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Abstract

approaches and further technological developments.

Technologies to decipher cellular biology, such as bulk sequencing technologies and single-cell sequencing tech-
nologies, have greatly assisted novel findings in tumor biology. Recent findings in tumor biology suggest that tumors
construct architectures that influence the underlying cancerous mechanisms. Increasing research has reported novel
techniques to map the tissue in a spatial context or targeted sampling-based characterization and has introduced
such technologies to solve oncology regarding tumor heterogeneity, tumor microenvironment, and spatially located
biomarkers. In this study, we address spatial technologies that can delineate the omics profile in a spatial context,
novel findings discovered via spatial technologies in oncology, and suggest perspectives regarding therapeutic

Introduction

Cancer research has a long history dating back to ancient
times, with our understanding of cancer growing as tech-
nology advances [1]. Especially, microscopic observations
and staining methods have made significant progress in
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cancer research [2]. Microscopic observations have led
to the discovery of fundamental principles in tumor biol-
ogy, such as the identification of cells as the basic unit of
organisms, the abnormal dividing phenomenon of cancer
cells, the morphological distinction of carcinoma sub-
types, and the discovery of cancer cells originating from
normal cells [2-5]. To better distinguish cells, Joseph
von Gerlach first stained tissues with carmine [5], which
eventually led to the discovery of hematoxylin and eosin
(H&E) staining [6], a staining method widely used these
days to examine the overall cellular organization [7].
Immunostaining and hybridization-based staining meth-
ods have been developed to detect antigenic heterogene-
ity, biomarker discovery, therapeutic prognosis, spatial
heterogeneity, etc. [8—15].

In addition to the visual examination of cancer tissues,
advanced methods to analyze the cellular composition of
cancer have been developed [16]. The Human Genome
Project outputted the full human genome, critically based
on the belief that cancer cells derived from normal cells
due to gene mutations, thus serving as a code that can
be compared to obtain cancer-related gene sequences
[17, 18]. In 2005, the Cancer Genome Atlas Project was
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launched and completed successfully by 2018, which con-
structed a comprehensive atlas of cancer-related genes
for further research [19]. Cellular heterogeneity has been
recognized in cancer research, followed by the develop-
ment of single-cell sorting and sequencing technologies
[20-22] to decipher intratumoral heterogeneity [23],
tumor progression [24, 25], and metastasis.

As described, the development of technology involves
novel questions that have not been unraveled before.
Tumors are not simply a group of malignant cells; rather,
they construct the tumor architecture resulting in the
underlying cancerous cellular mechanisms [26]. Increas-
ing research has reported the importance of the spatial
context of tumor architectures for resolving the mecha-
nisms of tumor initiation, progression, metastasis, and
therapeutic response and so on. Tumor cells interact
with the microenvironment nearby building the tumor
immune microenvironment of immune cells, such
as macrophages, B-cells, T-cells, and dendritic cells,
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indicating the reasons for immune reactions in tumor
architectures [24, 27-31]. For instance, spatial analy-
sis of tissue architectures has been actively employed
to uncover unique tumor architectures such as Tertiary
Lymphoid Structures (TLS), which are immune cell-rich
structures which can indicate the ongoing anti-tumor
immune response [32]. Moreover, drug resistance and
cancer therapeutic strategies are significantly affected by
the spatial distribution of tumors, emphasizing the need
for the novel spatial discovery of therapeutic biomark-
ers [31, 33-35]. Clinical outcomes depend on the spatial
composition of the cancer subtypes [36—38]. Therefore,
spatial analysis of tissue architectures has recently been
actively conducted to decipher tumor heterogeneity
and tumor microenvironment, and to identify novel
biomarkers.

Spatial analysis in tumor research can provide principle
information regarding proximity, cellular composition,
morphology and structure [39-43] (Fig. 1). Proximity
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refers to the physical distance between cells, which can
be important for understanding cell-cell interactions and
the distribution of different cell types within a tumor
[44—46]. Cellular composition refers to the types of cells
that make up a tumor, including cancer cells, immune
cells, and stromal cells [47, 48]. Analyzing the spatial dis-
tribution of different cell types can provide insight into
the tumor microenvironment and potential therapeutic
targets. Morphology refers to the shape and size of cells
within the tumor, which can be important for distinguish-
ing different cell types and understanding their functions
[26, 49, 50]. Structure refers to the overall organization of
cells within the tumor, including the presence of differ-
ent regions or zones within the tumor [51, 52]. Analyzing
the spatial structure of a tumor can provide insight into
the growth and progression of the tumor. By considering
these components in the analysis of the spatial context
of a tumor, researchers can gain a more comprehensive
understanding of the tumor microenvironment, potential
therapeutic targets, and the mechanisms driving tumor
growth and progression.

A number of spatial omics technologies have been
developed recently, and are being applied to various
cancer researches [53]. They can be categorized into
spacecraft-like technology, which deciphers in-depth
characterizations of contextually important regions and
telescope-like technology, which delineates the over-
all landscape of the tumor architecture. Spacecraft-like
technology, such as targeted sampling or ROI (region-of-
interest) profiling technologies, allows researchers to dive
deeper and analyze in-depth characterizations of contex-
tually important regions of the tumor [54-57]. Targeted
sampling technologies allow researchers to analyze spe-
cific subpopulations of cells within the tumor and iden-
tify molecular changes that are unique to these regions.
This can be helpful for identifying potential therapeu-
tic targets that are specific to certain subpopulations of
cells within the tumor, and can provide a more detailed
understanding of the underlying molecular mechanisms
driving tumor growth and progression. In contrast, tel-
escope-like technologies, provides a broad view of the
molecular landscape of the tumor architecture [58-64].
These spatial landscaping technologies allow researchers
to observe the overall gene expression and protein locali-
zation patterns in a tumor sample. This can be helpful for
identifying general trends and patterns in the molecular
biology of the tumor, including changes in the tumor
microenvironment, and can provide a global view of the
tumor architecture.

This review introduces technologies that were used or
are currently being used to address the spatial context in
tumors, presents novel findings regarding spatial omics,
and discusses future perspectives for novel therapeutic
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strategies. The scope of this review is to examine two dis-
tinct types of technologies - targeted sampling technolo-
gies and spatial landscaping technologies - and to explore
their applications and future perspectives in the field of
cancer research. There are comprehensive review papers
that describe and compare spatial omics technologies
[65—68] to help understand what is discussed in this
review.

Main

LCM: spacecraft for analyzing the tumor region of interest
FACS (fluorescence-activated cell sorting) has been a
highly versatile technique to isolate cells from heteroge-
neous populations based on their physical and chemical
characteristics. One of the main advantages of FACS is
that it can be applied to a wide range of post-processing
assays. As the cells of interest are sorted out, they can be
subjected to various assays to profile its gene expression,
protein expression and other functional assays. However,
FACS requires cells to be prepared in suspension, which
results in the loss of spatial information about the cells.
There are technologies similar to FACS that can retrieve
cells of interest and apply various chemistries while pre-
serving their spatial position. Just as spacecrafts focus on
observing specific celestial bodies to gather deeper infor-
mation, these technologies focus on regions of interest
to provide deeper genetic information in those regions
(Fig. 2).

Needle biopsy is the initial form of spacecraft used in
cancer research to physically extract cancer cells from
different spatial contexts [36, 69]. For the precise selec-
tion of the specific regions, Laser Capture Microdissec-
tion (LCM) was introduced in the 1990s by Emmert-Buck
[54], and has been used to isolate the region of interest
in tumor tissue to integrate molecular analysis of the
genome, epi-genome transcriptome, proteome, metabo-
lome and multi-omics [56, 70]. LCM performs isola-
tion using two main technologies: one using an IR laser
to melt the EVA polymer attaching the region of inter-
est (ROI) and another using a UV laser beam dissecting
out the ROI section [71]. LCM can isolate a low homo-
geneous population from heterogeneous tumor tissue,
thereby extracting a single cell or subcellular tissue in
a rapid manner. Owing to its ability to easily isolate the
ROI from the entire tissue, LCM has provided detailed
insights into cancer. In the early stages, LCM was used
to check for loss of heterogeneity, DNA genotyping, gene
expression analysis, signal-pathway analysis, and protein
analysis [70, 72]. LCM is currently being applied in can-
cer research, yielding a spatial modality in cancer omics
for therapeutic and diagnostic purposes.

Combined with conventional DNA sequencing tech-
nologies, LCM has been used to resolve the lineage
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Fig. 2 Targeted sampling-based spatial omics profiling technologies

of cancer subclones or search for genomic mutations,
such as single nucleotide variants (SNV) or copy num-
ber variations (CNV), in heterogeneous tumor popula-
tions. Using mate-pair sequencing, CNV was detected
to draw a phylogenic relationship with other tumors and
histopathological types in Testicular Germ Cell Tumors
(TGCTs) as well as Structural Variants (SV), which can
become a neoantigen in cancer therapeutics [73]. The
protocol for whole-genome amplification in low-input
genome samples was developed using LCM to investigate
somatic mutations in non-neoplastic tissues [74]. In addi-
tion, circulating tumor cells (CTCs) could also be studied
using LCM by extracting a single cell in hydrogel encap-
sulated CTC to reveal genotyping and mutation features,
since CTCs are rare in human blood and associated with
metastasis in tumor patients [75].

Transcriptomic signatures were also deciphered in
a spatial context using LCM. Following the explosive
development of RNA sequencing technologies, differ-
ential gene expression has been thoroughly investigated
after LCM dissection of spatially heterogeneous regions.
Together with SMART3-seq, microniches of the epithe-
lial cells in nasopharyngeal cancer and normal cells were
compared, uncovering the activation of FGF and NF-B
signaling pathways in tumor samples [76]. We were able
to compare differences in gene expression between low
Gleason grade, high Gleason grade, benign samples, and
stroma samples from a single tissue block in prostate
cancer to discover that stromal cells may induce meta-
static progression [77]. Spatiotemporal analysis was per-
formed in glioma to determine whether the COL1A1
gene affects the inhibition of tumor progression, which
can be an actionable therapeutic target [78]. Through
RNA sequencing of spatially distributed tumor samples,
specific biomarkers or pathways related to tumor pro-
gression or metastasis can be identified.

Page 4 of 27

DSP, IMC

Infeared laser

Punch

1 target per second

ROI

Additionally, LCM-based spatially resolved proteom-
ics has a significant advantage in that it allows spatial
information to be added to mass spectrometry, the most
comprehensive tool for quantitatively profiling proteins
[79, 80]. A novel biomarker, methyltransferase nicoti-
namide N-methyltransferase expression in the stroma,
which affects cancer-associated fibroblast differentia-
tion, tumor progression, and metastasis, was discovered
by analyzing differentially expressed proteins via LCM
[81]. Another study conducted on lung cancers identi-
fied the characteristic proteomic compositions related
to tumor progression [82]. Invadosome-related subcel-
lular structural proteins have been identified, suggesting
potential therapeutic biomarkers [83]. Compared with
conventional spatial proteomics technologies, which
have to design antibodies for target proteins, LCM-MS-
based spatial profiling technology has the advantage of
de novo spatial marker discovery.

Owing to recent developments in epigenetic assays,
LCM can easily be expanded for spatial epigenome pro-
filing. Changes in DNA methylation levels in terms of
cell differentiation and organ development have been
thoroughly investigated between adrenocortical tumor
samples and adjacent normal samples using reduced
representative bisulfite sequencing (RRBS) [84, 85]. In
addition, methylation patterns at single base-pair resolu-
tion were found using LCM with whole-genome bisulfite
sequencing (WGBS) in CTC in lung cancer [86]. The
compatibility of LCM with other epigenetic chemistries
such as ATAC-seq or Cut&Tag will expand biological
findings regarding the spatial heterogeneity of epigenetic
features in cancer research.

LCM has advantages of being compatible with the
existing chemistry and capable of profiling two or
more molecular targets. LCM-MS combined with RNA
sequencing helped in better suggesting the reliable
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Fig. 3 Technologies for mapping spatial landscape of cancer biology

stratification of tumor subtypes which showed better rel-
evance to survival rate in glioblastoma [87]. Moreover,
by combining DNA sequencing and RNA sequencing in
LCM-dissected spatial microniches, it was possible to
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distinguish three evolutionary pathways relevant to spe-
cific mRNA signatures with different survival outcomes
in Triple Negative Breast Cancer (TNBC) [88]. Likewise,
integrating existing molecular profiling techniques with
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spatially significant microniches provides better infor-
mation for the characterization of tumor cells. The con-
ventional LCM technique has low throughput and may
induce cell damage; however, it is still a powerful tool to
grant spatial modality to molecular features.

Novel cell sorting technologies: space probe for deeper
analysis

In terms of probing different cells that exist within a spa-
tial context, novel cell sorting technologies have emerged
as useful tools for applications in cellular investigations
for biomarker discovery. For example, intelligent image-
activated cell sorting and Raman image-activated cell
sorting have been developed for sorting cells according
to their morphology and other image-based knowledge
obtained using Raman imaging [89, 90]. Although these
cell sorting methodologies require the cells to be dis-
sociated into a solution state, they provide an efficient
method to sort out cells labeled with cellular phenotypes.
These sorting technologies enable single-cell level analy-
sis of cells that cannot be labeled and sorted using con-
ventional flow cytometry-based methodologies, such as
fluorescence-activated cell sorting (FACS).

An advanced form of LCM has been reported, focus-
ing on the spatial context of cells. In particular, Spatially
resolved Laser-Activated Cell Sorting (SLACS) technol-
ogy, which utilizes image-based information to sort cells
without any loss of spatial information, has been used in
several applications for studying cancer in a spatial con-
text. SLACS is similar to LCM technologies; however,
it does not have any dissection step and instead isolates
cells with near-infrared laser pulses. The main advantage
of SLACS lies in the versatility of the spatial and omics
assays according to the user’s needs [91]. Conventional
staining methodologies can guide the cells of interest or
microniche of interest, and novel spatial technologies
such as spatial transcriptomics or in situ sequencing tech-
nologies can guide the regions to be isolated. In addition,
from an omics point of view, the retrieved cells of interest
can undergo NGS-based assays or mass spectrometry-
based assays. The first demonstration using SLACS was
reported using breast cancer tissue sections and by ana-
lyzing different microniches using multiple displacement
amplification to reveal the subclonality and evolutionary
relationship between these different subclones [92, 93].
Using SLACS, 3D genomic maps of different subclones
were analyzed using whole genome sequencing, whole
exome sequencing, and targeted sequencing to construct
and visualize the genomic landscape of breast cancer tis-
sue sections. SLACS has also been applied to a circulat-
ing tumor cell (CTC) capturing biochip, where CTCs can
be stained with immunofluorescence in situ. The CTCs of
interest were then sorted with SLACS to perform whole
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genome sequencing [94]. SLACS has also been applied
in spatial transcriptomics and epitranscriptomics in
cancer biology. Lee et al. used SLACS to analyze differ-
ent cell populations categorized as breast cancer stem
cell markers ALDH1 and CD44 [55, 95]. Immunofluo-
rescence label-guided SLACS showed full-length RNA
sequencing of different microniches of interest to reveal
a unique adenosine to inosine (A-to-I)-edited GPX4 gene
in cancer stem cell microniches. They further showed
that the discovered A-to-I-edited variant of GPX4 can be
used as a predictive tool for triple-negative breast cancer
patients who have received neoadjuvant chemotherapy.
Probing the microniches of interest, SLACS provides a
way to reveal specific markers that are unique to specific
cell populations labeled with specific spatial assays (i.e.,
immunofluorescence in this case). In addition, Hema-
seq, developed by Jeong et al., represents integration of
cytopathological and genomic profiling, providing the
understanding of complex hematological malignan-
cies like simultaneous myeloma and acute myelogenous
leukemia (AML) by mapping clonal changes within
hematopoietic lineages [96]. This method combines
whole-genome sequencing with detailed cytogenetic
analysis, offering new insights into the molecular land-
scapes of blood tumors, albeit with the need for further
validation across diverse hematological conditions. The
potential for SLACS to be applied to genomics, transcrip-
tomics, and proteomics in cancer biology can lead to the
identification of specific diagnostic or therapeutic targets
from certain populations that can be labeled with any
spatial assay.

Furthermore, Nanostring have been actively develop-
ing its technology to spatially analyze RNA expression
and protein abundance. Digital Spatial Profiling (DSP;
Commercialized as GeoMx), a platform that profiles
proteins and RNAs, was launched in 2019 [57]. The
antibodies or target RNA complementary sequences,
which have specific oligonucleotides attached to UV
photocleavable linkers, were pooled on the tissue slide,
revealing the spatial context within the tissue. Then,
based on the user-defined region of interest (ROI), UV
light exposure cleaves the UV photocleavable linker,
freeing the oligonucleotide sequences that will be fur-
ther collected and analyzed by either nCounter, which
has 800-plex detection, or next-generation sequencing
[97]. DSP is mainly used to study tumor heterogeneity,
immune cell heterogeneity in the tumor microenviron-
ment, and protein abundance during tumor-immune
interaction [31, 43, 98, 99]. For example, DSP discov-
ered an abundance of checkpoint protein CTLA4 sur-
rounding pancreatic ductal adenocarcinoma, which
supports tumors in avoiding the adaptive immune
response caused by overexpressed genes [99].
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Image Mass Cytometry (IMC) has emerged as a trans-
formative technology in the spatial profiling of proteins
(Commercialized as Hyperion) [100]. IMC utilizes heavy
metal-labeled antibodies instead of traditional fluoro-
phores to detect proteins in tissue sections. In IMC,
after the laser ablates the tissue and releases the metal-
labeled antibodies, these particles are ionized and then
analyzed by the TOF mass cytometer. Each metal tag
corresponds to a specific antibody (and therefore a spe-
cific protein), therefore identifying the metal tags allows
researchers to determine which proteins were present in
the tissue and where they were located. The great advan-
tage of using metal tags and TOF mass cytometry in this
context is that it allows for the simultaneous detection of
many different proteins with high precision. In a similar
vein, Multiplexed Ion Beam Imaging (MIBI) represents
another leap forward in spatial proteomics combined
with secondary ion mass spectrometry (Commercialized
as MIBIscope) [101]. By focusing a primary ion beam on
the sample, MIBI releases secondary ions from the metal
tags, which are then analyzed to create detailed images of
protein distribution. The precise quantification and local-
ization of proteins at the single-cell level are made pos-
sible by these technology, enabling a deep understanding
of the cellular composition and function within the tissue
microenvironment [102]. They have been pivotal in stud-
ying complex diseases such as cancer, providing detailed
insights into tumor heterogeneity, the immune micro-
environment, and the spatial distribution of therapeutic
targets.

Spatial transcriptomics: cataloging the cancer universe
While analyzing the specific regions of interest in pathol-
ogy slides are important, it is also crucial to analyze the
spatial context. Delineating the spatial context of cells
and tissues is a fundamental biological issue in can-
cer research [103]. The spatial cellular context provides
information on biological networks regarding how cells
interact with their surroundings [104]. Technologies to
analyze spatial biology have been developed to better
observe the cellular context of tumor cells, just as tele-
scopes have been developed for basic research on observ-
ing celestial bodies and their relationships [65, 105, 106]
(Fig. 3). In particular, recent advances in spatial tran-
scriptomics technologies have led us to observe a general
pattern of molecular snapshots that provide biological
information inferring cellular context. For this reason,
spatial transcriptomics technologies were selected as
‘Method of the year 2020’ by Nature Methods [107].
Spatial transcriptomics were deciphered using two
common approaches: microscopy and next-generation
sequencing. The microscopic approach has the advan-
tage of being able to visualize the expressed transcripts
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directly on the cells, and a sequencing-based approach
enables unbiased deciphering of transcriptomes. Fluo-
rescence in situ hybridization (FISH) is a historically
method for imaging RNA transcripts using a fluores-
cence-tagged probe to detect target RNA molecules in
cells [13, 15, 108—110]. Owing to the intrinsic limitation
of spectral overlap of fluorescence channels, microscopic
approaches have been developed to increase the mul-
tiplexity of target genes with higher detection accuracy.
Initially, single-molecule FISH, which can detect RNA
molecules within cells, used single probes for each tran-
script [111, 112]. Targeting different regions of the tran-
script with the same fluorescence has been developed to
enhance the signal-to-noise ratio, enabling quantification
of gene expression [113, 114]. An additional approach
was developed to increase the signal intensity using a sig-
nal amplifier. RNAscope [115], for example, implements
a Z-probe to hybridize at the target sequence and fluo-
rescence labels to amplify the signals. These FISH meth-
ods have limitations in terms of the number of detectable
markers due to the spectral overlap of fluorescence chan-
nels. Nonetheless, these methods provide high sensitiv-
ity and specificity with ease of use, allowing researchers
to quantify their genes of interest with spatial location
[116—118]. Therefore, FISH has been widely used to map
precise spatial information of tumor-specific biomarkers
in various tissue samples [119, 120].

Owing to the inherent limitations of the microscopic
approach, various methods have been developed to
increase the multiplexity of the target genes by itera-
tion. In 2014, a sequential in situ hybridization method,
seqFISH (commercialized by Spatial Genomics), was
developed, which increased the number of detect-
able genes through iterative hybridization of fluorescent
probes [121]. A series of fluorescent signals identified
unique genes distinguishing up to thousands of genes.
The original model had 24 encoding probes defined
for each target in every hybridization round, making it
possible to demonstrate up to 12 genes because of the
expensive and time-consuming process. SeqFISH+,
developed in 2019, utilizes a signal amplifier to enhance
the signal detection ratio, increasing multiplexity by
up to 10,000 genes in single cells [122]. Another spa-
tial transcriptome localization method based on FISH,
MERFISH(commercialized as Vizgen), a multiplexed
error-robust FISH method, was published in 2015 [59].
It implements a probe with two flanking signal amplifier
regions to efficiently increase the signal sensitivity while
reducing the reaction time. The target probe, which has
anchoring sites for the fluorescent probes, was designed
for each gene. MERFISH increased specificity by adopt-
ing a coding scheme for error detection, which may
arise during the molecular iteration step. An additional
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engineering approach with a highly increasing signal
amplification step was used to increase the signal inten-
sity to enhance the detection sensitivity and sensitivity
of MERFISH [123]. Multiplex smFISH has been imple-
mented to identify hundreds of genes, identify immune
cells and cancer cells, and dissect the role of the TME
in mesenchymal-like state transition [124]. Nanostring
also developed CosMXx, a spatial RNA and protein profil-
ing method based on a single-cell imaging platform [60].
Microscopy-based iterative FISH imaging was used to
read the expressed genes and proteins at a single-cell res-
olution. Multiplex smFISH, like SeqFISH and MERFISH,
has greatly increased the number of spatially localized
target genes, enabling the in situ characterization of cell
states and cell types.

In addition to the quantification of target gene expres-
sion, in situ sequencing approaches have been developed
that can directly sequence certain regions of transcripts
in the tissue. An imaging-based microscopic approach
requires sufficient amplification of the signals to be
detected; therefore, it implements the amplification step
of genetic molecules. The first in situ sequencing method
using padlock probes was published in 2013 (commer-
cialized as Xenium, 10X genomics) [58]. It can quantify
known target genes by sequencing barcoded padlocks
or detecting single-nucleotide variants in target regions
using a gap-filling strategy. The padlock probes were
hybridized to the target reverse-transcribed genes. After
filling the gap, the phi29 enzyme, which amplifies the cir-
cle-shaped genetic molecules, processes the rolling circle
amplification (RCA). The barcodes located in amplified
products are then sequenced by sequence-by-ligation,
modified to the sequence-by-hybridization method in
the latter version, increasing the multiplexing capacity
[125, 126]. Recent approaches to in situ sequencing are
trying to proceed with sequencing without mRNA-to-
c¢DNA conversion owing to the low efficiency of reverse
Transcription [127]. ISS has been applied in breast can-
cer to analyze the cellular heterogeneity of tumor tis-
sues [58, 128]. Fluorescence in situ sequencing (FISSEQ;
commercialized as ReadCoor) is an untargeted in situ
sequencing method that does not require predefined
target probes [64]. Instead of using the target probe to
amplify the sequence, FISSEQ amplifies every circular-
ized cDNA in the cell matrix. The RCPs were sequenced
by oligonucleotide ligation and detection (SOLiD) chem-
istry. FISSEQ has the advantage of being able to sequence
RNA products in a cell matrix. Together with expan-
sion microscopy, tumor microenvironments have been
thoroughly deciphered by spatially mapping 297 tumor-
related genes [129, 130]. STARmap, a spatially resolved
transcript amplicon readout mapping, uses two target
probes that can directly hybridize to RNA; and adopts
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hydrogel-tissue chemistry for high-resolution volumetric
imaging [131].

Unlike other microscopic approaches that require the
design of target probes, sequencing-based spatial tran-
scriptome analysis enables an unbiased patterning of the
transcriptome. ‘Spatial transcriptomics’ (commercialized
as Visium, 10X genomics) is a recent method that ena-
bles RNA sequencing via in situ poly(A) tail capturing
of tissue section [61]. Spatial information was retrieved
through the spatial barcode present in the poly(dT) cap-
ture probes. Initially, the resolution of the spatial barcod-
ing was 100 pm in diameter, limiting the cell resolution
to ~30 cells. This technology is still being developed to
improve spatial resolution and information depth. As
it implements the spatial barcoding process, its spatial
resolution is obtained from the density of the barcodes.
Following the random barcoded bead array to physically
lower the spatial resolution [62, 132], computational
methods to infer lower resolutions by deep learning have
been developed [133, 134]. Additionally, there was an
intrinsic limitation that only the 3° ¢cDNA count could
be recovered due to the poly(dT) barcoding; however,
research to increase the information depth of the in situ
capturing technology are actively being conducted, such
as parallel sequencing with nanopore sequencer to obtain
isoform sequence or inferred CNV analysis based on the
gene counts [135-138]. In situ cer cohorts were stratified
into clusters with distinct cellular compositions, suggest-
ing that intrinsic subtype classification can be connected
to clinical outcomes [139]. Heterogeneous subpopula-
tions were identified in ductal carcinoma in situ of breast
cancer and provided predictive biomarkers such as
GATA3 dysfunction, PIK3CA mutations, and PgR nega-
tivity [41]. Additional genetic heterogeneity was dissected
in cutaneous malignant melanoma in a spatial context
to identify the factors regulating tumor progression and
clinical outcome [140]. Moreover, tumor microenviron-
ment characterization was thoroughly investigated by
analyzing the spatial distribution of tumor architectures
[141-145]. A single-cell tumor immune atlas has been
suggested to stratify the immune microenvironment in
tumor sections [146]. The interaction of FAP+ fibroblasts
and SPP1+ macrophages has been observed in colorectal
cancer, suggesting a possible tissue remodeling mecha-
nism and potential intervention targets [48]. Novel bio-
markers, such as the tumor boundary interfacial marker
cilia gene or epithelial marker N-cadherin 2, were sug-
gested by spatial molecular subtyping [147]. Additionally,
spatially barcoded DNA nanoball-patterned arrays have
been implemented for the in situ capture of transcrip-
tomes, greatly increasing the spatial resolution [148].
Increasing research is being conducted using in situ cap-
turing techniques to map the gene counts expressed in
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tissue slides, which will greatly help spatial cell mapping
in clinical samples.

Spatial omics: towards onco-verse

Observing gene expression helps generalize the over-
all pattern of the tissue; however, it is not sufficient to
fully understand cellular dynamics. Transcriptomics is
an intermediate dimension representing genomic aber-
rations and inferring functional proteins regulated by
epigenomics. By integrating multi-dimensional cellular
information, it is possible to build a complete map for
understanding cellular dynamics and interpreting the cell
type, state, differentiation, and function. Recent progress
in spatial-omics technologies has aided in the in-depth
characterization of tumors in a spatial context.

Spatial genomics: tracking the cancer evolution

Spatial genomics is especially important in cancer biology
because cancer progression is determined by the under-
lying genetic aberrations. As FISH detects gene expres-
sion by hybridizing the fluorescence probes to the target
genes, it is used to identify genomic aberration [149,
150]. FISH-based in situ DNA analysis techniques can
detect not only the spatial location, but also the chromo-
somal location within the nucleus [151, 152]. Advances
in DNA FISH technologies have led to the identification
of cell types using probes targeting single-nucleotide
polymorphism [153]. Recently, sequential DNA FISH
methods have been introduced to increase the multiplex-
ity of the target DNA loci. DNA seqFISH+, an iterative
FISH method, can target thousands of loci in cells, which
can aid in analyzing the genomic organization. In addi-
tion, in situ genome sequencing (IGS) is a method for
sequencing genomes using in situ imaging, preserving
the spatial context and base-pair resolution sequencing
[154]. It amplifies the genome in its native spatial con-
text using TN5-assisted library preparation and rolling
circle amplification in situ. After in situ imaging of the
UMY, the recovered amplicons were sequenced using ex
situ paired-end sequencing. By matching the molecu-
lar in situ UMI with the ex situ sequencing data, the
DNA sequence can be mapped into the spatial context.
Another barcoding approach was performed using Slide-
seq [62], an in situ capturing transcriptomics method
[155]. It uses a spatially barcoded bead array to capture
spatially resolved genomic features and sequence DNA.
Such spatial genome mapping technologies aid in charac-
terizing tumor heterogeneity in tissue sections, compris-
ing spatial clonal populations via genomic aberration.

Spatial epigenomics: interpreting the blueprint of tumor
Spatial epigenomics is rapidly evolving research field
of analyzing the spatial organization of epigenetic
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modification which regulates the gene expression pat-
terns. Epigenomics is an important regulatory tool
that controls gene expression. Alterations in epigenet-
ics are functionally important and increasing research
has highlighted the clinical relevance of epigenetics in
tumor studies. Growing epigenetic chemistry, such as
Cut & Tag [156], ATACseq [157], ChIPseq [158]c, and
Methyl-seq [40], has been developed to analyze histone
modifications and chromatin accessibility. Recently, in
situ spatial barcoding approaches (commercialized by
AtlasXomics) have been introduced to add the spatial
modality to epigenetic chemistry. Spatial-CUT&Tag
[159] and Spatial-ATAC-seq [160] are microchannel-
guided pixel-barcoding methods for profiling spa-
tial histone modification and chromatin accessibility,
respectively. It was built on the same chemistry as DBiT-
seq [63], a microfluidic barcoding-based spatial omics
technology. During each chemistry, a set of barcodes
was delivered in two perpendicular rounds, resulting in
a 2-dimensional barcoded grid of tissue pixels. Addi-
tionally, the same group that developed the MERFISH
method has developed a method for spatially resolved
epigenomic profiling of single cells, which utilizes in situ
tagmentation and transcription followed by multiplexed
imaging [161]. This techniques offer a higher subcellular
resolution in constructing the spatial atlas of epigenomic
enhancers. Spatial epigenome profiling technologies are
in the early stages of development but are expected to
offer a solution for mapping epigenetic regulation in
tumor research [162].

Spatial proteomics: delineating the cancer landscape
Spatially resolved proteomic profiling has historically
attracted the interest of researchers. H&E and immu-
nofluorescence staining have been used to distinguish
the cells for tumor characterization. The immunofluo-
rescence staining technique itself has a limitation in the
number of target proteins owing to the spectral overlap
of the fluorescence probes. Spatially resolved protein
profiling techniques have been developed to increase the
number of proteins that co-localize.

Iterative fluorescence barcoding techniques are widely
used to increase the number of target proteins. Similar
to multiplex FISH methods, multiplex immunostaining
methods have acquired multiplexity up to dozens of times
by iteration of fluorophore tagging and stripping steps
[163-165]. Owing to the harsh environment in which the
tissue goes through during the iterative process, there is
a limitation in multiplexity. To increase sensitivity, gen-
tler methods to remove the fluorescence signal remaining
from previous rounds were developed instead of strip-
ping antibodies, such as fluorophore bleaching or inter-
mediate reporter probes. For example, the co-detection
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by indexing method, CODEX (commercialized by Akoya
Biosciences), is widely used as a tool to decipher spatially
resolved proteins with up to 60 targets [166, 167]. This
method uses a DNA-conjugated antibody to hybridize to
target proteins and detect existing antibodies by indexing
fluorescence-tagged nucleotides. This method guarantees
a single-antibody staining procedure and simple index-
ing chemistry [47]. Its ability to profile highly multiplexed
protein signatures enables the comprehensive charac-
terization of the tumor microenvironment. It has been
reported that spatial protein signatures have higher diag-
nostic accuracy for predicting immunotherapy response
than genomic profiling approaches in anti-PD-1/ PD-L1
therapy [168]. Dozens of immune, tumor, and structural
marker mapping was performed in FFPE fixed cutaneous
T-cell lymphoma tissues to better study tumor immu-
nology [169]. Other immune signatures are also spa-
tially phenotyped in tumor microenvironments, such as
immune cell infiltration patterns, neutrophil extracellular
traps, intrafollicular memory CD4+ T-cells, etc. [170—
172]. Spatial proteomics is a powerful discovery tool for
analyzing cell biology at the functional level [173].

Spatial multi-omics: into the cancer multiverse
Compared to conventional approaches that target single-
dimensional molecular targets for spatial profiling, mul-
tidimensional molecular information provides a better
understanding of cellular mechanisms [174]. By integrat-
ing the’ omics’ profiles, researchers seek to interpret the
systemic function of cancer biology. A growing number
of research is reporting tools that integrate two or more
dimensions of molecular targets. For instance, DBiT-seq
suggested a microchannel-based spatial barcoding sys-
tem, suggesting a solution for providing spatial modal-
ity in omics profiling technologies [63]. To co-profile
mRNAs and proteins via next-generation sequencing
while preserving the spatial context, they introduced
antibody-derived DNA tags with poly-A tails to detect
the target proteins and spatially barcoded the DNA tags
and mRNAs prior to sequencing. To increase the number
of target proteins, they recently integrated the CITE-seq,
a high plex protein and whole transcriptome sequencing
technology with the spatial barcoding system [175]. The
group has also suggested a similar approach of endow-
ing spatial modality via microfluidic barcoding to other
omics assays, such as epigenetics [157, 159, 160].
Another approach integrates the existing spatial profil-
ing to obtain molecular multi-dimension. SM-Omics is
an automated spatial multi-omics profiling platform pub-
lished in 2022 [176]. It integrates previously introduced
methods, such as H&E staining, DNA-conjugated anti-
body-based protein measurements or immunofluores-
cence staining, with spatial transcriptomics techniques
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to profile the simultaneous analysis of spatially resolved
RNAs and proteins [175]. This study demonstrated the
combined profiling of RNA and protein expression in a
mouse cancer model to characterize tissue niches with
higher information depth. Increasing research has been
conducted to provide spatial modality for two or more
omics profiling technologies. Challenges still exist in
combining multidimensional molecular information,
but spatial multi-omics mapping offers a wide range of
molecular information that aids researchers in defining
cellular phenotypes, understanding cell-cell interactions,
and identifying spatially expressed biomarkers in cancer.
We envision that cancer biology should move towards
spatial multi-omics profiling to systemically analyze the
functional mechanism of the tumor.

Integrating spatial omics within the broader multiom-
ics framework is pivotal for unraveling the complex biol-
ogy of diseases. This approach is increasingly reshaping
clinical trials and therapeutic strategies with its insightful
revelations. For instance, the study by Zhang et al. (2023)
serves as an example, where spatial transcriptomics and
proteomics are employed to intricately map the tumor
microenvironment in hepatocellular carcinoma [177].
Their work provides nuanced insights into the responses
to neoadjuvant therapies, such as nivolumab and cabo-
zantinib, enhancing our understanding of these treat-
ments in virtual clinical trial settings. Complementing
this, the research by Ruiz-Martinez et al. advances this
integration by combining genomic, transcriptomic, and
proteomic data within an agent-based model [178]. This
model simulates the spatial dynamics of tumor growth
and the effects of systemic immunotherapy, offering a
holistic view of tumor-immune interactions. Further-
more, Song et al. demonstrate the application of artificial
intelligence to analyze these multiomic datasets [179].
They focus particularly on histopathological images,
which, when enriched with genomic and transcriptomic
data, become powerful diagnostic tools in computa-
tional pathology. Collectively, these studies underscore
the significance of multiomic data integration, where
each omics layer contributes to a comprehensive spa-
tial biological context. Such a granular understanding
is instrumental in guiding precise and effective medical
interventions.

The era of spatial (pathology) atlas will lead

to next-generation diagnostics and therapeutics

With the decrease in the cost of next-generation sequenc-
ing, discovering the genomic, transcriptomic, and prot-
eomic landscape, and exploring targets of interest have
become possible with flourishing spatial technologies.
Since the inauguration of the Human Genome Project
in 1990, the Cancer Genome Anatomy Project (1997),
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Cancer Genome Atlas (2006), Human Cell Atlas (2016),
and many other projects have sought to build a database
or atlas of the landscape of human cancers. The next step
is to build a spatial atlas or pathology atlas that compre-
hensively maps the genetic landscape of cells in hetero-
geneous tumor microenvironments and discover spatially
relevant therapeutic markers.

The role of the spatial assay techniques varies accord-
ing to the scalability of cell throughput and information
depth of genetic molecules. Large-scale spatial omics
technologies are capable of mapping the spatial pattern
in tissue landscape, mostly focusing on discovering the
spatial heterogeneity of tumors and the spatial composi-
tion of tumors (Table 1). Spatial landscaping technologies
allows researchers to have the global view of tumor archi-
tecture, allowing for the identification of general trends
and patterns in the molecular biology of the tumor. Con-
versely, targeted sampling technologies enable a detailed
exploration of genetic information within selected sub-
regions of the tissue. Such targeted sampling approaches
focus on specific areas of interest, providing nuanced
insights by integrating conventional chemistries for in-
depth profiling. This method circumvents the need to
survey entire slides, directing resources and attention to
areas of greatest interest or variability within the sam-
ple. By homing in on these select subregions, Targeted
sampling not only optimizes the depth and relevance of
genetic information obtained but also enhances the effi-
ciency of the study. This focused approach enables a more
effective comparison across a large cohort of patients by
analyzing representative samples, thus broadening the
scope of data dimensionality and enabling a detailed
examination of localized biological phenomena. There-
fore, this approach is particularly suited for the discov-
ery of novel diagnostic markers and therapeutic targets,
rather than the broad patterning of spatial landscapes on
a large scale (Table 2).

While recent advancements in multiplexed imaging
technologies have expanded our capacity to obtain spa-
tial cellular information, it is important to acknowledge
the enduring significance of Hematoxylin and Eosin
(H&E) staining in routine laboratory and clinical practice
(Fig. 4). H&E staining remains the cornerstone of histo-
pathological analysis, serving as the foundation upon
which tissue architecture and pathological states are
primarily assessed. Despite its limitations in molecular
specificity, H&E’s ability to delineate basic cellular struc-
tures has proven invaluable, particularly in the realm of
digital pathology. The integration of digital pathology
with machine learning algorithms has unlocked new
potentials for H&E-stained slides, which are abundant
and rich in histological detail [237]. This synergy is vital
in translating routine histological images into predictive
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biomarkers and prognostic tools. Studies leveraging com-
putational techniques have demonstrated the efficacy
of extracting clinically relevant information from H&E
images, underscoring their utility in patient outcome
correlations.

It is essential to acknowledge the synergistic poten-
tial between H&E staining and advanced spatial profil-
ing technologies. The simplicity of H&E staining, with
its ability to provide a fundamental overview of tissue
architecture, is an asset. When H&E images are layered
with the rich, molecular data from spatial profiling tech-
nologies, the resulting composite offers a more nuanced
and comprehensive analysis than either method could
provide alone. This integration allows for the extrac-
tion of an even greater wealth of information, leverag-
ing the straightforwardness of H&E to contextualize and
enhance the complex data obtained from spatial profiling.
Therefore, as we navigate the trend towards more intri-
cate spatial omics, the indispensable role of H&E staining
must be highlighted, not only for its current applications
in oncological studies but also for its potential to be com-
bined with spatial profiling for superior analytical depth
and insight into cancer research.

Spatial omics technologies has already begun to utilize
spatial omics to discover diagnostic biomarkers com-
bined with machine learning and digital pathology [238—
240]. The field of spatial omics especially will be affected
with machine learning-based or deep learning-based
digital pathology, as image-based digital pathology pro-
vides feature or ROI extractions that have been impossi-
ble to extract with human experience. Therefore, artificial
intelligence (AI)-based pathological feature extraction
provides an attractive method to select ROIs for reveal-
ing next generation molecular diagnostic marker that dis-
tinguishes the pathological feature from other regions. In
addition, discovering transcript sequences that are being
discovered in cancers [95] will provide useful guidelines
for designing mRNA-based cancer vaccines, neoantigen
targeting chimeric antigen receptor T cell (CAR-T cell)
therapy, gene editing therapeutics including CRISPR/
Cas9, RNA interference, and many other therapeutics.
In addition, profiling immune cells residing or infiltrat-
ing the cancers will be useful in anti-tumor antibody
discovery.

The power of spatial omics technologies exponen-
tially increases when combined with each other and
when combined with non-spatial technologies, such
as FACS, single-cell technologies, and other spatial
assays, such as staining technologies or digital pathol-
ogy. Understanding the advantages and disadvantages
of different spatial technologies, provides opportunities
to design combinations. For example, after performing
seqFISH on a tissue section, the seqFISH data can guide
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ri

H&E Stained Image

Shows the physical appearance and structure of the tumor sample.
Can be used to identify different cell types and regions within the tumor.
Helps to establish a spatial context for the subsequent layers of analysis.

r2

Spatial Landscaping

Provides a broad view of the molecular landscape of the tumor architecture.
Allows to observe the overall gene expression or protein localization patterns.
Helps to identify general trends and patterns in the molecular biology of the tumor.

r3

ROI-Profiling

Analyzes specific subpopulations of cells within the tumor and identifies molecular
changes unique to these regions.

Helps to identify potential therapeutic targets that are specific to certain
subpopulations of cells within the tumor.

Provides a more detailed understanding of the underlying molecular mechanisms
driving tumor growth and progression in these specific regions.

Anti-tumoural
antiobody discovery

L

/
CRISPR/Cas9 e

2 Mechine learning based
target discovery

. biomarker discovery
Integrative

! spatial omics
O '

Digital pathology Personalized medicine

Fig. 4 The era of spatial atlas will lead to next generation diagnostics and therapeutics

Conclusion

targets of interest that can be isolated with SLACS to
add a different data modality. A more complex exam-
ple is the combination of single-cell technologies with
CosMx technology to discover specific cell types with
specific transcripts. Specific cells can then be labeled by
in situ sequencing and isolated by LCM or SLACS to
analyze their genome, proteome, or metabolome. The
combinations are limitless; therefore, it is important
to design an appropriate combination according to the
biological question. This integration strategy fits well
with the nature of cancer, which is extremely heteroge-
neous and complex to understand.

Here, we have reviewed the current methods to inves-
tigate spatially relevant biological findings in tumor
tissue. The study of the spatial context in oncology is
extremely important in terms of addressing tumor het-
erogeneity, the tumor microenvironment, and novel
spatial biomarkers to identify the mechanism under-
lying tumors. Technologies developed, to date, have
mostly focused on addressing spatial transcriptomics;
however, increasing research has reported the integra-
tion of two or more omics profiles to interpret the sys-
temic function of oncology. Additionally, it is possible
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to proceed with in-depth analysis of significant regions
in spatial context by combining the large-scale spatial
omics profiling technologies and targeted sampling
-based spatial omics technologies. In conclusion, the
exploration of spatially relevant biological findings in
tumor tissue is of utmost importance for unraveling
tumor heterogeneity, the tumor microenvironment,
and identifying novel spatial biomarkers that underlie
the mechanisms of tumors. The potential for spatial
omics continues to grow, and in the near future, we
envision that next-generation diagnostics or therapeu-
tics will bloom from these targets discovered using spa-
tial omics technologies.

Tumors are complex structures composed of multiple
cell types that interact with each other and their micro-
environment, leading to the underlying cellular mecha-
nisms driving tumor growth and progression. Spatial
analysis in tumor research can provide important infor-
mation regarding proximity, cellular composition, mor-
phology, and structure. Significant technologies have
been developed in cancer biology to investigate the over-
all tumor landscape or analyze the in-depth characteriza-
tion of tumor regions of interest.

Schematic representative of the technologies available
for spatial omics profiling in regions of interest (ROIs).
LCM-IR uses the Infrared-activated polymer to glue out
the regions of interest. LCM-UV dissects out the regions
or interest by using an ultraviolet laser. SLACS punches
out the regions of interest in target-per-second speed
by IR-pulse laser-activated vaporization. After the isola-
tion of the regions of interest, targets can be applied to
conventional molecular profiling assays such as DNA-
sequencing, RNA-sequencing, and Mass-spec. DSP and
IMC technologies employ special probes designed to
target specific genes or proteins. These probes can be
retrieved by illuminating or exciting particular regions of
interest within a sample, profiling the associated molecu-
lar expressions.

Schematic representative of the technologies for map-
ping the spatial landscape of cancer biology in terms of
profiling transcriptomics, genomics, epigenomics, and
proteomics. Spatial transcriptomics and genomics:
Most of the currently available spatial transcriptomics
can be categorized into iterative fluorescent labeling
methods and in situ barcoding methods. Spatial epig-
enomics: Technologies for spatial epigenomics are in
its early stage, mostly focused on a microfluidic chan-
nel based on in situ spatial barcoding technology com-
bined with conventional epigenomic profiling assays.
Spatial Proteomics: Fluorescence-tagged antibodies are
applied to spatially profile the spatial presence of the
target protein.
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The next step of human cell atlas would be building a
pathology atlas that delineates the molecular landscape
in heterogeneous tumor microenvironments. Further-
more, the applicability of spatial omics technologies is
not limited to spatial atlasing, eventually leading to the
next generation diagnostics and therapeutics.
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