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Abstract 

Tumor immune microenvironment (TIME) consists of intra-tumor immunological components and plays a signifi-
cant role in tumor initiation, progression, metastasis, and response to therapy. Chimeric antigen receptor (CAR)-T 
cell immunotherapy has revolutionized the cancer treatment paradigm. Although CAR-T cell immunotherapy 
has emerged as a successful treatment for hematologic malignancies, it remains a conundrum for solid tumors. 
The heterogeneity of TIME is responsible for poor outcomes in CAR-T cell immunotherapy against solid tumors. The 
advancement of highly sophisticated technology enhances our exploration in TIME from a multi-omics perspec-
tive. In the era of machine learning, multi-omics studies could reveal the characteristics of TIME and its immune 
resistance mechanism. Therefore, the clinical efficacy of CAR-T cell immunotherapy in solid tumors could be further 
improved with strategies that target unfavorable conditions in TIME. Herein, this review seeks to investigate the fac-
tors influencing TIME formation and propose strategies for improving the effectiveness of CAR-T cell immunotherapy 
through a multi-omics perspective, with the ultimate goal of developing personalized therapeutic approaches.
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Introduction
Tumor immune microenvironment (TIME), comprising 
the immunological components and their interactions in 
tumor microenvironment (TME) niche, has been known 
for the critical function of shaping tumor development in 
both the dynamic temporal and spatial dimensions and 
sensitivity to treatment [1–3]. Miscellaneous immune 
cells in TIME could regulate tumor-antagonizing activi-
ties and are closely correlated with clinical outcomes in 
cancer [4, 5]. Furthermore, it has been ascertained that 
the spectrum of tertiary lymphoid structures (TLSs), 
aggregates of immune cells with a composition compa-
rable to lymph nodes in non-lymphoid tissues, could be 
indicators of cancer prognosis, progression, and response 
to immunotherapy [6]. Over the past decade, countless 
researchers have been working on characterizing TIME, 
which laid the groundwork for gaining an unparalleled 
understanding of immune cell composition, function, and 
spatial distribution within TIME [7, 8]. To date, with the 
development of cutting-edge technologies such as high-
resolution single-cell RNA sequencing (scRNA-seq), 
flow cytometry, and molecular imaging, the research on 
TIME has delved into cellular subpopulations and spatial 
localization. These technological platforms have contrib-
uted to the flourishing of multi-omics analysis, heralded 
as the cornerstone of individualized precision medicine, 

which further unveiled inter-cellular crosstalk and pivotal 
mechanisms in TIME [9, 10].

Adoptive T cell therapy, especially chimeric antigen 
receptor (CAR)-T cell immunotherapy, has exhibited 
exciting successes in hematological malignancies [11]. 
The treatment is generally extracted from peripheral 
blood T cells of tumor patients, cultured and modified 
in  vitro, and then equipped with special molecules to 
recognize and attack specific cancer cells. The modified 
T cells with specifically targeted tumor-killing capabil-
ity are injected back into the patient to battle the tumor 
(Fig.  1A) [12]. Frustratingly, the scope of utility and 
potential life-threatening toxicity of CAR-T cell in solid 
tumors remains a Gordian knot. With further in-depth 
decoding of tumor immunological profiles, it has been 
demonstrated that manipulating the sophisticated TIME 
could bring novel insights to CAR-T cell immunotherapy 
[13]. Multi-omics studies deeply revealed the properties 
and immune resistance mechanisms of TIME, which will 
provide valuable insights into CAR-T cell immunother-
apy [14].

A more thorough dissection of the immune infiltrates 
profile in cancer lesions is essential to developing effi-
cient CAR-T cell immunotherapy. More significantly, 
multi-omics offers unique opportunities to dissect 
the sophistication and heterogeneity of TIME, further 

Fig. 1  The design of CAR-T cell therapy and a simplified basis for classifying TIME. A CAR-T cell therapy’s design and process. The process of CAR-T 
cell therapy mainly includes four steps: firstly, T cells are extracted from peripheral blood, and then CAR-T cells are created by modification. 
These CAR-T cells are expanded in vitro and finally injected back into the patient to complete the whole treatment. B Three TIME types are 
classified on the composition of immune infiltrate. In general, TIME can be divided into three types, including infiltrated-excluded (I-E) TIME, 
infiltrated-inflamed (I-I) TIME, and tertiary lymphoid structure (TLS) TIME. In different tumor ecosystems, the types of TIME serve as innovative 
biomarkers for cancer treatment/prognosis
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augmenting sufficient signaling strength and durability 
of CAR-T cells. Herein, we first summarized the estab-
lished classification and spatial architecture of TIME. 
Secondly, we discussed the elements influencing the for-
mation of TIME, especially from host–tumor genome 
perspective. Ultimately, optimizing CAR-T cell strategies 
from multidimensional omics data and machine learning 
(ML) was discussed to provide precision medicine-based 
decision-making.

Classification and spatial architecture of the TIME
Classification of the TIME
A simplified basis for classifying TIME has been formu-
lated based on the composition of immune infiltrate and 
characteristics of the inflammatory response (Fig. 1B) [2]. 
The infiltrated–excluded (I–E) TIME subtype was widely 
populated with immune cells in the stroma but relatively 
lacked cytotoxic lymphocytes (CTLs) in tumor paren-
chyma, whose CTLs localized along the perimeter of the 
tumor. It was hypothesized to be ‘cold’ or poorly immu-
nogenic [15]. CTLs of I-E TIMEs showed low expres-
sion of the activation markers, such as IFNG and GZMB 
(GRZB), which were characteristic of immune ignorance, 
namely the inability to elicit high cytotoxicity against 
tumor cells [16]. In comparison, infiltrated-inflamed 
(I-I) TIMEs were defined by high infiltration with vari-
ous immune cells such as CTLs, B cells, and T cells. I-I 
TIMEs were considered to be immunologically ‘hot’ 
tumors, which allowed more robust immune responses 
for immune checkpoint inhibitors (ICIs). TLS TIMEs, a 
subclass of I-I TIMEs, had histological evidence of con-
taining TLSs. TLSs are frequently [17, 18] but not always 
linked to a favorable prognosis [19]. The classification 
of TIME is quite seminal to comprehending the impact 
of immunological composition and condition on over-
all survival, predicting and guiding immunotherapeutic 
responsiveness, and revealing novel therapeutic targets.

Spatial architecture of the TIME
A more elaborated spatial characterization of com-
ponents depending on higher-resolution techniques 
improves our comprehension of TIME. The spatial 
structure was described comprehensively based on the 
location of immune cells and immunomodulators and 
distance between cells within TIME [20, 21].

Distribution of immune cells and immune checkpoints 
in TIME
Localization of immune cells within compartments indi-
cated specific relationships with tumor cells and other 
immune components (Fig.  2A) [22]. The tumor com-
partment is comprised of three parts: tumor stroma 
(supplying nutrients to the tumor), tumor core (main 
concentration of tumor cells), and infiltrative margin 
(transition zone between tumor cells and normal cells), 
suggesting a physical or functional border within dif-
ferent regions [23–25]. Immune cells dwell in separate 
compartments, which exhibit alternative phenotypic 
states and characteristics [26]. Immune cells in tumor 
stoma are closely correlated with stromal remodeling 
and angiogenesis, potentially exerting a profound influ-
ence on tumor development, infiltration, and metastasis, 
while those within tumor nests or tumor clusters pos-
sessed enhanced communication and interaction with 
tumor cells [27, 28]. Tumor margin is the main battle-
field in fighting against cancer and the density of tumor 
margin-infiltrating immune cells is considerably abun-
dant compared to other sites [29]. Analysis of integrat-
ing spatial resolution with laser capture microdissection 
gene expression profiles to stratify TIME validated that 
CD8 + T cells differ significantly in terms of immuno-
suppressive molecules and functional biomarkers in 
these three regions [22]. Remarkably, owing to diverse 
tissue origins of the tumors, as well as the high flux and 
variability of immune cells, there is also heterogeneity in 

(See figure on next page.)
Fig. 2  Spatial architecture of the tumor immune microenvironment (TIME). A The location of immune cells. Categorizing immune cells based 
on the compartments in which they reside in tumor tissue: the tumor core, also known as the tumor nest or tumor cluster, houses the majority 
of tumor cells; the invasive margin, transition zone between the tumor core and the tumor stroma, comprises abundant infiltrating immune 
cells, such as T cell, B cell, NK cell and DC cell; the tumor stroma, located around the tumor core, contains rich stromal components, providing 
nutrients for the tumor. B Distribution of immune checkpoints. The spatial distribution of immunomodulatory molecules in TIME shows regularity. 
PD-1 is mainly expressed on the surface of CD8 + T cells, whereas its ligand PD-L1 is expressed on the surface of various cells, such as B cells, 
tumor cells, and tumor-associated macrophages. The regulatory relationship between T cells and DC cells is mediated by TCR, CD4, and CTLA4 
on T cells and MHC-II and CD80/86 on DC cells. C Spatial patterns between immune cells and tumor/immune cells. For the spatial relationship 
between immune cells and tumor cells, the distance between them and immune cell density can be analyzed. Distance between immune 
cells and tumor cells may affect the lethality of immune cells to tumors as well as the editing effect of tumor cells on immune cells. In addition 
to directly affecting the interaction between tumor cells and immune cells, CD8 + T cells have different densities in specific regions at different 
distances from tumor cells. The size of its density is likely to influence the exertion of its effects. For the spatial pattern preceding immune cells, 
analysis is mainly performed from distance as well. The distance between immune cells reflects the interactions within the immune cell population. 
Quantification and spatial analysis between immune cells can be used to distinguish suppressed nonfunctional immune cells from functionally 
active immune cells, and further information on disease-specific survival can be derived
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the spatial distribution of immune cells within different 
regions.

ICIs have yielded prominent clinical efficacy in patients 
with several tumors. Detecting the spatial location of 
immune targets/regulators is the next step in scaling 
up the application in clinical practice (Fig.  2B). Spa-
tially resolved and multiparametric single-cell analy-
sis unveiled immune checkpoints such as programmed 

death-1 (PD-1), lymphocyte activation gene-3 (LAG-3), 
and T cell immunoglobulin and mucin-domain contain-
ing-3 (TIM-3) that have distinct tissue/cell distribution, 
functional implications, and genomic correlates [30]. The 
hypothesised Interaction Distribution (HID) method, 
an automated multiplex approach, was constructed to 
decode the complexity of immune cell interactions. Spa-
tial proximity between T cells and PD-1 ligand (PD-L1) 

Fig. 2  (See legend on previous page.)
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expressing cells could be quantified through HID, which 
was considered to reflect immune escape and gener-
ate prognostic information [31]. As immunomodulators 
interact through ligand-receptor binding, the distance 
between the two immune targets could influence tumor 
immune activity. Quantitative assessment densities 
and geographic interactions between PD-1 + cells and 
PD-L1 + cells were demonstrated as a nexus with the 
anti-PD-1 therapy response [32]. Likewise, quantitative 
spatial profiling of key immunosuppressive mechanisms 
in TIME could help select which subset of melanoma 
patients are more amenable to PD-1 monotherapy, allow-
ing for individualized dosing [33]. Nevertheless, the 
applicability of spatial architecture of these immune tar-
gets should be further explored in clinical research.

Distance between immune cells and tumor/immune cells 
in TIME
Distance between immune cells and tumor cells may 
directly impinge on the killing effect of immune cells 
on tumors or, conversely, the editing of immune cells by 
tumor cells (Fig.  2C) [34]. Evolving technologies with 
higher flux, dimensionality, and resolution could detect 
the distinct density patterns of immune cell localiza-
tion in correlation to malignant tissue [35–37]. Based 
on cell densities, cell-to-cell distances, and spatial het-
erogeneity, the immune contexture biomarkers of tumor 
data-driven identification could provide mathematical 
definitions of different feature classes. It has been dem-
onstrated that  distances of tumor cells and immune 
cells were potentially prognostic and predictive mark-
ers [38]. The spatial dimension between lymphocytes 
and tumor buds has been proven to forecast the tumor 
prognostic progression, such as colorectal cancer (CRC) 
and melanoma [39, 40]. Employing multiplex immu-
nofluorescence analysis, Tuba et  al. have demonstrated 
that  the spatial arrangement of immune and tumor 
cells could affect the intensity of immune response to 
anti-PD-1-based therapies [41]. In periampullary and 
pancreatic adenocarcinoma, a detailed in  situ descrip-
tion of lymphocyte infiltration patterns showed that the 
proximity of CD8α + cells to tumor cells was associated 
with overall survival [42]. It was found that high T cell 
counts at the direct tumor border were strongly coupled 
with improved overall survival of CRC liver metastases 
patients. Interestingly, at a distance of 20 to 30 µm from 
the tumor, the decrease in T cells was found to be signifi-
cantly associated with improved survival [25].

Distance between immune cells and immune cells 
potentially captures the interactions prevalent in 
immune cell populations and facilitates investigators 
to better fathom all immune cells as a coherent whole 
(Fig.  2C) [43]. Quantification and spatial analysis of 

tumor-infiltrating inflammatory cells have the potential 
to distinguish between suppressed non-functionally and 
functionally active inflammatory cells [44]. CTLs were 
closer to activated macrophages than to non-activated 
ones, which is associated with disease-specific survival 
(DSS) [40]. Specifically, CTL distance to  macrophages 
was linked to poor DSS, whereas the distance to tumor 
cells was correlated inversely with DSS. The presence 
of lymphocytes with CD4 + T-helper capacities in the 
nearest vicinity to CD8α + cells was associated with pro-
longed overall survival [42].

Multi‑omics characteristics shape TIME profiles
Although precise constituents dictating the composi-
tion of TIME remain incompletely understood, it could 
be hypothesized that there is a complex interactiv-
ity between tumor genotype/phenotype and immune 
characteristics. Tumor and host characteristics such as 
oncogenic mutations, germline genetics, and microbi-
ome, were believed to subtly promote specific tumor 
immune ecosystems, thereby modulating the prevalence 
of distinct inflammatory states and influencing immune 
response degree (Fig. 3) [45, 46]. Among these elements, 
it is conceivable that the battle of “tumor genome-to-
human genome” or host–tumor crosstalk represents a 
cornerstone in predisposing patients to developing I-I, 
I-E, or TLS TIME. Due to the heterogeneity of TIME and 
host, even individuals harboring the same type of tumor 
could exhibit unique immunological profiles. Moreover, 
a diverse array of cytokines, chemokines, and immune 
molecules collectively orchestrate an inflammatory or 
non-inflammatory milieu [46, 47].

Hostogenetics
Hostogenetics, namely the genetics of the host, could 
partially elucidate how germline variants delicately 
orchestrate TIME profile. Research on autoimmune and 
infectious disease phenotypes exhibited that the entirety 
of germline genetic variation was involved in regulating 
immune responses, such as susceptibilities to chronic 
inflammation [48–50]. Although germline genetic 
data on the inherent immune profile of tumors are still 
scarce, the mystery of hostogenetics is gradually being 
unwrapped with advancements in high-throughput tech-
nologies. How variants relate to immune cells or how 
environmental and genetic factors affect innate and adap-
tive immune responses have been explored to decode 
TIME. A large-scale blood cell trait variation data includ-
ing 563,085 participants was integrated to identify the 
genetic architecture of hematopoiesis, assess correlated 
genetic models of blood cell phenotypes, and character-
ize relevant hematopoietic cell states subject to regulated 
genetic variation and gene networks. Results manifested 
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Fig. 3  Multi-omics characteristics shape TIME profiles. Although the precise composition of TIME is currently not well understood, it is certain 
that tumor and host characteristics are thought to subtly promote specific tumor immune ecosystems. With the advancement of high-throughput 
technology, germline genetic data/hostogenetics on the innate immune profile of tumors have been shown. Germline genetics profoundly 
impacts the composition and functional localization of a variety of immune cells in TIME, such as T cells, NK cells, and B cells. In comparison, tumor 
omics landscapes are discussed. The extent and nature of immune infiltration may be influenced by the overall mutational landscape of neoplastic 
cells, serving as a direct indicator of tumor immunogenicity. As a relative part of genetics, gene mutations can drive changes in epigenetic 
modifications and epigenetic remodeling critically shapes cancer development by altering gene expression, promoting immune evasion, 
or hindering immunosurveillance. Transcriptomics offers new insights into the biology of immune cells infiltrating tumors and their intercellular 
interactions in TIME. Changes in the transcriptome of tumor cells impact the expression of immune-related genes, triggering pathways associated 
with tumor immune escape, and then influencing the infiltration and activity of immune cells. Emerging proteomics studies protein composition 
and alterations, complementing genomics and transcriptomics in revealing key proteins, molecular mechanisms, and pathways in TIME. It offers 
precise insights into interactions between immune and cancer cells. The microbiome could either promote pro- or anti-tumor effects, impacting 
responses to chemotherapy and immunotherapy. Specifically, the intratumoral microbiome alters T cell repertoires and microbial metabolites, 
influencing immune homeostasis, anti-tumor surveillance, and tumorigenesis
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that individual genetic backgrounds could impact the rel-
ative parameters of blood cells and hematopoiesis traits 
[51]. Cohort studies probing the effects of variation on 
immune cell traits further highlighted immune cells are 
surrounded by complex genetic regulation [52]. Etienne 
and colleagues performing flow cytometry of blood 
leukocytes and genome-wide DNA genotyping found 
that innate cells were more susceptible to the control of 
genetic variation than adaptive cells [53]. These genetic 
association studies will establish a resource generating 
innovative hypotheses about TIME and hostogenetics.

To explore tumor-immune interactions, the impli-
cations of frequent and rare germline variants on 
well-defined immune traits were researched in cancer 
recipients. It was observed that natural killer (NK) cell 
and T cell subset infiltration and interferon signaling pos-
sessed high heritability and germline genetics profoundly 
impact the composition and functional localization of 
TIME. Mechanistically, common variants such as IFIH1, 
STING1, and TMEM108 were implicated in divergent 
interferon pathways, variants localized to RBL1 affili-
ated with T cell subpopulation proficiency, and variants 
in BRCA1 and Wnt-β-catenin could exert the agency 
of immunomodulators [54]. The expression of immune 
genes could be shaped by hereditary genetic variants 
to control immune cell abundance within TIME [55]. 
Besides, some gene signatures from tumor transcriptome 
data proved to predict patient prognosis, and such gene 
signatures intensity could be ascertained by germline 
genetic variation [56, 57].

The genetics and epigenetics landscape of the tumor
The degree and phenotype of immune infiltration could 
be modulated by overarching the tumor mutational 
landscape, which directly reflects tumor immunogenic-
ity. Mutant peptides bound to major histocompatibil-
ity complex (MHC) class I/II molecules could generate 
anti-tumor activity. Higher tumor mutational burden 
could augment the likelihood of generating immuno-
genic mutations that serve as prime targets for T cell-
mediated attack [58–60]. These mutations could remodel 
the cellular phenotypes and spatial interactions of TIME. 
In BRCA1/2mut ovarian cancer, a proliferating tumor-
cell subpopulation has been reported to be associated 
with enhanced spatial tumor-immune interactions by 
CD8 + and CD4 + T cells [61]. Early mutations, which 
manifest at the inception of oncogenesis and are ubiqui-
tously present across malignant cell populations, could 
potentially evoke a more robust T-cell-mediated anti-
tumor response compared to branch mutations that 
arise subsequently and only impact a subset of neoplas-
tic cells [62]. Genomic sequencing data suggested that 
neoantigens arising as a consequence of tumor-specific 

mutations possessed robust immunogenicity to acti-
vate abundant immune cell infiltration [63]. MHC class 
I-associated neoantigens, recurrently mutated genes, and 
genetic amplifications were closely correlated with cytol-
ytic activity [64].

Epigenetic remodeling plays a critical role in tumor 
development/progression by altering gene expression 
to drive immune escape or impede immunosurveillance 
[65]. Mutations in certain genes could lead to altered 
epigenetic modifications, thereby silencing tumor sup-
pressor genes or activating oncogenes to reshape tumor 
immune ecosystem and immunogenicity. Cytokine secre-
tion was modulated by epigenetic alterations at gene 
and chromatin scales during the development of diverse 
T lymphocyte subsets [66]. Tumor progression tended 
to be accompanied by elevated DNA methylation and 
mRNA levels than adjacent non-tumorous tissues, which 
could affect immune factor expression profiles to modu-
late TIME and immune response against tumors [67, 68]. 
Tumor epigenetic modifications were directly associated 
with the expression of key cytokines such as interleukin 
1B (IL1B), IL6, and IL8 to be involved in inflammatory 
response [68]. Methylation and demethylation for PD-L1 
gene promoter could result in immune checkpoint con-
stitutive or dampened expression. TGF-β1 decreased 
DNMT1 (DNA methylation enzyme) content and led to 
PD-L1 promoter demethylation whereas tumor necrosis 
factor-α (TNF-α) induced NF-κB pathway to promote 
expression of demethylated PD-L1 promoter [69].

Transcriptome
Transcriptomic profiling was used in diverse areas of 
cancer research, such as tumor diagnosis, assessing 
tumor aggressiveness and prognosis, and biomarker dis-
covery. Transcriptomics could provide novel insights into 
the biology of tumor-infiltrating immune cells and inter-
cellular interactions in TIME [70]. Nevertheless, under-
standing  how  tumor intrinsic transcriptomic alterations 
contribute to the immune cell content of TIME is still 
not clear because of the enormous excess of cancer cells 
in the tumor mass. Recently, by investigating immune 
checkpoints transcriptome profile, researchers uncov-
ered immunoreceptor tyrosine-based inhibitory motif 
(ITIM) domains (T cell immunoreceptor with Ig and 
ITIM domains, TIGIT) expression on behalf of aggres-
siveness tumor could impact not only T cells but also 
other immune cells, thereby manipulating anti-tumor 
immune [71]. Najwa et  al. concluded that cytotoxic T 
lymphocyte-associated antigen 4 (CTLA-4) and PD-1/
PD-L1 expression could be interfered with, either directly 
or indirectly, by microRNAs repressing mRNA expres-
sion at a post-transcriptional level. MicroRNAs such as 
miR-145, miR-3609, and miR-140 in TIME could serve 
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as novel treatment targets to mediate the immunosup-
pressive ecosystem [72]. Currently, RNA sequencing 
has evolved from bulk sequencing to single-molecular, 
single-cell, and spatial transcriptome sequencing, which 
has been utilized to explore TIME [73, 74]. To depict 
the immune spectrum in TIME, Yu and colleagues 
using immunohistochemistry and genomics pipeline 
scRNA-seq disclosed that tumor expression of CD47 
is associated with the level of CD68  pan-macrophages. 
Intriguingly, CD47 blockade significantly remodeled 
intratumoral lymphocyte and macrophage compart-
ments by increasing pro-inflammatory macrophages and 
reducing anti-inflammatory macrophages [75]. Immune-
targeted single-cell profiling strategy was designed by 
using immune-targeted scRNA-seq and a targeted anti-
body panel for mass cytometry to explore the molecular 
portrait of immune cell compositions and cell states [76]. 
Taken together, transcriptomic profiling represents a 
powerful approach for TIME-oriented research [70, 77].

Proteomics
Emerging proteomics directly studies the composition 
and alteration patterns of protein, providing comple-
mentary information to genomics and transcriptomics, 
elucidating the most relevant proteins, molecular mech-
anisms, and signaling pathways in TIME. Mass spec-
trometry (MS)-based proteomics have enabled precise 
and immense protein identification, characterization, 
and quantification and also served as the comprehensive 
method for exploring protein interactions, sub-cellular 
localization, and protein post-translational modifica-
tions [78]. Lehtiö and colleagues performed MS-based 
proteogenomics analysis on non-small cell lung cancer to 
identify proteomic subtypes based on immune cell com-
position and specific drive pathways [79]. The same strat-
egy was applied to identify lung squamous cell carcinoma 
molecular subtypes. Further analysis supported the regu-
lation of metabolic pathways through crosstalk between 
post-translational modifications including ubiquitina-
tion, phosphorylation, and acetylation [80].

Cytokines could bind specific receptors on target cells, 
triggering a cascade of signaling events that regulate 
immune responses, cell migration, adhesion, activation, 
and survival. Phosphoproteomics could uncover the key 
players in the immune signaling process. Tanzer et  al. 
revealed phosphorylation-dependent translocations of 
numerous proteins stimulated via TNF and the critical 
role of CDK phosphorylation in the immune response 
signaling cascade [81]. Proteomic and immunopepti-
omic analysis demonstrated the induction of ribosome 
frameshifting and numerous abnormal trans-frame pep-
tides at cell surface after IFN-γ exposure, indicating that 
IFN-γ-induced IDO1-mediated tryptophan depletion 

affects immune recognition by promoting diversifica-
tion of peptide landscape [82]. Some researchers per-
formed a bottom-up proteomic and lipidomic analysis 
of extracellular vesicles (EVs) from tumor-associated 
macrophages (TAMs). Interestingly, TAM-EVs presented 
proteomic profiles associated with Th1/M1 macrophage 
polarization, and enhanced inflammatory responses. Fur-
thermore, TAM-EVs possessed bioactive lipids and bio-
synthetic enzymes altering pro-inflammatory signals in 
TIME [83].

MS-based single-cell proteomics could analyze global 
protein profiles in a single cell, explaining cell complex-
ity and diversity, and providing more accurate infor-
mation about interactions between immune cells and 
cancer cells. In microsatellite stable CRC, Cytometry by 
Time-Of-Flight (CyTOF), and RNA-seq analysis showed 
that chemokines/cytokines recruit immunosuppressive 
and exhausted T cell subsets, elucidating the specific T 
cell phenotypes and immunosuppression functional sta-
tus of CRC ecosystems [84]. In the initial and recurrent 
glioblastoma, the decreased proportion of TAMs and the 
increased proportion of exhausted T cells, infiltrating 
Treg cells, and non-functional NK cells could be identi-
fied via CyTOF, providing a comprehensive landscape 
of intricate immune microenvironment [85]. Overall, 
proteomics approaches accelerate the understanding of 
molecular mechanisms, complex cellular networks, and 
interactions between tumor cells and immune cells.

Microbiome
There is a complicated cross-reactivity between TIME 
and microbiome. Accumulating microbiota-immune 
system evidence suggested that the microbiome could 
modulate innate and adaptive immunity to realize 
either pro- or anti-tumor effects and remodel response 
to chemotherapy and immunotherapy [86, 87]. Tumor 
microbiome could reshape the tumor immune system by 
re-editing T cell repertoires and microbial metabolites 
to influence immune homeostasis, anti-tumor immuno-
surveillance, and tumorigenesis [88]. Notably, immune 
microbiome interactions are commonly encountered in 
respiratory and gastrointestinal tumors [89]. To illustrate, 
the microbial community in the digestive tract could 
constitute a component of TIME and facilitate carcino-
genesis by causing DNA damage and regulating inflam-
mation [90].

Tumor-microbiome communications could affect 
immune ecosystem compositions and the relative abun-
dance of immune cells to manipulate immune activity, 
ultimately influencing patient short-term and/or long-
term survival. Intratumoral microbiome has been dem-
onstrated as greatly abundant in tumors than in normal 
tissues, such as pancreatic cancer [91], and hepatocellular 
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carcinoma [92]. Diversity of Intratumoral microbiota 
was correlated with immunogenic reprogramming of 
TIME, comprising qualitative and quantitative altera-
tions in myeloid-derived suppressor cells (MDSCs), NK 
cells, and M1-polarized macrophages, CD4 + T cells 
differentiation, and CD8 + T cells activation [93–95]. 
Microbiota dysregulation could cause gene mutations 
and activate immunomodulatory factors and signaling 
to alter the overall composition of immune cells [96–98]. 
Various epithelial cancers like CRC develop and progress 
proximally to microbial communities. Sergei et al. inves-
tigated inflammation mechanisms using the colorectal 
tumorigenesis mouse model and proposed that MDSCs 
were likely to be activated by microbial products to pro-
duce IL-23 signaling, thereby triggering tumor-elicited 
inflammation and driving tumor growth/progression 
[99]. Furthermore, microbial sequencing and reconstitu-
tion of germ-free mice have indicated both positive and 
negative regulatory bacteria likely exist, which either 
promote or interfere with checkpoint-targeted immu-
notherapy by regulating PD-1/CTLA-4 expression [100, 
101]. Although researchers had a deeper understanding 
of microbiome in TIME or enhancing anti-tumor immu-
nity, sophisticated molecular mechanisms and cross-talk 
networks between microbiome and TIME need to be fur-
ther deciphered.

Advancing the efficacy of CAR​‑T cell 
immunotherapy from multi‑omics perspectives
The insights derived from the multidimensional omics 
data of TIME allow for a comprehensive understanding 
for tumor immunology, which is critical for the develop-
ment of next-generation CAR-T cell therapies. Specifi-
cally, the multi-omics approach enables the identification 
of novel biomarkers for patient stratification and the 
optimization of CAR-T cells to target these biomarkers 
effectively.

Optimize target antigen choice
Antigen escapes dramatically hamper the efficacy of 
CAR-T cell therapy. In patients receiving CAR-T cells, 
a significant proportion of malignant cells have a partial 
or complete loss of target antigen expression, eventually 
leading to tumor cell antigen tolerance [102]. Some nor-
mal tissues also express target antigens to varying degrees 
and thus may be mistakenly killed by CAR-T cells, which 
will put patients at high risk of on-target off-tumor tox-
icity [103]. Therefore, selecting optimal target antigens 
with high and specific expression is pivotal to ensuring 
anti-tumor efficacy and limiting the adverse effects [104, 
105]. Pleasantly, although the determination of such tar-
get antigens is quite challenging, multi-omics could pro-
vide a promising protocol.

Cell surface proteome, namely surfaceome, has sug-
gested a plethora of potential surface targets for treat-
ing various malignancies. Leung and colleagues applied 
quantitative proteomics of N-linked glycoproteins to 
reveal how the surface and glycoproteome were substan-
tially remodeled in breast epithelial cell lines. Comparing 
transcriptomic and proteomic data from tumor and nor-
mal tissues, various over-expressed cell surface molecules 
meeting the criteria for CAR-T therapeutic targets were 
identified [106]. Harnessing RNA sequencing to confirm 
highly different expressions of Glypican 2 (GPC2) across 
multiple pediatric brain tumors, researchers designed 
GPC2-directed CAR-T cells that could safely target 
malignant tumors with local delivery [107]. Promisingly, 
the integration of over 500 clinical trial data with tran-
scriptional and proteomics data has facilitated the devel-
opment of a comprehensive “targeted landscape” for 
CAR-T immunotherapy (Table 1) [108].

Neoantigens are personalized antigens produced by 
specific alterations within tumor cells, such as genomic 
variation, aberrant mRNA splicing, and dysregulated 
post-translational modification [109]. Unlike tumor-asso-
ciated antigens, neoantigens such as epidermal growth 
factor receptor variant III (EGFRvIII) and Tn glycoform 
of MUC1 are absent in normal tissues and considered 
"non-self". The high immunogenicity and tumor speci-
ficity of neoantigens make them optimal candidates for 
targeted immunotherapy (Fig. 4A) [110, 111]. Currently, 
utilizing genomic and transcriptomic data could screen 
appropriate candidate antigens, followed by MS to vali-
date. Whole-exome sequencing (WES) and RNA-seq 
data based on next-generation sequencing (NGS) enable 
highly sensitive identification of tumor mutated genes, 
while MS directly detects MHC-present peptides, veri-
fying the expression of mutant mRNA and peptides at 
the protein level. The combined application of WES and 
MS has become a powerful weapon for exploring tumor 
neoantigens for CAR-T immunotherapy [111–113]. Gros 
et al. utilized WES to find neoantigens in gastrointestinal 
cancer and provided a method to generate specific T cells 
against identified neoantigens [114]. By employing simi-
lar techniques, other researchers constructed EGFRvIII/
Anti-Tn-MUC1 CAR-T cells. EGFRvIII/Anti-Tn-MUC1 
CAR-T cells demonstrated specific recognition and tar-
geted killing of tumor cells to inhibit tumor growth [115, 
116].

Emerging studies have exploited more sophisticated 
CAR constructs that only function when certain combi-
natorial CAR-Targets are presented, which could boost 
engineered cell activation and maximize tumor-tar-
geting specificity of CAR molecules [117]. Specifically, 
two primary multiple-input receptor combinations: In 
Boolean AND-gate logic, AND-gate logic CAR requires 
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the presence of two antigens, namely CAR signaling and 
T cell activation, to activate the CAR. In another design, 
CARs are activated only when stimulated by tumor anti-
gens and in the absence of antigens normally expressed 
on healthy cells, thus yielding Boolean AND-NOT gate 
logic (Fig. 4A) [103]. Multi-omics data has been used to 
explore the combinatorial targets of logic-gated CARs 
[118]. Based on sizeable extensive transcriptomics and 
proteomics databases from malignant and normal tis-
sues in acute myeloid leukemia, suitable pairs such as 
CD33 + ADGRE2, CLEC12A + CCR1, CD33 + CD70, and 
LILRB2 + CLEC12A were found to be capable of enhanc-
ing CAR-T effect without increasing extra-tumor toxicity 
[119]. High-throughput transcriptomics and proteomics 
allow us to characterize genes encoding cancer cell sur-
face proteins and identify potential combinations of CAR 
targets [120].  RNA sequencing approaches have been 
leveraged for a comprehensive in silico screen to recog-
nize features of multiple antigen combinations to provide 
the predicted antigen pairs and antigen triples (Table 2), 
improving tumor discrimination by CAR-T immunother-
apy [121].

Maintain T cell metabolic activity
Tumor could "starve" effector lymphocytes by creat-
ing the suppressive metabolic milieu characterized by 
hypoxia, low pH, and accumulated immunosuppressive 
metabolites [122]. The energy requirements of CAR-T 
cells to maintain effective responses in TIME cannot be 
met, thus affecting the tumor-control effect [122, 123]. 
Metabolomics could describe the full physiological state 
of cells at a certain moment and analyze critical metab-
olites or intermediates in metabolic disorders. Utiliz-
ing gas chromatograph-mass spectrometer (GC–MS), 
liquid chromatograph-mass spectrometer (LC–MS), 

and nuclear magnetic resonance (NMR) techniques, 
researchers could simultaneously identify differences 
across whole metabolome from a qualitative perspec-
tive and characterize significantly different compounds 
(namely discovery metabolomics), as well as quantify the 
differential expression of specific metabolites (namely 
target metabolomics) [124]. Proverbially, sustained 
antigen exposure could induce metabolic changes in 
tumor-infiltrating T cells, resulting in an exhaustion phe-
notype. The metabolic phenotype was characterized by 
rapid induction of mitochondrial oxidative stress, which 
restricted T cell ability to engage in oxidative phospho-
rylation, thereby inhibiting T cell proliferation [125, 
126]. Antioxidant therapy thus encourages CAR-T cell 
self-renewal and enhances anti-tumor capacity [126]. 
Metabolomics indicated that the transition of T cell dif-
ferentiation subsets is highly interlinked with metabolic 
fitness. It was reported that the addition of glutamine 
antagonist 6-Diazo-5-oxo-l-norleucine (DON) to the cul-
ture caused CAR-T cells to retain more TN or TCM sub-
sets and exhibit stronger elimination of burden in  vivo. 
Glutamine inhibition in  vitro would be a promising 
approach to modulate metabolic and differential status to 
enhance CAR-T therapeutic efficacy [127].

CD28/4-1BB CAR-T cells have shown differential 
proliferation and persistence in clinical practice, partly 
attributed to metabolic alterations in engineered CAR-T 
cells favoring oxidative phosphorylation and aerobic glyc-
olysis, respectively [128]. This offers compelling evidence 
for the plasticity of T cell metabolic reprogramming, 
illustrating the feasibility of improving CAR-T cell meta-
bolic fitness in immunosuppressive environments. Aden-
osine deaminase 1 (ADA) decomposes adenosine into 
inosine, an indispensable metabolite for T cell functional 
immune. Altered global gene expression and metabolic 

(See figure on next page.)
Fig. 4  Applications of multi-omics data to overcome barriers of CAR-T cells in the solid tumor microenvironment. A Optimize the target antigen 
choice. Transcriptomics and/or proteomics data from tumor and normal tissue samples can facilitate the discovery of tumor cell-specific 
neoantigens and optimize the design of chimeric antigen receptor (CAR). Neoantigens are expressed only on the surface of tumor cells and are 
absent from normal cells. In AND-gate logic, each of the two receptors must bind to the own cognate antigen to elicit a complete T cell signaling 
response. AND-NOT gate logic refers that only when the tumor associated antigens (TAAs) are present (true) and antigens of normal cells are 
absent (not true), can T cells be activated. B Maintain T cell metabolic activity. Metabolic milieu within the tumor is characterized by hypoxia, 
low pH, and accumulation of immunosuppressive metabolites. Engineering CAR-T cells to overexpress adenosine deaminase 1 (ADA), which 
can catabolize adenosine (an adverse metabolites accumulated in TME) into inosine. At the same time, 6-Diazo-5-oxo-l-norleucine (DON) can 
cause CAR-T cells to retain more TN or TCM subsets and exhibit stronger elimination of burden in vivo. Metabolism reprogramming in CAR-T 
cells by PRODH2 engineering to improve proline and arginine metabolism can enhance OXPHOS and mitochondrial fitness as well. C Resist 
immunosuppression. CXCR1/2 inhibitors (such as SX-682, an oral small molecule inhibitor of CXCR1/2) or COX-2 pathway blockage can deplete 
MDSCs, a type of immunosuppressive cells. Tregs are equipped with a strong immunosuppressive ability in TIME, whose immunosuppressive 
effect can be by suppressed by IRF4 and BATF deletion. Blocking inhibitory cytokines such as IL-4 and TGF-β with specific CAR is also an effective 
method. D Enhance CAR-T cell infiltration. Degrading heparan sulphate proteoglycans (the main components of ECM) by HPSE is a fruitful 
approach. Cancer-associated fibroblast can be reduced by fibroblast activation protein (FAP)-targeting CAR. Similarly, anti-VEGFR-CAR can be used 
in disrupting the tumor vasculature and inhibiting tumor angiogenesis. AK4 knockout induces adhesion protein re-expression in EC, inhibits tumor 
growth, and improves T cell infiltration, while blocking ETBR can inhibit its function on downregulation of adhesion molecules
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Fig. 4  (See legend on previous page.)
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Table 2  Antigen Pairs Predicted to Improve Tumor Recognition

TRPM1 Transient receptor potential cation channel subfamily M member 1, GPR143 G protein-coupled receptor 143, MLANA Melan-A, TSPAN12 Tetraspanin 12, CLEC2A 
C-type lectin domain family 2 member A, DSC1 Desmocollin 1, LY6G6C Lymphocyte antigen 6 family member G6C, TNFRSF9 TNF receptor superfamily member 9, 
CACNG7 Calcium voltage-gated channel auxiliary subunit gamma 7, BSG Basigin, ROM1 Retinal outer segment membrane protein 1, UMOD Uromodulin, KAAG1 
Kidney associated DCDC2 antisense RNA 1, SLC34A1 Solute carrier family 34 member 1, GPA33 Glycoprotein A33, TMIGD1 Transmembrane and immunoglobulin 
domain containing 1, MUC17 Cell surface associated, SI Sucrase-isomaltase, PCDHGC5 Protocadherin gamma subfamily C, 5, GPR19 G protein-coupled receptor 19, 
NTSR2 Neurotensin receptor 2, ERBB2 Erb-b2 receptor tyrosine kinase 2, DLL3 Delta like canonical Notch ligand 3, SYT4 Synaptotagmin 4, CA12 Carbonic anhydrase 
12, TREM2 Triggering receptor expressed on myeloid cells 2, SLC22A2/SLC22A8/SLC12A3 Solute carrier family 22 member 2/8/3, AQP2 Aquaporin 2, GPC3 Glypican 3, 
TM4SF4/5 Transmembrane 4 L six family member 4/5, BDKRB1 Bradykinin receptor B1, UPK1B/2 Uroplakin 1B/2, SULF1 Sulfatase 1, OR2I1P Olfactory receptor family 
2 subfamily I member 1 pseudogene, ZFYVE27 Zinc finger FYVE-type containing 27, CHRNA3 Cholinergic receptor nicotinic alpha 3 subunit, NRCAM Neuronal cell 
adhesion molecule

Cancer type Pairs Gate

Uveal Melanoma TRPM1:GPR143 AND gate

MLANA:GPR143 AND gate

TSPAN12:CD44 AND-NOT gate

TRPM1:CLEC2A AND-NOT gate

TRPM1:DSC1 AND-NOT gate

TRPM1:LY6G6C AND-NOT gate

Brain Lower Grade Glioma TNFRSF9:CACNG7 AND-NOT gate

BSG:CACNG7 AND gate

ROM1:CACNG7 AND gate

Cholangiocarcinoma KAAG1:UMOD AND-NOT gate

KAAG1:SLC22A11 AND-NOT gate

KAAG1:SLC34A1 AND-NOT gate

Colon adenocarcinoma GPA33:TMIGD1 AND-NOT gate

GPA33:MUC17 AND-NOT gate

GPA33:SI AND-NOT gate

Glioblastoma Multiforme PCDHGC5:GPR19 AND gate

NTSR2:GPR19 AND gate

ERBB2:CACNG7 AND-NOT gate

DLL3:SYT4 AND-NOT gate

Kidney renal clear cell carcinoma CA12:TREM2 AND gate

Kidney renal papillary cell carcinoma SLC22A2:SLC22A8 AND-NOT gate

SLC22A2:AQP2 AND-NOT gate

SLC22A2:SLC12A3 AND-NOT gate

Liver hepatocellular carcinoma GPC3:TM4SF4 AND gate

TM4SF5:GPC3 AND gate

Mesothelioma TREM2:BDKRB1 AND gate

UPK1B:UPK2 AND-NOT gate

Pancreatic adenocarcinoma SULF1:OR2I1P AND gate

Pheochromocytoma and Paraganglioma ZFYVE27:CHRNA3 AND gate

NRCAM:SLC18A2 AND gate

CHRNA3:ERBB2 AND-NOT gate

SLC4A8:CELSR1 AND-NOT gate

CACNG2:AMER2 AND-NOT gate

CACNG2:CACNG7 AND-NOT gate

CACNG2:HRH3 AND-NOT gate

Prostate adenocarcinoma BMPR1B:GPR160 AND gate

Rectum Adenocarcinoma GPR35:LIFR AND-NOT gate

TRPM1:CLEC2A AND-NOT gate

TRPM1:DSC1 AND-NOT gate

TRPM1:LY6G6C AND-NOT gate

Stomach adenocarcinoma MUC13:CLCA1 AND-NOT gate

MUC13:LYPD8 AND-NOT gate

Thymoma PLEK2:SLCO5A1 AND gate

Thyroid carcinoma DCSTAMP:MS4A15 AND-NOT gate
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signatures were revealed through high-throughput tran-
scriptomics and metabolomics in ADA-engineered 
CAR-T cells. ADA overexpression significantly enhanced 
the expansion, tumor infiltration, and tumor control 
of CAR-T cells in the both preclinical engineered ovar-
ian carcinoma xenograft model and in  vivo CRC model 
[129, 130]. Moreover, increased PRODH2 expression 
could reshape gene expression and metabolic programs. 
PRODH2 engineering greatly enhanced CAR-T cell met-
abolic function and anti-tumor immunity [131]. Overall, 
multi-omics sheds light on how to counteract the meta-
bolic suppression in TIME at different dimensions and 
confer superior and durable therapeutic potential to 
engineered CAR-T cells (Fig. 4B).

Resist immunosuppression in TIME
Immunosuppression in TIME at multiple mechanistic 
levels is the stumbling block for the clinical application 
of CAR-T therapy. Tumor cells could induce preexist-
ing immune cells towards tumor-promoting phenotypes 
and recruit a range of immunosuppressive cells. Overex-
pressed immunosuppressive factors such as TGF-β and 
vascular endothelial growth factor (VEGF) not only pre-
vented cytotoxic T cell infiltration and recruited tumor-
promoting cells but also directly impaired T cell function 
(Fig.  4C) [2, 132]. To fully exert anti-tumor function, 
CAR-T cells must overcome immunosuppression in 
TIME. Multi-omics analysis can help us to decipher the 
composition of the various cell types and cellular states 
in the TME.

Immunosuppressive cells
Based on single-cell transcriptomic data regarding cel-
lular composition of TIME, MDSC characteristics are 
continuously being exploited. Transcriptomics showed 
that PTGS2/COX2 and chemokine receptor CXCR2 are 
among the most up-regulated genes in MDSCs [133, 
134]. Oral administration of SX-682, a small molecule 
inhibitor of CXCR1/2, significantly attenuated MDSCs 
accumulation in TIME and enhanced NK-cell immuno-
therapy [135]. Interestingly, SX-682 didn’t exert direct 
effects, but selectively inhibited CXCR2 + polymorpho-
nuclear  (PMN)-MDSC trafficking into tumors, thus 
enhancing the response to PD-1/PD-L1 axis ICIs and 
adoptive cell therapy [136]. Burga et  al. came to a simi-
lar conclusion that CAR-T efficacy was rescued when 
the tumor received CAR-T in combination with MDSCs 
depletion [137]. Cyclooxygenase (COX) 2 is a key enzyme 
converting arachidonic acid to prostaglandins. COX-2 
pathway could support directly MDSCs development  
and CCL2-mediated accumulation while reducing CXCL10- 
mediated CD8 + T cell infiltration. COX blockade therapy  

held the potential to suppress tumorigenesis and strengthen 
T cell anti-tumor immunity [138].

Regulatory T cells (Tregs), especially CD4 + Tregs, are 
equipped with a strong immunosuppressive ability in 
TIME. High-dimensional single-cell analysis of T cells 
identified transcription factor IRF4 that was specifically 
expressed in a subset of intratumoral CD4 + Tregs with 
superior suppressive activity. IRF4 + Tregs expressed an 
army of inhibitory molecules and correlated with T cell 
exhaustion. Integrative transcriptomic and epigenom-
ics data showed that IRF4, alone or in combination with 
BATF, was directly responsible for tumor immunosup-
pression. IRF4 depletion in Tregs resulted in delayed 
tumor growth and the abundance of IRF4 + Tregs was 
associated with an inferior prognosis [139]. Furthermore, 
cooperation of IRF4 and BATF could counteract T cell 
exhaustion and improve anti-tumor response of CAR-T 
cells [140]. Utilizing bulk RNA‐seq, immunohistochem-
istry, and flow cytometry, a remarkable enrichment of 
Tregs, M2 macrophages, and conventional dendritic 
cells (cDC2) in hypoxic-high tumor areas was uncovered. 
Further results showed that Tregs mediated the loss of 
HLA-DR in the cDC2 subset, which led to immunosup-
pressive TIME in hypoxic hepatocellular carcinoma, pro-
viding a promising thread for CAR construction design 
[141]. Thus, targeting immune suppressor cells under 
multi-omics guidance could be a promising strategy to 
reverse immunosuppression on CAR-T cells in TIME 
and improve clinical outcomes.

Immunosuppressive cytokines
Proteomics, studying ultimate effector that exerts 
immune function, is a particularly appropriate tool to 
identify cytokines such as TNF-α, IFN-γ, TGF-β, VEGF, 
IL-6, and IL-10 [142]. Valid approach to withstand immu-
nosuppression in TIME is engineering T cells to restrict 
cytokine-induced suppressive signals. Perturb-map, a 
spatial functional genomics platform combining CRISPR, 
multiplex imaging, and spatial transcriptomics, could 
identify genetic determinants of growth, histopathology, 
and immune composition in TIME. Through Perturb-
map, Dhainaut and colleagues found that in TGF-βR2 
knockout tumors, T cell infiltration was reduced along 
with upregulated TGF-β and TGF-β-mediated fibro-
blast activation, indicating that TGF-β receptor loss 
on tumor cells increased TGF-β relative concentration 
and its immunosuppressive effect [143]. Knockdown of 
endogenous TGF-β receptor II (TGF-βR2) in CAR-T cells 
with CRISPR/Cas9 technology could reduce induced 
Tregs transformation and prevent CAR-T cell exhaustion 
(TEx). TGFBR2-engineered CAR-T cells exhibited supe-
rior survival and proliferation and generated sustained 
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anti-tumor efficacy in tumor xenograft mouse models 
[144]. Alternatively, Kloss et al. designed PSMA-specific, 
TGF-β-insensitive (dnTGF-βRII-T2A-Pbbz) CAR-T cells 
that exhibited increased proliferation, enhanced cytokine 
secretion, prolonged persistence, and induced tumor 
eradication (NCT03089203) [145]. Another strategy tar-
geting immunosuppressive cytokines is engineering T 
cells with CAR for rewired responses to suppressive solu-
ble ligands. T cells engineered with a CAR responding to 
TGF-β could convert the suppressive cytokine to a potent 
stimulant. TGF-β CAR-T cells could protect neighbor-
ing immune cells from the immunosuppressive effects 
of TGF-β, thereby boosting anti-tumor immunity [146]. 
IL-10 is considered a context-dependent cytokine. IL-10 
exhibited carcinogenic function by activating the STAT3 
pathway and inducing Tregs production and exerted anti-
tumor effects by downregulating angiogenic factors [147]. 
Combining scRNA-seq, reversed-phase protein arrays, 
and time-lapse fluorescent microscopy, some researchers 
revealed the high expression of IL-10 receptor gene in T 
cells and TAMs and found that IL-10 blockade enhanced 
MHC-I pathway and macrophage MHC-II-dependent 
antigen presentation, increasing CD8 + cytotoxic T cell 
frequency [148]. Neutralizing antibodies against IL-10 
(αIL-10) or IL-10 depletion could boost carcinoembry-
onic antigen (CEA)-specific CAR-T cell activation and 
CAR-T cell-mediated cytotoxicity [148, 149].

In addition to targeting inhibitory cytokines in TIME, 
CAR-T cells could be equipped with ability to secrete 
pro-inflammatory cytokines such as IL-12 and IL18 to 
remodel suppressive TIME and boost anti-tumor effects.  
CyTOF analysis demonstrated that IL-18-secreting CAR-T  
cells could induce the expansion of NK cells, DCs, and 
endogenous CD8 + T cells and regulate endogenous 
immune cells phenotype, thereby reversing immunosup-
pressive TIME and amplifying anti-tumor response [150].

Enhance CAR‑T cell infiltration
TIME poses multiple challenges for CAR-T cells, some of 
which occur even before encountering tumor cells. Nev-
ertheless, multi-omics era has brought dawn for more 
efficacious CAR-T cells. Mounting evidence suggests that 
harnessing multi-omics data to elucidate pivotal factors 
for overcoming tortuous barriers could reverse deficient 
CAR-T cell infiltration into TIME. As proof (Fig.  4D): 
1) extracellular matrix (ECM) within solid tumor was 
altered to be more rigid and contractile, creating physi-
cal barriers to exclude tumor-infiltrating T cells [151]. 
The release of specific enzymes like acetaparinase (HPSE, 
enzyme breaking down ECM-heparan sulfate proteogly-
can) is the cornerstone for T cell degradation of ECM 
[152]. Investigation combined with multi-omics has 
described the HPSE mRNA downregulation and HPSE 

protein loss in long-term ex  vivo expanded T cells and 
in ex vivo-engineered and cultured CAR-T cells, causing 
an impaired ability to degrade ECM. HPSE-expressing 
CAR-T cells could achieve better tumor infiltration and 
exert stronger anti-tumor activity, especially in mesen-
chymal-rich tumors [153]. 2) Aberrant vasculature could 
hinder CAR-T cell migration to tumor lesions. Expression 
of adhesion molecules necessary for infiltration such as 
intercellular cell adhesion molecule (ICAM)-1 and CD34 
were down-regulated on endothelial cells (ECs), resulting 
in inefficient T-cell adhesion [154]. Kinome-wide genetic 
screening of mesenchymal-like transcriptional activa-
tion identified PAK4 as a critical aberrant vasculariza-
tion regulator. PAK4 knockout induced adhesion protein 
re-expression in EC, inhibited tumor growth, improved 
T cell infiltration, and sensitized CAR-T cell immuno-
therapy [155]. Metabolomic and transcriptomic analyses 
showed that PHGDH overexpression affected EC glyco-
lysis through a redox-dependent mechanism, leading to 
EC overgrowth. Endothelial metabolism reprogramming 
against PHGDH could inhibit aberrant angiogenesis, 
restore vascular delivery, and thus enhance CAR-T cell 
infiltration into tumor [156]. 3) Dysregulated chemokines  
profiles in TIME favor tumor proliferation and metastasis 
while avoiding anti-tumor inflammatory cell recruitment 
[157]. ScRNA-seq data demonstrated that STING agonists 
DMXAA or cGAMP could greatly enhance the tumor 
control of CAR-T cells, and boost CAR-T cell trafficking 
and persistence with altered chemokine milieu [158].

Prevent CAR‑T cell exhaustion
Under sustained antigen stimulation, CAR-T cells 
exhibit a hierarchical loss of effector function, upregu-
lated expression of multiple inhibitory receptors such as 
PD-1 and LAG3, metabolic dysregulation, and eventual 
clonal deletion, namely TEx [159, 160]. Transcriptional 
profiling on exhausted CD8 + T cells has revealed signifi-
cant alterations in metabolism, cell cycle regulation, and 
transcription factor expression [161]. TEx Gene expres-
sion regulation was closely related to the epigenetic land-
scape [162, 163]. Genome editing revealed that PD-1 
expression was partially regulated by exhaustion-specific 
enhancers including essential RAR, T-bet, and Sox3 
motifs [162]. Advancing transcriptomic and epigenetic 
techniques have emerged as fruitful methods to elucidate 
the TEx mechanisms [163].

Single-cell assay for transposase-accessible chromatin 
using sequencing (scATAC-seq) allows for precise and 
large-scale deconstruction of complex gene expression 
programs. Based on ATAC-seq and RNA-seq experi-
ments, Pritykin and colleagues mapped CD8 + T cell dif-
ferentiation trajectories leading to dysfunction and its 
underlying transcriptional regulators [164]. Employing 
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ATAC-seq to analyze chromatin profiles of more than 
200,000 single cells in tumors could describe the regu-
latory program that existed in TEx cells as two stages. 
Primarily, intermediate TEx was concomitant with the 
accessibility of NR3C1 and NR4A1 motifs, the direct 
downstream factors of tumor cell receptor signaling. 
Secondly, further progression towards terminal TEx 
was associated with the accessibility of cis-elements 
near CD101 and TOX genes [165]. Proteomic analysis 
identified high and sustained TOX expression of TEx in 
chronic infection and lung cancer [166]. TOX converts 
continuous antigen stimulation into TEX-specific tran-
scriptional and epigenetic programs, thus becoming Tex 
commitment initiator and inducing typical exhaustion 
characteristics [167]. High expression of NR4A transcrip-
tion factors and enrichment of NR4A binding motifs in 
chromatin regions was also demonstrated in TEx [168]. 
Nuclear factor of activated T-cells (NFAT) initiation 
induced secondary transcription factors of TOX and 
NR4A family, leading to inhibitory receptors expression 
to promote TEx. Meanwhile, a positive feedback regu-
lation between NR4A and TOX reinforced this process 
[169]. Phosphatase PTPN2 was found to be a crucial 
regulator of differentiation towards terminally exhausted 
subpopulation based on T cells ATAC-seq and RNA-seq 
library [170]. TCF-1 also emerged as a developmental 
catalyst for mature Tex mediating the transcription fac-
tors conversion from T-bet to Eomes and driving early 
fate bifurcation in TEx precursor cells [171, 172].

Multi-omics could be applied to explore TEx molecu-
lar mechanisms. Corresponding genetic engineering 
strategies could reactivate Tex and potentiate CAR-T 
cell responses. CAR-T cells with a triple knockout of 
NR4A family members promoted tumor regression and 
prolonged survival [168]. Double-deficient CAR-tumor-
infiltrating lymphocytes (TILs) of TOX and TOX2 
showed increased cytokine expression and decreased 
inhibitory receptor expression, and more efficiently pre-
vented tumor growth than wild-type CAR-T cells [169]. 
PTPN2‐deficient HER‐2‐targeting CAR-T cells exhibited 
augmented LCK‐dependent activation and notable sup-
pression of tumor formation. Moreover, it eradicated 
HER-2 + mammary tumors in  vivo, exhibiting remark-
able clinical potential [173]. Transcription factors NFAT 
and its partner AP-1 (Fos-Jun) cooperated to promote 
T cell function, and in the absence of AP-1, NFAT initi-
ated a negative feedback program that contributed to T 
cell hyporesponsiveness or exhaustion [140]. Engineer-
ing CAR-T cells to overexpress c-Jun (a typical AP-1 
factor) increased CAR-T expansion, enhanced effector 
function, and reduced differentiation towards terminal 
exhaustion, resulting in a more potent anti-tumor effect 
[174]. Up-regulated BATF in CAR-T cells was reported 

to reduce the TOX and inhibitory receptor expression, 
thereby shielding their phenotype and transcriptional 
profile from exhaustion, and potentiating effector func-
tions [140].

Immune checkpoints are essential receptors and 
ligands on co-stimulatory and inhibitory pathways 
that modulate immune responses [175]. In physiologi-
cal conditions, immune checkpoints help maintain 
self-tolerance and regulate the intensity and duration 
of immune response to avoid autoimmune and tissue 
damage. However, tumors develop immune resistance 
through certain immune checkpoint pathways. Multiple 
immune checkpoints play key roles in TEx. Currently, 
combining CAR-T therapy with ICB could be effective 
against TEx. Notably, exhausted T cells under chronic 
stimulation exhibited enhanced and sustained expres-
sion of PD-1 [176]. The TEx feature favors the develop-
ment of ICB therapy targeting PD-1/PD-L1 to restore 
the effector functions of CD8 + T cells in tumor models. 
Blocking PD-1/PDL-1 pathway by PD-1 antibody check-
point blockade, cell-intrinsic PD-1 shRNA blockade, 
or a PD-1 dominant negative receptor could reactivate 
CD28 + CAR-T cells effector function [177]. In multi-
ple tumor models, including leukaemia, melanoma, and 
ovarian cancer, CAR-T cells engineered to secrete PD-
1-blocking single-chain variable fragments have suc-
cessfully increased survival [178]. Multi-omics analyses 
present a potent methodology for elucidating TEx, pav-
ing way for CAR-T therapy to overcome obstacles.

Machine learning (ML) contributing to decoding 
TIME and CAR​‑T cell
ML and TIME
Providing information related to spatial-level cellular 
distribution, co-organization, and cell–cell interaction 
in the TIME, machine learning (ML) methods could 
advance our understanding of spatio-temporal hetero-
geneity and complex molecular structures of TIME [20, 
179, 180]. ML and artificial intelligence-driven analyses 
of pathology images enables histological image-level spa-
tial analysis and spatial TIME analysis at the single cell 
level. In histological image-level, ML analysis allows pre-
cise identification and quantification of TILs and their 
co-organization with neighboring cancer cells. Diagnos-
tic whole-slide image (WSI) analysis is widely used to 
analyze TIME. Xu et  al. [181] developed computational 
approaches using WSI to predict bladder cancer patients’ 
tumor mutation burden (TMB) status and TILs distribu-
tion, and then identify spatial heterogeneity and organi-
zation in regions with high TMB and TILs, as well as the 
prognostic effect. Irrespective of cell-scale detail, the ML-
driven histological image-level analyses can efficiently 
provide spatial immune features that will help predict 
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patient prognosis, cancer subtype, treatment response, 
recurrence, and metastasis. As mentioned above, the dis-
tance and distribution of tumor/immune cells are major 
characteristics of TIME. At the single-cell level, Image 
analysis algorithms and deep learning (DL) models can 
be employed to identify and label different nucleus types, 
such as tumor cell, lymphocyte, and stromal cell nuclei. 
Via graphic tessellation or hot spot analysis, the nuclear 
densities, spatial organization, and interactions can be 
quantified. Some researchers conduct automated his-
tology images and spatial statistical analyses in ovarian 
cancer pathology slides [179]. Among the Immunoreac-
tive subtype, the spatial analysis shows significantly lower 
lymphocytic infiltration within diversified zones com-
pared with other tumor zones, suggesting that even I-I 
TIMEs contain cells capable of immune escape.

ML and CAR​‑T cell
CAR​ construction
CAR constructions steer the phenotypic output and cell 
fates of therapeutic T cells. The co-stimulatory domains 
in CARs are composed of multiple signaling motifs, short 
peptides that bind to specific downstream signaling pro-
teins. Therefore, such peptide signaling motifs can be 
referred to as the fundamental unit controlling the out-
put of most phenotype of CAR-T cells. Currently, the 
major goal is still to predictably generate desirable T cell 
phenotypes by altering receptor construction. Although 
several specific natural immune receptors have been 
screened to enhance T cell anti-tumor cytotoxicity or 
prolong the T cell lifespan, this approach is not effective 
enough and limited to the currently discovered receptor 
structures [182, 183]. An effective solution is to screen 
the natural receptor composition, create a signal motif 
library, and systematically encode new receptors with 
different motif identities, combinations and orders. Ran-
dom combinations of signaling motifs could, in principle, 
yield phenotypes beyond those that can be generated by 
native receptor domains alone. Accordingly, those man-
ually encoded CARs can confer novel phenotypes on T 
cells. Due to the huge size and complexity of the combi-
natorial space, ML is proper to decode the combinatorial 
grammar of CAR and guide the design of non-natural co-
stimulatory domains with improved phenotypes. Based 
on 13 signal motifs, Daniels and colleagues constructed 
a library of CARs containing 2,300 synthetic costimula-
tory domains [184]. With an arrayed screen of several 
hundred receptors and machine learning, they identi-
fied a non-native combination of motifs that bind tumor 
necrosis factor receptor-associated factors (TRAFs) and 
phospholipase C gamma 1 (PLCγ1). Subsequent neural 
networks predict this combination enhances cytotoxicity 
and stemness associated with effective tumor killing.

Neoantigen
Immunogenic neoantigens have been reported as cru-
cial targets for adoptive T-cell therapies. However, the 
process of neoantigen discovery and validation remains 
a formidable question. The emergence of state-of-the-
art ML algorithms enabled the identification of T-cell 
neoantigens through MHC class I/II presentations. The 
newly developed pipeline utilizes genomics data of tumor 
samples, usually derived from whole-genome sequencing 
(WGS) or WES, to infer the mutated peptides based on 
the somatic non-synonymous single-nucleotide variants 
(SNVs) [180]. Some other studies employ ML models 
to predict neoantigens by estimating the binding affin-
ity between a given mutated peptide and an MHC class 
I molecule [185, 186]. CD4 + T cells recognize antigens 
presented by class II MHC molecules. Compared to class 
I MHC molecules, class II MHC molecules are highly 
polymorphic and the size of the peptides presented is 
promiscuous, making neoantigen prediction more chal-
lenging [187]. Thus, the MHC class II prediction mod-
els were generally trained on more complicated datasets 
[188, 189].

Assessment of binding affinity between the mutant 
peptide and MHC alone is not sufficient to reliably pre-
dict neoantigens, immunogenicity of peptide-MHC 
(pMHC) also needs to be taken into account. Immuno-
genicity refers to the ability of a protein product to trig-
ger an immune response. It is related to factors such as 
protein expression, pMHC binding affinity and stabil-
ity [190]. DeepHLApan is a deep learning approach for 
neoantigen prediction considering both the possibility of 
MHC-peptide binding and the potential immunogenicity 
of pMHC [191].

ML and prediction of immunotherapy response
The CAR-T treatment inevitably imposes signifi-
cant financial, physical, and psychological burdens 
on patients, so it is critical to predict immunotherapy 
outcomes and identify patients with therapeutic ben-
efits. Tumors are caused by the accumulation of various 
genetic variants that regulate how cells grow and prolifer-
ate [192]. From this perspective, it is reasonable to pre-
dict a patient’s response to immunotherapy by exploiting 
tumor-related genomic biomarkers and molecular char-
acteristics, such as somatic mutations (single-nucleo-
tide variants, insertions, and deletions) [193], pathway 
activity [194], cell–cell communication [195]. Given the 
complex omics space, conducting extensive research 
through experimental methods is impractical. In silico 
approaches, especially ML algorithms, provide opportu-
nities to address this critical requirement [196, 197].

With the advancement of omics technology, recent 
research has focused on developing ML prediction 
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models incorporating multi-omics datasets for immuno-
therapy prediction. The integration of multi-omics data 
can provide a more comprehensive understanding of 
tumor conditions, from the original cause to pathologi-
cal outcomes, thereby improving predictive performance 
[197, 198].

Perspective and conclusion
Despite the significant advancements in immunother-
apy, some patients persistently encounter suboptimal 
clinical outcomes. The complexity and heterogeneity of 
TIME impose considerable constraints on the clinical 
efficacy of immunotherapy. Multi-omics analyses, includ-
ing genomics, epigenomics, transcriptomics, proteom-
ics, and microbiomics, have been employed to conduct 
in-depth investigations on TIME and renovate valuable 
novel insights into TIME. CAR-T cell therapy is the most 
anticipated immunotherapies. Nevertheless, application 
and toxicity remain a Gordian knot. Here, precise and 
feasible strategies were provided to address these unfa-
vorable conditions from an innovative perspective of 
multi-dimensional technology.

Commencing with transcriptome, single-cell tech-
nology has extended to multi-omics strategies and ena-
bled comprehensive multi-dimensional analysis of bulk 
sequencing data, providing rich and high-resolution 
information on all facets of the immune milieu and 
response in TIME. The future of tumor therapy will inev-
itably move towards individualization. To create an opti-
mal management strategy tailored to individual cancer 
patients, multi-dimensional characteristics are indispen-
sable [199]. The combination of single-cell technologies 
with multi-omics seems to hold promise for tumor ther-
apy, but integrating extensive and intricate multi-dimen-
sional data into biological models and mechanisms is still 
a considerable challenge. ML is currently the preferred 
method to address this task. Nevertheless, there is a need 
to further understand the principles of data integration 
and visualization methods, and optimize the compu-
tational framework for omics data integration so that 
multi-omics data could be fully utilized to decode TIME 
and CAR-T immunotherapies.
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