, et al. TET deficiency perturbs mature B cell homeostasis and 
promotes oncogenesis associated with accumulation of G-quadruplex 
and R-loop structures. Nat Immunol. 2022;23(1):99–108.

 23. He L, Fan Y, Zhang Y, Tu T, Zhang Q, Yuan F, et al. Single-cell transcriptomic 
analysis reveals circadian rhythm disruption associated with poor prognosis 
and drug-resistance in lung adenocarcinoma. J Pineal Res. 2022;73(1):12803.

 24. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation 
network analysis. BMC Bioinformatics. 2008;9:559.

 25. Efremova M, Vento-Tormo M, Teichmann SA, Vento-Tormo R. Cell 
PhoneDB: inferring cell-cell communication from combined expres-
sion of multi-subunit ligand-receptor complexes. Nat Protoc. 
2020;15(4):1484–506.

 26. Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, et al. The 
STRING database in 2017: quality-controlled protein-protein association 
networks, made broadly accessible. Nucleic Acids Res. 2017;45(D1):362–8.

 27. Jiang P, Zhang Y, Ru B, Yang Y, Vu T, Paul R, et al. Systematic investigation 
of cytokine signaling activity at the tissue and single-cell levels. Nat 
Methods. 2021;18(10):1181–91.

 28. Hänzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for 
microarray and RNA-seq data. BMC Bioinformatics. 2013;14:7.

 29. Sanz LA, Chédin F. High-resolution, strand-specific R-loop mapping 
via S9.6-based DNA-RNA immunoprecipitation and high-throughput 
sequencing. Nat Protoc. 2019;14(6):1734–55.

 30. Igney FH, Krammer PH. Immune escape of tumors: apoptosis resistance 
and tumor counterattack. J Leukoc Biol. 2002;71(6):907–20.

 31. Garg AD, De Ruysscher D, Agostinis P. Immunological metagene 
signatures derived from immunogenic cancer cell death associate with 
improved survival of patients with lung, breast or ovarian malignancies: A 
large-scale meta-analysis. Oncoimmunology. 2015;5(2): e1069938.

 32. Hoskin DW, Mader JS, Furlong SJ, Conrad DM, Blay J. Inhibition of T cell 
and natural killer cell function by adenosine and its contribution to 
immune evasion by tumor cells (Review). Int J Oncol. 2008;32(3):527–35.

 33. Lin JJ, Shaw AT. Resisting resistance: targeted therapies in lung cancer. 
Trends in Cancer. 2016;2(7):350–64.

 34. Costantino L, Koshland D. The yin and yang of R-loop biology. Curr Opin 
Cell Biol. 2015;34:39–45.

 35. Groh M, Gromak N. Out of balance: R-loops in human disease. PLoS 
Genet. 2014;10(9): e1004630.

 36. Negrini S, Gorgoulis VG, Halazonetis TD. Genomic instability-an evolving 
hallmark of cancer. Nat Rev Mol Cell Biol. 2010;11(3):220–8.

 37. Gaillard H, García-Muse T, Aguilera A. Replication stress and cancer. Nat 
Rev Cancer. 2015;15(5):276–89.

 38. Liu Z, Zhang Y, Shi C, Zhou X, Xu K, Jiao D, et al. A novel immune clas-
sification reveals distinct immune escape mechanism and genomic 
alterations: implications for immunotherapy in hepatocellular carcinoma. 
J Transl Med. 2021;19(1):5.

 39. Tanaka A, Sakaguchi S. Regulatory T cells in cancer immunotherapy. Cell 
Res. 2017;27(1):109–18.

 40. Kumar BV, Connors TJ, Farber DL. Human T cell development, localization, 
and function throughout life. Immunity. 2018;48(2):202–13.

 41. Taefehshokr S, Parhizkar A, Hayati S, Mousapour M, Mahmoudpour A, 
Eleid L, et al. Cancer immunotherapy: Challenges and limitations. Pathol 
Res Pract. 2022;229: 153723.

 42. Maley CC, Aktipis A, Graham TA, Sottoriva A, Boddy AM, et al. Classifying 
the evolutionary and ecological features of neoplasms. Nat Rev Cancer. 
2017;17(10):605–19.

 43. De Conti G, Dias MH, Bernards R. Fighting Drug Resistance through the 
Targeting of Drug-Tolerant Persister Cells. Cancers (Basel). 2021;13(5):1118.

 44. Sollier J, Cimprich KA. Breaking bad: R-loops and genome integrity. 
Trends Cell Biol. 2015;25(9):514–22.

 45. Petermann E, Lan L, Zou L. Sources, resolution and physiological 
relevance of R-loops and RNA-DNA hybrids. Nat Rev Mol Cell Biol. 
2022;23(8):521–40.

 46. Stirling PC, Hieter P. Canonical DNA repair pathways influence R-Loop-
driven genome instability. J Mol Biol. 2017;429(21):3132–8.

 47. Hodson C, Rourke JJ, Van-Twest S, Murphy VJ, Dunn E, Deans AJ. FANCM-
family branchpoint translocases remove co-transcriptional R-loops. 
2018;bioRxiv, arXiv:248161.

 48. Liang Z, Liang F, Teng Y, Chen X, Liu J, Longerich S, et al. Binding of 
FANCI-FANCD2 complex to RNA and R-Loops stimulates robust FANCD2 
monoubiquitination. Cell Rep. 2019;26(3):564–72.

 49. Zhang J, Wang J, Wu J, Huang J, Lin Z, Lin X. UBE2T regulates FANCI mon-
oubiquitination to promote NSCLC progression by activating EMT. Oncol 
Rep. 2022;48(2):139.

 50. Zheng P, Li L. FANCI Cooperates with IMPDH2 to promote lung adenocar-
cinoma tumor growth via a MEK/ERK/MMPs Pathway. Onco Targets Ther. 
2020;13:451–63.



Page 21 of 21Zhang et al. Molecular Cancer           (2024) 23:11  

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

 51. Boros-Oláh B, Dobos N, Hornyák L, Szabó Z, Karányi Z, Halmos G, et al. 
Drugging the R-loop interactome: RNA-DNA hybrid binding proteins as 
targets for cancer therapy. DNA Repair (Amst). 2019;84: 102642.

 52. Shaw NN, Arya DP. Recognition of the unique structure of DNA:RNA 
hybrids. Biochimie. 2008;90(7):1026–39.

 53. Flanagan JM, Funes JM, Henderson S, Wild L, Carey N, Boshoff C. 
Genomics screen in transformed stem cells reveals RNASEH2A, PPAP2C, 
and ADARB1 as putative anticancer drug targets. Mol Cancer Ther. 
2009;8(1):249–60.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	Aberrant R-loop–mediated immune evasion, cellular communication, and metabolic reprogramming affect cancer progression: a single-cell analysis
	Abstract 
	Introduction
	Material and methods
	Data acquisition and processing
	Weighted gene coexpression network analysis (WGCNA) of single-cell data for identifying gene network modules
	Construction of an R-loop scoring model based on R-loop regulators
	Analysis of cell–cell interaction and cytokine signaling activity
	Gene set variation analysis (GSVA)
	Cell lines and cell culture
	Gene expression analysis
	Cell functional experiments
	DNARNA immunoprecipitation and sequencing (DRIP-seq) analysis
	Statistical analysis

	Results
	R-loop score for malignant cells correlates with the disease outcome in LUAD
	R-loop score characterizes tumor immune escape phenotypes
	R-loop reshapes the intercellular interactions and cytokine signaling activity in TME
	R-loop influences LUAD response to TKI therapy
	R-loop score is closely linked to the prognosis of all cancers
	R-loop score predicts therapeutic prognosis and therapeutic response
	FANCI affects R-loop distribution resulting in tumor progression in LUAD

	Discussion
	Conclusion
	Anchor 25
	References


