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Abstract 

Current treatment guidelines refer to small cell lung cancer (SCLC), one of the deadliest human malignancies, 
as a homogeneous disease. Accordingly, SCLC therapy comprises chemoradiation with or without immunotherapy. 
Meanwhile, recent studies have made significant advances in subclassifying SCLC based on the elevated expression 
of the transcription factors ASCL1, NEUROD1, and POU2F3, as well as on certain inflammatory characteristics. The role 
of the transcription regulator YAP1 in defining a unique SCLC subset remains to be established. Although preclinical 
analyses have described numerous subtype-specific characteristics and vulnerabilities, the so far non-existing clinical 
subtype distinction may be a contributor to negative clinical trial outcomes. This comprehensive review aims to pro-
vide a framework for the development of novel personalized therapeutic approaches by compiling the most recent 
discoveries achieved by preclinical SCLC research. We highlight the challenges faced due to limited access to patient 
material as well as the advances accomplished by implementing state-of-the-art models and methodologies.
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Introduction
Small cell lung cancer (SCLC) is the most aggressive his-
tologic subtype of lung cancer and accounts for roughly 
13–15% of all lung cancers [1]. The recalcitrant nature 
of SCLC is demonstrated by rapid disease progression 
accompanied with early metastatic manifestation [2]. 
More than two-thirds of patients already present with 
advanced disease at the time of diagnosis [3]. SCLC is 
initially highly sensitive to doublet cytotoxic chemother-
apy with or without radiotherapy, resulting in response 
rates of more than 60%. However, disease recurrence and 
acquired resistance occur in almost every patient. In the 
recent past, immune checkpoint blockade has extended 
the therapeutic regimen of SCLC. However, the survival 
of SCLC patients remains poor with a 5-year survival rate 
of below 7% [2]. Although current preclinical evidence 
suggests the existence of four distinct molecular sub-
types of SCLC, the clinical guidelines still classify SCLC 
as a single disease entity [4]. The most recent clinical 
advancements in SCLC have been extensively elaborated 
by Megyesfalvi et al. [5]. This comprehensive review aims 
to summarize the biological milestones in characterizing 
SCLC that have been achieved by preclinical research. 
Novel therapeutic approaches based on patient strati-
fication are an unmet need to improve the clinical suc-
cess of SCLC. Emphasis is laid on past accomplishments 
and new avenues in order to aid in improving patient 
outcomes.

Advancements achieved by preclinical research
Cell of origin
The lining of the lung epithelia is compartmentalized 
along the proximal-to-distal axis into three structur-
ally and functionally distinct domains [6]. The transition 
between the airways and the alveoli, (bronchioalveolar 
duct junction, BADJ) contains bronchioalveolar stem 
cells (BASCs) that give rise to airway and alveolar cells 
[7]. The most distal alveolar region consists of squamous 
alveolar type 1 (AT1) cells mediating gas exchange and 
cuboidal alveolar type 2 (AT2) cells that secrete sur-
factant to prevent alveolar collapse [8]. AT2 cells func-
tion as stem cells that contribute to alveolar renewal and 
repair due to their self-perpetuating ability and the tran-
sition into AT1 cells [9]. Basal cells are progenitor cells 
of ciliated, neuroendocrine (NE), and club cells found 
in the proximal airways [10]. Clusters of NE cells repre-
sent extremely rare cell populations characterized by the 
expression of the basic-helix-loop-helix (bHLH) tran-
scription factor (TF) Inhibitor of Differentiation 2 (ID2) 
[11]. ID2 regulates mitochondrial activities; its upregula-
tion assists SCLC cells in gaining sufficient energy to sup-
port fast mitosis and proliferation [12]. Accordingly, NE 
cells emerge in lung organogenesis and are enriched in 

fetal and neonatal lungs [13]. In adult intrapulmonary air-
ways, approximately 0.41% of pulmonary neuroendocrine 
cells (PNECs) are present [14]. PNECs are commonly 
arranged in small cell clusters known as neuroepithe-
lial bodies (NEBs) [15, 16]. PNECs share characteristics 
of neuronal and endocrine cells, such as comprising the 
synthesis, accumulation, and release of serotonin, gas-
trin-releasing peptide (GRP), neuron-specific enolase 
(NSE) and other transmitters such as bombesin [16]. 
Interestingly, calcitonin  gene-related peptide (CGRP), 
neural cell adhesion molecule 1 (NCAM1), and mamma-
lian achaete-scute complex homolog 1 (MASH1/ASCL1) 
not only play important roles in neuronal differentiation, 
but are also highly expressed in PNECs [15].

Based on recent evidence, SCLC may arise most fre-
quently from PNECs, but could also emerge from lung 
epithelial cells such as basal or club cells and AT2 cells 
in certain cases (Fig. 1). Recent findings suggest that tuft 
cells also act as putative progenitor cells in a specific sub-
type of SCLC [17]. Tuft cells (also termed brush cells) 
were discovered in rodents more than half a decade ago 
and were defined as chemosensory cells of the lung epi-
thelial lining [18]. Notably, tuft cells mediate chemosen-
sory, immune, and neuronal pathways. However, the 
latter two are not commonly linked to epithelial cell func-
tion [19]. Loss-of-function mutations including tumor 
protein 53 (TP53) and retinoblastoma 1 (RB1) in PNECs, 
tuft, club, or AT2 cells evidently evoke SCLC develop-
ment. Moreover, SCLC may also transdifferentiate from 
lung adenocarcinoma (LUAD) following loss-of-driver 
mutations such as epidermal growth factor receptor 
(EGFR) (Fig. 1).

Normal lung epithelium consists of a variety of cells 
including ciliated cells (1), club cells (2), PNECs (3), tuft 
cells (4), alveolar macrophages (5), AT1 pneumocytes 
(6), and AT2 pneumocytes (7). Upon TP53 and RB1 
loss, several cell types of the lung epithelium may trans-
form into SCLC. Of note, lung epithelial cells may also 
result in lung adenocarcinoma due to driver mutations, 
which may ultimately transform into SCLC. Created with 
BioRender.com.  AT1/2  -  Alveolar type 1/2 cells, EGFR 
-  Epidermal growth factor receptor, PNEC - Pulmonary 
neuroendocrine cells, RB1 -  Retinoblastoma 1, TP53 
- Tumor protein 53

Genomic alterations
According to genome-wide studies, it is known that 
tobacco smoking induces the development of almost all 
lung cancer types [20, 21]. Current or former excessive 
smoking is related to increased tumor mutational bur-
den (TMB), heterogeneity, and driver mutations [22]. 
Acquired chromosomal abnormalities were identified in 
several SCLC specimens [23]. Allele loss involving the 
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chromosome arm 3p is almost universally detected in 
early lung cancer pathogenesis, and may, therefore, affect 
several potential tumor suppressor (TS) genes. SCLC is 
characterized by almost universal, bi-allelic inactivation 
of both TS genes TP53 and RB1 [24]. Therefore, the loss 
of TP53 (75%-90% of patients [25]) and RB1 (nearly 100% 
[26]) is confirmed in the vast majority of cases. However, 
therapeutic targeting is still not feasible [27]. Genetically 
engineered SCLC mouse models (GEMMs) initiated by 
loss of TP53 and RB1 present multiple aggressive lung 
tumors with striking similarities to human disease. Fur-
ther alterations involving loss of TF phosphatase and ten-
sin homolog (PTEN) or nuclear factor 1B (NFIB) add to 
the aggressive behavior of SCLC [28].

Additional alterations of oncogenic drivers of SCLC 
comprise members of the MYC proto-oncogenes, includ-
ing three distinct TFs: C-MYC, L-MYC, and N-MYC 
[24]. All MYC members belong to the superfamily of 
bHLH leucine zipper TFs that bind to the canonical 
E-box DNA element [29]. All are paralogs with structural 
homology and their functional differences are associ-
ated with phenotypic disparities [30]. Transcriptional 
activation of MYC depends on heterodimeric complex 
formation with MAX proteins and recruitment of TFs. 
Other mechanisms  of activation are arbitrated by  his-
tone acetyltransferases (HAT), chromatin remodeling 
enzymes, and RNA polymerases [31]. C-MYC, the most 
frequently dysregulated family member, is mediating the 
cell cycle and transcriptional response, hence, promoting 
cell growth and proliferation [32].

The TF NFIB is part of the NFI gene complex essen-
tial for embryonic development of the lung, kidney, and 
brain [33]. NFIB is commonly amplified in SCLC and 
functions as an oncogene driving initiation, progres-
sion, and metastasis [34, 35]. SCLC metastases portray 

changes in profound chromatin accessibility and differ-
ences in gene expression programs in comparison to the 
primary tumor [36]. Accordingly, a pro-metastatic switch 
promotes neuronal gene expressions related to migration, 
adhesion, and neuronal differentiation [36]. Hence, high 
NFIB levels lead to expansion of a poorly differentiated 
E-cadherin (CDH1)-negative invasive tumor subpopula-
tion, which consequently correlates with worse patient 
survival [34].

Neuroendocrine features of SCLC
Two SCLC phenotypes based on the morphology and 
growth behavior were described more than 30 years ago 
[37, 38]. High-NE tumors showed growth characteristics 
of irregular floating clusters, although some appeared as 
adherent subpopulations in  vitro. By contrast, tumors 
of low-NE differentiation displayed loose attachment 
properties or semi-attached, loosely aggregated or sin-
gle floating cell aggregates (“Indian file” pattern) [39]. 
Importantly, NE-high cell lines show a “classic” pheno-
type characterized by small cells with blurred cell bor-
ders, fine granular “salt and pepper” chromatin, and small 
nucleoli [24]. In comparison, the NE-low “variant” group 
is associated with slightly larger cells displaying distinct 
cell borders and prominent nucleoli. They exhibit par-
tial or complete loss of NE cell features but show large 
numbers of inflammatory cells [37, 38]. The intertumoral 
heterogeneity of NE expression patterns is character-
ized by changes in morphology, growth properties, and 
genetic alterations as well as immune and inflammatory 
responses [40]. While NE-high SCLCs demonstrate a 
low infiltrating cellular immune response and display 
an immune desert phenotype, NE-low SCLCs are asso-
ciated with increased immune cell infiltration and are 
referred to as immune oasis [41]. Accordingly, non-tuft 

Fig. 1 SCLC tumorigenesis from different cells of origin
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cell-derived NE-low SCLC patients show better response 
to immunotherapy compared to NE-high SCLC patients 
who exhibit low numbers of immune cells and decreased 
or absent expression of programmed death-ligand 1 (PD-
L1) [1, 39, 40].

SCLC molecular subtypes are defined by transcription factor 
expression
Recently, a worldwide resurgence of genomic profiling 
studies in SCLC including comprehensive molecular 
analyses of representative preclinical models including 
cell lines, patient-derived xenografts (PDX), and GEMMs 
arose [24]. Recent work proposed SCLC molecular sub-
types (SCLC-A, SCLC-N, SCLC-P, and SCLC-Y) based 
on the differential expression of the  key transcriptional 
regulators ASCL1, NEUROD1 (neurogenic differen-
tiation factor 1), POU2F3 (POU class 2 homeobox  3), 
and YAP1 (yes-associated protein 1) (Fig.  2). Of note, 
the most recent nomenclature also directs towards 
an “inflamed” SCLC (SCLC-I) [4, 5]. The association 
between these subtype-specific TFs includes distinct 
degrees of NE differentiation. The correlation between 
individual characteristics and therapeutic vulnerabilities 
may be of clinical importance [2].

Neuroendocrine subtypes (ASCL1 and NEUROD1)
ASCL1-high tumors express NE markers and show clas-
sic morphology, whereas NEUROD1-high tumors have 
lower NE expression and variant morphology [24, 37]. 
ASCL1 and NEUROD1, two bHLH TFs with pivotal roles 
in neuronal function and maturation of PNECs, are line-
age-specific oncogenes in SCLC. Both TFs act as master 
regulators of NE differentiation [42, 43]. ASCL1 regulates 
oncogenic genes including L-MYC, RET, SRY-box tran-
scription factor 2 (SOX2), NFIB, B-cell lymphoma 2 
(BCL2), and the lung development genes FOXA2 and 
TTF-1. The homeobox protein Nkx2.1 (NKX2-1/TTF1) is 
a TF located in club and AT2 cells. TTF1 is fundamental 
for the development of NE cells and shows higher expres-
sion in SCLC-A than in SCLC-N [44]. NE markers such 
as insulinoma-associated protein 1 (INSM1), NCAM1, 
chromogranin A (CHGA), synaptophysin (SYP), and 
CGRP are further direct transcriptional targets of ASCL1 
[42]. Additionally, ASCL1 directs members of the Notch 
pathway including delta like canonical notch ligand 3 
(DLL3), while NEUROD1 transcriptional targets include 
the receptor tyrosine kinase insulin-growth factor recep-
tor 1 (IGF1R) [42, 45]. SCLC-A is highly associated with 
L-MYC, whereas the SCLC-N subtype is related to the 

Fig. 2 Molecular subclassification of SCLC.  SCLC subclassification discriminates between NE subtypes which are represented 
by ASCL1- or NEUROD1-driven tumors and non-NE subtypes characterized by POU2F3 or inflamed expression patterns. Distinct expression 
profiles show potential vulnerabilities of each SCLC subtype. Created with BioRender.com. TP53—Tumor protein 53; RB1 - Retinoblastoma 
1; NE - neuroendocrine; PNEC - Pulmonary NE cells; ASCL1 - Achaete-scute homologue 1; NEUROD1 - Neurogenic differentiation factor 1; 
POU2F3 - POU class 2 homeobox 3; YAP1 - Yes-associated protein 1, QN - Quadruple negative, BCL2 - B-cell lymphoma 2, DLL3 - Delta-like protein 
3, CHGA – Chromogranin A, EZH2 - Enhancer of zeste homologue 2, SOX2 - SRY-box transcription factor 2, CDH1 – E-cadherin, TTF-1 - Homeobox 
protein Nkx2.1, LSD1 - Lysine demethylase 1A, RET - Ret proto-oncogene, AURKA – Aurora kinase A, MYC – MYC proto-oncogene, 
NCAM1 - Neural cell adhesion molecule 1, NFIB - Nuclear factor 1 B, HES6 - Hairy and enhancer of split 6, ANTXR1 - Anthrax toxin receptor 
1, INSM1 - Insulinoma-associated protein 1, ASCL2 - Achaete-scute homologue 2, IGF-1R - Insulin-growth factor receptor 1, SOX9 - SRY-box 
transcription factor 9, CHAT - Choline O-acetyltransferase, ATM - ATM serine/threonine kinase, TAZ - Homologue to YAP1, PLK - Polo-like kinase, 
PD-L1 - Programmed death-ligand 1, mTOR – Rapamycin, CDK4/6 - Cyclin-dependent kinases 4/6
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upregulation of C-MYC [4, 46]. Both molecular sub-
types are therapeutically relevant as MYC-driven SCLC 
is particularly sensitive to aurora kinase (AURK) A/B 
inhibition and C-MYC inhibition may enhance the thera-
peutic efficacy of chemotherapy [4, 47]. Furthermore, 
NEUROD1 effectors promote survival, migration, and 
proliferation of SCLC cells through cell surface receptor 
tyrosine kinase tropomyosin-related kinase B (TRKB) 
and NCAM1. Interestingly, TRKB and NCAM1 promote 
metastasis by inducing invasive behavior in NE lung can-
cers [48, 49]. Enforced overexpression of TRKB results in 
altered expression of molecular mediators of epithelial-
to-mesenchymal transition (EMT) including downregu-
lation of CDH1 and upregulation of Twist [50]. NCAM1 
expression stimulates cell–matrix and neurite outgrowth 
by regulating fibroblast growth factor (FGF)-receptor 
(FGFR) interaction. Furthermore, amplification of FGFR1 
is found in 5.6% of SCLCs which represents a therapeutic 
target of interest [1, 51].

ASCL1-driven SCLCs can further be subdivided based 
on hairy and enhancer of split-1 (HES1) expression. 
Accordingly, ASCL1-high tumors can be subclustered 
into HES1-low and HES1-high groups (SCLC-A and 
SCLC-A2, respectively) [3, 4, 52]. HES1 is a downstream 
target of the Notch pathway and acts as an important 
regulator of cell proliferation, differentiation, invasion, 
cancer stem cell (CSC)-like properties, and tumorigenic-
ity [53, 54]. Of note, drug screening indicated that SCLC-
A2 (described as NEv2) is more resistant to AURK and 
mammalian target of rapamycin (mTOR) inhibition [52].

The NE subtypes share the expression of the TF 
INSM1, a driver of NE differentiation. SCLC-A and -N 
are both associated with chemosensitivity in SCLC cell 
lines [4, 45]. However, SCLC-A is suspected to be even 
more chemosensitive than SCLC-N [37]. Clinical data 
demonstrated that ASCL1 overexpression is a negative 
prognostic indicator in early-stage SCLC patients and 
is associated with poor prognosis in surgically-resected 
SCLCs [55]. A subset of SCLCs lacks expression of either 
ASCL1 or NEUROD1, and some of these double-negative 
tumors are highly dependent on lower or absent expres-
sion of INSM1 [24, 42]. In combination with the lack of 
NE markers, these tumors are classified as the non-NE 
SCLC subtypes P and I [4, 56].

Non‑neuroendocrine subtypes (POU2F3 and “inflamed” 
subtype)
The class II POU domain transcription factor POU2F3 
(also known as OCT11 and SKN-1a) has been reported 
to be a master regulator of normal and malignant tuft 
cell fate [17, 57, 58]. These chemosensory cells are 
found in the epithelial lining of the gastrointestinal and 
respiratory tracts [59, 60]. POU2F3-high tumors lack 

typical NE markers, their divergent expression patterns 
resemble tuft cell signatures, suggesting that SCLC-P 
arises from a distinct cell of origin [17]. SCLC-P tumors 
occasionally show low levels of NE markers such as 
GRP and calcitonin related polypeptide alpha (CALCA; 
encoding CGRP1) and lineage-specific TFs of tuft cells 
comprising SOX9 and ASCL2 [4, 17, 61]. Other promi-
nent markers in SCLC-P include IGF-1R and growth 
factor independence 1B (GFI1B) [45, 62]. GFI and its 
homolog GFI1B modulate transcriptional repression 
through the binding of its  cofactor lysine demethylase 
1A (LSD1/KDM1A). However, the therapeutic benefit 
of LSD1 inhibition is associated with Notch activation 
and suppression of ASCL1 in SCLC. This indicates 
a potential vulnerability in SCLC-A [63]. SCLC-P is 
associated with improved survival outcomes compared 
to the other subtypes, however, further personalized 
approaches are needed [17, 24, 41].

The inflamed SCLC subtype (SCLC-I) exhibits a 
mesenchymal and inflammatory phenotype with 
increased expression of human leukocyte antigens 
(HLAs), interferon-γ (IFN-γ) activation, and immune 
checkpoints, consistent with the association between 
EMT- and immune-related gene expressions [64]. Fur-
thermore, SCLC-I expresses low levels of the epithe-
lial marker CDH1 and high levels of the mesenchymal 
markers vimentin and AXL [64]. SCLC-I tumors also 
highly express immune checkpoint molecules including 
PD-L1, PD-1, and cytotoxic T-lymphocyte-associated 
protein 4 (CTLA4). SCLC-I experiences the greatest 
benefit from immuno-chemotherapy [64]. Beforehand, 
the fourth subtype was suspected to be YAP1-driven, 
however, its existence is currently being disputed and 
its clinical context remains unclear [65], since YAP1 
can only be confidently detected in  vitro cell culture 
settings. Of note, recent immunohistochemistry (IHC)-
based studies provided evidence for a quadruple-nega-
tive SCLC subtype (SCLC-QN), which is characterized 
by low/absent expression of all four TFs [55]. Indeed, 
it is not known if YAP1 itself acts as a major transcrip-
tional driver of this phenotype or a marker of it [66]. 
YAP1, a transcriptional key regulator of the Hippo 
growth signaling pathway, functions as an oncogene 
and its overexpression induces EMT [67, 68]. YAP1-
expressing SCLC cell lines are likely more adherent. 
Intriguingly, knockdown of YAP1 in many SCLC lines 
causes morphologic transformation reminiscent of 
floating growth with concomitant expression patterns 
of integrin and laminin-mediated cell attachment [69]. 
Recent analyses revealed that YAP1-regulated repres-
sion of the ajuba LIM protein (AJUBA) strongly cor-
related with shorter overall survival (OS) in SCLC 
patients [70]. Higher expression levels of YAP1 are 
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associated with worse prognosis and decreased survival 
with increased chemoresistance [70].

Lineage plasticity and transdifferentiation
Epithelial cell types possess diverse functions at steady-
state and after injury. The normal lung exhibits a slow 
cell turnover. However, quiescent stem cells with enor-
mous curative potential arise after epithelial injury. The 
great diversity of epithelial progenitors implies a high 
degree of lineage plasticity [71, 72]. In contrast, cancer 
cell plasticity is referred to the conversion from one com-
mitted developmental lineage to a stem cell or another 
differentiated cell [73, 74]. Intratumoral heterogeneity 
is a consequence of such plasticity and describes multi-
ple cell populations and gene signatures within a tumor. 
In contrast, intertumoral heterogeneity refers to het-
erogeneity across several tumors or patients [75]. Tumor 
microenvironment (TME)-induced selection pressure 
drives tumor evolution and consequently associates with 
therapeutic resistance and metastasis [72, 76]. Further-
more, tumor cell conversion into different histological 
subtypes is associated with independence from an initial 
oncogenic driver, selective pressure of therapeutic treat-
ment, and drug resistance [77, 78]. Indeed, LUAD can 
transdifferentiate into small cell NE cancers (SCNCs) 
under targeted therapy selection (e.g. tyrosine kinase 
inhibition (TKI)), (Fig. 1) [1, 78, 79]. Furthermore, trans-
formation into SCLC can occur in anaplastic lymphoma 

kinase (ALK)-positive lung cancer upon treatment with 
ALK-inhibitors and in wild-type EGFR or ALK NSCLC 
following immunotherapy [80, 81]. Although NSCLC and 
SCLC are different diseases, the histologic transforma-
tion from NCSLC into SCLC shares common cells of ori-
gin [82, 83]. Indeed, LUAD usually originates from AT2 
cells within the peripheral lung regions, and, henceforth 
acquired resistance to EGFR/ALK-TKI therapy under-
lies equal molecular mechanisms [82–84]. Emerging 
evidence indicates that in order to survive unfavorable 
microenvironments, SCLC tumors transform from NE to 
non-NE phenotypes driven by the presence of additional 
molecular alterations or epigenetic changes, signaling 
pathways, and the TME (Fig. 2) [17, 72, 85]. Thus, a bet-
ter understanding of the molecular plasticity influencing 
the functional diversity and corresponding therapeutic 
response in SCLC remains to be elucidated [73].

Subtype switching
Notch signaling is generally suppressed in NE SCLC 
which may induce a transition from NE to non-NE cells. 
Recent studies demonstrated that MYC activates Notch 
signaling, driving the temporal evolution of SCLC het-
erogeneity by conducting the sequential conversion 
of SCLC tumor cells from an ASCL1- to a NEUROD1- 
and, ultimately, to a non-NE (YAP1) state (Fig.  3a) [47, 
86–88]. Similarly, Notch activity induces a non-NE 
fate in SCLC models associated with MYC-L [24, 89]. 

Fig. 3 Intratumoral heterogeneity of SCLC based on endogenous or exogeneous influences. a Intratumoral subtype switching is facilitated 
by enriched MYC expressions and/or increased Notch activity. This endogenous transition is assumed to proceed from NE high tumors to non-NE 
phenotypes. Hence, ASCL1-driven SCLCs transform into NEUROD1 and, ultimately, into YAP1-high tumors. b Exogeneous subtype transition 
is caused by systemic therapy, leading to selection of subclones showing intrinsic or acquired resistance. Disease recurrence accompanied 
by chemoresistance represents a hallmark of SCLC. Created with BioRender.com. NE - Neuroendocrine; ASCL1 - Achaete-scute homologue 1; 
NEUROD1 - Neurogenic differentiation factor 1; MYC - MYC proto-oncogene
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MYC-expressing, Notch-active cells display variant mor-
phology and expression of NEUROD1 or YAP1. However, 
MYC-negative SCLCs with Notch activity did not exhibit 
the aforementioned features [86]. Conclusively, Notch 
activity alone is insufficient to promote the development 
of SCLC-N and SCLC-Y subtypes. It is more  likely that 
MYC and Notch work together to drive the progression 
of SCLC.

SCLC tumors may exert bidirectional cell state transi-
tions. Most tumors consist of multiple SCLC cell types, 
and intratumoral subtypes may collaborate to promote 
tumorigenicity and cellular diversity. Based on fluores-
cent promoter sequences of ASCL1, NEUROD1, or YAP1 
to directly measure the switching of SCLC subtypes, 
it was shown that each TF was associated with distinct 
morphological characteristics and localization within 
the tumors [90]. Dual reporter experiments showed 
minimal coexpression of TFs, indicating mutually exclu-
sive cell states. However, transition rates varied among 
the different state pairs and were influenced by factors 
such as cell density. Accordingly, the conversion into an 
ASCL1-dominant state following increased cellularity 
indicated that cell–cell signaling may impact transition 
rates [90]. Extensive contacts between YAP1-expressing 
cells and NE-high cells displayed commensal niche-like 
interactions. Moreover, phenotypic switching between 
therapy-sensitive (i.e., NE) and therapy-resistant states 
(i.e., mesenchymal or neural) has been associated with 
underlying persistence of SCLC despite initial responses 
to chemotherapy (Fig.  3b) [90]. A recent study demon-
strated that immune-cold SCLCs (such as SCLC-A) lost 
their NE signature upon AURKA inhibition, resulting in 
a transition towards an inflamed phenotype. Thus, com-
bined PD-L1 and AURKA therapy displayed durable effi-
cacy in vivo [91]. These data indicate a high fluctuation of 
subtype plasticity in SCLC tumors.

Mechanisms of resistance
Several studies have added to the understanding of 
molecular mechanisms of acquired resistance in SCLC 
in the past years. When DNA damage occurs, caused for 
example by extrinsic damaging agents, tumor cells need 
to maintain the integrity of the genome for further cell 
proliferation and survival [92]. Consequently, several 
research groups hypothesized that contributors to drug 
resistance are primarily associated with altered DNA 
damage repair [93]. As such, poly(ADP-ribose) polymer-
ase (PARP) proteins are commonly activated in response 
to DNA damage caused by platinum and UV radiation, 
thus, playing a pivotal role in base excision repair (BER) 
and nucleotide excision repair (NER) [94]. The growing 
interest in DNA damage response (DDR) is driven by the 
discovery that aggressive tumors such as SCLC exhibit 

alterations in DDR pathways. Preclinical research has 
shown that inhibiting DDR proteins like PARP enhances 
the anti-tumor immune response facilitated by PD-L1 
inhibition through T cell-mediated effects [95, 96]. 
Accordingly, the proposed synergistic response of com-
bined ICI and PARPi therapy has prompted numerous 
clinical trials. In SCLC, a phase II trial (NCT04701307) 
evaluated the efficacy of combination therapy including 
the anti-PD-1 monoclonal antibody dostarlimab and the 
PARP inhibitor niraparib in pre-treated extensive-stage 
patients [97]. Although the interim futility criteria were 
not met in NE carcinomas, SCLC patients exhibited 
durable disease control [97]. A recent study focused on 
the high-mobility group box protein B1 (HMGB1) and 
its strong correlation with chemoresistance in SCLC. 
The study illustrated how HMGB1 is able to initiate 
PARP1 self-modification, facilitating its interaction with 
microtubule-associated protein/light-chain 3  (LC3) and 
promoting nucleophagy which contributes to chemore-
sistance in SCLC [98]. Another study identified YES1 as a 
novel targetable oncogene that drives SCLC proliferation 
and metastasis, showing significant antitumor efficacy in 
organoid models as well as in cell- and patient-derived 
xenografts  (CDX/PDX). This study also demonstrated 
alterations in the DDR process following treatment with 
the YES1 inhibitor CH6953755 or dasatinib [99].

A prevalent form of chemoresistance observed in 
numerous cancers is multidrug resistance (MDR) that 
is frequently mediated by P-glycoprotein (MDR1) and 
MDR-related proteins (MRP1 and MRP2) via ATP-
dependent efflux [100]. Studies have reported that ele-
vated expression of MDR1 and MRP1 in human samples 
and xenografts is associated with a poor prognosis and 
increased chemoresistance [101, 102]. Numerous anti-
tumor drugs used to treat SCLC effectively induce DNA 
damage, thereby affecting the viability of rapidly prolifer-
ating tumor cells. Glutathione (GSH), a thiol-containing 
molecule, enhances the repair of DNA damage and pre-
vents apoptosis [103]. Furthermore, ferroptosis, a form 
of iron-dependent cell death, is triggered by the deactiva-
tion of cellular antioxidant defenses dependent on GSH. 
This leads to the iron-dependent accumulation of harm-
ful lipid reactive oxygen species (ROS). The activation of 
ferroptosis has been shown to impede tumor growth and 
play a role in the development of chemotherapy resist-
ance [104].

Cancer stem cells and corresponding signaling pathways
CSCs, also referred to as tumor-initiating cells, consti-
tute a small population of malignant cells with unlim-
ited proliferative potential. They show high capacity for 
self-renewal, metastatic dispersal, and therapeutic resist-
ance [105]. The cell of origin of CSCs remains unknown, 
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but they phenotypically and functionally resemble nor-
mal stem cells of the same tissue [106]. There is grow-
ing evidence that CSCs originate from normal cells by 
gaining stem cell-like characteristics, which is mostly 
due to EMT [107–109]. EMT is fundamental for physi-
ological processes including epithelial generation dur-
ing embryogenesis, organogenesis, and wound healing 
[110]. Moreover, EMT influences the pathophysiology of 
fibrosis and various malignant transformations. It refers 
to the dedifferentiation of stationary epithelial cells into 
motile mesenchymal cells, thereby promoting cancer 
progression. Conversely, mesenchymal-to-epithelial tran-
sition (MET) describes the reverse process. Both EMT 
and MET endow cell migration to distant organs, induce 
pluripotency and CSC properties, prevent apoptosis and 
senescence, and contribute to immunosuppression [111, 
112]. Stem cell signaling facilitates intratumoral hetero-
geneity and promotes EMT phenotypes in SCLC. CSCs 
may also arise from non-malignant, dysregulated pro-
genitor cells, which ultimately results in aberrant plas-
ticity [113]. Importantly, CSCs are characterized by 
particular cell surface markers including CD133, CD44, 
CD117, CD90, CD166, and epithelial cell adhesion mol-
ecule (EpCAM) in NSCLC. Likewise, PODXL-1, PTCH, 
and CD87, as well as aldehyde dehydrogenase (ALDH) 
enzymatic activity are associated with SCLC [114–117]. 
Notably, the identification of CSCs from human solid 
tumors remains challenging due to heterogeneous cell 
populations that may substantively confirm stem-cell-like 
properties [118].

The dysregulation of signaling pathways may induce 
CSCs occurrence and tumorigenesis [116]. Develop-
mental signaling pathways (including the Hippo, Notch, 
Hedgehog (HH), and Wnt/β-catenin pathways) are fre-
quently altered in lung CSCs [119, 120].

The Hippo signaling pathway balances proliferative and 
apoptotic capacities of cells by initiating the mammalian 
sterile 20-like kinases 1 and 2 (MST1/MST2) with the 
adaptor protein salvador homolog 1 (SAV1) and the large 
tumor suppressor kinase 1/2 (LATS1/LATS2) with the 
MOB kinase activator 1 (MOB1) as an adaptor protein 
(Fig.  4a) [121]. During pathway activation, consecutive 
phosphorylation events are mediated by these kinases 
[122]. Because YAP1 and the transcriptional coactivator 
with PDZ-binding motif (TAZ, a homologue to YAP1) 
cannot bind to the DNA directly, they must interact with 
DNA-binding TFs. The TEA domain transcription factor 
(TEAD) family regulates target genes when Hippo sign-
aling is inactivated [123]. Indeed, altered Hippo signal-
ing causes increased YAP1 and/or TAZ activity, leading 
to the extension of CSC populations. This contributes to 
solid tumorigenesis, cancer progression, and chemore-
sistance, primarily in non-NE SCLC [124].

Notch signaling regulates stemness with pro-tumo-
rigenic or tumor suppressive activity in SCLC. Notch 
negatively regulates NE-differentiation and is suppressed 
in the majority of SCLCs [125]. Notch signaling is acti-
vated by the binding of DLL1/3/4 or Jagged-like  ligands 
(JLL1/2) to their receptors (Notch 1–4) leading to a con-
formational change. Additionally, Notch receptor cleav-
age is promoted when γ-secretase releases the Notch 
intracellular domain (NICD) from the cell membrane 
(Fig. 4b) [126, 127]. NICD translocates into the nucleus 
where it interacts with the DNA and induces the tran-
scription of the transcriptional regulators HES1, and 
hairy and enhancer of split-related protein 1 (HEY1) 
[128]. HES1 and HEY1 act as transcriptional repressors 
of ASCL1, which are themselves activators of the expres-
sion of Notch ligands [129]. The non-functioning ligand 
DLL3 is expressed accordantly with ASCL1 and acts as 
a dominant-negative inhibitor of Notch signaling [130]. 
Endogenous activation of Notch signaling accompanied 
by loss of NE differentiation results in a NE to non-NE 
fate switch, which is mediated partly by the RE1 silencing 
transcription (REST) co-repressor (Fig. 4b) [89].

The HH pathway participates in embryonic and early 
hematopoietic stem cells. Aberrant HH signaling has 
been linked to various solid and hematological can-
cers [131–133]. The paracrine HH ligands include sonic 
hedgehog (SHH), indian hedgehog (IHH), and desert 
hedgehog (DHH). These isoforms bind to the trans-
membrane receptors patched 1 (PTCH1) and PTCH2, 
and mitigate an inhibitory effect on smoothened (SMO) 
[134]. Subsequently, the initiated signaling cascade leads 
to the inhibition of suppressor of fused (SUFU) and to 
the activation of the glioma-associated oncogene family 
(GLI1, GLI2, and GLI3). Consequently, HH target genes, 
including SOX2, are actively transcribed (Fig.  4c) [135]. 
Determining the role of these pathways in cancer and 
their intracellular crosstalk is a promising area for novel 
targeted therapies [116].

Epigenetic modifications
Epigenetic changes involve post-transcriptional DNA 
modifications which have profound effects on gene 
expression. Moreover, epigenetic processes, which 
include DNA methylation, histone modification, and 
chromatin remodeling, lead heritable changes in gene 
expression and may control cell identity [136]. Impor-
tant epigenetically silenced genes in SCLC include 
NEUROD1, REST, TF2 (TCF2/HNF1B), retinoic acid 
receptor beta (RARB), and BCL2. Further genes located 
in the critical chromosomal region 3p include RASSF1A 
and enhancer of zeste homologue 2 (EZH2) [137, 138]. 
EZH2 acts as a master regulator of transcription and 
affects DNA methylation via chromatin modification 



Page 9 of 25Solta et al. Molecular Cancer           (2024) 23:41  

and activation of DNA methyltransferases (DNMTs) by 
targeting the CpG islands (Fig. 4d) [139]. The upregula-
tion of EZH2 correlates with poor prognosis in SCLCs 
[140]. EZH2 overexpression leads to epigenetic silencing 
of transforming growth factor-β (TGF-β) receptor type 2 

expression and suppression of apoptosis. This results in 
altered DNA methylation which promotes SCLC pro-
gression by suppressing the TGF-β-Smad-ASCL1 path-
way [141]. Further chromatin modifiers comprise the 
histone acetyltransferase (HAT) genes CREB-binding 

Fig. 4 Frequently altered signaling pathways in SCLC. a The Hippo signaling pathway discriminates between active (ON) and inactive (OFF) 
states. When Hippo signaling is on, the phosphorylation of SAV1 is mediated by MST1/2, both further activating MOB1A/B and LATS1/2 
via phosphorylation. Ultimately, the YAP/TAZ complex is phosphorylated and degraded, resulting in transcriptional repression. Or in contrast, 
when Hippo signaling is off, the phosphorylation cascade does not take place. The YAP/TAZ complex translocates into the nucleus and interacts 
with TEAD, leading to transcriptional activation. b The Notch signaling pathway is mediated between signal-sending and signal-receiving 
cells via interaction of the Notch receptor and a Notch ligand (DLL or JAG). Consecutively, the Notch receptor is cleaved; NICD translocates 
into the nucleus and activates the transcription of target genes in signal-receiving cells (e.g. HES, HEY, and MYC). ASCL1 is categorized as a master 
regulator of NE differentiation via high expression of the non-functional DLL3 at the golgi apparatus. DLL3 acts as a dominant-negative inhibitor 
of Notch signaling and orchestrates the degradation of other Notch members. HES and HEY family members encode transcriptional repressors 
of ASCL1. Notch negatively regulates NE differentiation in SCLC. High ASCL1 expression levels significantly correlate with NE differentiation. 
c Hedgehog signaling is activated by the binding of SHH to PTCH1. This leads to the shift of inhibitory activity towards SUFU (green path). 
Subsequently, the GLI1 monomer translocates into the nucleus and promotes gene transcription. When PTCH1 exerts its inhibitory effects 
against SMO, SUFU and GLI1 build a complex which inactivates the expression of HH target genes (red path). d Epigenetic reprogramming plays 
an instrumental role in SCLC via methylation / acetylation of DNA/histones. Key chromatin modifiers are EZH2, the CREBBP/EP300 complex, 
and the KMT2 family proteins which each target the amino acids K27, K18, or K4 of histone 3, respectively. Created with BioRender.com. 
ASCL1 - Achaete-scute homologue 1; DLL3 - Delta-like protein 3; REST - RE1-silencing transcription factor; HES - HES family BHLH transcription 
factor 1; HEY - HES-related repressor protein 1; MYC - MYC proto-oncogene; CYCD1 - Cyclin D1; p21 - Cyclin dependent kinase inhibitor 1A; 
MOB1A/B - MOB kinase activator 1A/B; MST1/2 - Mammalian sterile 20-like kinases 1 and 2; LATS1/2 - Large tumor suppressor kinase 1/2; 
SAV1 - Salvador homolog 1; YAP1 - Yes-associated protein 1; TAZ - Tafazzin family protein; TEAD - TEA domain transcription factor; EZH2 - Enhancer 
of zeste homolog 2; Me - Methylation; Ac - Acetylation; CREBBP - CREB binding protein; EP300 - E1A binding protein P300; H2A/2B/3/4 - Histone 
2A/2B/3/4; KMT2 - Lysine methyltransferase 2; SHH - Sonic hedgehog; GLI1 - GLI family zinc finger 1; SUFU - SUFU negative regulator of hedgehog 
signaling; PTCH1/2 - Patched 1; SMO - Smoothened, frizzled class receptor; BCL2 - B-cell lymphoma 2; SOX2 - SRY-box transcription factor 2
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protein (CREBBP or CBP) and EP300 as well as the epi-
genetic readers encoded by MLL and MLL4 (also known 
as histone methyltransferase genes KMT2A and KMT2D) 
(Fig. 4d) [142]. Lysine Demethylase 6A (KDM6A) which 
shows a high affinity to KMT2A binding, is an epigenetic 
regulator affecting chromatin accessibility, thereby  con-
trolling ASCL1-to-NEUROD1 subtype switching [143]. 
CREBBP is a transcriptional coactivator of the Wnt/β-
catenin signaling pathway and functions as a HAT [144]. 
CREBBP is commonly mutated in human SCLC and 
shows homology to EP300, another HAT. Deletion in 
CRB/EP300 reduces histone acetylation and transcrip-
tion of cellular adhesion genes while driving tumorigen-
esis [44, 145]. These effects can be partially restored by 
histone deacetylase (HDAC) inhibition [44, 146].

The bromodomain and extraterminal domain (BET) 
family regulates MYC expression and amplification in 
SCLC [147]. Since chromatin modifiers and TFs conquer 
the super-enhancer role, inhibition of super-enhanced 
oncogenes such as MYC, BCL2, ELF3, or NFIB represents 
a  potential therapeutic strategy [148, 149]. Addition-
ally, the Schlafen family of proteins (SLFN11) controls 
cell proliferation and induces immune responses [150]. 
High expression of SLFN11 correlates with response to 
chemotherapy including cisplatin and PARP inhibitors, 
while SLFN11 downregulation is associated with cispl-
atin  resistance [151]. Moreover, the overexpression of 
EZH2 mediates chemotherapeutic resistance by down-
regulating SLFN11 through histone modification and 
methylation in a subset of SCLCs [150].

Experimental models in SCLC
More than two-thirds of SCLC patients suffer from 
metastatic tumor manifestation, which excludes surgi-
cal resection from the list of potential treatment options 
[152]. Moreover, moderate success from surgical resec-
tion has hindered tumor biobanking in SCLC [153]. 
Preclinical research in SCLC often relies on classical 
methods based on cell culture and animal models (Fig. 5).

Cell lines
The first human SCLC cell line was established from a 
metastatic lymph node in 1971 [154]. This original clas-
sification of SCLC was characterized by floating culture 
properties. Since then, multiple SCLC cell lines have 
been established and have determined the beginning of 
preclinical research [155, 156]. Gazdar et al. first under-
scored the importance of human lung cancer cell lines 
by highlighting the presence of more than 8,000 citations 
on past cell line studies [157]. Nowadays, the number of 
citations in the PubMed database attributable to human 
lung cancer cell lines has potentiated to more than 
60,000. Although SCLC shows rapid tumor growth, the 
establishment of cell cultures is rather difficult as tumor 
cells do not entirely harbor adherent properties, but 
commonly grow in suspension and require special media. 
Since cell lines consist of one clone, they only represent 
a subpopulation of the neoplasm and do not consider 
the high intratumoral heterogeneity. Nonetheless, estab-
lished SCLC cell lines are capable of retaining their char-
acteristic NE features in vitro [158].

Fig. 5 Fundamental preclinical models for SCLC research. Preclinical research commonly relies on well-established assays based 
on two-dimensional (2D) or three-dimensional (3D) cell culture. Different cell compositions (cell lines, circulating tumor cells, tissues) can be 
furthermore examined in vivo via subcutaneous or orthotopic transplantation. Hence, CDX or PDX xenotransplantation mimic human disease 
regardless of immune microenvironment. The genetically engineered mouse model (GEMM) displays a platform to investigate tumor initiation 
and tumorigenesis of SCLC via genetic knock-out. In contrast, humanized mice present intact immunologic features that may be exploited 
to investigate the interaction between SCLC tumors and their microenvironment. Zebrafish larvae are frequently utilized to study the dynamic 
invasion of tumor cells in vivo or evaluate cost-effective chemical screenings. Sampling of representative tissue samples is rather rare in SCLC 
patients due to infrequently performed surgery. Rapid research autopsies should be used with greater frequency in SCLC research. Created 
with BioRender.com. CDX - Cell-derived xenograft; PDX – Patient-derived xenograft; GEMM – Genetically engineered mouse model
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Human SCLC cell lines represent a fundamental tool 
for investigating novel therapeutic agents. Accordingly, 
multiple treatment approaches have been proposed to 
overcome drug resistance including the inhibition of 
exportin-1 (XPO1). Decreased XPO1 levels sensitized 
SCLC to cytotoxic therapy in  vitro [159]. This novel 
target was identified through SCLC cell line screening 
using CRISPR-Cas9. Furthermore, the XPO1 inhibitor 
selinexor acted synergistically with cisplatin or irinote-
can in vitro and reduced tumor formation in vivo [159]. 
Several phase I/II trials evaluated the combination of 
selinexor with chemotherapy in metastatic solid tumors 
(NCT02419495, NCT04256707) [160, 161]. Overall, the 
combination showed acceptable tolerability and clinical 
activity, but superior efficacy has to be further investi-
gated in tumor entities where CHT remains the standard-
of-care therapy [161]. Conclusively, pre-clinical results 
often coincide with potential novel clinical approaches 
and vice versa.

The SCLC-CellMiner database which comprehensively 
comprises data of 118 patient-derived SCLC cell lines has 
been recently established [162]. This dataset provides in-
depth information about genomic signatures, methylome 
and transcriptome data as well as drug sensitivity pro-
files. Accordingly, results from SCLC cell lines are report-
edly reproducible and confirm the classification of SCLC 
molecular subtypes. Besides the commonly known TFs, 
these datasets have also been linked with prominent sign-
aling pathways including Notch and Hippo [162]. Simi-
larly, proteomic results obtained from human-derived 
SCLC cell lines and patient-derived samples demon-
strated comparable results [163, 164]. Another useful 
database for advancing SCLC research is the Cancer 
Dependency Map (DepMap) portal. In general, DepMap 
aids in elucidating cancer-specific therapeutic vulnerabil-
ities and identifying novel biomarkers across hundreds 
of cancer cell lines by providing open access to key can-
cer dependencies. This tool has particularly been used 
in SCLC to decipher the TF-driven signatures and cor-
responding vulnerabilities of SCLC subtypes. In SCLC-A, 
interactions between ASCL1, NKX2-1 (TTF1), and pros-
pero homeobox protein 1 (PROX1) have been reported 
to modulate Notch signaling and genes involved in cell 
cycle regulation [165]. DepMap calculations revealed 
mutually exclusive correlations between high POU2F3 
and C11orf53 (POU2AF2) or COLCA2 (POU2AF3) 
expression levels in SCLC cell lines and patient samples, 
hence emphasizing a unique biological association with 
tuft cell-like properties [166, 167].

Organoids
In-vitro assays in a three-dimensional (3D) setting or 
multicellular organoids represent emerging techniques 

in cancer research. In contrast to normal floating aggre-
gates in 2D culture, spheroids are defined as simple 3D 
cell aggregates frequently consisting of one cell type. 
Organoids, in turn, represent complex clusters of multi-
ple cell types resembling the original tissue. Human stem 
cells derived from lungs or other organs were recently 
cultured in a 3D setting [168, 169]. Once embedded, stem 
cells start to self-organize in extracellular matrix such 
as collagen, start proliferating and differentiating [170]. 
Occasionally, malignant cells manage to organize or 
maintain 3D growth in  vitro. The established organoids 
maintain the architecture of parental tumor tissues. Even 
after longitudinal culture, organoids perpetuate genetic 
patterns and morphological characteristics [171]. Cancer 
organoids represent suitable in  vitro tools that are less 
time-consuming and cost-intensive. However, organoids 
require additional nutrients and are not yet capable of 
self-constructing into organ- or tissue-specific functional 
structures and show limited long-term differentiation 
[172].

Although SCLC is highly heterogeneous, established 
SCLC organoids sustain the characteristic histological 
properties including small cell morphology, expression of 
NE markers, and genetic programs compared to original 
tumor tissues [173]. Intriguingly, the intratumoral het-
erogeneity of SCLC remains present in organoid-based 
assays which is reflected by the differential sensitivity to 
chemotherapy [171]. Furthermore, organoids are popu-
lar tools to investigate the complex interplay between 
tumor cells and the multifaceted microenvironment. 
Orthotopically transplanted SCLC organoids resulted in 
metastatic dissemination, which was associated with epi-
genetic changes including KMT2C loss [174]. KMT2C 
is a histone H3 lysine 4 methyltransferase frequently 
altered in ES-SCLC patients [142]. CRISPR editing of the 
key driver genes in normal lung tissue of SCLC, namely 
TP53, RB1, and C-MYC ultimately lead to organoid for-
mation [174]. Hence, the primary lesion derived from 
such organoids mimics human disease more thoroughly 
compared to GEMM where multiple lesions are common 
[174]. Intriguingly, morphological structures confirmed 
SCLC origin along with disease-specific markers includ-
ing ASCL1, CHGA, or SYP.

Organoids obtained from patient tissues preserve the 
histological subtypes of lung cancers [175]. Moreover, 
organoids maintain cancer-characteristic mutations such 
as EGFR, BRCA2, or MET. Regarding SCLC, the estab-
lished organoids showed typical morphology of small 
round cells characterized by high nuclear to cytoplas-
mic ratio and granular chromatin. Accordingly, several 
NE markers were present in SCLC organoids including 
NCAM1, SYN, and TTF-1 [175]. Patient-derived tumor 
organoids display a useful tool for therapeutic screening 
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[175]. Of note, half-maximal inhibitory concentrations 
 (IC50) of olaparib (PARP inhibitor), erlotinib (EGFR 
inhibitor), or crizotinib (MET inhibitor) were shown to 
correlate with corresponding genetic alterations. Olapa-
rib was most efficient in BRCA2-deficient samples, the 
TKI erlotinib showed differential responses in EGFR-
mutant organoids, and crizotinib effectively targeted 
organoids harboring c-MET alterations [175]. Altogether, 
organoid-based preclinical research represents an emerg-
ing and reliable tool for SCLC research.

Mouse xenograft models
Both intra- and intertumoral heterogeneity can be evalu-
ated by IHC staining of SCLC tissue specimens. How-
ever, preclinical in vitro models such as cell lines do not 
exhibit molecular or phenotypical heterogeneity because 
they represent a single clone of the original tumor. In 
contrast, in vivo models such as GEMMs or PDXs enable 
the display of tumor heterogeneity and plasticity [62]. 
Whole-exome sequencing (WES) revealed the enduring 
preservation of somatic mutations in PDXs compared to 
primary tumors. Moreover, the genomic and transcrip-
tional signatures of sub-cultured PDXs closely mirror 
those of the original PDX [176]. Serial xenografts derived 
from circulating tumor cells (ctCDX) at different time 
points of a SCLC patient accurately matched the chang-
ing drug sensitivities of the patient’s disease. This data 
underscores the promising translational potential of 
employing this preclinical approach [176].

CtCDXs and PDXs are commonly used to elucidate the 
genetic exceptionalism of SCLC. Recently, multi-omics 
analyses from both CDX and PDX of human SCLCs 
highlighted the genomic landscape of three SCLC sub-
types driven by ASCL1, NEUROD1, and POU2F3 [177]. 
The xenografts preserved NE/non-NE characteristics, 
hence corroborating their preclinical applicability. How-
ever, YAP1 expression has scarcely been detected in 
clinical specimens or xenografts [55, 61]. In line with 
previous data, POU2F3-driven PDXs were strongly 
associated with high MYC levels [177]. MYC along 
with stemness-associated markers CD44 and SOX2 are 
positively regulated upon ligand–independent EPHA2 
(erythropoietin-producing hepatocellular A2) activation, 
which strongly increases stemness and chemoresistance 
in SCLC [178]. CSCs show high cell plasticity and har-
bor distinct features to reversibly change their epithelial 
or mesenchymal state, thereby embodying key players in 
drug resistance and invasiveness [107]. EPHA2 activates 
PRMT1 (protein arginine methyltransferase 1), which in 
turn methylates SOX2 to promote stemness and chem-
oresistance. The inhibition of EPHA2 in a SCLC PDX 
model revealed synergistic interactions with chemother-
apy following tumor regression [178]. EPHA2 inhibition 

is under current clinical investigation, primarily in 
advanced solid tumors (NCT01591356, NCT04180371). 
However, the efficacy of targeted therapy against EPHA2 
in SCLC remains to be elucidated.

In mice bearing genetically modified SCLC tumors, 
metastatic lesions were primarily located in the liver and 
lymph nodes which is in line with common metastatic 
sites of SCLC patients [179]. Omics-based analysis using 
single-cell RNA sequencing suggested epigenetic differ-
ences between primary and metastatic tumors. The gene 
locus of KMT2C was transcriptionally repressed in meta-
static lesions, presenting a novel epigenetic program of 
SCLC metastasis [174].

Mouse xenograft models have been used to explore 
chemoresistance in SCLC via longitudinal intermit-
tent chemotherapy imitating clinical applications [180]. 
One major finding comprises the metabolic reprogram-
ming of the mevalonate-geranyl–geranyl-diphosphate 
(MVA-GGPP) pathway in chemoresistant SCLCs [180]. 
Oxidative stress accumulates upon statin treatment and 
induces apoptosis via the GGPP synthase 1-RAB protein 
axis. GG-Rab proteins regulate Notch processing and are 
linked to differential responses in SCLC subtypes [181]. 
However, GGPS1 expression was associated with poor 
survival in SCLC patients [180]. Dual statin- and chem-
otherapy of three relapsed patients resulted in durable 
responses, highlighting the potential of targeting meta-
bolic changes in SCLC [180].

Genetically engineered mouse models
Animal models are expensive, resource-intensive, and 
time-consuming [175]. However, data from mouse mod-
els data have been fundamental for the most remark-
able discovery in SCLC. The recent proposition of SCLC 
molecular subtypes partly relies on GEMM data in com-
bination with results from human tumor samples [4].

GEMMs are generated via alteration of target driver 
genes that are functionally conducive for context-
dependent tumorigenesis. The first SCLC GEMM was 
established by Anton Berns in 2003 [182]. Using the Cre/
LoxP-mediated recombination system, both TS genes 
TP53 (floxed exons 2–10) and RB1 (floxed exon 19) 
were inactivated, causing small cell NE tumors [183]. 
The murine SCLCs highly resembled human disease. 
Manipulation of lung epithelial cells induced malignant 
transformation only in NE and AT2 cells upon Tp53 
and Rb1 disruption, thereby confirming the SCLC cells 
of origin [9]. Beyond the Cre recombinase and adeno-
viral vector transfection, advanced methods including 
Lenti-Cre-based mouse models were established. In tri-
ple knock-out (TKO) mice with silenced Tp53fl/fl, Rb1fl/

fl, and Rb2fl/fl, SCLC tumors evolved within four to six 
months and acquired NE characteristics accompanied 
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by predominant ASCL1 expression. Barcoding of SCLC 
tumor clones referring to a panel of 40 candidate genes 
revealed that Tsc1 and Pten inactivation resulted in 
increased tumor size, while Pcna/Arid1a alterations were 
associated with decreased TMB [184].

In experimental settings, adenoviral Ad-K5cre (Kera-
tin K5 regulated cre recombinase) infection of NMRI-
Foxn1nu/nu immunodeficient young mice resulted in the 
malignant transformation of basal cells into SCLC [185]. 
Notably, this transformation was characterized by the 
quadruple loss of floxed TS genes Rb1F/F, Tp53F/F, PtenF/F 
and by null retinoblastoma-like protein 1 (Rbl1−/−) 
[185]. Since these murine cell lines can be implanted into 
immunocompetent mice of the same strain, they are par-
ticularly useful for immunotherapy studies. Moreover, 
syngeneic SCLC tumors preserve the transcriptional pro-
gram of newly established murine cell lines, and display 
remarkable congruence to human SCLCs [186]. Another 
advantage of murine SCLC models is their potential to 
study metastatic progression. Hence, these emerging 
in vivo models are highly advantageous for studying anti-
metastatic and immunotherapeutic approaches [186].

Humanized mice
SCLC is known for its propensity to metastasize, lead-
ing to infrequent surgical interventions and a paucity of 
representative samples. The immune system is known 
to be closely related to tumorigenesis and cancer pro-
gression [187]. However, the engraftment of malignant 
cells or tissues in mice with severe immunodeficien-
cies has limitations such as xenogeneic immune rejec-
tion [188]. Therefore, to exploit the interaction between 
human tumor cells and the TME, immunocompe-
tent models featuring T-cell chimerism are increas-
ingly being applied in SCLC research [189]. Humanized 
mice can be generated by injecting human peripheral 
blood leukocytes or hematopoietic progenitor cells into 
immunocompromised mice [190, 191]. CDX and PDX 
tumors of SCLC were successfully grown in humanized 
mice with a growth rate comparable to immunodefi-
cient mice [192]. Tumor-infiltrating immune cells are 
sparse in SCLC xenografts, mirroring their incidence in 
human SCLC tumors. However, human T-cells occur in 
lymph nodes and spleen. SCLC cells were characterized 
by the low expression of PD-L1 and MHC class I and II, 
whereas PD-1 expression was present on the surface of 
corresponding human T-cells [192]. Although SCLC 
is associated with high TMB, the response to immune 
checkpoint inhibition (ICI) is relatively poor. Simultane-
ous inactivation of WEE1 inhibition and PD-L1 block-
ade resulted in decreased tumor growth via activation 
of the STING-TBK1-IRF3 pathway along with cytotoxic 
T-cell infiltration in immunocompetent SCLC GEMMs 

[193]. Moreover, WEE1 blockade activated STAT1 sign-
aling, ultimately increasing IFN-γ and PD-L1 expression 
[193]. Two clinical trials investigating WEE1 inhibition 
in SCLC were conducted. NCT02688907 was terminated 
and NCT02593019 was completed, but no further results 
have been published.

Chimeric antigen T-cell transfer (CAR-T) signifi-
cantly advances cancer research. Specifically, targeting 
the AC133 epitope of the stem cell marker CD133 using 
CAR-T cells showed prolonged survival of humanized 
mice with orthotopically growing SCLC [194]. Similarly, 
allogeneic anti-DLL3 CAR-T cells demonstrated high 
efficacy and safety in SCLC mouse models [195]. CAR-T 
cells have demonstrated striking results in the treat-
ment of hematologic malignancies [196]. However, their 
clinical use in SCLC has not yet been fully elucidated. 
The bispecific T-Cell engager tarlatamab demonstrated 
manageable safety profiles in an open-label phase I trial 
(NCT03319940) [197]. Patients with relapsed/refrac-
tory SCLC were treated with tarlatamab co-targeting 
DLL3 and CD3, leading to T-cell-mediated tumor lysis 
[197]. The median progression-free survival (PFS) was 
3.7  months and the OS was 13.2  months, respectively. 
The study proposed an upfront selection of DLL3-driven 
SCLCs to obtain superior clinical outcomes [197]. Cur-
rently, three clinical trials are focusing on the applica-
tion of CAR-T cells in SCLC. A phase I study evaluating 
AMG 119 (CAR-T cell therapy targeting DLL3) has been 
suspended (NCT03392064). Two other CAR-T-based 
phase I trials on DLL3 or GD2 (glycolipid tumor antigen) 
for SCLC are already planned but have not commenced 
recruitment (NCT05680922, NCT05620342). Hence, 
upcoming clinical results will need to be reviewed before 
considering the addition of CAR-T cell therapy to the 
therapeutic regimen of SCLC.

Zebrafish model
The zebrafish has emerged as a valuable model for study-
ing cancer. Advantages comprise their transparency 
during embryonic development, the large numbers of 
offspring, cost-effectiveness, and the potential for high-
throughput screening. Additionally, the genetic similarity 
to humans and amenability to genetic engineering make 
it useful for studying human diseases [198]. However, 
some organs such as the breast or the lung are not pre-
sent in zebrafish, and the innate immune system is absent 
in larval fish < 9 days post fertilization (dpf) and in SCID 
adults. Additionally, zebrafish require a different temper-
ature for rearing [198]. Recent advances using zebrafish 
have led to the identification of oncogenic drivers and 
potential drug targets. As such, cordycepin, an activator 
of AMP-activated protein kinase (AMPK) and repres-
sor or mTOR signaling was shown to exert significant 
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decrease of proliferation and less brain metastases in 
SCLC xenografts [199]. RNA-seq analysis revealed that 
cordycepin affected vitamin D metabolism, lipid trans-
port, and proteolysis in cellular protein catabolic process 
pathways in the SCLC brain metastasis microenviron-
ment of zebrafish, regulating the expression of key genes 
such as cyp24a1, apoa1a, and cathepsin L. The anti-brain 
metastasis effect of cordycepin in SCLC was mediated 
by reversing the expression of these genes [199]. Over-
all, though zebrafish represent an expedient asset for 
advancing our understanding of lung cancer, the imple-
mentation of this model in SCLC research has been mod-
erate so far.

Analyses of patient material
Since sampling is rare in SCLC patients due to infre-
quently performed surgery, tissue-based research for 
the identification of molecular subtypes remains limited. 
Recent publications comparing whole tissue samples 
and their corresponding TMA blocks [55] or metastatic 
lymph nodes [200] demonstrated a  significant overlap 
of TF expression. Moreover, human tissues differen-
tially expressed immune markers including CD47 and 
PD-L1. IHC stainings revealed a high distribution of 
CD47 in surgically resected SCLC samples (84.6%) [201]. 
Although PD-L1 inhibition plus chemotherapy has been 
approved for the treatment of ES-SCLC patients, the pro-
tein expression in tissue samples is moderate (9.6%) [201]. 
However, the tumor-associated stromal tissue revealed 
higher PD-L1 distribution in 59.6%. Of note, better OS 
significantly correlated with high stromal PD-L1 [201]. 
In non-NE tumors, immune phenotypes displayed high 
CD8 + T-cell infiltration, supporting the inflamed SCLC 
subtype [202]. NE subtypes furthermore displayed high 
MYC levels, whereas non-NE SCLC tumors were fre-
quently associated with increased L-MYC expression 
[202].

Rapid research autopsy (RRA) is another method to 
obtain patient material where tumor specimens are col-
lected within few hours post-mortem. Our group recently 
comprehensively highlighted the importance of RRA in 
SCLC [203]. The implementation of RRA may serve as a 
promising platform for obtaining SCLC specimens and 
for delineating differences between primary/metastatic 
neoplasms and molecular subtypes.

Current aspirations in SCLC are the identification of 
blood-based biomarkers and the characterization of the 
molecular subtypes based on blood. Next-generation 
sequencing (NGS) of cell-free DNA (cfDNA) validated 
aberrant genes and copy number variations commonly 
altered in SCLC [204]. Such alterations included TP53 
mutations, MYC amplifications as well as inactivating 
mutations in Notch family genes, demonstrating the 

great potential of liquid biopsy in SCLC [205]. Further-
more, results of methylation profiling comparing cfDNA 
and patient-derived tissues revealed a strong correlation 
[206]. The SCLC molecular subtypes were successfully 
detected and portrayed similar NE and non-NE back-
grounds [206]. DNA methylation profiling has also been 
reported recently to allow molecular subtyping of both 
SCLC tissue and blood samples [207]. Additionally, the 
differentiation of lung cancer types including NSCLC 
and SCLC based on liquid biopsy demonstrated 25% 
specificity and 40% sensitivity [208]. cfDNA and single-
cell sequencing of circulating tumor DNA (ctDNA) and 
CTCs hold great potential for subtype assessment and 
biomarker-directed therapy. The RASTEN-A rand-
omized trial reported a steady decline of CTCs in SCLC 
patients during and post-treatment [209]. Furthermore, 
the baseline number of detectable CTCs significantly 
correlated with worse survival [209].

Emerging therapies
Immunotherapy in SCLC
Unlike NSCLC, where improvements in personal-
ized therapy and immunotherapy have revolutionized 
the therapeutic armamentarium, SCLC outcome has 
remained moderate upon ICI administration. Immuno-
monotherapy has not been considered in the first-line 
treatment of SCLC due to rapid disease progression 
[210]. However, combinational strategies using chem-
otherapy and PD-L1 inhibition gained approval in 
2019/2020 in the US and EU for the initial treatment of 
SCLC [211, 212]. Due to increased rates in TMB and 
common paraneoplastic syndromes (PNSs) in approxi-
mately 10% of patients, SCLC is perceived as highly 
immunogenic [213, 214]. Autoimmune responses occur 
against specific antigens pathologically expressed by 
SCLC cells, leading to specific antibody production [213, 
215]. SCLC patients that present with anti-neuronal 
nuclear antibody (ANNA)-caused PNS show improved 
survival outcomes following chemotherapy [216, 217]. 
However, cancer patients treated with anti-PD-L1 or 
anti-PD-1 exhibited worsened PNS or even developed 
PNSs [218].

Preclinical studies advanced the identification of syn-
ergistic drug interactions of chemo-immunotherapy. As 
the efficacy of ICIs is frequently associated with high 
TMB, a strong pharmacological rationale for combi-
nation therapy has been arisen [219]. The therapeutic 
transformation into SCLC immune-oasis was shown 
to ameliorate response to immunotherapy [216]. Induc-
tion of an immunosuppressive milieu can be facili-
tated through negative regulation of MHC antigen 
expression or by diminishing the function of cyto-
toxic CD8 + T-cells [220]. Combined chemo-radiotherapy  
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shows immunomodulatory effects, hence, inducing immu-
nogenic tumor cell death via apoptotic cell phagocytosis  
of antigen-presenting cells (APC) or cross-presentation of 
cancer neoantigens to T-cells [210]. Dual targeting of ICIs with 
CHT or radiotherapy can efficiently restore the anti-tumor 
activity of the immune system, hence showing their charac-
teristic and synergistic drug interactions [210]. Augmented 
expression levels of both PD-1 and PD-L1 have been ascer-
tained in several lung cancer cell lines/tissues, particularly  
in cisplatin-resistant SCLC cell lines [221]. Preclinical data 
proposed improved chemosensitization when targeting the 
PD1/PD-L1 axis in SCLC [221].

Subsequent‑line therapy and experimental therapeutic 
concepts
In the event of recurrence or progression, a distinction 
should be made between local or systemic recurrence. In 
the rare case of a local recurrence, radiotherapy or even 
surgical resection may be considered. However, in this 
case patients must be well selected and distant metas-
tases must be precisely excluded. Subsequent-line treat-
ment options for SCLC patients who progress during 
first-line chemo-immunotherapy are scarce. Re-challeng-
ing with the original regimen or a similar platinum‐based 
compound is recommended if relapse occurs after six 
months from initial therapy and can be considered if the 
relapse-free period is between three and six months [5, 
222]. For cases when re-challenging is not feasible, the 
FDA and EMA approved oral or intravenous topotecan, 
a topoisomerase inhibitor, as second-line therapy besides 
treatment regimens with cyclophosphamide, doxoru-
bicin, and vincristine [223, 224]. The antibody–drug 
conjugate Rovalpituzumab tesirine (Rova-T) targeting 
DLL3 proved to be less efficient than initially aspired, and 
further investigations on its efficacy based on molecular 
subtype stratification are warranted [225, 226]. Another 
noteworthy drug for second-line treatment of metastatic 
SCLC patients which has shown tolerability in initial tri-
als is the selective RNA polymerase II inhibitor lurbi-
nectedin [227]. Lurbinectedin has achieved accelerated 
approval by the FDA for SCLC patients with progression 
after first-line platinum-based chemotherapy [228].

Notably, several experimental therapeutic concepts 
have been recently introduced. SLFN11 expression has 
been recently demonstrated to predict response to lurbi-
nectedin [229]. Indeed, multiple human SCLC cell lines 
sensitive to this drug have been described to express 
high levels of SLFN11. This finding was confirmed using 
siRNA knockdown of SLFN11 in mouse xenograft mod-
els [230]. The alkylating agent inducing double-strand 
breaks can be administered as a monotherapy or in com-
bination with the ataxia telangiectasia and Rad3-related 

protein (ATR) inhibitors ceralasertib and berzosertib. 
Concerning the therapeutic efficacy, the synergistic effect 
of combination therapy has been shown to correlate with 
altered cell cycle regulation, resulting in mitotic catastro-
phe and apoptosis [229, 230]. Accordingly, the efficacy 
of combination therapy with lurbinectedin and berzos-
ertib is currently being investigated in SCLC patients 
in a phase I/II clinical trial (NCT04802174). Similarly, 
the combination of berzosertib and the topoisomerase I 
(TOP1) inhibitor irinotecan exerts synergistic potential 
in SCLC due to high replication stress and yields objec-
tive response rates of 36% [231]. Of note, TOP1 and ATR 
interaction also modulates the activation of the stimula-
tor of interferon genes (STING) pathway [232]. SCLC 
exhibits less intrinsic expression of STING than the 
normal lung epithelium and differential STING expres-
sion patterns are mainly associated with altered immune 
infiltration, EMT, or DNA damage response. The latter 
has been correlated with a STING-low SCLC pheno-
type, resulting in increased expression of pro‐inflamma-
tory chemokines and cytokines as well as genes encoding 
interferon type I signaling following dual inhibition 
of TOP1 and ATR [232]. Likewise, lurbinectedin was 
shown to induce PD-L1 expression via activation of the 
cyclic GMP-AMP synthase (cGAS)-STING DNA sensing 
pathway, indicating a coherence with immunomodula-
tion [229]. The recent proteomic analysis of 112 treat-
ment-naïve SCLCs revealed that mutations in the zinc 
finger homeobox 3 (ZFHX3) gene encoding a transcrip-
tion factor that transactivates the cell cycle inhibitor 
CDKN1A increases immune infiltration and contributes 
to immune-hot SCLCs [164]. Likewise, proteins associ-
ated with the cGAS-STING pathway were also elevated 
in immune-hot SCLCs. In contrast, immune-cold tumors 
displayed a positive correlation to DDR pathways and 
cytoplasmic nucleic acid sensing pathways which are 
crucial in tumors characterized by exceptionally high 
genomic instability [233]. Notably, these findings empha-
size a potential immunosuppressive role of enhanced 
DDR activity by inhibiting the cGAS-STING pathway 
which is associated with immune infiltration and trig-
gered by cytoplasmic double-strand DNA [164]. A diver-
gent approach recently unveiled increased sensitivity to 
cisplatin and anti-PD-L1 therapy due to high expression 
of the pyroptosis-related protein gasdermin E (GSDME) 
and resulting release of IL12 cytokine and upregulation of 
IFN-γ in T-cells [234]. This interactive network promotes 
the transition from SCLC-cold into SCLC-hot tumors, 
thereby improving immunotherapeutic efficacy [234].

While targeted therapy is currently not part of SCLC´s 
therapeutic armamentarium, efforts are being made to 
identify subtype-specific targets. BET family proteins 
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are key modulators of transcription and are being evalu-
ated both in the preclinical and clinical settings. BET 
inhibitors (BETis) prevent the interaction of BET pro-
teins and active chromatin, resulting in transcriptional 
regression. Since BET proteins have been associated 
with NEUROD1 expression, BET inhibition may display 
a subtype-specific therapy for SCLC-N. Recent preclini-
cal data confirmed the direct interaction of NEUROD1 
and BET proteins including BRD4 (Bromodomain-con-
taining protein 4) and MED1 (Mediator Complex Subu-
nit 1) [235]. Accordingly, SCLC-N cell lines are the most 
susceptible to the BETis JQ1 and OTX-015. The potent 
BETi NHWD-870 was used to obtain in  vivo validation 
due to its superior pharmacokinetics compared to JQ1, 
and it is currently being investigated in early-phase clini-
cal trials. In SCLC-N lines, treatment with NHWD-870 
resulted in decreased tumor burden. However, resistance 
to BETis frequently occurred [235]. Moreover, combina-
tional approaches including BET and mTOR inhibitors 
are being tested for potentiation of anti-tumor efficacy 
in SCLC. Dual targeting of SCLC PDX models increased 
anti-tumor activity without severe toxicity [236]. The 
drug interaction has been narrowed down to increased 
RSK3 expression which increases survival via stimula-
tion of the TSC2-mTOR-p70S6K1-BAD cascade [236]. 
A phase I/II clinical trial is currently recruiting SCLC 
patients for the treatment with sirolimus plus auranofin 
(targeting mTOR and thioredoxin (TRX) reductase). 
Prior to this, NE SCLC cell lines showed selective vul-
nerability to TRX antioxidant pathway inhibition. Con-
sequently, subtype-specific responses may obscure 
potential positive clinical trial outcomes, highlighting the 
need for molecular characterization and enabling appro-
priate patient selection [104].

Since ASCL1 and NEUROD1 expression occurs in 
≈ 86% of SCLC cases and both TFs are yet not directly 
targetable, the focus is laid on indirect personalized 
approaches. The nuclear shuttle of both NE TFs is medi-
ated by karyopherin β1 (KPNB1) [237]. The selective 
nuclear import of NEUROD1 is accompanied by the 
shuttle of its E-Box binding partner TCF3. Additionally, 
the nuclear translocation of ASCL1 via KPNB1 is facili-
tated after heterodimerization with TCF3 [237]. Conse-
quently, nuclear deprivation of ASCL1 and NEUROD1 
via KPNB1 inhibition led to impaired growth of SCLC-A 
and SCLC-N tumor cells in vitro and tumor shrinkage of 
ASCL1-driven xenografts in vivo [237]. In summary, the 
clinical importance of nuclear transporters for addressing 
NE SCLC subtypes needs further investigation.

Anti-apoptotic proteins of the BCL2 family are fre-
quently dysregulated in SCLC specimens [163]. There is 
no molecular subtype that is mutually exclusive, though 
both SCLC-A and SCLC-P show elevated expression 

levels of BCL2 [238]. Although high BCL2 levels partly 
predict sensitivity to the BCL2 inhibitor venetoclax, 
not all SCLC cell lines respond accordingly. Decreased 
BCL2-associated X protein (BAX) expression and con-
comitant overexpression of MCL1 were characteristic 
for venetoclax-resistant cell lines. Hence, the combina-
tion of venetoclax and S63845 (MCL1 inhibitor) resulted 
in synergistic drug interactions in  vitro and in  vivo in 
double-resistant SCLC cell lines, but only when BAX 
expression was detectable. Induction of ectopic BAX in 
non-responding cell lines ultimately sensitized cells to 
combined venetoclax and S63845 therapy [238]. Simi-
larly, co-targeting of BCL-XL and MCL1 in SCLC cell 
lines using DT2216 (BCL-XL degrader) and AZD8055 
(mTOR inhibitor) showed synergistic responses [239]. 
Based on downregulation of MCL1, the dual targeting 
induced apoptosis and tumor regression in SCLC xeno-
graft models. Moreover, superior survival and decreased 
tumor burden have been validated in GEMMs of SCLC 
[239]. Altogether, the genomic and proteomic profiles 
of SCLC including anti-apoptotic proteins govern drug 
response and resistance mechanisms, but hold the poten-
tial of novel personalized therapy.

Conclusions
SCLC remains a highly recalcitrant and lethal cancer 
characterized by distinct molecular patterns and con-
comitant high tumoral heterogeneity. Compared to 
other malignancies, preclinical SCLC research and thus 
translational success have been significantly hampered 
by the lack of representative patient material. Neverthe-
less, great advancements in characterizing the origin and 
the genetic and molecular features of SCLC have been 
made in the past years. In 2019, Rudin et  al. disclosed 
non-NE subtypes besides the renowned NE phenotypes 
characterized by ASCL1 and/or NEUROD1 expression, 
leading to further investigation and the definition of 
another, “inflamed” subtype. These molecular subclas-
sifications revealed several underlying characteristics 
and variances in SCLC, thereby opening up numerous 
novel avenues to be preclinically explored. There is great 
hope that the implementation of preclinical in vitro and 
in  vivo state-of-the-art methodology and tools, such as 
organoids and genetically engineered/humanized mouse 
models, will continue to provide valuable assets in uncov-
ering therapeutically targetable vulnerabilities that can 
be implemented in clinical practice in the next years. In 
the clinics, however, SCLC is still considered a homog-
enous disease. Therefore, patients are still being treated 
in an untargeted manner irrespective of their tumor’s 
molecular characteristics. Thus, considering the broad 
range of preclinical approaches for personalized medi-
cine in SCLC, patient stratification will be of necessity to 
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evaluate proper anti-tumor efficacies. To this end, ade-
quate experimental platforms to improve material collec-
tion and collaboration efforts to share valuable material 
and data, together with clinical trials evaluating novel 
treatment strategies in suitable patients are urgently war-
ranted in order to improve SCLC patient outcomes.
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