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Abstract

The CRISPR system is a revolutionary genome editing tool that has the potential to revolutionize the field of can-

cer research and therapy. The ability to precisely target and edit specific genetic mutations that drive the growth

and spread of tumors has opened up new possibilities for the development of more effective and personalized
cancer treatments. In this review, we will discuss the different CRISPR-based strategies that have been proposed

for cancer therapy, including inactivating genes that drive tumor growth, enhancing the immune response to cancer
cells, repairing genetic mutations that cause cancer, and delivering cancer-killing molecules directly to tumor cells. We
will also summarize the current state of preclinical studies and clinical trials of CRISPR-based cancer therapy, highlight-
ing the most promising results and the challenges that still need to be overcome. Safety and delivery are also impor-
tant challenges for CRISPR-based cancer therapy to become a viable clinical option. We will discuss the challenges
and limitations that need to be overcome, such as off-target effects, safety, and delivery to the tumor site. Finally, we
will provide an overview of the current challenges and opportunities in the field of CRISPR-based cancer therapy

and discuss future directions for research and development. The CRISPR system has the potential to change the land-
scape of cancer research, and this review aims to provide an overview of the current state of the field and the chal-
lenges that need to be overcome to realize this potential.
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Introduction

The use of CRISPR (Clustered Regularly Interspaced
Short Palindromic Repeats) in cancer therapy has the
potential to revolutionize the way for treating differ-
ent diseases [1]. CRISPR technology allows for pre-
cise and efficient manipulation of the genome, and
its application in cancer research has the potential to
target specific genetic mutations that drive the growth
and spread of tumors [2]. In recent years, there has
been a growing body of research exploring the use of
CRISPR-based gene editing in cancer therapy, with sev-
eral preclinical studies and clinical trials demonstrat-
ing promising results [3]. The discovery of CRISPR
technology in 2012 marked a significant milestone in

High-
a fidelity
Cas9—+ Cas9—+
4 sgRNA
'/ /,)\"/,N A/

CRISPR-Cas9 editing

CRISPR-Cas9 induces double
strand breaks at targeted proto-
spacer with NGG PAM recognition
sequence in mammalian cells that
result in indel formation®®

Variant engineering

Engineered Cas9
variants have increased
specificity and
broadened PAM
recognition sequence?®?

%'—/

Epigenetic regulation

dCas9 combined with an
epigenetic modifier can
regulate gene expression by
tethering methyltransferases
and acetyltransferases®**

Page 2 of 45

the field of genome editing [4]. Figure 1 illustrates the
evolution of CRISPR tools used for exploring cancer
biology. CRISPR-associated enzymes, such as Cas9,
can be programmed to target specific DNA sequences,
and when combined with guide RNAs, can be used
to cut, modify or delete genes in a precise manner
[4]. This technology has been used in a wide range of
applications, including basic research, gene therapy,
and agriculture [1]. However, its potential applica-
tion in cancer research has attracted particular inter-
est due to the ability to target the genetic mutations
that drive the growth and spread of tumors [3]. There
are several different CRISPR-based strategies that have
been proposed for cancer therapy [4]. One approach is
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Fig. 1 The evolution of CRISPR tools that have been harnessed in the investigation of cancer biology. Since the inception of CRISPR-associated

9 (Cas9) gene editing in mammalian cells, there has been a rapid expansion in the field of CRISPR technology. This expansion has led

to the development of various specialized CRISPR variants designed to tackle specific challenges. Scientists have created these variants

through deliberate design and evolutionary processes, resulting in improved flexibility in recognizing protospacer adjacent motifs (PAMs)

and increased precision in target selection. Additionally, they've harnessed naturally occurring variants from different bacterial species, like Cas12a
(Cpf1) and Cas13, for effective combinatorial knockout (KO) and precise RNA targeting, respectively. To broaden the range of CRISPR applications,
researchers have combined transcriptional effectors with catalytically inactive Cas9 (dCas9), allowing precise targeting of the transcriptome

and epigenome. Furthermore, CRISPR base editing has enabled the introduction of specific transition mutations using a Cas9 nickase (Cas9n) fused
with adenine or cytosine deaminase. In the case of cytosine base editing enzymes (BEs), they use a uracil glycosylase inhibitor (UGI) to prevent base
excision repair and promote C>T transition mutations. A significant advancement known as prime editing has emerged, which involves fusing

a dCas9 with a reverse transcriptase, enabling the engineering of various mutation types, such as missense mutations, insertions, and deletions.
This is guided by a sequence template and an extended prime editing guide RNA (pegRNA). Additionally, to facilitate unbiased proteome mapping,
researchers have employed engineered ascorbate peroxidase (APEX2) tethered to dCas9, enabling targeted biotinylation at specific genomic

locations. Reprinted from [11] with permission from Springer Nature
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to inactivate genes that drive tumor growth. For exam-
ple, using CRISPR to inactivate the oncogene MYC has
been proposed as a way to halt tumor growth. The MYC
gene is known to be overactive in many types of cancer,
and its inactivation could potentially slow down or stop
the progression of the disease [5]. Another approach is
to enhance the immune response to cancer cells. For
example, researchers have used CRISPR-based gene
editing to knockout or decrease the expression of the
PD-1 protein on T cells, which helps to improve their
ability to target and kill cancer cells [6]. Addition-
ally, CRISPR-based gene editing can be used to repair
genetic mutations that cause cancer, such as in the case
of inherited forms of cancer caused by BRCA1l and
BRCA2 mutations [7]. For example, studies have shown
that CRISPR-Cas9 can be utilized to correct BRCA1
mutations in human cells, demonstrating the potential
for this technology in cancer therapy [8]. Furthermore,
CRISPR-based gene editing can also be employed in
immunotherapeutic strategies for cancer treatment.
For instance, T cells can be engineered using CRISPR
to express receptors that specifically target tumor cells,
enhancing the body’s immune response against cancer
[9]. Preclinical studies and clinical trials have been con-
ducted using these strategies, and they have demon-
strated promising results [3]. For example, inactivating
the MYC oncogene in animal models of lymphoma has
been shown to reduce tumor growth. Similarly, increas-
ing the expression of PD-1 on T cells has been shown
to enhance the ability of these cells to target and kill
cancer cells in animal models [1]. However, despite the
promising results obtained in preclinical studies, there
are still many challenges that need to be overcome for
CRISPR-based cancer therapy to become a viable clini-
cal option [4]. One of the main challenges is the risk of
non-specific site effects, which can occur when CRISPR
enzymes target unintended regions of the genome.
Safety and delivery are also critical challenges that need
to be addressed [10].

In this review article, we will provide an overview
of the current state of the field of CRISPR-based gene
editing in cancer therapy, highlighting the most prom-
ising results and the challenges that still need to be
overcome. We will describe the different CRISPR-based
strategies that have been proposed for cancer therapy,
summarize the current state of preclinical studies and
clinical trials, and discuss the challenges and limita-
tions that need to be overcome for CRISPR-based
cancer therapy to become a viable clinical option. We
will also provide an overview of future directions for
research, development and discuss the potential impli-
cations of CRISPR-based cancer therapy for the future
of cancer treatment and healthcare.
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CRISPR-based strategies for cancer therapy
CRISPR-based gene editing technology has the potential
to revolutionize the way for treating cancer by allowing
for precise and efficient manipulation of the genome to
target specific genetic mutations that drive the growth
and spread of tumors [12]. Figure 2 highlights the step-
by-step process of CRISPR screening, starting with the
identification of specific gene targets. Subsequently, it
illustrates the design and construction of CRISPR guide
RNA libraries, essential for precise genomic targeting.
Following this, the delivery of CRISPR components into
the target cells is depicted, demonstrating the methods
employed for gene editing in a wide range of cell types.
The next stage outlines the application of selective pres-
sures to identify cells with desired genetic alterations,
and ultimately, the evaluation of the screening results.
Figure 3 illustrates the various mechanisms of gene edit-
ing. Several different CRISPR-based strategies have
been proposed for cancer therapy, each with their own
advantages and limitations [13]. Table 1 outlines several
CRISPR-based strategies for cancer therapy.

Inactivation of oncogenes

The mechanism of CRISPR-based strategies in inac-
tivating oncogenes begins with the identification of
specific oncogenes that play critical roles in cancer
development [19]. Oncogenes are often associated with
mutations or abnormal gene amplifications that result
in the overexpression of their respective proteins, lead-
ing to uncontrolled cell growth and proliferation [20].
Once the target oncogene has been identified, research-
ers design a gRNA that specifically recognizes and
binds to the mutated or amplified region of the onco-
gene [19]. One approach is to inactivate genes that
drive tumor growth. For example, inactivating the MYC
oncogene has been shown to reduce tumor growth in
animal models of lymphoma [21]. This strategy is based
on the principle that cancer cells have genetic muta-
tions that lead to the over-expression of oncogenes,
which promote cell growth and proliferation. Inacti-
vating these oncogenes can stop the growth of cancer
cells [22]. CRISPR-based approaches can be seamlessly
integrated with other cancer therapies to maximize
efficacy and improve treatment outcomes [23]. For
instance, combining CRISPR with chemotherapy allows
for the precise editing of genes involved in drug resist-
ance, sensitizing cancer cells to chemotherapeutic
agents [24]. Additionally, CRISPR can be used to engi-
neer patient-derived immune cells, such as T cells, to
express CARs that enhance their tumor-targeting capa-
bilities in combination with CAR-T cell therapy [22].
Furthermore, by disrupting immune checkpoint genes
in cancer cells, CRISPR augments the effectiveness of
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Fig. 2 Different workflows used in CRISPR screening and mutagenesis. The CRISPR screening procedures commence by selecting the appropriate
screening system, offering various options: A CRISPRko, where Cas9 is employed to disrupt genes, resulting in the generation of premature
stop codons or frameshift mutations; CRISPRa, involving the attachment of activation domains (e.g., VPR, VP64) to dCas9, resulting in enhanced
transcription of target genes; CRISPRI, on the contrary, employs repression domains (e.g., KRAB) tethered to dCas9, leading to a reduction
in the transcription of target genes; Base editing screen, which uses a base editor (e.g., cytosine deaminase or adenine deaminase) with or without
a uracil DNA glycosylase inhibitor to induce mutations without causing double-strand breaks. Once the suitable CRISPR screening method
is chosen, the gRNA library is introduced into cells, creating a genetically altered cell population. These cells are exposed to drugs to select
for drug-resistant populations. Subsequently, the gRNAs are extracted from the cells, amplified via PCR, and their target genes are determined
using next-generation sequencing. B On the other hand, CRISPR mutagenesis screening begins with a gRNA library designed to induce in-frame
mutations in the target protein coding sequence. After transducing the cells with the gRNA library, viable cells with protein variants are subjected
to drug treatment, both with and without the drug. Activity-based cell sorting is used to enrich cells carrying mutations that make the drug
ineffective, thereby identifying drug-resistant cells. Finally, the enriched cells are genotyped using deep sequencing to analyze structural changes
and detect any escape mutants. Reprinted from [14] with permission from Cell Press
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immunotherapies like immune checkpoint inhibitors
[25]. Another example is integrating CRISPR with tar-
geted therapies, where simultaneous targeting of mul-
tiple critical pathways using gene editing can overcome
resistance and potentiate the effects of targeted drugs
[26]. By employing CRISPR to enhance drug delivery,
researchers can modify tumor cells or the tumor micro-
environment to improve the penetration of therapeu-
tics, thereby augmenting the impact of various cancer
treatments. These examples demonstrate the versatility
of CRISPR in synergizing with other cancer therapies

and pave the way for more effective and personalized
treatment approaches in the fight against cancer [27].

Enhancement of immune response

The mechanism revolves around harnessing the poten-
tial of the CRISPR-Cas system, a natural defense mech-
anism found in bacteria and archaea, which has been
adapted for targeted gene editing in various organisms
[28]. To enhance the immune response, scientists utilize
CRISPR-Cas to edit specific genes involved in immune
regulation and response pathways [29]. Gene editing
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Fig. 3 The various mechanisms employed for gene editing. In the first part (a), Zinc-finger nucleases (ZFNs), transcription activator-like effector
nucleases (TALENSs), and CRISPR-Cas systems are capable of generating double-strand breaks (DSBs) at precise locations within the genome. Moving
on to the second part (b), the introduction of DNA sequences or mutations into the DNA can be achieved by means of homology-directed repair
(HDR) or non-homologous end joining (NHEJ) processes with the aid of a donor template. In mammalian cells, CRISPR-induced DSBs are generally
mended via NHEJ, which can result in the incorporation of small insertions and/or deletions (indels), leading to gene inactivation due to frameshift
mutations. When two DSBs occur on the same chromosome, a substantial segment can be deleted, whereas DSBs on different chromosomes

can give rise to chromosomal rearrangements. The abbreviations found in the figure include dsDNA (double-stranded DNA), PAM (protospacer
adjacent motif), sgRNA (single-guide RNA), ssDNA (single-stranded DNA), and TALE (transcription activator-like effector). Reprinted from [15]

with permission from Springer Nature

can be employed to knockout genes that negatively reg-
ulate the immune system, thus bolstering its activity
[28]. Additionally, CRISPR-based techniques enable the
precise insertion of beneficial genes, such as cytokines
or other immune mediators, to enhance the immune
response against particular antigens [23]. Furthermore,
CRISPR-Cas can be utilized to engineer immune cells
like T-cells and NK cells, improving their functionality
and specificity towards cancer cells or infected targets
[30]. Moreover, CRISPR-Cas enables the development
of genetic vaccines, where specific antigen-encoding
genes are delivered into host cells to elicit a robust and
targeted immune response. These breakthroughs in
CRISPR-based immune enhancement hold great prom-
ise for combating infectious diseases, cancer, and other
conditions where bolstering the immune system is criti-
cal for effective treatment [31]. Researchers have used
CRISPR-based gene editing to increase the expression
of the PD-1 protein on T cells, which helps to improve
their ability to target and kill cancer cells [32]. CRISPR-
Cas enhances the immune response by enabling precise
gene editing [33]. Scientists can target specific genes
involved in immune regulation and response path-
ways. By knocking out genes that negatively regulate
the immune system, CRISPR-Cas increases the overall

activity of the immune system [23]. Additionally, benefi-
cial genes, such as cytokines or other immune mediators,
can be inserted using CRISPR-Cas to further enhance the
immune response against specific antigens [34]. CRISPR-
based gene editing can sometimes result in non-specific
site effects, where unintended changes occur in other
parts of the genome. These non-selective site effects may
lead to unwanted alterations in gene function and could
pose safety concerns in the context of immune enhance-
ment [35, 36]. It is essential to thoroughly evaluate and
minimize these undesirable site effects to ensure the
safety and effectiveness of CRISPR-based strategies [28].
CRISPR-Cas can be utilized to modify immune cells,
such as T-cells and NK cells, to improve their function-
ality and specificity in targeting cancer cells or infected
cells. By editing the genes responsible for cell receptors
and signaling pathways, researchers can enhance the abil-
ity of immune cells to recognize and destroy specific tar-
gets [33]. Understanding the mechanisms and optimizing
the protocols for this gene editing process is crucial for
developing successful immune cell-based therapies [28].
While CRISPR-based strategies show great promise in
enhancing the immune response, it is essential to investi-
gate their long-term effects on the host’s immune system
[30]. Prolonged activation or manipulation of immune
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pathways could potentially lead to immune system dys-
regulation, autoimmunity, or immune exhaustion [37].
Understanding the impact of CRISPR-based immune
enhancement on the overall immune function and home-
ostasis is crucial for safe and sustainable clinical applica-
tions. Long-term follow-up studies in animal models and
clinical trials will be necessary to address these concerns
[23]. Figure 4 illustrates various applications of CRISPR
in cancer research.

Repair of genetic mutations

CRISPR-based gene editing can also be used to repair
genetic mutations that cause cancer, such as in the case
of inherited forms of cancer caused by BRCA1l and
BRCA2 mutations [37]. The CRISPR-Cas9 system is
highly specific in targeting genetic mutations due to the
guide RNA’s ability to recognize and bind to a particular
DNA sequence [38]. However, undesirable site effects
can occur, where the Cas9 enzyme might inadvert-
ently cleave similar sequences elsewhere in the genome
[39]. Continuous advancements in bioinformatics and
experimental techniques are improving the specificity
and reducing non-selective site effects, making it crucial
to evaluate the system’s precision in repairing genetic
mutations [37]. Assessing the efficiency and accuracy

Repressor domain
(KRAB, MXI1
or SID4X)

dCas9

Page 7 of 45

of CRISPR-mediated repair methods, such as HDR and
NHE], is vital. HDR can accurately introduce the desired
genetic changes by utilizing a donor template, but its effi-
ciency is often lower compared to NHE], which can result
in insertions or deletions without a template [40]. Under-
standing the balance between efficiency and accuracy will
help optimize the choice of repair mechanism for spe-
cific genetic mutations [41]. While CRISPR has shown
great promise, there might be unforeseen consequences
of manipulating the genome. These could include non-
selective site mutations or large-scale genomic rearrange-
ments, which may introduce new genetic abnormalities
or cause unintended effects on gene regulation [42]. Care-
ful evaluation and thorough assessment of potential
unintended outcomes are essential to ensure the safety
and reliability of CRISPR-based strategies [37]. Under-
standing the stability of CRISPR-induced genetic repairs
is critical for assessing the long-term viability of poten-
tial treatments [40]. Genetic modifications must be stable
and faithfully passed on during cell divisions to provide
lasting therapeutic benefits. Investigating the heritability
and stability of repaired genetic mutations will shed light
on the longevity and efficacy of CRISPR-based strategies
[41]. When using CRISPR-Cas9 for in vivo applications,
it is crucial to evaluate potential immune responses to

d Cas9 nickase

Adenosine or
cytidine deaminase

Fig. 4 The diverse applications of CRISPR technology within cancer research. In section a, the paragraph explains that the inhibition of a specific
gene can be accomplished by combining Deactivated Cas9 (dCas9) with repressor domains. In section b, it discusses how the fusion of dCas9
with activation domains can stimulate the expression of a particular gene. Furthermore, it mentions that augmenting the binding of additional
transcription activators to a single-guide RNA or dCas9 can intensify the expression of target exons. In section ¢, it states that when dCas9 is fused
with epigenetic regulators, it can either repress or activate transcription. In section d, the paragraph talks about the focused introduction of point
mutations in the genome, which is made possible by combining dCas9 with adenosine deaminase or cytidine deaminase, allowing for precise
genetic modifications. Additionally, it provides explanations for the abbreviations KRAB (Kruppel-associated box) and scFv (single-chain variable

fragment). Reprinted from [15] with permission from Springer Nature
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the Cas9 protein and guide RNA [37]. The immune sys-
tem might recognize these components as foreign enti-
ties, leading to unwanted immune reactions or clearance
of CRISPR-modified cells. Understanding the immuno-
genicity of CRISPR components will aid in developing
strategies to minimize immune responses and enhance
the safety and success of gene therapies [41].

Delivery of cancer-killing molecules

CRISPR-based strategies have revolutionized cancer
treatment by enabling the precise delivery of cancer-
killing molecules to targeted cells [43]. The mechanism
behind this innovative approach involves utilizing the
CRISPR-Cas system, a powerful gene-editing tool, to
effectively locate and destroy cancerous cells while spar-
ing healthy ones [44]. Firstly, researchers design guide
RNA molecules that specifically target and bind to cancer
cell DNA, serving as molecular homing devices. Secondly,
these guide RNAs are loaded onto a CRISPR-associated
protein (Cas) complex, forming the CRISPR-Cas ribonu-
cleoprotein (RNP) complex. This RNP complex can be
seen as a delivery system for cancer-killing molecules,
which is a crucial part of CRISPR/Cas9-based cancer
gene therapy, where gene-editing technology is leveraged
to treat cancer by editing the genetic material within can-
cer cells [45]. Thirdly, the RNP complex, along with can-
cer-killing molecules, is then introduced into the patient’s
body, either through direct injection or as part of engi-
neered immune cells, such as T-cells. Various delivery
systems, such as nanotechnology-based delivery systems,
have been explored to ensure the efficient delivery of the
CRISPR-Cas system and cancer-killing molecules to tar-
get cells [46]. Fourthly, once inside the cancer cells, the
CRISPR-Cas RNP complex precisely cuts and deactivates
the oncogenes responsible for the malignancy, while the
delivered cancer-killing molecules initiate apoptosis (cell
death) or render the cancer cells susceptible to the body’s
immune response [47]. The ultimate goal is to optimize
the delivery and application of the CRISPR—Cas system
for clinical cancer therapy, overcoming challenges associ-
ated with in vivo delivery, to ensure the safety and effec-
tiveness of this therapeutic approach [48]. Finally, the
targeted destruction of cancer cells occurs, leading to
tumor regression while minimizing damage to healthy
tissues. This breakthrough mechanism holds immense
promise in the development of highly specific and effi-
cient cancer therapies, potentially revolutionizing the
landscape of oncology treatments in the future [49].
Guide RNA molecules are designed to have complemen-
tary sequences that specifically bind to the DNA of can-
cer cells. This specificity is achieved by identifying unique
genetic markers or mutations present in cancer cells but
not in healthy cells. By targeting these specific sequences,
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guide RNAs can effectively distinguish cancerous cells
from healthy ones [50]. The Cas complex serves as a
carrier for the guide RNA molecules. It forms a com-
plex with the guide RNA, creating the CRISPR-Cas RNP
complex [51]. The Cas protein provides the necessary
machinery to recognize the guide RNA and facilitates
its binding to the target DNA within cancer cells. This
complex acts as a powerful molecular scissor, cutting and
deactivating the oncogenes responsible for cancer growth
[50]. The CRISPR-Cas RNP complex can be introduced
into the patient’s body through different methods. One
approach involves direct injection into the target tissue
or tumor site [49]. Another method involves engineering
immune cells, such as T-cells, to express the CRISPR-Cas
RNP complex. These engineered immune cells can then
be reintroduced into the patient’s bloodstream, where
they can specifically target and attack cancer cells [51].
Once inside the cancer cells, the CRISPR-Cas RNP com-
plex locates the targeted DNA sequences and precisely
cuts them, deactivating the oncogenes responsible for
the malignancy. This deactivation leads to either the ini-
tiation of apoptosis (cell death) in cancer cells or renders
them more susceptible to the body’s immune response,
resulting in their destruction [49]. The guide RNA mol-
ecules are designed to specifically target cancer cells by
binding to unique genetic markers or mutations found
in those cells. By selectively targeting cancerous cells,
the CRISPR-Cas RNP complex effectively spares healthy
cells from damage, minimizing potential side effects [52].
Additionally, the use of engineered immune cells allows
for even greater specificity in targeting cancer cells, fur-
ther reducing the impact on healthy tissues [52, 53].

Preclinical studies and clinical trials

for CRISPR-based cancer therapy

Although there have been significant advancements
in the CRISPR gene-editing technology, with over 800
cell and gene therapy programs in existence, only a
limited number of CRISPR-based tools have success-
fully advanced beyond preclinical trials [51]. Other
gene editing methods, such as TALENs and ZFNs, have
been explored extensively in clinical settings and have
been reviewed elsewhere. Figure 5 illustrates different
strategies for editing cells using CRISPR technology in
patients. The development of CRISPR-based cancer ther-
apy is a rapidly evolving field that is moving from preclin-
ical studies to clinical trials [54]. Preclinical studies are
essential for evaluating the safety and efficacy of CRISPR-
based cancer therapy before it can be tested in humans
[55]. Clinical trials are the final step in the development
process and are used to determine the safety and efficacy
of a therapy in humans.
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Fig. 5 Different strategies for editing cells using CRISPR technology in patients. On the left, ex vivo applications involve first isolating cells, then
expanding and editing them before transplanting them back. On the right, in vivo editing occurs by administering CRISPR-Cas9 (or dCas9,

not shown) locally or systemically using viral packaging or nanoparticles. The figure also highlights specific clinical trials. Abbreviations used include
CRISPR (clustered regularly interspaced short palindromic repeats), dCas9 (dead Cas9), and HPV (human papillomavirus). Reprinted from [14]

with permission from Cell Press

Preclinical studies
Preclinical studies are a critical step in the development
of any new cancer therapy, including those based on
CRISPR technology [56]. Several studies are conducted
in laboratory animals, such as mice and rats, and are used
to evaluate the safety, efficacy, and potential side effects
of a new therapy. Figure 6 illustrates the application of
CRISPR in cancer modeling for cells and mice. Martinez-
Lage et al. presented a clever preclinical approach target-
ing oncogenic gene fusions, aiming for both tumor cell
selectivity and disruption of a tumor-promoting genetic
lesion. This strategy took advantage of the unique fusion
characteristic and demonstrated potential effectiveness
[57]. Another preclinical example by Gao et al. focused
on exploiting nuclear factor-kB (NF-kB), which is selec-
tively activated in cancer cells, to drive the transcription
of CRISPR-Casl3a components. This resulted in cancer
cell-restricted oncogene silencing, offering a promising
avenue for cancer therapy [58]. Table 2 presents a sum-
mary of preclinical studies exploring the potential of
CRISPR-based cancer therapy across various cell types.
P53 is a critical tumor suppressor protein responsi-
ble for regulating cell cycle progression and prevent-
ing the formation of cancerous cells [94]. In the context
of CRISPR/Cas9 genome editing, the activity of P53
becomes a crucial concern as the use of this technology
may lead to non-targeted site effects, causing unintended
DNA damage [95]. Therefore, it is essential to evaluate

the impact of CRISPR/Cas9 on P53 expression and
function to ensure the safety and efficacy of the editing
process [96]. P53 plays a crucial role in monitoring the
integrity of the cell's DNA and inducing cell cycle arrest
or apoptosis in case of DNA damage [97]. Unfortunately,
P53 is susceptible to mutations, leading to its inactivation
or dysfunction. These mutations are common in many
cancer types, including lung cancer, and contribute to
uncontrolled cell growth and tumor development [98].
Modifying the P53 gene can restore its function, leading
to the suppression of cancer cell growth [94]. When the
modified P53 gene is activated, it enhances the produc-
tion of the P21 protein, a well-known tumor suppressor
that regulates the cell cycle. Increased P21 expression
induces cell cycle arrest, preventing cancer cells from
proliferating uncontrollably [96]. Moreover, the activa-
tion of P21 also makes cancer cells more susceptible
to chemotherapy, as cells with active P21 proteins are
more prone to apoptosis when exposed to chemother-
apy drugs. P21, also known as cyclin-dependent kinase
inhibitor 1A (CDKN1A), is a cyclin-dependent kinase
inhibitor that plays a pivotal role in regulating the cell
cycle and promoting cell cycle arrest. In the context of
CRISPR/Cas9 genome editing, P21 may act as a dou-
ble-edged sword [99]. On one hand, its upregulation in
response to DNA damage caused by CRISPR/Cas9 may
induce cell cycle arrest, preventing cells from proliferat-
ing and potentially compromising the effectiveness of the
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Fig. 6 Employing CRISPR for creating cancer models in cells and mice. In the initial case (a), cultured cells or organoids undergo genome editing
through CRISPR, which facilitates the incorporation of alterations or adjustments in transcriptional control at one or more phases. In the latter case
(b), CRISPR mechanisms can be transferred to animal models using diverse methods, thereby enabling them to target numerous tissues and organs.
One such approach involves utilizing adeno-associated viruses (AAV) for delivery. Reprinted from [15] with permission from Springer Nature

editing process [100]. On the other hand, P21 can pro-
mote DNA repair, which might be beneficial for repairing
non-specific site effects [101]. Hence, understanding the
interplay between P21 and CRISPR/Cas9 is essential for
optimizing the editing outcomes [100]. The P21 protein
plays a crucial role in controlling the cell cycle by inhibit-
ing CDKs, which are essential for cell division. By inhib-
iting CDKs, P21 halts the progression of the cell cycle,
leading to cell cycle arrest. This pause in cell division
allows the cell time to repair DNA damage before contin-
uing with cell replication [94]. Consequently, when P21
is activated, cancer cells are unable to grow and divide
rapidly, reducing tumor growth and progression [97].
Cancer cells with active P21 proteins are more respon-
sive to chemotherapy due to their increased susceptibil-
ity to apoptosis [100]. Chemotherapy drugs target rapidly
dividing cells, and by arresting the cell cycle through P21
activation, the cancer cells become more vulnerable to
the cytotoxic effects of these drugs [99]. Additionally, the
activation of P21 may also facilitate DNA repair mecha-
nisms, enhancing the cell’s ability to detect and repair
chemotherapy-induced DNA damage, thus reducing the
chance of drug resistance. Dysregulation of P53 or P21 in

CRISPR/Cas9 genome editing could lead to several out-
comes [101]. Excessive activation of P53 might trigger
cell death pathways, resulting in increased toxicity and
adverse effects [100]. On the other hand, impaired P53
activity could promote the survival of cells with unin-
tended mutations, potentially leading to tumorigenesis
[97]. Similarly, altered expression of P21 could impact the
editing efficiency, cell viability, and potential undesirable
site effects [100]. Evaluating the consequences of P53 and
P21 dysregulation is vital for understanding the safety
and reliability of CRISPR/Cas9-based therapies [99]. To
minimize P53 and P21-related complications during
CRISPR/Cas9 genome editing, optimizing the delivery
methods of CRISPR/Cas9 components is crucial [100].
Researchers can explore using advanced delivery sys-
tems, such as nanoparticle-based carriers or viral vectors,
to improve the efficiency and specificity of targeting [97].
Additionally, employing cell-type-specific promoters for
Cas9 expression could reduce non-targeted site effects
and limit potential impacts on P53 and P21 expression
levels [94]. Moreover, pre-screening potential target
sites and rigorously validating guide RNA sequences can
aid in selecting the most effective and specific targets,
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Cell/Tissue Type CRISPR Approach Results Limitations/Challenges Ref
Mouse and Human T cells Knockout of PD-1 Enhanced T cell activity Safety concerns with long-term [59]
against cancer cells, prolonged PD-1 knockout
survival in mice
Ovarian Cancer Cells Knockout of oncogene Reduced cell proliferation Limited assessment of off-target  [60]
and colony formation effects
Lung Cancer Cells Knockout of mutant EGFR Reduced cell viability and tumor ~ Off-target effects in some cells [61]
growth in mice
Triple-Negative Breast Cancer Knockout of AXL Reduced tumor growth Limited assessment of off-target  [62]
Cells and increased sensitivity effects
to chemotherapy
Various Cancer Cell Lines Knockout of HIF-1a Reduced tumor growth Limited assessment of off-target  [63]
and increased sensitivity to radia-  effects
tion therapy
Melanoma Cells Knockout of BRAF V600E Reduced tumor growth Off-target effects in some cells [64]
and increased sensitivity to tar-
geted therapy
Leukemia Cells Knockout of MCL-1 Induced apoptosis and reduced  Limited assessment of off-target ~ [65]
tumor growth effects
Human T cells Knockout and overexpression Enhanced tumor cell recognition  Safety concerns with long-term [66, 67]
of NKG2D and killing by CAR-T cells NKG2D overexpression
Pediatric Solid Tumors Knockout of fusion oncogenes Reduced tumor growth Limited assessment of off-target  [68]
and increased sensitivity effects
to chemotherapy
Prostate Cancer Cells Knockout of androgen receptor Reduced cell proliferation Off-target effects in some cells [69]
and tumor growth in mice
Pancreatic Cancer Cells Knockout of TGF-B pathway Reduced tumor growth Limited assessment of off-target  [70]
genes and increased sensitivity effects
to chemotherapy
Breast Cancer Cells Knockout of PAK1T C-terminus Reduced cell proliferation Off-target effects in some cells [71]
and tumor growth in mice
Diffuse Large B-cell Lymphoma Knockout of BCL6 Induced apoptosis and reduced Limited assessment of off-target  [72]
Cells tumor growth effects
Glioblastoma Cells Knockout of TERT promoter Reduced cell proliferation Limited assessment of off-target  [73]
mutations and tumor growth in mice effects
Acute Myeloid Leukemia Cells Knockout of GATA2 Induced differentiation Limited assessment of off-target  [74]
and reduced tumor growth effects
Human Hematopoietic Stem Cells  Knockout of BCL11A enhancer Induced fetal hemoglobin Limited assessment of off-target  [75]
expression and reduced sickle cell  effects
symptoms
B Cell Acute Lymphoblastic Knockout of CD19 Induced apoptosis and reduced  Off-target effects in some cells [76]
Leukemia Cells tumor growth in mice
Diffuse Large B-cell Lymphoma Knockout of EZH2 Reduced cell proliferation Limited assessment of off-target ~ [77]
Cells and tumor growth in mice effects
Glioma Cells Knockout of IDH1 Reduced cell viability and tumor  Off-target effects in some cells [78]
growth in mice
Neuroblastoma Cells Knockout of MYCN Induced apoptosis and reduced Limited assessment of off-target  [79]
tumor growth effects
Ovarian Cancer Cells Knockout of MUC16 Reduced cell proliferation Limited assessment of off-target  [80]
and invasion effects
Alveolar Rhabdomyosarcoma Knockout of PAX7-FOXO1 Reduced cell proliferation Off-target effects in some cells [81]
Cells and tumor growth in mice
Esophageal Cancer Cells Knockout of SOX2 Reduced cell proliferation Limited assessment of off-target  [82]
and colony formation effects
Hepatocellular Carcinoma Cells Knockout of TERT Reduced cell proliferation Limited assessment of off-target  [83]
and tumor growth in mice effects
Colorectal Cancer Cells Knockout of Wnt/B-catenin Reduced cell proliferation Off-target effects in some cells [84]

pathway genes

and tumor growth in mice
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Table 2 (continued)

Cell/Tissue Type CRISPR Approach Results Limitations/Challenges Ref

Breast Cancer Cells Knockout of P53 Increased cell proliferation Off-target effects in some cells [85]
and colony formation

Pancreatic Cancer Cells Knockout of KRAS Reduced cell viability and tumor ~ Limited assessment of off-target  [86]
growth in mice effects

Cervical Cancer Cells Knockout of BIRC5 Reduced cell proliferation Limited assessment of off-target ~ [87]
and tumor growth in mice effects

Prostate Cancer Cells Knockout of EZH2 Reduced cell proliferation Off-target effects in some cells [79]
and colony formation

Osteosarcoma Cells Knockout of HIF-1a Reduced cell proliferation Limited assessment of off-target ~ [88]
and tumor growth in mice effects

Acute Lymphoblastic Leukemia Knockout of MYB Induced apoptosis and reduced  Limited assessment of off-target ~ [89]

Cells tumor growth effects

Renal Cell Carcinoma Cells Knockout of HIF-2a Reduced cell proliferation Limited assessment of off-target ~ [90]
and tumor growth in mice effects

Hepatocellular Carcinoma Cells Knockout of SALL4 Reduced cell proliferation Limited assessment of off-target  [91]
and tumor growth in mice effects

Melanoma Cells Knockout of CDK6 Reduced cell proliferation Limited assessment of off-target ~ [92]
and tumor growth in mice effects

Acute Myeloid Leukemia Cells Knockout of ASXL1 Induced differentiation Limited assessment of off-target ~ [93]

and reduced tumor growth

effects

minimizing unintended effects on P53 and P21 path-
ways [100]. Hartmann et al. (2021) focused on the imple-
mentation of CRISPR/Cas9 genome editing to generate
murine lung cancer models that accurately represent
the mutational landscape of human disease. Lung can-
cer remains a significant global health issue with low
survival rates, highlighting the need for innovative treat-
ments. The researchers aimed to develop surrogate mod-
els that mimic the somatic mutations observed in lung
cancer patients, as these mutations significantly impact
treatment responses. By employing CRISPR-mediated
genome editing, the team successfully targeted Trp53
and KRas genes, effectively recreating the classic murine
non-small cell lung cancer (NSCLC) model Trp53fl/fl:Isl-
KRasG12D/wt. The resulting tumors displayed similar
morphology, marker expression, and transcriptional
profiles compared to tumors derived from the Trp53fl/
fl:Isl-KRasG12D/wt model. The study demonstrated the
applicability of CRISPR/Cas9 for in vivo tumor modeling,
providing an alternative to conventional genetically engi-
neered mouse models. Interestingly, tumor onset was
achieved not only through constitutive Cas9 expression
but also by infecting lung epithelial cells of wild-type ani-
mals with two distinct adeno-associated viruses (AAVs)
encoding different components of the CRISPR machin-
ery. This approach simplified the process by eliminating
the need for extensive husbandry to incorporate new
genetic features in conventional mouse models. Overall,
the utilization of the CRISPR toolbox in cancer research
and modeling is rapidly advancing, enabling researchers

to efficiently develop new and clinically relevant surro-
gate models for translational studies [102].

The BRCA1 gene encodes a tumor suppressor protein
that plays a crucial role in DNA repair and maintain-
ing genomic stability [103]. When cells experience DNA
damage, BRCA1 is involved in signaling pathways that
activate P21, a cyclin-dependent kinase inhibitor [104].
P21 inhibits cell cycle progression, allowing time for
DNA repair mechanisms to fix the damaged DNA. This
activation of P21 helps prevent the propagation of cells
with potentially harmful mutations, reducing the risk of
tumorigenesis [105]. Mutations in the BRCA1 gene can
disrupt its normal function, impairing DNA repair pro-
cesses and leading to genomic instability [106]. Con-
sequently, the activation of P21 may be compromised,
allowing damaged cells to evade cell cycle arrest and
repair checkpoints [107]. This increases the likelihood
of these cells acquiring additional mutations, potentially
leading to the development of cancer [108]. Understand-
ing the intricate interplay between BRCA1 and P21 is
crucial for developing targeted therapies and interven-
tions for individuals with BRCA1 mutations or related
cancers [109]. The research revealed that modifying the
BRCA1 gene resulted in the suppression of cancer cell
growth and heightened responsiveness of these cancer
cells to chemotherapy [110]. Specifically, the alteration
of the BRCA1 gene triggered the activation of the P21
protein, a well-known tumor suppressor protein that
contributes to halting the cell cycle [107]. This activa-
tion, in turn, caused a reduction in cell growth and made
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the cancer cells more susceptible to chemotherapy, as
P21-activated cells tend to be more responsive to chemo-
therapy treatment [106, 111]. Some researchers highlight
the potential of CRISPR-based base editing as a valu-
able resource for the functional evaluation and reclas-
sification of variants of uncertain significance (VUSs) in
the BRCAL1 gene. Furthermore, this investigation tack-
led the obstacles associated with assessing functionality
and determining the pathogenicity of new BRCA1 vari-
ants, which are known to substantially elevate the risk
of breast and ovarian cancers and are typically identified
through clinical genetic testing. To surmount these hur-
dles, the scientists employed CRISPR-mediated cytosine
base editor BE3 for functional analysis. They carried out a
comprehensive screening of CRISPR-mediated base edit-
ing using 745 guide RNAs targeting all exons in BRCA1,
identifying several previously unidentified variants,
including c.-97C>T, ¢.154C> T, c.3847C>T, c.5056C > T,
and c4986+5G>A. The study effectively showcased
the utility of CRISPR-mediated base editing as a potent
instrument for reevaluating variants of uncertain sig-
nificance (VUSs) in BRCAI, offering valuable insights
for clinical management. This reclassification of VUSs
in BRCA1 can have substantial implications for patients
and healthcare providers. Patients with clarified variant
classifications can receive more precise risk assessments
and individualized treatment plans, potentially involving
heightened surveillance or preventative measures. For
healthcare providers, accurate variant classification guar-
antees appropriate counseling and risk communication
for patients and their families [112].

KRAS is a proto-oncogene that, when mutated, plays
a crucial role in the development of various cancers,
including colon cancer. Mutated KRAS promotes uncon-
trolled cell growth, leading to tumor formation [113].
Editing the KRAS gene using CRISPR-Cas9 technol-
ogy can lead to the activation of the P21 protein, a well-
known tumor suppressor. P21 promotes cell cycle arrest
by inhibiting cyclin-dependent kinases, effectively halting
cancer cell growth [114]. CRISPR-Cas9 utilizes a gRNA
designed to complement a specific DNA sequence in
the KRAS gene. The Cas9 enzyme, guided by the gRNA,
introduces a double-strand break in the DNA, prompt-
ing the cell’s repair machinery to introduce errors that
disrupt KRAS gene function [115]. The gRNA guides the
Cas9 enzyme to the target site, where it introduces a dou-
ble-strand break in the DNA. The cell’s repair machinery
then repairs the break, often introducing errors that dis-
rupt the function of the KRAS gene [116]. undesirable
site effects refer to unintended modifications of DNA
at sites other than the intended target [117]. Although
CRISPR-Cas9 has been significantly improved to reduce
non-specific site effects, there is still a possibility of
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off-target edits. Careful gRNA design, utilizing advanced
algorithms, and validation of potential non-specific sites
through sequencing can minimize these effects [118].
Efficient delivery of CRISPR-Cas9 components to target
cells remains a challenge [119]. Methods such as viral
vectors, lipid nanoparticles, and electroporation have
been explored. Each approach has advantages and limita-
tions in terms of efficiency, toxicity, and specificity [120].
The activation of the P21 protein, a well-known tumor
suppressor, promotes cell cycle arrest by inhibiting cyc-
lin-dependent kinases that regulate cell division. By halt-
ing the cell cycle, the growth of cancer cells is inhibited
[121]. Activating the P21 protein through editing the
KRAS gene can sensitize cancer cells to chemotherapy
[122]. The increased expression of P21 leads to cell cycle
arrest, which allows the chemotherapy drugs to target
and kill the cancer cells more effectively [123]. Activat-
ing the P21 protein through KRAS gene editing sensitizes
cancer cells to chemotherapy. Cell cycle arrest caused by
P21 activation allows chemotherapy drugs to more effec-
tively target and eliminate cancer cells [115].

The EGFR (Epidermal Growth Factor Receptor) gene
plays a crucial role in cell growth, proliferation, and dif-
ferentiation [124]. Mutations in the EGFR gene are
associated with various cancers, particularly in NSCLC.
CRISPR-Cas9 is a gene-editing technology that utilizes
a guide RNA to target specific DNA sequences and the
Cas9 enzyme to create double-strand breaks at the tar-
geted location. These breaks can then be repaired, either
through NHE] or HDR, resulting in gene mutations or
precise edits, respectively [125]. In the context of EGFR,
CRISPR-Cas9 can be programmed to target and modify
the mutated sequences responsible for cancer growth,
potentially inhibiting tumor progression and improv-
ing patient outcomes [126]. Editing the EGFR gene using
CRISPR-Cas9 can have both positive and negative con-
sequences [124]. On the positive side, it can help correct
mutations or deletions in the gene that are associated
with certain diseases, such as lung cancer [127]. However,
it is crucial to consider potential non-targeted site effects,
as unintended changes in other parts of the genome
could lead to unexpected consequences or disruptions
in gene function [128]. The efficiency of CRISPR-Cas9
in editing the EGFR gene can vary depending on vari-
ous factors, including the specific gRNA design, deliv-
ery method, and cell type [125]. Studies have shown that
CRISPR-Cas9 can achieve high editing efficiency, but it
is important to optimize the experimental conditions to
maximize the desired outcomes [124]. CRISPR-Cas9 has
high specificity, thanks to the precise binding of the guide
RNA to the target DNA sequence [127]. However, there
remains a concern of non-specific site effects, where
Cas9 may unintentionally edit other genomic regions
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with partial similarity to the target site [124]. Extensive
research and optimization of guide RNA design have sig-
nificantly reduced undesirable site effects [127]. State-of-
the-art Cas9 variants, such as high-fidelity Cas9 and base
editors, have further improved specificity, minimizing
the risk of unintended genetic modifications [124]. Chal-
lenges associated with CRISPR-Cas9 editing of the EGFR
gene include undesirable site effects, delivery efficiency,
and potential long-term effects. Ethical considerations
include the need for informed consent, ensuring equita-
ble access to the technology, and responsible use to avoid
unintended consequences or the creation of "designer
babies." Rigorous evaluation, regulation, and ethical
guidelines are essential to navigate these challenges and
ensure the responsible application of CRISPR-Cas9 in
editing the EGFR gene or any other gene [128].
CRISPR-Cas9 editing of the VEGF (Vascular Endothe-
lial Growth Factor) gene can play a crucial role in vari-
ous cancers. VEGF is a protein that promotes the growth
of new blood vessels, a process known as angiogenesis,
which is essential for tumor development and metastasis
[129]. By targeting and disrupting the VEGF gene using
CRISPR-Cas9, researchers can potentially hinder the
production of VEGF and, consequently, inhibit tumor
angiogenesis. This could lead to reduced tumor growth
and increased sensitivity to other cancer treatments
[130]. While CRISPR-Cas9 is highly specific, there is a
possibility of off-target effects where unintended gene
edits occur. In the case of VEGF gene editing, researchers
must carefully assess potential off-target sites to ensure
that no critical genes are unintentionally modified [131].
To minimize undesirable site effects, rigorous bioinfor-
matics analyses and advanced screening methods are
employed to select guide RNAs with the least likelihood
of non-specific site activity. CRISPR-Cas9-based VEGF
gene editing, on its own, may not be sufficient for com-
plete cancer treatment [129]. While it can impede tumor
angiogenesis, a comprehensive cancer treatment strat-
egy usually involves combining CRISPR-Cas9 with other
therapies like chemotherapy, radiation, or immunother-
apy [130]. Combining treatments can lead to a synergistic
effect, targeting cancer cells through multiple pathways
and increasing the overall therapeutic efficacy [129].
Delivering CRISPR-Cas9 components to cancer cells
poses a significant challenge [131]. The large size of the
Cas9 protein and guide RNA complex may limit delivery
methods [131]. Various approaches are being explored,
including viral vectors, nanoparticles, and liposomes, to
ensure efficient and safe delivery to target cancer cells
while avoiding harm to healthy tissues [129]. Ensuring
long-term and stable VEGF gene suppression is essential
for sustained therapeutic effects [131]. Researchers are
investigating methods to improve CRISPR-Cas9 delivery
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and stability within cancer cells [129]. Strategies like uti-
lizing modified Cas9 variants or integrating the CRISPR
components into the genome of the target cells could
potentially enhance the durability of VEGF gene editing
and its anticancer effects [131].

Editing the BCL-2 gene using CRISPR-Cas9 in cancer
treatment holds significant potential due to the role of the
BCL-2 protein in promoting cancer cell survival [132].
By targeting and modifying the BCL-2 gene, research-
ers aim to disrupt the overexpression or dysregulation of
this protein, which can lead to apoptosis resistance and
tumor growth. CRISPR-Cas9 offers a precise and efficient
method to edit the BCL-2 gene and potentially restore
normal cell death mechanisms [133]. CRISPR-Cas9 uti-
lizes guide RNAs designed to match specific sequences
within the BCL-2 gene [130]. When the guide RNA finds
a complementary match, it guides the Cas9 enzyme to
that location, initiating a double-stranded DNA break
at the target site [134]. Non-targeted site effects refer to
unintended changes in DNA at sites similar to the tar-
get sequence [132]. To minimize undesirable site effects,
researchers employ bioinformatic tools to carefully
design guide RNAs with high specificity [134]. Addition-
ally, thorough validation experiments are conducted to
identify and mitigate any potential off-target sites [133].
BCL-2 is an anti-apoptotic gene that helps cancer cells
evade cell death mechanisms [134]. By editing the BCL-2
gene, CRISPR-Cas9 can disrupt its function, promoting
apoptosis in cancer cells and potentially hindering tumor
growth [133]. Delivering CRISPR-Cas9 components to
specific cancer cells in a patient’s body poses significant
challenges [132]. Researchers are exploring various deliv-
ery methods, including viral vectors and nanoparticles, to
ensure efficient and targeted delivery while minimizing
potential side effects [132]. Preclinical studies on animal
models and in vitro experiments have shown promising
results in targeting the BCL-2 gene with CRISPR-Cas9.
However, clinical trials are essential to assess the safety
and effectiveness of this approach in human patients
[134]. Understanding the potential long-term conse-
quences of BCL-2 gene editing is crucial. Researchers
need to investigate whether edited cells retain their nor-
mal functionality and whether any unintended effects on
other cellular processes occur [133]. The use of CRISPR-
Cas9 in cancer treatment raises ethical questions about
genetic manipulation, informed consent, and equitable
access to advanced therapies [132]. Researchers and poli-
cymakers must address these concerns to ensure respon-
sible and equitable application of this technology [134].

CRISPR-Cas9 editing of the PTEN gene can have sig-
nificant effects on cancer progression [135]. PTEN is
a tumor suppressor gene that regulates cell growth and
division [136]. When PTEN is mutated or deleted, it leads
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to uncontrolled cell growth, a hallmark of cancer [137]. By
using CRISPR-Cas9 to precisely target and edit the PTEN
gene, researchers can potentially restore its function as a
tumor suppressor, thereby inhibiting cancer cell growth
and reducing tumor development [138]. The potential of
CRISPR-Cas9-mediated PTEN gene editing as a treat-
ment option varies among different cancer types [136].
Some cancers exhibit PTEN mutations as a dominant
driver of tumorigenesis, making them more amenable to
this approach [135]. However, the efficacy of this strat-
egy may depend on the cancer’s genetic context, as some
tumors may possess alternative mechanisms to bypass
PTEN function [138]. Extensive preclinical studies and
clinical trials are required to determine its applicability
and effectiveness across diverse cancer types [135]. Safety
concerns in CRISPR-Cas9 gene editing for PTEN in can-
cer therapy involve potential undesirable site effects,
where unintended genetic changes could occur in non-
cancerous cells, leading to adverse consequences [136].
Additionally, the risk of introducing new mutations or
altering other essential genes must be carefully evaluated
to avoid unwanted side effects [138]. Rigorous testing in
preclinical models and careful monitoring during clinical
trials are crucial to ensure the safety and feasibility of this
therapeutic approach [135]. Researchers are continuously
exploring various strategies to improve CRISPR-Cas9
gene editing efficiency [136]. One approach involves opti-
mizing the delivery system to ensure precise targeting of
cancer cells. Additionally, advancements in CRISPR-Cas9
technology, such as using base editors or prime editors,
offer more precise modifications and reduced non-tar-
geted site effects [138]. Moreover, combining CRISPR-
Cas9 with other therapies, such as immunotherapies or
targeted therapies, may enhance the overall therapeutic
response, allowing for a more comprehensive and effec-
tive treatment strategy. Several challenges need to be
addressed when using CRISPR-Cas9 to edit the PTEN
gene in cancer cells [135]. Firstly, efficient delivery of
CRISPR components to specific cancer cells is crucial to
avoid non-targeted site effects [138]. Secondly, ensuring
the correct and precise editing of the PTEN gene without
introducing unintended mutations is vital for therapeutic
success [135]. Additionally, the immune response to the
CRISPR components and potential immune rejection of
edited cells must be evaluated to assess their long-term
viability and safety [138].

The TERT gene, which encodes the telomerase reverse
transcriptase enzyme, plays a critical role in maintain-
ing telomeres, the protective caps at the ends of chro-
mosomes [139]. In many cancer types, the TERT gene
is upregulated, leading to increased telomerase activity.
This allows cancer cells to bypass the natural limitations
on cell division and achieve immortality, contributing
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to tumor growth and progression. CRISPR-Cas9 can be
employed as a gene-editing tool to target and modify the
TERT gene in cancer cells [140]. The CRISPR-Cas9 sys-
tem consists of a guide RNA that directs the Cas9 nucle-
ase to the desired genomic location [141]. By designing a
guide RNA specific to the TERT gene sequence, research-
ers can guide Cas9 to the TERT gene and induce a DSB at
the targeted site [142]. The cell's DNA repair machinery
then repairs the break, often through the error-prone
NHE] pathway, which introduces small insertions or
deletions (indels) that disrupt the TERT gene’s function
[139]. Alternatively, researchers can use CRISPR-Cas9 in
combination with a repair template to introduce specific
modifications to the TERT gene sequence, such as gene
knockouts or point mutations [141]. Editing the TERT
gene using CRISPR-Cas9 can lead to several outcomes.
One possibility is the disruption of TERT gene function,
resulting in decreased telomerase activity in cancer cells.
This can lead to telomere shortening and cellular senes-
cence or apoptosis, inhibiting the unlimited replicative
potential of cancer cells [139]. Another potential out-
come is the modification of TERT gene expression, such
as reducing its expression level, which can hinder tumor
growth [142]. Additionally, CRISPR-Cas9-mediated
TERT gene editing may sensitize cancer cells to other
therapies, as telomerase inhibition can enhance the effec-
tiveness of conventional treatments like chemotherapy or
radiation therapy [139].

NEF-kB is a protein involved in regulating inflamma-
tion and is often overly active in various cancer types,
including pancreatic cancer [143]. Researchers discov-
ered that modifying the NF-kB gene resulted in hin-
dering cancer cell growth and rendering the cancer
cells more receptive to chemotherapy [144]. The study
specifically revealed that editing the NF-kB gene sup-
pressed the NF-kB protein, which is responsible for
promoting inflammation and stimulating cell growth
[145]. Consequently, this inhibition of cell growth
heightened the cancer cells’ sensitivity to chemother-
apy since cells with subdued NF-kB protein display
increased responsiveness to chemotherapy treatments
[146]. Editing the NF-kB gene using CRISPR-Cas9
can have significant implications for cancer progres-
sion [143]. NF-kB is a transcription factor that plays
a crucial role in regulating various cellular processes,
including inflammation, cell survival, and prolifera-
tion [145]. By editing the NF-kB gene, CRISPR-Cas9
can potentially disrupt its activity, leading to the inhi-
bition of cancer-promoting signaling pathways and the
suppression of tumor growth [146]. Editing the NF-kB
gene using CRISPR-Cas9 has the potential to enhance
the sensitivity of cancer cells to conventional thera-
pies [143]. NF-kB activation is often associated with
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resistance to chemotherapy and radiation. By disrupt-
ing NF-kB signaling through CRISPR-Cas9 editing,
cancer cells may become more vulnerable to stand-
ard cancer treatments, improving overall treatment
outcomes [145]. While CRISPR-Cas9 editing of the
NE-kB gene shows promise, it is important to evalu-
ate potential side effects or unintended consequences
[143]. undesirable site effects, where CRISPR-Cas9
edits unintended genomic sites, could lead to genetic
instability or interfere with normal cellular functions
[145]. Additionally, the long-term effects of NF-kB gene
disruption on overall immune response and inflamma-
tory processes need to be thoroughly assessed [144].
Optimizing the therapeutic potential of CRISPR-Cas9
editing of the NF-kB gene requires further research
and development. Understanding the specific molecu-
lar characteristics of different cancer types and their
NF-kB signaling pathways is essential for designing
precise CRISPR-Cas9 strategies [145]. Additionally,
advancements in delivery systems, such as viral vectors
or nanoparticle-based carriers, can enhance the effi-
ciency and specificity of NF-kB gene editing in cancer
cells [143].

The CDK4 gene encodes Cyclin-Dependent Kinase 4,
a crucial protein involved in cell cycle regulation [147].
CDK4 forms complexes with cyclin D, leading to cell
cycle progression from G1 to S phase [148]. In various
cancers, the overexpression or amplification of CDK4 has
been observed, promoting uncontrolled cell prolifera-
tion and tumorigenesis [149]. CRISPR-Cas9 uses guide
RNA molecules that complementarily bind to the target
DNA sequence within the CDK4 gene [148]. The Cas9
protein, acting as a molecular scissors, then cleaves the
DNA at the precise location indicated by the guide RNA.
This induces double-strand breaks in the CDK4 gene,
triggering the cell's DNA repair machinery, which may
lead to gene knockout or targeted mutations [149]. Pre-
clinical studies using CRISPR-Cas9 have shown promis-
ing results in inhibiting CDK4 expression and reducing
tumor growth in various cancer models, such as mela-
noma, breast cancer, and glioblastoma. These studies
have provided valuable insights into the potential thera-
peutic efficacy of CRISPR-based CDK4 targeting [150].
As of the current knowledge cutoff, several clinical tri-
als are likely underway or being planned to evaluate the
safety and efficacy of CRISPR-Cas9 in editing the CDK4
gene in cancer patients. These trials will help determine
the feasibility and potential benefits of CRISPR-based
strategies in real-world clinical settings [151]. One chal-
lenge is the efficient delivery of CRISPR-Cas9 compo-
nents to the cancer cells. Ensuring high delivery rates
and minimizing non-targeted site effects is essential for
successful therapy [148]. Additionally, CDK4 may have
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important functions in normal cells, so targeting it may
cause unintended consequences in non-cancerous tissues
[149].

Clinical trials

Clinical trials exploring the potential of CRISPR-based
cancer therapy are currently in their early development
stages. Nevertheless, multiple clinical trials have been
launched to assess how safe and effective CRISPR-based
cancer treatment is for humans. Frangoul et al’s research
is focused on the utilization of CRISPR-Cas9 gene edit-
ing to address two severe monogenic diseases [152]:
Transfusion-dependent p-thalassemia (TDT) and sickle
cell disease (SCD) are both severe and potentially life-
threatening conditions. Researchers focused on target-
ing a specific transcription factor called BCL11A, which
is known to inhibit the production of fetal hemoglobin
and y-globin in erythroid cells. To achieve this, they uti-
lized the CRISPR-Cas9 system to modify the BCL11A
erythroid-specific enhancer in CD34+ hematopoietic
stem and progenitor cells derived from healthy donors.
Remarkably, this editing approach successfully altered
about 80% of the alleles at this genetic locus without any
unintended undesirable site effects. After the gene edit-
ing, two patients, one with TDT and the other with SCD,
underwent transplants of the edited CD34 + cells follow-
ing myeloablation to remove their existing bone marrow.
More than a year later, both patients exhibited significant
allelic editing in their bone marrow and blood, accompa-
nied by a substantial increase in fetal hemoglobin levels,
leading to their independence from transfusions. Nota-
bly, the patient with SCD no longer experienced vaso-
occlusive episodes, painful and damaging events caused
by sickle-shaped red blood cells. The clinical trials for
these treatments were registered on ClinicalTrials.gov
with the identifiers NCT03655678 for CLIMB THAL-111
(for B-thalassemia) and NCT03745287 for CLIMB SCD-
121 (for sickle cell disease). It’s worth mentioning that
this research received financial support from CRISPR
Therapeutics and Vertex Pharmaceuticals (Fig. 7).

One common strategy observed in several trials
involves knocking out the PD1 gene, which encodes for
the programmed cell death protein 1. PD1 is known to
be involved in inhibiting T cell activity, and by removing
it, the modified T cells, known as autologous TILs and
autologous EBV-specific CTLs, can become more potent
at recognizing and attacking cancer cells. The Phase I
clinical trials NCT03081715 [153] and NCT02793856
focus on PD1 KO Autologous TILs, while NCT03044743
[154] investigates PD1 KO Autologous EBV CTLs. Addi-
tionally, another study (NCT04417764) explores the
same PD1 KO Autologous TILs strategy [155]. Another
approach involves the simultaneous knockout of PD1
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Fig. 7 AThe CTX001 molecular approach and preclinical studies. Panel A illustrates the shift from fetal hemoglobin (HbF) to adult hemoglobin
(HbA) shortly after birth and the role of the transcription factor BCL11A in suppressing y-globin, a component of fetal hemoglobin. When fetal
hemoglobin levels decrease approximately 3 months after birth, individuals who cannot produce enough functional B-globin experience
symptoms. This has implications for conditions like sickle cell disease (SCD) and transfusion-dependent 3-thalassemia (TDT). Moving to Panel

B, it showcases the specific editing site targeted by the single guide RNA (sgRNA) that guides CRISPR-Cas9 to the erythroid-specific enhancer
region of BCL11A. The five BCL11A exons are represented as gold boxes, and GATAT is the binding site for the GATA1 transcription factor. PAM,
the protospacer adjacent motif (NGG), is a specific DNA sequence required immediately following the Cas9 target DNA sequence. Panel C
displays preclinical data that reveals the percentage of fetal hemoglobin as a portion of total hemoglobin after editing and the differentiation

of erythroid cells. This data was obtained from samples taken from 10 healthy donors, with error bars indicating the standard deviation. Finally,
Panel D presents the results of an off-target evaluation. GUIDE-seq (genomewide unbiased identification of double-strand breaks enabled

by sequencing) was independently performed on three CD34 +HSPC (hematopoietic stem and progenitor cell) healthy donor samples

to nominate sites. Subsequently, hybrid capture was conducted on four CD34 +HSPC healthy donor samples to confirm these sites. The on-target
allelic editing was confirmed in each experiment with an average of 57%, and no detectable off-target editing was observed at any of the sites
identified by GUIDE-seq and sequence homology. Panel A was adapted with permission from Canver and Orkin. B The data related to hemoglobin
fractionation, F-cell levels, and transfusion events in the two groups of patients under study. Panel A depicts the results of CRISPR-Cas9 treatment
for transfusion-dependent (-thalassemia in Patient 1, while Panel D presents data for Patient 2, who received treatment for sickle cell disease,
showcasing various hemoglobin adducts and variants. The changes in F-cell percentages over time can be observed in Panel B for Patient 1

and in Panel E for Patient 2. Baseline levels of hemoglobin and F-cells were established during the initial assessment prior to treatment. Additionally,
Panel C shows the progression of transfusion events over time in Patient 1, and Panel F displays vaso-occlusive crises (VOCs) or episodes

and transfusion events in Patient 2. It's worth noting that exchange transfusions performed according to the study protocol before the infusion
of CTX001 during the on-study period are not included in the figures. Reprinted from [152] with permission from the New England Journal

of Medicine
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[158]. Moreover, NCT03166878 uses the knockout of
both TCR and B2m (beta-2 microglobulin) in allogeneic
CD19-targeting CAR T cells [158]. The removal of TCR
prevents GVHD, and the absence of 2m results in
reduced expression of MHC-I, which can otherwise sup-
press CAR T cell activity. Other trials in Table 2 involve
the insertion of CAR into T cells after knocking out spe-
cific genes. For example, NCT04502446 uses CRISPR to
insert the CAR gene while simultaneously knocking out
endogenous TCR and MHC-I in allogeneic CD70-target-
ing CAR T cells [159]. Similarly, NCT04244656 targets
BCMA (B cell maturation protein) in allogeneic CAR T
cells while knocking out endogenous TCR and MHC-I to
boost their cancer-targeting ability [159]. Furthermore,
NCT04637763 explores the knockout of PD1 and endog-
enous TCR in allogeneic CD19-targeting CAR T cells
[159]. This approach aims to improve the persistence and
activity of CAR T cells in attacking CD19-expressing can-
cer cells. Table 3 presents clinical trials of CRISPR-based
cancer therapies targeting different cancer types.

Safety and delivery challenges

CRISPR-Cas9, a revolutionary gene-editing technol-
ogy, holds immense promise for the treatment of vari-
ous genetic disorders and diseases [203]. However, its
widespread adoption faces significant safety and deliv-
ery challenges [204]. One of the primary concerns with
CRISPR-Cas9 is its potential to introduce unintended
genetic changes, known as undesirable site effects, which
could lead to unforeseen consequences and trigger new
health problems [205]. Scientists and researchers must
develop more precise and reliable methods to minimize
these non-targeted site effects to ensure the safety and
efficacy of the treatment [206, 207]. Additionally, deliv-
ering the CRISPR-Cas9 components into specific cells
and tissues poses a significant hurdle [208, 209]. Find-
ing efficient delivery methods that can effectively target
the intended cells while avoiding adverse reactions in
surrounding tissues is crucial [203]. Overcoming these
safety and delivery challenges is fundamental to unlock-
ing the full potential of CRISPR-Cas9 as a transformative
therapeutic approach, offering hope for patients suffer-
ing from genetic ailments. Robust research and rigorous
testing will be essential to ensure that the benefits of this
groundbreaking technology outweigh any potential risks
[205]. Table 4 presents the safety and delivery challenges
associated with CRISPR-based cancer therapy.

Delivery challenges and safety measures in CRISPR-based
gene editing

The evaluation of off-target effects in gene editing is
crucial to ensuring the safety and precision of genetic
modifications [214]. Advancements in base editors and
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prime editors aim to minimize non-selective site effects,
but ongoing research and ethical considerations are
necessary to harness these technologies responsibly for
therapeutic applications and other genetic interventions
[215]. Off-target effects refer to unintended changes or
alterations in the DNA that occur when using gene edit-
ing technologies like CRISPR-Cas systems. These unin-
tended modifications can happen at sites other than the
targeted location, potentially leading to unpredictable
and unwanted genetic changes [214]. Base editors are a
recent advancement in CRISPR technology that can per-
form targeted chemical modifications to specific DNA
bases without creating double-stranded breaks like tra-
ditional CRISPR-Cas systems. This targeted approach
reduces the risk of undesirable site effects by minimizing
the potential for random DNA alterations [215]. Prime
editors offer enhanced precision in gene editing com-
pared to base editors or traditional CRISPR-Cas systems.
They combine the capabilities of base editors and nick-
ases, allowing for accurate insertion, deletion, and sub-
stitution of particular genetic bases within the genome.
This increased precision further reduces the likelihood
of non-targeted site effects [216]. Scientists use various
techniques to assess non-selective site effects, such as
whole-genome sequencing, high-throughput sequenc-
ing, and computational analysis. These methods help
identify unintended genetic changes and determine the
efficiency and specificity of the gene-editing technol-
ogy being used [217]. Despite the advancements in base
editors and prime editors, off-target effects remain a
concern [217]. The challenge lies in achieving absolute
precision in targeting specific genomic sites without
affecting nearby regions [215]. Continuous refinement
of gene-editing tools, along with rigorous evaluation and
validation methods, are crucial to overcoming these chal-
lenges [216]. To ensure the safety of using base editors
and prime editors in therapeutic settings, comprehensive
preclinical studies are necessary. These studies involve
rigorous testing of the gene-editing tools on relevant cell
lines and animal models to assess potential non-targeted
site effects and ensure the accuracy of genetic modifica-
tions before progressing to human trials [215].

One strategy is to use high-fidelity Cas9 variants, which
have been engineered to have reduced off-target activ-
ity [215]. Another strategy is to use alternative CRISPR
systems, such as Cpfl or Casl2a, which have unique
mechanisms of target recognition and have shown to
have lower off-target activity compared to Cas9 [218].
Another strategy is to use a combination of gRNA and
Cas9 variants with high specificity, or to use multiple
gRNAs to target the same gene. This increases the speci-
ficity of the CRISPR-based gene editing and reduces
the risk of non-targeted site effects [219]. Another way
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to minimize off-target effects is to use computational
tools to predict potential undesirable site sites and to
experimentally validate these predictions. This allows
researchers to identify and avoid non-selective site sites
before they cause unintended mutations [220]. Finally, it
is important to note that off-target effects can also arise
from the delivery method used to deliver the CRISPR
machinery to the cells [221]. Researchers are develop-
ing a variety of methods to deliver CRISPR to the tumor
site, including viral vectors, nanoparticles, and exosomes
[222]. Research by Xiang et al. focuses on improving the
efficiency prediction of CRISPR-Cas9 gRNAs using data
integration and deep learning (Fig. 8). The primary aim
is to enhance the accuracy of identifying gRNAs that will
be more effective in targeting specific DNA sequences.
CRISPR-Cas9 is a powerful gene-editing tool that relies
on gRNAs to guide the Cas9 enzyme to the target DNA
site for editing. Efficient gRNA design is crucial for
successful genome editing, and this requires reliable

protospacer + PAM
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predictions of on-target efficiency. To achieve this, the
researchers gathered high-quality gRNA activity data
for 10,592 gRNAs that target the SpCas9 enzyme. To
further improve their predictions, the researchers inte-
grated this new data with existing complementary data
from other sources. They then employed a deep learn-
ing model called "CRISPR on," which was trained on
a combined dataset of 23,902 gRNAs, including both
the newly generated data and the previously available
data. The results of their study showed that CRISPR on
outperformed existing tools used for gRNA efficiency
prediction. The improved performance was observed
across four test datasets that were not part of the train-
ing data used for developing other prediction tools.
This suggests that CRISPR on’s predictions were more
accurate and reliable than what was currently avail-
able. To make their findings accessible to the scientific
community, the researchers developed an interactive
webserver for gRNA design based on the CRISPR on
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Fig. 8 AThe process and results of high-throughput quantification of gRNA efficiency in cells. In panel (a), a graphic illustrates the sequence

of actions involved, which includes employing a lentiviral surrogate vector, synthesizing an oligo pool, performing PCR amplification, using
golden-gate assembly, packing the genetic material into lentiviruses, and then introducing it. Panel (b) showcases the editing efficiency of gRNA
at all surrogate locations, assessed through targeted amplicon sequencing. The results are presented for HEK293T-SpCas9 cells at 2, 8, and 10 days
following the introduction. Panel (c) displays the correlation between gRNA editing efficiency on days 8 and 10 post-transduction. Panel (d)
presents the patterns of indels (deletions ranging from 1-30 bp and insertions ranging from 1-10 bp) introduced by SpCas9 in HEK293T-SpCas9
cells at 2, 8, and 10 days after the transduction. Panel (e) depicts the agreement between the observed indel patterns in cells and those predicted
by inDelphi, visualized as a violin plot with medians and quartiles. In panel (f), a scatter plot portrays the frequency of 1-bp insertion indels
(mean+95% confidence interval), categorized based on the nucleotide at position N17 of the protospacer and the type of inserted nucleotide.
Lastly, panel (g) exhibits the association between gRNA editing efficiencies in this study and those from other significant research, with a particular
emphasis on common gRNA +PAM (23 nt) cases, presented using a Venn diagram. B The CRISPR on model and its ability to generalize

on independent test sets. Panel a displays a visual depiction of the input DNA sequence for CRISPRon, including the prediction algorithm. The deep
learning network receives inputs in the form of a one-hot encoded 30mer and the binding energy (AGB). It's worth noting that only the filtering
(convolutional) layers and the three fully connected layers are explicitly depicted, with the thin vertical bars representing the output of one layer,
serving as the input for the next layer. In panel b, a performance evaluation comparing CRISPRon to other existing models is presented, specifically
focusing on independent test sets containing over 1000 gRNAs. Reprinted from [223] with permission from Springer Nature
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standalone software. This webserver allows researchers
to easily access and use the CRISPR on tool for design-
ing gRNAs with higher efficiency [223]. However, these
delivery methods are still in early stages of development
and more research is needed to optimize their effective-
ness and safety [224]. Undesirable site effects are a major
concern in CRISPR-based gene editing, and they are par-
ticularly relevant in the context of cancer therapy [224].
Researchers are developing new strategies to minimize
the risk of non-selective site effects, including using high-
fidelity Cas9 variants, alternative CRISPR systems, com-
putational tools, and optimized delivery methods [224,
225]. While these strategies have shown promise, much
work remains to be done to ensure that CRISPR-based
gene editing is safe and effective for cancer therapy [226].
Non-targeted site effects refer to unintended changes
in the DNA of cells caused by the CRISPR-Cas9 system.
These changes can occur in genes that were not intended
to be targeted by the CRISPR-Cas9 system. These unin-
tended changes can compromise the therapeutic effect
of gene editing and potentially lead to harmful conse-
quences [227]. Researchers used CRISPR-Cas9 to tar-
get the PIK3CA gene in human cancer cells. PIK3CA
is a well-established oncogene, or a gene that promotes
the development of cancer. The researchers found that
the CRISPR-Cas9 system caused unintended mutations
in several non-targeted site genes, including the AKT1
gene. These undesirable site effects could have compro-
mised the therapeutic effect of targeting PIK3CA, as
these mutations could activate AKT1 and thus promote
cancer growth [228]. Similarly, other researchers used
CRISPR-Cas9 to target the KRAS gene in human cancer
cells. KRAS is also a well-established oncogene. Investi-
gators found that the CRISPR-Cas9 system caused unin-
tended mutations in several off-target genes, including
the NF1 gene. These non-selective site effects could have
compromised the therapeutic effect of targeting KRAS,
as these mutations could inactivate NF1 and thus pro-
mote cancer growth [229]. Researchers used CRISPR-
Cas9 to target the MYC gene in human cancer cells.
MYC is a well-established oncogene. They found that
the CRISPR-Cas9 system caused unintended mutations
in several off-target genes, including the BCL2L11 gene.
These undesirable site effects could have compromised
the therapeutic effect of targeting MYC, as these muta-
tions could activate BCL2L11 and thus promote cancer
growth [230]. Other researchers used CRISPR-Cas9 to
target the TERT gene in human cancer cells. TERT is
a gene that promotes the growth of cancer. They found
that the CRISPR-Cas9 system caused unintended muta-
tions in several off-target genes, including the NFE2L2
gene. These non-targeted site effects could have compro-
mised the therapeutic effect of targeting TERT, as these
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mutations could inactivate NFE2L2 and thus promote
cancer growth [139]. The purpose of using CRISPR-Cas9
was to investigate the potential therapeutic effect of tar-
geting the BRCA1/TP53/RAS gene, which is commonly
mutated in breast and ovarian cancer/cancer [231]. The
unintended consequences of using CRISPR-Cas9 on the
BRCA1/TP53/RAS gene were unintended mutations in
several off-target genes, including RAD51D/MDM?2/
MAPK, respectively [232]. The unintended mutations in
RAD51D/MDM2/MAPK genes could have compromised
the therapeutic effect of targeting BRCA1/TP53/RAS as
they could activate RAD51D/ inactivate MDM2/activate
MAPK, leading to the promotion of cancer growth [233].
The frequent findings of unintended mutations in unde-
sirable site genes in these studies highlight the significant
risk of non-selective site effects associated with CRISPR-
Cas9 gene editing [234]. The research should analyze and
compare the off-target effects observed when targeting
different genes, which could provide insights into the
gene-specific effects of CRISPR-Cas9 [235, 236]. Under-
standing the off-target effects and their potential impact
on cancer growth is crucial in assessing the safety and
efficacy of CRISPR-Cas9 as a therapeutic approach for
cancer treatment [232, 237].

Safety

Safety is a critical concern in the development of
CRISPR-based cancer therapy [238]. CRISPR-based gene
editing has the potential to cause unintended mutations
in the genome, which can lead to serious side effects.
This is particularly concerning in cancer therapy, where
the goal is to target specific genetic mutations that
drive tumor growth [239]. One of the main safety con-
cerns with CRISPR-based cancer therapy is the poten-
tial for non-targeted site effects. This occurs when the
CRISPR machinery targets unintended genes, leading
to unintended mutations [240]. Researchers are work-
ing to develop more precise CRISPR delivery meth-
ods and to improve the specificity of the guide RNAs
used to target specific genes [241]. Newer versions of
CRISPR- Casl2a and Casl3 for example, have a higher
specificity than the original Cas9, which helps in reduc-
ing undesirable site effects [242]. Another safety con-
cern is the possibility of creating new cancer-causing
mutations [241]. CRISPR-based cancer therapy relies on
the ability to precisely target specific genetic mutations
that drive tumor growth [238]. However, if the CRISPR
machinery inadvertently targets other genes, it could
create new cancer-causing mutations [243]. To mitigate
this risk, researchers are developing new strategies to
minimize the risk of non-specific site effects and to bet-
ter understand the long-term effects of CRISPR-based
cancer therapy [238]. A third safety concern is the risk
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of the edited cells becoming cancerous [240]. CRISPR-
based cancer therapy relies on the ability to edit specific
genetic mutations that drive tumor growth. However, if
the edited cells acquire additional mutations, they could
become cancerous [238]. Researchers are working to
understand the long-term effects of CRISPR-based can-
cer therapy and to develop strategies to minimize the risk
of the edited cells becoming cancerous [241]. In addition
to these concerns, CRISPR-based cancer therapy raises a
number of other safety concerns, including the potential
for immune reactions to the viral vectors used to deliver
CRISPR, and the risk of creating new cancer-causing
mutations. To mitigate these concerns, researchers are
developing safer delivery methods and developing new
strategies to minimize the risk of non-targeted site effects
[240]. Preclinical and clinical studies are being conducted
to evaluate the safety and efficacy of CRISPR-based can-
cer therapy [238]. Additionally, researchers are working
to find cost-effective and efficient methods for producing
large numbers of CRISPR-edited cells, and to overcome
scalability issues [240]. CRISPR-based gene editing has
the potential to revolutionize cancer therapy, but signifi-
cant safety challenges remain to be addressed before this
approach can be safely and effectively used in the clinic
[241]. Ongoing research is essential to better understand
the long-term effects of CRISPR-based cancer therapy,
to develop safer delivery methods, and to minimize the
risk of non-targeted site effects and other safety con-
cerns [240]. Another aspect of safety in CRISPR-based
cancer therapy is the delivery method used to deliver the
CRISPR machinery to the tumor cells. One of the most
commonly used methods is the use of viral vectors, such
as adenoviruses or lentiviruses [241]. However, these vec-
tors have the potential to cause immune reactions and
other adverse effects [238]. Researchers are working on
developing non-viral delivery methods, such as nano-
particles and exosomes, as an alternative to viral vectors.
These methods have the potential to be safer and more
effective, but they are still in early stages of development
and more research is needed to optimize their effective-
ness and safety [241, 244]. Additionally, the manufactur-
ing and scalability of CRISPR-based cancer therapy is
another important safety concern. Producing large quan-
tities of CRISPR-modified cells for clinical use is chal-
lenging and costly [241]. Researchers are working to find
cost-effective and efficient methods for producing large
numbers of CRISPR-edited cells, and to overcome scal-
ability issues. This includes researching alternative meth-
ods of producing the CRISPR machinery and exploring
ways to improve the efficiency of the CRISPR editing
process [241]. Safety is a critical concern in the develop-
ment of CRISPR-based cancer therapy [240]. Research-
ers are working to address these concerns by developing
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safer delivery methods, developing new strategies to min-
imize the risk of non-targeted site effects and other safety
concerns, and finding cost-effective and efficient meth-
ods for producing large numbers of CRISPR-edited cells
[238]. Ongoing research is essential to better understand
the long-term effects of CRISPR-based cancer therapy,
and to ensure that this promising new approach can be
safely and effectively used in the clinic. It’s important to
note that while CRISPR-based cancer therapy is a prom-
ising new approach, it is still in the early stages of devel-
opment. Many of the safety concerns and challenges
discussed above are still being studied and evaluated in
preclinical and clinical trials. Therefore, it is important
to continue monitoring the progress of research in this
field and to evaluate the safety and efficacy of CRISPR-
based cancer therapy as more data becomes available
[240]. It is also worth noting that the regulatory land-
scape for CRISPR-based cancer therapy is still evolving.
Different countries and regions have different regula-
tions and guidelines regarding the use of CRISPR-based
therapies in humans [241]. Researchers and companies
developing CRISPR-based cancer therapies will need
to navigate these regulations and guidelines in order to
bring their therapies to market [238]. The CRISPR-based
cancer therapy has the potential to revolutionize cancer
treatment, but significant safety challenges and delivery
issues still need to be addressed. Researchers are work-
ing to address these concerns through ongoing research
and development, but it will take time to fully understand
the long-term effects and safety of this new approach. It
is important to monitor the progress of research in this
field and to evaluate the safety and efficacy of CRISPR-
based cancer therapy as more data becomes available
[241].

Delivery to the tumor site

Delivery of CRISPR-based gene editing to the tumor
site is a major challenge in the development of CRISPR-
based cancer therapy [245]. CRISPR-based therapy uses
a viral vector, nanoparticles, or exosomes to deliver the
CRISPR machinery to the tumor cells [245]. The delivery
method used is crucial for the efficiency of the therapy,
as well as the safety of the patient [246]. One of the most
commonly used methods to deliver CRISPR to the tumor
site is through the use of viral vectors [247]. Viral vec-
tors are modified versions of viruses that can be used to
introduce genes or other genetic material into cells [248].
The most commonly used viral vectors for CRISPR deliv-
ery are adeno-associated viruses (AAVs) and lentiviruses.
These vectors have been shown to efficiently deliver
CRISPR to a variety of cells, including cancer cells [249].
However, the use of viral vectors raises safety concerns,
as the immune system may recognize the virus as foreign
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and mount an immune response. This can lead to inflam-
mation and other adverse effects, and can also limit the
effectiveness of the therapy [250]. Another method to
deliver CRISPR to the tumor site is through the use of
nanoparticles. These particles are small enough to eas-
ily penetrate the tumor tissue, and can be engineered
to carry the CRISPR machinery [251]. Nanoparticles
can also be designed to target specific cell types, such
as cancer cells, to increase the efficiency of the therapy
[252]. However, the efficacy of nanoparticles in deliver-
ing CRISPR to the tumor site is still being evaluated, and
more research is needed to understand their safety and
effectiveness [253]. Exosomes are also considered as a
promising delivery method for CRISPR [254]. Exosomes
are small vesicles that are naturally released by cells and
can be engineered to carry CRISPR machinery [255].
Exosomes have the ability to cross the blood—brain bar-
rier and deliver the CRISPR machinery to the tumor
site. But more research is needed to understand the
safety and efficacy of exosomes as a delivery method
for CRISPR [256]. Researchers are developing CRISPR
delivery methods that can target cancer cells based on
surface markers, such as the expression of specific pro-
teins [257]. Another approach is to target genetic muta-
tions that are specific to cancer cells. This can be done
by engineering the CRISPR machinery to recognize and
target specific genetic sequences associated with cancer
[255]. For example, researchers have developed CRISPR-
based therapies that target specific mutations in genes
such as KRAS, which is commonly mutated in many
types of cancer [256]. A combination of these strategies
to target specific cell types can also be used to deliver
CRISPR to the tumor site [248]. For example, researchers
are exploring the use of nanoparticles that are designed
to target specific surface markers on cancer cells and also
carry the CRISPR machinery [245]. Delivery of CRISPR
to the tumor site is a critical step in the development of
CRISPR-based cancer therapy [248]. Researchers are
working to develop new and efficient methods for deliv-
ering CRISPR to the tumor site, including viral vectors,
nanoparticles, and exosomes [251]. Additionally, target-
ing specific cell types, such as cancer cells, can increase
the efficiency of the therapy. While significant challenges
remain to be addressed, the potential of CRISPR-based
cancer therapy to revolutionize cancer treatment is clear,
and ongoing research will help to overcome these chal-
lenges [255].

Manufacturing and scalability

CRISPR-based gene editing has the potential to revo-
lutionize cancer therapy by precisely targeting genetic
mutations that drive tumor growth [258]. However, sig-
nificant challenges remain to be addressed before this
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approach can be safely and effectively used in the clinic
[200]. One of the major challenges is the manufactur-
ing and scalability of CRISPR-modified cells for clinical
use [259]. Manufacturing CRISPR-edited cells for use in
cancer therapy is a complex and costly process. The first
step is to obtain the cells that will be edited, which can
be obtained from the patient or from a cell line. Once
the cells are obtained, they must be modified using the
CRISPR machinery. This typically involves delivering
the CRISPR machinery, including the guide RNAs and
Cas enzymes, to the cells using a viral vector or nano-
particle [260]. However, this process is not yet fully opti-
mized and more research is needed to find efficient and
cost-effective methods for producing large numbers of
CRISPR-edited cells [261]. Scalability is also a major
challenge in the manufacture of CRISPR-edited cells for
cancer therapy [262]. The current methods for produc-
ing CRISPR-edited cells are not yet able to produce the
large numbers of cells required for clinical use [258].
For example, if the cells are produced using a viral vec-
tor, the process is limited by the number of cells that can
be infected at one time [263]. Additionally, the current
methods for producing CRISPR-edited cells are not yet
able to produce cells with a high enough efficiency to be
clinically relevant [264]. There are a number of potential
solutions to these challenges. Researchers are working
to develop more efficient and cost-effective methods for
producing CRISPR-edited cells, such as using exosomes
as a delivery method, and to improve the scalability of
the process [265]. Additionally, researchers are working
to improve the efficiency of the CRISPR-editing pro-
cess and to minimize the risk of non-targeted site effects
[200]. Another potential solution to the scalability chal-
lenge is the use of cell lines that have been genetically
engineered to produce high numbers of CRISPR-edited
cells [259]. For example, researchers have developed
cell lines that stably express Cas enzymes, which can be
used to produce large numbers of CRISPR-edited cells
[260]. Additionally, researchers are exploring the use of
stem cells as a source for CRISPR-edited cells [264]. Stem
cells have the ability to self-renew and differentiate into
a wide range of cell types, making them an attractive
option for producing large numbers of CRISPR-edited
cells for cancer therapy. Another area of active research
is the development of automated platforms for produc-
ing CRISPR-edited cells. These platforms can automate
many of the manual steps involved in the production of
CRISPR-edited cells, making the process more efficient
and cost-effective [200]. Additionally, these platforms
can be used to optimize the conditions for produc-
ing CRISPR-edited cells, such as the amount of Cas
enzymes and guide RNAs used [259]. Finally, research-
ers are exploring the use of in situ delivery of CRISPR
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machinery, which allows the cells to be edited directly
in the tumor microenvironment [261]. This approach
avoids the need to produce and deliver large numbers of
CRISPR-edited cells, and could potentially overcome the
scalability challenges [264]. However, this approach is
still in the early stages of development and more research
is needed to optimize its effectiveness and safety [260].
One example is the use of exosomes as a delivery method
for CRISPR machinery [264]. Exosomes are small vesi-
cles that are naturally released by cells and can be used
to deliver a variety of molecules, including CRISPR
machinery, to target cells [261]. Researchers have shown
that exosomes can be used to deliver CRISPR machinery
to cancer cells with high efficiency and minimal toxicity.
This approach is being further developed as a potential
solution to the scalability challenge. Another example is
the use of cell lines that have been genetically engineered
to produce high numbers of CRISPR-edited cells [264].
Researchers have developed cell lines that stably express
Cas enzymes and can be used to produce large numbers
of CRISPR-edited cells. This approach is being further
developed as a potential solution to the scalability chal-
lenge. Another example is the development of automated
platforms for producing CRISPR-edited cells. These
platforms automate many of the manual steps involved
in the production of CRISPR-edited cells, making the
process more efficient and cost-effective. This approach
is being further developed as a potential solution to the
scalability challenge [200]. Finally, there are examples of
research on in situ delivery of CRISPR machinery [260].
Researchers have developed methods for delivering
CRISPR machinery directly to cancer cells in the tumor
microenvironment [261]. This approach avoids the need
to produce and deliver large numbers of CRISPR-edited
cells, and could potentially overcome the scalability chal-
lenges [264]. This approach is still in the early stages of
development and more research is needed to optimize
its effectiveness and safety [259]. The manufacturing and
scalability of CRISPR-modified cells for clinical use is a
major challenge that needs to be overcome for CRISPR-
based cancer therapy to become a viable clinical option
[261]. Researchers are working to develop more efficient
and cost-effective methods for producing CRISPR-edited
cells, such as using exosomes as a delivery method, and
improving scalability by using genetically engineered cell
lines or stem cells, and by developing automated plat-
forms and in situ delivery method [200].

Conclusion and future directions

The investigation into CRISPR-based gene editing for
cancer treatment, as elaborated in this thorough analy-
sis, marks a significant paradigm shift in our strate-
gies for fighting cancer. The capabilities of CRISPR in
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tackling the intricate characteristics of cancer via tar-
geted genomic alterations are substantial. Approaches
including deactivating genes that promote tumor growth,
boosting the body’s immune reaction to cancer cells, cor-
recting genetic anomalies that lead to cancer, and attack-
ing tumors directly with toxic agents, have all indicated
promising pathways in the realm of cancer therapeu-
tics. Early-stage research and clinical experiments have
started to reveal the effectiveness and transformative
potential of CRISPR in the context of cancer treatment.
These investigations have not only yielded hopeful out-
comes but have also clarified the trajectory ahead. Yet,
there are notable obstacles to overcome. The accuracy
of CRISPR, its greatest advantage, raises concerns about
unintended genetic impacts, known as off-target effects.
The paramount importance lies in ensuring the secu-
rity and precision of CRISPR interventions, necessitat-
ing continuous research to address these concerns. The
delivery of CRISPR components to tumor cells presents
another significant challenge. Developing methods that
are both effective and safe for delivering these compo-
nents is vital for the practical use of CRISPR in treating
cancer. This challenge is heightened by the variability of
tumor types and the complexity inherent in human biol-
ogy. Nonetheless, the prospective future of CRISPR in
cancer treatment is exceptionally promising. With ongo-
ing advancements in research surmounting existing bar-
riers, there is a tangible possibility for the creation of
more efficient, individualized, and minimally invasive
treatments for cancer. Such advancements could funda-
mentally transform the approach to cancer care, moving
from traditional chemotherapy and radiation to specific
genetic treatments. The CRISPR methodology presents
an innovative and potentially game-changing strategy in
cancer therapy. The journey ahead is laden with hurdles,
such as ensuring the safety, accuracy, and efficient deliv-
ery of treatments. Despite these challenges, the progress
achieved to date is promising. Continuous investigation
and development in this area are crucial to fully harness
the capabilities of CRISPR-based therapies in combat-
ing cancer. Looking forward, it is vital to confront these
challenges directly, concentrating on refining methods,
improving delivery systems, and prioritizing patient
safety, in order to fully exploit the revolutionary potential
of this technology in cancer care.

The future of CRISPR-based cancer therapy is prom-
ising, with vast potential for personalized and effec-
tive treatments, but it requires multidisciplinary efforts,
ethical considerations, and international collaboration
to ensure its successful translation into clinical practice
[266]. Table 5 presents the future directions for CRISPR-
based cancer therapy. Moreover, exploring non-coding
regions of the genome and applying CRISPR screens to
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Fig. 9 The functional domains of different CRISPR effectors and their applications in genome-scale screens. Multiple CRISPR effectors are accessible
for disrupting coding and noncoding DNA and RNA segments. One commonly employed CRISPR effector is the CRISPR-associated 9 (Cas9)
nuclease, which precisely cuts DNA at a specified target site guided by a guide RNA (gRNA). Noncoding regions can be suppressed with CRISPR
interference (CRISPRI) by directing the catalytically inactive Cas9 (dCas9) to promoters and enhancer regions. It can be fused with repressor domains
like methyl-CpG-binding protein 2 (MeCP2) and Krippel-associated box (KRAB). Conversely, gene expression can be enhanced by directing dCas9
fusion proteins to regions around transcription start sites (TSSs). One approach is to fuse dCas9 with transcriptional activators such as VP64, p65,
and Rta (VPR). Another method is fusing dCas9 with VP64 and using a modified single gRNA (sgRNA) to recruit the activator fusion complex MS2—
p65-HSF1, collectively known as the synergistic activation modulator (SAM). In addition to targeting DNA, the Cas13 nuclease can be employed

to cleave RNA at a specific site indicated by a gRNA. Furthermore, dCas9 can be combined with methyltransferases (e.g., DNA methyltransferase 3A
or DNMT3A) to enable targeted DNA methylation or with proteins involved in DNA demethylation (e.g., tet methylcytosine dioxygenase 1 or TET1)
to facilitate targeted DNA demethylation. Moreover, linking dCas9 to acetyltransferases like p300 or histone deacetylase proteins like histone
deacetylase 3 (HDAC3) enables targeted histone acetylation or deacetylation, respectively. The design of gRNAs depends on the specific CRISPR
effector and the intended targets of the CRISPR screen. When focusing on protein-coding genes, gRNAs can be designed to target either exons
(using CRISPR nucleases) or regions near the transcription start site (TSS) of the gene (for CRISPRi or CRISPR activation (CRISPRa)). For saturation
mutagenesis using nucleases, gRNAs are designed to target multiple noncoding regions around a gene of interest. In noncoding genome-wide
screens using CRISPR nucleases, CRISPRi, or CRISPRa, gRNAs are tailored to specific genomic features like cis-regulatory elements. When silencing

or amplifying noncoding RNAs with CRISPRi and CRISPRa, respectively, sgRNAs are directed to regions flanking the transcription start site (TSS)

of a noncoding RNA gene. Reprinted from [11] with permission from Springer Nature

identify new therapeutic targets offer promising avenues
for treatment advancements. Figure 9 illustrates the dif-
ferent functional aspects of various CRISPR effectors and
their applications in genome-scale screens. The integra-
tion of CRISPR technology with emerging imaging and
sensing technologies can enhance the monitoring and
tracking of treatment outcomes [267]. Collaborative
efforts between academia and industry will accelerate

drug development and foster more efficient translational
opportunities [266]. Furthermore, combining CRISPR-
based interventions with other therapies in a synergis-
tic approach warrants exploration, while CRISPR-based
diagnostic tools will aid in early cancer detection and
diagnosis [268]. Gene editing technology can be lev-
eraged to develop personalized cancer vaccines and
improve immunotherapy response. In terms of societal
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impact, there is a need for equitable access to CRISPR-
based cancer therapy to ensure all patients benefit from
these advancements, regardless of their background or
location. This calls for international cooperation in estab-
lishing regulatory frameworks for gene editing technol-
ogy and promoting public understanding and acceptance
of these therapies through education and outreach [269].
Other research priorities involve studying the effects of
CRISPR gene editing on the tumor microenvironment
and immune system, addressing genetic discrimination
and privacy concerns related to gene editing, and evalu-
ating the long-term safety and efficacy of CRISPR-based
cancer therapy [18]. Lastly, developing CRISPR gene
editing systems for rare or difficult-to-treat cancers, har-
nessing nanotechnology for targeted delivery of CRISPR,
and establishing databases for data sharing are critical for
pushing the boundaries of CRISPR-based cancer therapy
[270]. Public—private partnerships and collaboration
between clinicians and researchers are instrumental in
optimizing therapy design and delivery for better patient
outcomes [267].

Development of new delivery methods

Researchers continue to explore and optimize various
delivery systems, bringing us closer to realizing the full
potential of CRISPR technology in oncology [275]. The
main challenges in CRISPR-based cancer therapy using
adeno-associated viruses (AAVs) as viral vectors include
achieving specific and efficient delivery of CRISPR com-
ponents to tumor cells. To address these challenges,
researchers are exploring various modifications to the
AAVs to enhance tumor-targeting capabilities, increase
cellular uptake, and evade the body’s immune response
[276]. Additionally, developing strategies to limit non-
targeted site effects and optimize the dose and adminis-
tration route are essential. Liposomes offer a promising
approach to deliver CRISPR components, as they can
encapsulate the CRISPR machinery, protecting it from
degradation and improving stability [277]. Furthermore,
liposomes can be modified with targeting molecules to
specifically bind to cancer cells, enhancing their specific-
ity [278]. To enhance efficacy, researchers are optimiz-
ing liposome size, charge, and surface modifications to
improve cellular uptake and endosomal escape, ensur-
ing efficient release of CRISPR components within the
tumor cells [279]. Safety is paramount in CRISPR-based
therapies using viral vectors like AAVs. Researchers must
ensure that the modified AAVs do not cause unintended
immune responses or integrate into the host genome at
undesirable locations [280]. The use of tissue-specific
promoters and target-cell-specific enhancers can limit
non-specific site effects [281]. Furthermore, rigorous pre-
clinical studies and clinical trials are necessary to assess
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the safety and efficacy of AAV-based CRISPR therapies
[277]. Nanoparticles made of polymers or inorganic
materials offer alternative approaches to deliver CRISPR
components. These nanoparticles can be designed with
different physicochemical properties, which may influ-
ence cellular uptake and release kinetics [244]. While
liposomes have advantages in encapsulation and modi-
fication, other nanoparticles may provide better stability
or have unique capabilities for targeted delivery [282].
Cell-penetrating peptides and exosomes have the poten-
tial to improve CRISPR delivery [254]. Researchers can
explore surface modifications of these delivery systems to
increase their tumor-specific binding and uptake [279].
Additionally, optimizing cargo loading and release mech-
anisms could enhance the precise editing of target genes
while minimizing unwanted effects [283].

Combination therapy

An encouraging approach involves merging CRISPR-
based gene editing with other cancer treatments like
immunotherapy or chemotherapy [284]. Preclinical
investigations have demonstrated promising outcomes
by combining CRISPR-based gene editing with immuno-
therapy or chemotherapy in cancer treatment. Figure 10
illustrates the application of CRISPR in immuno-oncol-
ogy. For example, deactivating the PD-1 gene using
CRISPR-Cas9 within cancer cells has led to a significant
increase in the population of cancer-killing immune
cells [285]. Additionally, the application of CRISPR-Cas9
alongside chemotherapy has shown potential in targeting
chemotherapy-resistant cancer cells [285]. The combina-
tion of CRISPR-based gene editing with immunotherapy
or chemotherapy offers several potential benefits. Firstly,
it may lead to improved treatment efficacy as CRISPR
can target specific genetic mutations associated with can-
cer, enhancing the precision of cancer treatment [286].
Secondly, combining CRISPR with immunotherapy can
boost the body’s immune response against cancer cells,
potentially increasing the chances of tumor regression
[287]. Thirdly, using CRISPR alongside chemotherapy
can overcome drug resistance, improving the effective-
ness of chemotherapy in combating cancer cells [288].
Currently, CRISPR-based combination therapies are
primarily in preclinical stages, and their effectiveness in
humans remains to be fully demonstrated [284]. In the
future, advancements in delivery mechanisms and preci-
sion gene editing techniques may address some of these
limitations, making CRISPR-based combination thera-
pies a more viable option for cancer treatment [286]. Rig-
orous clinical trials are essential to validate the safety and
efficacy of these approaches before they can be imple-
mented in standard cancer care [287].
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Fig. 10 lllustrates the application of CRISPR in immuno-oncology. In scenario a, primary T cells extracted and purified from cancer patients

can have a chimeric antigen receptor (CAR) inserted using CRISPR technology, instead of lentiviral-mediated transduction. CRISPR can also be
employed to deactivate immune-checkpoint genes, such as PD-1 and CTLA-4, within these T cells. Alternatively, scenario b involves the isolation
and purification of primary T cells from healthy donors not diagnosed with cancer. CRISPR systems are used to introduce a CAR into these cells,
and they can also be utilized to inactivate the genes responsible for T cell receptor (TCR) and HLA components. This process generates 'universal’
allogeneic CART cells, which can be infused into cancer patients. Reprinted from [15] with permission from Springer Nature

Targeting multiple genes

Targeting multiple genes using CRISPR-based gene edit-
ing shows immense promise in complex cancer treat-
ments, offering potential benefits in tumor regression and
combating drug resistance [289]. However, it also raises
safety concerns and faces challenges in clinical transla-
tion. Research efforts should continue to optimize and
refine this technology for the potential benefit of cancer
patients worldwide [290]. CRISPR-based gene editing has
shown promising capabilities in targeting multiple genes
simultaneously for cancer treatment [289]. Researchers
have demonstrated its effectiveness in preclinical trials
for lung cancer, where it targeted multiple commonly
mutated genes using CRISPR-Cas9, resulting in tumor
regression. This suggests that CRISPR technology has
the potential to address complex genetic mutations that
contribute to cancer development [290]. CRISPR-Cas9
has been successfully employed to combat drug resist-
ance in cancer cells by simultaneously targeting multiple
genes. By editing the genes responsible for drug resist-
ance, researchers have enhanced cancer cells’ sensitiv-
ity to chemotherapy, providing a potential solution to
drug-resistant cancers [291]. While CRISPR-based gene
editing shows promise, there are some safety concerns to

consider. non-selective site effects, where CRISPR-Cas9
inadvertently edits unintended genes, could result in
unforeseen consequences [292]. Extensive research and
stringent safety measures are necessary to minimize such
risks and ensure the safe application of CRISPR technol-
ogy in cancer treatments [293]. The CRISPR-based gene
editing’s effectiveness in targeting multiple genes may
vary between different types of cancer. Each cancer type
is characterized by unique genetic mutations, necessitat-
ing tailored approaches [294].

Personalized medicine

CRISPR-based gene editing presents a promising avenue
for personalized cancer therapies [295]. However, thor-
ough evaluation of its technical, ethical, and accessibil-
ity aspects is crucial to harness its potential safely and
effectively for the benefit of patients [295]. CRISPR-based
gene editing is a revolutionary tool that allows scien-
tists to precisely modify specific genes in an organism’s
DNA [296]. CRISPR-Cas9, the most well-known sys-
tem, uses a guide RNA to target a specific gene, and the
Cas9 enzyme acts as molecular scissors to cut the DNA
at that location. This break can then be repaired, lead-
ing to either gene knockout or precise gene editing [297].
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In personalized cancer therapies, CRISPR-Cas9 can be
utilized to target and correct genetic mutations respon-
sible for cancer development. By identifying the specific
genetic mutations causing cancer, scientists can design
a customized approach to correct or disable these muta-
tions, effectively halting cancer growth [298]. While
CRISPR-based gene editing holds immense promise for
personalized medicine, several challenges and risks must
be carefully evaluated [295]. Off-target effects are a major
concern, where CRISPR may unintentionally edit other
parts of the genome, potentially leading to new health
issues or promoting cancer development [299]. Ensur-
ing the specificity and accuracy of CRISPR targeting is a
critical aspect of its safe application [300]. Additionally,
the delivery method of CRISPR components into the
body needs to be optimized to ensure efficient target-
ing of cancer cells without causing unnecessary dam-
age to healthy tissues [301]. Ethical considerations, such
as germline editing, should also be thoroughly debated
and regulated to avoid unintended consequences [297].
As of the current date, several CRISPR-based personal-
ized cancer therapies are in various stages of preclinical
and clinical trials [298]. While the successful preclinical
studies in retinoblastoma and leukemia are promising,
it’s essential to understand that the transition from pre-
clinical to clinical settings can present new challenges
[299]. Rigorous clinical trials are necessary to assess the
safety and efficacy of these therapies in human patients
[295]. To make CRISPR-based personalized cancer thera-
pies widely accessible, several factors need consideration
[301]. First, research and development efforts should
focus on optimizing the efficiency, accuracy, and safety
of the CRISPR system [300]. Streamlining the manufac-
turing and delivery processes of CRISPR components
could also reduce costs and increase accessibility [298].
Additionally, collaborations between academia, indus-
try, and regulatory authorities can facilitate the transla-
tion of research findings into approved therapies [295].
To ensure equitable access, policymakers and healthcare
providers need to work together to develop strategies for
integrating personalized medicine, including CRISPR-
based therapies, into existing healthcare systems [300].

Synthetic lethality

CRISPR-based synthetic lethality holds promise as an
innovative cancer treatment strategy, offering a more
targeted and potentially effective approach to combat-
ting cancer [302]. However, further research and clini-
cal trials are necessary to fully evaluate its safety and
efficacy before it can be widely implemented in cancer
treatments [303]. Synthetic lethality refers to a phe-
nomenon where the simultaneous disruption of two or
more specific genes leads to the death of targeted cancer
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cells, while sparing normal cells [304]. In the context of
CRISPR-based gene editing, this approach involves using
CRISPR-Cas9 to simultaneously target two genes that
are frequently mutated in cancer, exploiting the cancer’s
genetic vulnerabilities [305]. Synthetic lethality-based
cancer treatments have the advantage of selectively tar-
geting cancer cells with specific gene mutations, reduc-
ing the risk of harming healthy cells. This approach can
potentially lead to more effective and precise therapies
with fewer side effects than conventional treatments like
chemotherapy and radiation [304]. Researchers have tar-
geted gene combinations such as BRCA1 and BRCA2,
frequently found mutated in breast and ovarian cancer,
and PARP1 and BRCAI, commonly mutated in breast
cancer [303]. By disrupting these gene pairs simultane-
ously, they trigger synthetic lethality in cancer cells [302].
Experimental studies have demonstrated the potential of
CRISPR-based synthetic lethality as a cancer treatment
strategy [304]. By targeting specific gene combinations in
cancer cells, researchers have observed significant reduc-
tions in tumor growth and cell viability in preclinical
models, indicating its potential as a promising therapeu-
tic approach [303]. One major challenge is the delivery of
CRISPR components to the tumor site efficiently [302].
Ensuring precise targeting and non-selective site effects
are also important concerns. Additionally, identifying
suitable gene combinations for specific cancer types and
ensuring safety during clinical translation are vital con-
siderations [303].

CAR-T cell therapy

CAR-T cell therapy involves modifying a patient’s T cells
using genetic engineering techniques to express chi-
meric antigen receptors (CARs) on their surface. These
CARs enable T cells to recognize and bind to specific
proteins, or antigens, present on cancer cells, leading
to their destruction [306]. CRISPR-based gene editing
offers the possibility to precisely modify T cells, enhanc-
ing their targeting capabilities [307]. By using CRISPR-
Cas9, specific genes can be altered or inserted into T
cells, enabling them to recognize and attack a particu-
lar protein expressed on various cancer cell types. This
approach increases the efficiency and effectiveness of
CAR-T cell therapy [308]. CAR-T cell therapy faces chal-
lenges such as cytokine release syndrome (CRS) and
neurotoxicity, which are immune-mediated side effects
resulting from the activation of T cells [309]. Managing
these adverse events is crucial for the safe and successful
implementation of CAR-T cell therapy [310]. Addition-
ally, manufacturing CAR-T cells on a large scale and at
a reasonable cost remains a challenge [307]. CAR-T cell
therapy has shown remarkable success in certain types
of blood cancers, such as acute lymphoblastic leukemia
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and non-Hodgkin lymphoma [310]. Clinical trials have
reported high response rates and even durable remis-
sions in some patients [308]. However, its effectiveness
in solid tumors is still a significant area of research and
development [307]. Long-term side effects of CAR-T
cell therapy are not yet fully understood, as the therapy
is relatively new [311]. However, some potential con-
cerns include the persistence of CAR-T cells in the body,
potential non-selective site effects of genetic modifica-
tions, and the impact on normal immune function [312].
To address manufacturing challenges, efforts are under-
way to optimize and streamline the production pro-
cess, including automation and reducing the time and
cost involved [308]. Furthermore, establishing special-
ized centers equipped with expertise and infrastructure
can help address logistical challenges associated with
CAR-T cell therapy [307]. Current limitations include
the high cost of treatment, limited accessibility due to
specialized requirements, and the need for personalized
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manufacturing for each patient [310]. Additionally, the
effectiveness of CAR-T cell therapy can be influenced by
factors such as antigen escape, tumor heterogeneity, and
the immunosuppressive tumor microenvironment [313].
Figure 11 illustrates the ex vivo CRISPR manipulation of
human T cells for adoptive T cell therapy.

Combination of CRISPR-based gene editing with stem cell
therapy

The combination of CRISPR-based gene editing with
stem cell therapy has shown promising results in treating
genetic diseases, such as sickle cell anemia [314]. By using
CRISPR-Cas9 to correct the specific genetic mutation
responsible for the disease in hematopoietic stem cells,
researchers have been able to produce corrected blood
cells [315]. The transplantation of these corrected stem
cells into the patient’s body has demonstrated potential
in restoring healthy blood cells, alleviating the symp-
toms of sickle cell anemia [316]. The use of CRISPR-Cas9
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Fig. 11 The ex vivo CRISPR manipulation of human T cells for adoptive T cell therapy. Ongoing clinical trials are currently dedicated to assessing

the safety and effectiveness of CRISPR-engineered T cells through ex vivo modification and subsequent transfer. The goal is to enhance

the anti-cancer response of T cells taken from healthy donors or patients. These trials investigate the potential of both allogeneic (from different
donors) and autologous (from the patient themselves) T cells in various approaches, including tumor-infiltrating lymphocytes (TILs) and chimeric
antigen receptor (CAR) T cells. One of the methods involves using CRISPR-Cas9 to remove immunosuppressive factors, like the programmed cell
death protein 1 (PD1) ligand, from human primary T cells. This approach is being tested for adoptive T cell therapy involving both TILs and CAR

T cells. The delivery of CRISPR-Cas9 ribonucleoproteins (RNPs) allows precise editing of immunosuppressive factors such as PD1 by guiding

Cas9 to specific locations. Researchers are also exploring the deletion of the endogenous T cell receptor (TCR) using CRISPR-Cas9 to prevent

TCR priming or immune rejection in the case of allogeneic T cells. Another avenue being explored is the replacement of the endogenous TCR

with a cancer antigen-specific TCR, either through a TCR transgene or a CAR element. This has been shown to enhance the killing of cancer cells

by T cells. In clinical trials, CRISPR-Cas9 homology-directed repair (HDR)-mediated knock-in to the T cell receptor a-chain constant (TRAC) locus

is used to deliver CAR elements, and its efficacy is being tested. Additionally, CRISPR is used to delete the endogenous T cell receptor-f3 constant
(TRBC) locus and endogenous major histocompatibility complex class | (MHC-]) to prevent immune rejection after transplant, and to remove
immunosuppressive factors, all aimed at improving T cell activity in CAR T cells. Next-generation sequencing (NGS) is employed to confirm

the engineered T cells, ensuring accurate on-target editing with minimal off-target effects. The expanded and validated T cells are then transplanted
into the cancer patient, and disease progression is closely monitored to assess the safety and efficacy of the engineered T cells. Reprinted from [11]
with permission from Springer Nature
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in stem cell therapy raises concerns about non-selective
site effects, where unintended genetic modifications may
occur [314]. Ensuring the accuracy of CRISPR-Cas9 edit-
ing is crucial to prevent potential adverse consequences
[316]. Researchers need to thoroughly evaluate and vali-
date the specificity of the gene-editing process before
proceeding with transplantation [317]. Additionally,
long-term studies are necessary to monitor the stabil-
ity of corrected stem cells and any potential unintended
effects on the patient’s health [316]. The scalability of this
approach depends on several factors, including the ease
of gene editing, the availability of patient-specific stem
cells, and the ability to produce sufficient quantities of
corrected cells for transplantation [314]. Advances in
CRISPR technology and stem cell research are continu-
ously improving scalability [318]. However, challenges
such as efficient delivery of CRISPR components into
stem cells and the cost of personalized treatments may
limit its widespread implementation [314]. The use of
CRISPR-based gene editing in stem cell therapy raises
ethical considerations. Concerns include the potential
for unintended genetic changes that could affect future
generations if germ cells are edited [315]. Researchers
must adhere to strict ethical guidelines and regulations
to ensure that gene editing is conducted responsibly, with
full transparency and informed consent from patients
participating in clinical trials [317]. The combination of
CRISPR-based gene editing with stem cell therapy holds
promise for treating a wide range of genetic diseases
beyond sickle cell anemia [319]. Disorders caused by
single-gene mutations, such as cystic fibrosis and certain
types of muscular dystrophy, could be potential targets
for this approach [317]. However, each disease presents
unique challenges and requires careful evaluation to
determine its suitability for CRISPR-based gene editing
and stem cell therapy [315].

Combination of CRISPR-based gene editing

with epigenetic therapy

The combination of CRISPR-based gene editing with epi-
genetic therapy allows for a more targeted and precise
treatment approach [320]. While CRISPR can directly
modify specific DNA sequences, epigenetic therapy can
alter gene expression patterns without changing the
underlying DNA sequence. By using both techniques in
tandem, researchers can enhance the therapeutic effects,
as CRISPR provides accurate gene targeting, and epi-
genetic therapy ensures sustained and controlled gene
activity modifications [321]. One significant challenge is
ensuring the safe and efficient delivery of CRISPR com-
ponents and epigenetic drugs to target cells. Scientists
must develop reliable delivery systems that can effectively
penetrate the cells without causing non-selective site
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effects [322]. Additionally, maintaining long-term regula-
tion of gene activity via epigenetic therapy might be chal-
lenging due to cellular processes that could revert these
changes over time. Researchers need to develop strate-
gies to maintain stable and heritable epigenetic modifica-
tions [323]. Genetic heterogeneity, where different cells
within a tumor or disease exhibit distinct genetic muta-
tions, poses a challenge for targeted therapies [256]. The
combination of CRISPR and epigenetic therapy allows
researchers to target specific mutations while bypassing
others [324]. CRISPR can be programmed to recognize
and edit particular mutations, while epigenetic therapy
can suppress the activity of specific mutated genes, lead-
ing to a more comprehensive and effective treatment
[325]. The combination of these powerful technologies
raises ethical questions about potential non-selective site
effects, unintended consequences, and germline edit-
ing [325]. Researchers and policymakers must ensure
strict adherence to safety protocols and responsible use
to prevent unintended genetic alterations [326]. Addi-
tionally, equitable access to such therapies and poten-
tial disparities in healthcare must be addressed to avoid
exacerbating social inequalities [327]. As with any emerg-
ing technology, there are limitations to consider. The
delivery of CRISPR components and epigenetic drugs
to specific tissues or organs can be challenging [328].
Ongoing research focuses on refining delivery meth-
ods and increasing targeting efficiency [325]. Moreover,
understanding the long-term consequences of epigenetic
modifications and potential off-target effects remains a
priority for further investigation to ensure the safety and
efficacy of this combination therapy [327].

Identification of new drug targets

CRISPR-based gene editing presents a valuable approach
for discovering novel drug targets [329-331]. By deliber-
ately deleting or modifying genes within cancer cells, sci-
entists can observe which genes are vital for the growth
and survival of these cells [332]. Various genes have been
targeted using CRISPR-Cas9 in cancer cells to identify
potential drug targets. Examples include oncogenes such
as MYC, KRAS, and EGFR, as well as tumor suppres-
sor genes like TP53 and PTEN [333]. The effects of gene
deletion or modification in cancer cells using CRISPR-
Cas9 are typically assessed by monitoring the cells’ ability
to grow and survive [48]. Researchers may compare the
growth rates of cells with specific genes deleted or modi-
fied to those of unaltered control cells [333]. Additionally,
cell viability assays and molecular analyses can provide
insights into the impact of gene alterations on cellular
functions and signaling pathways [329]. The importance
of a gene for cancer cell growth and survival is typically
determined by evaluating the impact of its deletion or
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modification on cell viability and proliferation [330,
333-336]. If the loss or alteration of a gene significantly
impairs the cells’ ability to grow and survive, it suggests
that the gene plays a vital role in supporting cancer cell
functions [332]. The identification of crucial genes using
CRISPR-Cas9 provides valuable insights into the vulner-
abilities and dependencies of cancer cells [48, 333, 335].
Genes found to be essential for cancer cell growth and
survival can be further investigated as potential drug tar-
gets [333]. Targeting these genes with drugs may disrupt
critical cellular processes, leading to the selective killing
or suppression of cancer cells while minimizing harm to
normal cells [329, 331, 337, 338]. Despite its potential,
CRISPR-based gene editing for drug target discovery
faces several challenges [333]. Off-target effects, incom-
plete gene knockout, and functional redundancy within
cellular pathways can complicate data interpretation
[333]. Additionally, the translation of CRISPR-based find-
ings into effective drug targets requires further validation
through preclinical and clinical studies [48]. Ensuring the
specificity, efficacy, and safety of drugs targeting newly
identified genes is crucial for successful clinical imple-
mentation [331, 333, 339].
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