CORRESPONDENCE

Open Access

Integration of multiomics features for blood-based early detection of colorectal cancer

Yibo Gao^{1,2,3,4,5,6*†}, Dandan Cao^{7†}, Mengfan Li^{7†}, Fuqiang Zhao^{8†}, Pei Wang⁷, Shiwen Mei⁸, Qianqian Song⁴, Pei Wang⁴, Yanli Nie⁷, Wei Zhao⁸, Sizhen Wang⁷, Hai Yan⁷, Xishan Wang^{8,9*}, Yuchen Jiao^{4*} and Qian Liu^{8*}

Abstract

Background Early detection of colorectal cancer (CRC) signifcantly enhances patient outcomes. Conventional CRC screening tools, like endoscopy and stool-based tests, have constraints due to their invasiveness or suboptimal patient adherence. Recently, liquid biopsy employing plasma cell-free DNA (cfDNA) has emerged as a potential noninvasive screening technique for various malignancies.

Methods In this research, we harnessed the Mutation Capsule Plus (MCP) technology to profle an array of genomic characteristics from cfDNA procured from a single blood draw. This profling encompassed DNA methylation, the 5' end motif, copy number variation (CNV), and genetic mutations. An integrated model built upon selected multiomics biomarkers was trained using a cohort of 93 CRC patients and 96 healthy controls.

Results This model was subsequently validated in another cohort comprising 89 CRC patients and 95 healthy controls. Remarkably, the model achieved an area under the curve (AUC) of 0.981 (95% confdence interval (CI), 0.965– 0.998) in the validation set, boasting a sensitivity of 92.1% (95% CI, 84.5%-96.8%) and a specifcity of 94.7% (95% CI, 88.1%-98.3%). These numbers surpassed the performance of any single genomic feature. Importantly, the sensitivities reached 80% for stage I, 89.2% for stage II, and were 100% for stages III and IV.

Conclusion Our fndings underscore the clinical potential of our multiomics liquid biopsy test, indicating its prospective role as a noninvasive method for early-stage CRC detection. This multiomics approach holds promise for further refnement and broader clinical application.

Keywords Colorectal cancer, Early detection, Liquid biopsy, Multiomics

† Yibo Gao, Dandan Cao, Mengfan Li and Fuqiang Zhao contributed equally to this work.

*Correspondence:

Yibo Gao gaoyibo@cicams.ac.cn Xishan Wang wxshan1208@126.com Yuchen Jiao jiaoyuchen@126.com Qian Liu liuqian@cicams.ac.cn Full list of author information is available at the end of the article

To the Editor,

Colorectal cancer (CRC) is one of the most common and lethal cancers worldwide [\[1\]](#page-5-0). While early detection can drastically improve patient outcomes [[2\]](#page-5-1), current colonoscopy methods pose limitations, such as invasiveness, patient discomfort, and resource constraints, making blood-based tests a preferable alternative for regular CRC screening [[3](#page-6-0), [4\]](#page-6-1).

The emergence of liquid biopsies using cell-free DNA (cfDNA) has opened a promising avenue for managing cancers, including early-stage cancer detection. A

© The Author(s) 2024. **Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit [http://creativecommons.org/licenses/by/4.0/.](http://creativecommons.org/licenses/by/4.0/)

pioneering test, Galleri, which uses cfDNA methylation to identify cancer signals, is commercially available for screening of more than 50 types of cancers in adults with an elevated risk. Although not FDA-approved yet, its signifcance has been demonstrated by large-scale real-world data [\[5,](#page-6-2) [6](#page-6-3)]. As for CRC, while many studies have focused on specifc biomarkers like gene mutations, DNA methylation, or genome-wide features, few have attempted to compare or combine these diferent biomarkers for better accuracy in detection of caner $[7-9]$ $[7-9]$ $[7-9]$. This study leverages the Mutation Capsule Plus (MCP) technology to profle multiple genomic features simultaneously, aiming to develop a comprehensive multiomics assay for the early detection of CRC [[10](#page-6-6)].

Results

Study design and characteristics of participants

The workflow of our molecular analysis and modeling for both the training $(n=189)$ and validation $(n=184)$ cohorts is depicted in Fig. 1 . The age and sex ratio were balanced for CRC and healthy groups in the training cohort to reduce the impact of potential confounding factors. The training cohort included 93 CRC patients and 96 healthy individuals (Table [S1](#page-5-2)). The proportion of stage I-III CRC patients was greater than the proportion of stage IV patients: 17.2%, 39.8%, and 38.7% for stage I-III patients, respectively, and 2.2% for stage IV patients. The validation cohort included 89 CRC patients and 95 healthy individuals and the clinical characteristics are shown in Table S[1.](#page-5-2)

Fig. 1 Workflow of the study. This study consists of three steps: panel design, model training and validation. In the panel design step, potential mutation and methylation markers were selected using public database. In the training cohort, feature selection and model construction were separately performed for each type of individual genomic feature. Then, an integrated model was constructed, which used the outputs of each individual model as inputs to generate the fnal prediction model. The integrated model was subsequently validated in the validation cohort. HC, healthy controls. RF, random forest. LR, logistic regression

Assay development and marker selection

Employing MCP technology, we managed to profle mutation, methylation and genome-wide features concurrently for each cfDNA sample [[10\]](#page-6-6). First, a pre-MCP library was constructed. Briefy, cfDNA sample was digested with HhaI, a restriction endonuclease sensitive to CpG methylation, before ligation to customized adapters and whole genome amplification. The whole genome library (pre-MCP library) allows multiple downstream assays without sacrifcing sensitivity like splitting limited cfDNA samples directly into several diferent reactions. Next, based on pre-MCP library, we performed shallow whole-genome sequencing (sWGS) to assess genomewide signals such as arm-level copy number variation (CNV) and the 5' end motif. We also profled mutations and methylation changes in parallel from the pre-MCP library by targeted sequencing (RACEseq).

To determine the RACEseq panel for cfDNA profling, we selected potential methylation markers based on the publicly available datasets from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO). The sites that were hypermethylated in tumor tissues compared with white blood cells from healthy individuals and/or normal colorectal tissues from healthy and CRC individuals were selected for the panel (Methods). The panel for mutation profling included the hotspot mutation regions in the driver genes frequently mutated in CRC, such as *APC*, *TP53*, *KRAS*, *PIK3CA*, *FBXW7*, and *BRAF*. We also included *ACVR2A*, a frequently mutated gene in hypermutated CRC, to cover diverse CRC subtypes (Table S[2](#page-5-3)) [\[11\]](#page-6-7).

Using the RACEseq and sWGS assays, we profled the molecular features of the pre-MCP libraries in the training cohort and further selected the most informative biomarkers with the potential to distinguish CRC from healthy individuals. To reduce false positive mutations, we applied stringent fltering criteria, including mutation type, mutation hotspot, mutant frequency in the COSMIC database and the variant allele frequency (VAF) (Methods). The mutation test detected at least one eligible mutation in 41.9% (39/93) of CRC patients and 9.4% (9/96) of healthy participants in the training cohort (Fig. [2A](#page-2-0), Table [S3](#page-5-3)). Specifcally, mutations in *APC*, *TP53* and *KRAS* accounted for a large proportion of mutationpositive CRC patients, detecting 19.4% (18/93), 23.7% (22/93) and 17.2% (16/93) of CRC patients, respectively. Mutations in *FBXW7* and *ACVR2A* also contributed in identifying CRC patients, each detected an additional 3.2% (3/93) of CRC patients, indicating the complementary role of these genes in the combination (Fig. [2A](#page-2-0)).

DNA methylation level of methylation target sites was calculated as the ratio of the number of methylated molecules versus the overall number of methylated and unmethylated molecules at corresponding position (Methods). The frequencies of each $5'$ end motif were calculated as previously reported $[12]$ $[12]$, and CNVs were measured by ichorCNA with recommended parameters for low tumor content samples [[13](#page-6-9)]. DNA methylation, the 5' end motif and CNV data were separately fltered, and the random forest algorithm was used for marker selection for DNA methylation and the 5' end motif in the training cohort. After fltering and marker selection, 7 mutated genes, 23 DNA methylation markers, 14 end motifs, and CNVs in 34 chromosome arms demonstrated potential for distinguishing CRC patients from healthy individuals in the training cohort on the basis of cfDNA and were retained for subsequent modeling (Fig. [2](#page-2-0)A).

Development and validation of the CRC multiomics screening model

Based on the selected markers, we constructed logistic regression models for each of the following data types, end motif, DNA methylation and CNV. With tenfold cross-validation in the training cohort, the probability

(See fgure on next page.)

Fig. 2 Marker profles and model performance. **A** Feature profles in the training and validation cohorts. The heatmaps display the selected biomarkers, including the mutation status of 7 genes, 23 DNA methylation markers, 14 5' end motifs, and CNVs in 34 chromosome arms. The data of DNA methylation, end motif and CNV in the heatmaps were centered and scaled in the row direction. **B** Receiver operating characteristic (ROC) curves for the integrated model (integrating DNA methylation, 5' end motif, CNV and gene mutation), each individual model (DNA methylation, 5' end motif, CNV, or gene mutation) and plasma CEA assay in the training (left) and validation (right) cohorts. The plasma samples of 93 CRC and 73 healthy participants in the training cohort, and 89 CRC and 74 healthy participants in the validation cohort were available for the plasma CEA assay. **C** The predicted probabilities for healthy individuals and stage I-IV CRC patients predicted by the integrated model (integrating DNA methylation, 5' end motif, CNV and gene mutation) and each individual model (DNA methylation, 5' end motif or CNV) in the validation cohort. Participants with predicted probabilities close to 1 are more likely to have CRC based on the models. **D** The predicted results, presented as the probabilities predicted by each model minus the corresponding cutoff values (0.63 for DNA methylation model, 0.61 for end motif model, 0.81 for CNV model, and 0.51 for the integrated model), in the validation cohort. The reddish signals indicate the sample is predicted to be CRC positive based on the corresponding model, while the bluish signals indicate the sample is predicted to be normal/CRC negative based on the corresponding model. **E** The positive rates for plasma CEA and CA19-9 assays and our integrated CRC screening model in healthy individuals and stage I-IV CRC patients in the validation cohort. The plasma samples of 89 CRC and 74 healthy participants in the validation cohort were available for the plasma protein assay

Fig. 2 (See legend on previous page.)

scores predicted by each model exhibited potential for distinguishing CRC patients from healthy controls (Fig. $2B$, [S1](#page-5-2)). The area under the curve (AUC) ranged from 0.857 (95% confdence interval (CI), 0.804–0.910) for CNV, 0.891 (95% CI, 0.844–0.938) for end motif, to 0.904 (95% CI, 0.862–0.945) for DNA methylation. To enhance the diferentiating power, we constructed a combined model by integrating the four genomic features. A mutation score of 1 or 0, which represents a sample with or without at least one eligible mutation, as well as probability scores predicted separately by the end motif, DNA methylation and CNV models, were input into a logistic regression model (Methods). With tenfold cross-validation, the integrated model achieved an AUC of 0.993 (95% CI, 0.985–1.000) in the training cohort, with a sensitivity of 97.8% (95% CI, 92.4%-99.7%) and a specifcity of 94.8% (95% CI, 88.3%-98.3%) (Fig. [2](#page-2-0)B).

To verify the efectiveness of the integrated model, we evaluated its performance in a validation cohort of 184 participants, including 89 CRC patients and 95 healthy controls (Table [S1](#page-5-2)). The integrated model exhibited a consistently strong screening potential, achieving an AUC of 0.981 (95% CI, 0.965–0.998), with 92.1% (95% CI, 84.5%-96.8%) sensitivity and 94.7% (95% CI, 88.1%-98.3%) specificity (Fig. [2](#page-2-0)B, C). The sensitivity improved with the CRC stage, which was 80% (12/15), 89.2% (33/37), 100% (36/36) and 100% (1/1) for stage I-IV CRC, respectively (Table S[4](#page-5-2)). Among the individual features, DNA methylation yielded the best performance (AUC=0.926, 95% CI 0.883–0.968), followed by end motif $(AUC=0.914, 95\%)$ CI 0.873–0.955) and CNV (AUC=0.880, 95% CI 0.828– 0.932) (Fig. [2B](#page-2-0), C), similar to the results in the training cohort. We evaluated diferent feature combinations by training corresponding models and found that the integration of all 4 features was the optimal and most stable model (Fig. S[2](#page-5-2), Table S[5\)](#page-5-2). Diferent types of genomic features complement each other and contribute to the overall integrated model, suggesting the beneft of the multiomics screening method (Fig. [2](#page-2-0)D).

Comparison of our multiomics model with conventional tumor biomarkers

In clinical practice, carcinoembryonic antigen (CEA) is commonly used tumor biomarker for CRC detection and prognosis. To demonstrate the clinical feasibility of our CRC early detection method, we assessed plasma CEA levels in the validation cohort and compared the performance of these assays to our integrated model. The sensitivity and specifcity of CEA levels were 53.9% and 82.4%, respectively, and the sensitivities for stage I, II, III, and IV CRC patients were 26.7% (4/15), 62.2% (23/37), 55.6% (20/36), and 100% (1/1), respectively (Fig. [2E](#page-2-0)). These results suggest that our CRC early detection model outperformed conventional plasma CEA assay, demonstrating its potential for use in clinical practice (Fig. [2](#page-2-0)B, E).

Discussion

Previous seminal studies have shown the superiority of methylation in multi-cancer early detection [\[14](#page-6-10), [15](#page-6-11)]. In this study, we focused on a single cancer type, CRC, and found that integrating additional features substantially improved the overall performance (92.1% sensitivity and 94.7% specifcity) compared with methylation alone (80.9% sensitivity and 91.6% specifcity). Other features enhance methylation performance by providing complementary information (Fig. [2](#page-2-0)D). Moreover, this multiomics test is based on targeted sequencing of selected loci and sWGS, which resulted in a limited cost increase compared with the single-omics assay, making it feasible for practical use.

The complementary and synergetic multiomics data in this study build on the MCP technology, which allows parallel profling of multiple genomic features on a limited amount of plasma cfDNA, and thus improves the fexibility of the screening content. Each individual feature has variable power, with methylation having the highest, followed by end motif, CNV, and mutation. Among these features, methylation is particularly attractive in cancer early detection research, partly because it is a stable and pervasive epigenetic alteration that occurs frequently and early in tumorigenesis. Moreover, methylation patterns are less likely to be afected by genomic background noise, which may allow the detection of cancer-specifc signals at lower tumor fraction levels. End motif is a novel fragmentomic feature that captures the global changes in the chromatin landscape of cancer cells, which are considered more stable and consistent than other local alterations. CNV performed worse in our study, possibly because it was derived from a very low depth of cfDNA sequencing data, happened less frequently, and was less specifc (infuenced by background noise and CHIP). The unsatisfactory performance of mutations is likely due to the rare tumor-derived mutant molecules circulating in the blood of early-stage cancer patients. In addition, mutations associated with CHIP in cancer-free individuals may also interfere with the performance. Sequencing of matched white blood cell DNA is an accurate but relatively costly way to rigorously remove the infuence of CHIP on the detection of CNV and mutation [\[14](#page-6-10)].

To exclude the possibility of having other occult cancers or early-stage disease in our asymptomatic control samples, we were able to follow up 178/191 (93.2%) of participants in the control group and there was no cancer reported since the time of blood drawing. Despite the

proof of concept of a multiomics CRC detection method, this study has several limitations. First, the limited sample size may afect the evaluation of model performance. Second, patients with colorectal precancerous lesions, which are also clinically signifcant concerns for CRC early detection programs, were not included in this study. Taken together, future prospective randomized studies with larger and more diverse cohorts are needed to further enhance and validate our model for CRC early detection.

In summary, we developed a blood-based method for early detection of CRC and demonstrated the screening potential of multiomics cfDNA-based biomarkers. With further validation, this multiomics strategy is expected to be implemented in clinical settings as a frst-line screening modality prior to colonoscopy.

Abbreviations

Supplementary Information

The online version contains supplementary material available at [https://doi.](https://doi.org/10.1186/s12943-024-01959-3) [org/10.1186/s12943-024-01959-3](https://doi.org/10.1186/s12943-024-01959-3).

Supplementary Material 1.

Supplementary Material 2.

Acknowledgements

The authors would like to express their gratitude to all the participants for their contributions to this study.

Authors' contributions

Y.G., Q.L., and Y.J. conceived and supervised this study, and acquired funding and other experiment resources. X.W., Q.L., F.Z., M.S., and W.Z. were responsible for participant enrollment and sample collection. D.C., S.W., H.Y., and Y.J. administered, M.L., P.W., Q. S., and Y. N. performed the sequencing experiments. M.L., D.C., and Y.J. performed the data analysis. M.L., D.C., Y.G., Y.J., and Q.L. interpreted the data, prepared fgures and tables, and wrote the manuscript. All authors reviewed the manuscript.

Funding

This study was supported by National Key R&D Program of China "Research on Prevention and Control of Major Chronic Non-Communicable Diseases" (2019YFC1315705), National Natural Science Foundation Fund (82225033, 82122053), the Chinese Academy of Medical Sciences (CAMS) Innovation Fund for Medical Sciences (CIFMS) (2021-I2M-1–067), Key-Area Research and Development Program of Guangdong Province (2021B0101420005), Shenzhen Science and Technology Program (RCJC20221008092811025, ZDSYS20220606101604009), Shenzhen High-level Hospital Construction

Fund(CFA202201001), the Shenzhen Clinical Research Center for Cancer (No. (2021)287), and Sanming Project of Medicine in Shenzhen (SZSM202211011).

Availability of data and materials

The data generated in this study are publicly available in Genome Sequence Archive for Human (GSA-Human,<https://bigd.big.ac.cn/gsa-human/>) at HRA002356. Reviewer access link: [https://ngdc.cncb.ac.cn/gsa-human/s/Rr55S](https://ngdc.cncb.ac.cn/gsa-human/s/Rr55SMw7) [Mw7.](https://ngdc.cncb.ac.cn/gsa-human/s/Rr55SMw7)

Declarations

Ethics approval and consent to participate

This study was approved by the Ethics Committee of the National Cancer Center, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (Approval Number: 20/355–2551). All the participants provided written informed consent.

Consent for publication

All the authors have read and approved the fnal manuscript for publication.

Competing interests

S.W. is the founder and has owner interest in Genetron Holdings. H.Y. is the founder, has owner interest in Genetron Holdings, and receives royalties from Agios, Genetron and Personal Genome Diagnostics (PGDX). Y.J. is one of the cofounders, has owner interest in Genetron Holdings, and receives royalties from Genetron. Other authors declare no confict of interest.

Author details

¹ Central Laboratory & Shenzhen Key Laboratory of Epigenetics and Precision Medicine for Cancers, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China. 2 Laboratory of Translational Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China. 3 ³ Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China. ⁴State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China. ⁵Institute of Cancer Research, Henan Academy of Innovations in Medical Science, Zhengzhou 450000, China. ⁶Department of Gastroenterology, Shanxi Province Cancer Hospital/Shanxi Hospital Afliated to Cancers Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Afliated to Shanxi Medical University, Taiyuan 030013, China. ⁷ Genetron Health (Beijing) Co. Ltd., Beijing 102206, China. ⁸ Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China. 9 ⁹ Department of Colorectal Surgery, Shanxi Province Cancer Hospital/Shanxi Hospital Afliated to Cancers Hospital, Chinese Academy of Medical Sciences/ Cancer Hospital Afliated to Shanxi Medical University, Taiyuan 030013, China.

Received: 11 December 2023 Accepted: 13 February 2024 Published online: 22 August 2024

References

- Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71:209–49.
- 2. Levin TR, Corley DA, Jensen CD, Schottinger JE, Quinn VP, Zauber AG, et al. Efects of Organized Colorectal Cancer Screening on Cancer Incidence and Mortality in a Large Community-Based Population. Gastroenterology. 2018;155:1383-1391.e5.
- 3. Adler A, Geiger S, Keil A, Bias H, Schatz P, DeVos T, et al. Improving compli ance to colorectal cancer screening using blood and stool based tests in patients refusing screening colonoscopy in Germany. BMC Gastroenterol. 2014;14:183.
- 4. Taber JM, Aspinwall LG, Heichman KA, Kinney AY. Preferences for bloodbased colon cancer screening difer by race/ethnicity. Am J Health Behav. 2014;38:351–61.
- 5. Klein EA, Richards D, Cohn A, Tummala M, Lapham R, Cosgrove D, et al. Clinical validation of a targeted methylation-based multi-cancer early detection test using an independent validation set. Ann Oncol. 2021;32:1167–77.
- 6. Schrag D, Beer TM, McDonnell CH 3rd, Nadauld L, Dilaveri CA, Reid R, et al. Blood-based tests for multicancer early detection (PATHFINDER): a prospective cohort study. Lancet (London, England). 2023;402:1251–60.
- 7. Cohen JD, Li L, Wang Y, Thoburn C, Afsari B, Danilova L, et al. Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science. 2018;359:926–30.
- 8. Cai GX, Cai M, Feng Z, Liu R, Liang L, Zhou P. A Multilocus Blood-Based Assay Targeting Circulating Tumor DNA Methylation Enables Early Detec tion and Early Relapse Prediction of Colorectal Cancer. Gastroenterology. 2021.
- 9. Ma X, Chen Y, Tang W, Bao H, Mo S, Liu R, et al. Multi-dimensional frag mentomic assay for ultrasensitive early detection of colorectal advanced adenoma and adenocarcinoma. J. Hematol. Oncol. 2021. p. 175.
- 10. Wang P, Song Q, Ren J, Zhang W, Wang Y, Zhou L, et al. Simultaneous analysis of mutations and methylations in circulating cell-free DNA for hepatocellular carcinoma detection. Sci Transl Med. 2022;14:eabp8704.
- 11. Atlas TCG. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487:330–7.
- 12. Jiang P, Sun K, Peng W, Cheng SH, Ni M, Yeung PC, et al. Plasma DNA end-motif profling as a fragmentomic marker in cancer, pregnancy, and transplantation. Cancer Discov. 2020;10:664–73.
- 13. Adalsteinsson VA, Ha G, Freeman SS, Choudhury AD, Stover DG, Parsons HA, et al. Scalable whole-exome sequencing of cell-free DNA reveals high concordance with metastatic tumors. Nat Commun. 2017;8:1324.
- 14. Jamshidi A, Liu MC, Klein EA, Venn O, Hubbell E, Beausang JF, et al. Evalua tion of cell-free DNA approaches for multi-cancer early detection. Cancer Cell. 2022;40:1537-1549.e12.
- 15. Liu MC, Oxnard GR, Klein EA, Swanton C, Seiden MV. Sensitive and specifc multi-cancer detection and localization using methylation signatures in cell-free DNA. Ann Oncol. 2020;31:745–59.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in pub lished maps and institutional afliations.