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Exosomal miRNAs: the tumor’s trojan horse
in selective metastasis
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Abstract

Organs of future metastasis are not passive receivers of circulating tumor cells, but are instead selectively and actively
modified by the primary tumor before metastatic spread has even occurred. Tumors orchestrate a pre-metastatic pro-
gram by conditioning distant organs to create microenvironments that foster the survival and proliferation of tumor
cells before their arrival, thereby establishing pre-metastatic niches. Primary tumor-derived exosomes modulate these
pre-metastatic niches, generating a permissive environment that facilitates the homing and expansion of tumor cells.
Moreover, microRNAs have emerged as a key component of exosomal cargo, serving not only to induce the for-
mation of pre-metastatic niches but also to prime these sites for the arrival and colonization of specific secondary
tumor populations. Against this backdrop, this review endeavors to elucidate the impact of tumor-derived exosomal
microRNAs on the genesis of their individualized pre-metastatic niches, with a view towards identifying novel means

of specifying cancer metastasis and exploiting this phenomenon for cancer immunotherapy.
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Introduction

Metastasis, a terminal stage of cancer progression char-
acterized by the aberrant migration and colonization
of tumor cells in distant organs, represents a profound
and debilitating hallmark of cancer pathophysiology.
This phenomenon frequently culminates in suboptimal
therapeutic outcomes and exacerbates patient mortality.
Despite a plethora of investigations into the underlying
mechanisms, the metastatic cascade remains shrouded
in complexity, with numerous aspects remaining poorly
understood and in need of further elucidation [1-3]. The
successful colonization of circulating tumor cells (CTCs)
in secondary or distant organs represents a pivotal step
in the metastatic process. However, this process is pro-
foundly influenced by the local microenvironment of the
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target organ, which can either facilitate or impede tumor
cell colonization [4].

To unravel the intricate molecular mechanisms gov-
erning cancer metastasis, Chaffer and Weinberg have
posited a two-stage paradigm; the initial phase encom-
passes the physical dissemination of malignant cells from
the primary tumor to the secondary tissue microenvi-
ronment, thereby initiating the metastatic cascade. This
inaugural step is followed by a subsequent phase, which
involves the colonization of these disseminated cells,
requiring their successful adaptation to the novel tissue
context and establishment of a self-sustaining population
[3].

Primary tumors have been found to modulate the
microenvironment of distant organs prior to CTC arrival,
thereby establishing a pre-metastatic niche that primes
the subsequent colonization of disseminated tumor
cells [4]. A diverse array of molecular and cellular con-
stituents has been pinpointed as critical mediators of
pre-metastatic niche formation across various tumor
models. These niche-inducing molecules are secreted by
tumor cells, myeloid cells, and stromal cells, functioning
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in concert to initiate, polarize, and establish a pre-meta-
static niche in distant organs, thereby generating a per-
missive environment for metastatic colonization [5, 6].

The extracellular vesicles derived from the tumor
microenvironment assume a pivotal role in the forma-
tion of pre-metastatic niches within specific organs.
Exosomes, small membrane-bound vesicles that are part
of the extracellular vesicle population, play a vital role
in pre-metastatic niche formation by functioning as a
means of intercellular communication between tumor
cells and their surrounding microenvironment. These
extracellular vesicles are capable of transferring vari-
ous biomolecules, including proteins, mRNAs, micro-
RNAs, small RNAs, and DNA fragments, to recipient
cells through a process known as horizontal gene trans-
fer. This phenomenon enables the exchange of molecular
information between tumor cells and their surroundings,
thereby facilitating the establishment of a pre-metastatic
niche [6]. Notably, microRNAs (miRNAs) assume a piv-
otal role in the multifaceted process of tumor growth
and metastasis, encompassing all stages of carcinogen-
esis. Aberrant miRNA expression patterns are a hallmark
of cancer cells, with numerous cancer types exhibiting
either elevated or diminished miRNA levels. Cancer-
secreted exosomes also display aberrant miRNA profiles,
which can contribute to the creation of a permissive envi-
ronment for tumorigenesis. By modulating the expres-
sion of oncogenes and/or tumor suppressor genes in
recipient cells, these miRNAs can influence cellular pro-
cesses and promote tumorigenesis. This underscores the
potential significance of miRNA-containing exosomes as
a key mechanism by which cancer cells exert their influ-
ence on the microenvironment, ultimately facilitating the
development of cancer [7].

Selective metastasis
Cancer metastasis refers to the process through that can-
cer cells spread from the main tumor, settle, and develop
at a location beyond the primary tumor site. For this pur-
pose, cancer cells need to detach from their primary site
and enter the bloodstream or lymphatic system. Once in
circulation, they must survive the rigors of travel, includ-
ing the immune response and blood flow, to reach their
secondary sites [8—11]. At these new sites, they must
adapt to their new environment by undergoing further
changes that allow them to grow and thrive [12].
Captivatingly, most cancer types appear to have prefer-
ential locations to colonize, confirming that the spread of
metastases is not random [12]. In fact, certain tissue micro-
environments, known as “anti-metastatic niches,” are found
to be inhospitable for formation of secondary tumor [4].
The metastatic localization of cancer cells is a complex
process orchestrated by a multitude of pivotal mediators,
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including chemokines and secreted proteins. Another
critical determinant of successful metastasis is the ability
of metastatic cells to survive and adapt in their new envi-
ronment. To enable successful engraftment, the second-
ary environment must undergo modifications to create a
permissive microenvironment for cancer cell colonization
(Fig. 1) [12]. Tumor-secreted factors, including tumor-
derived extracellular vesicles and particles, circulate in the
bloodstream and modulate distant organs, thereby influ-
encing metastatic progression. Primary tumors can induce
early changes in the microenvironment of secondary
organs devoid of cancer cells, creating a permissive envi-
ronment conducive to cancer cell settlement and metasta-
sis initiation. This phenomenon gives rise to pre-metastatic
niches (PMNs), which provide a fertile ground for the
establishment of metastatic foci, preceding the arrival of
cancer cells [4]. The seed and soil hypothesis, posits that
cancer cells (the seeds) require a receptive microenviron-
ment (the soil) for engraftment during metastasis [12]. It is
established that the primary tumor can trigger the perpetu-
ation of pre-metastatic niches (soil) through a process anal-
ogous to irrigation, where the tumor acts as the "watering
can" that nourishes the soil, allowing it to become receptive
to seed colonization.

The PMN is shaped by intricate interactions between
cancer-secreted factors and resident stromal cells at distant
sites, as well as bone marrow-derived cells (BMDCs). The
priming of a distant organ comprises a stepwise process
that subverts tissue homeostasis, creating an environment
receptive to circulating tumor cell (CTC) colonization. This
multifaceted process involves the induction of vascular
leakiness, lymphangiogenesis, extracellular matrix (ECM)
remodeling, and the generation of an immunosuppressive
microenvironment. These alterations collectively create
a permissive environment that enables CTCs to establish
a foothold and initiate metastatic growth [4]. It has been
reported that the exosomes derived from tumor cells
that are capable of migrating have the ability for interact-
ing with blood vessels, stromal components, and immune
cells to establish a pre-metastatic niche [13]. Therefore,
the mechanisms by which tumor-derived exosomes sub-
serve the tumor are still being investigated. Through the
next section, we will delve into the most recent discoveries
regarding the impact of cancer cell-derived exosomes and
the miRNAs they transport, as one of the most important
cargos, on selective and distant metastasis.

Role of cancer cells-derived exosomal miRNAs

in selective metastasis

The metastatic potential of cancer cells is contingent
upon a dynamic crosstalk between the tumor cells and
their microenvironment (TME), where the tumor influ-
ences the microenvironment, which in turn shapes
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Fig. 1 lllustration of tumor microenvironment. Diverse range of cell types exist in tumor microenvironment, including immune cells, stem cells,
and other cell subtypes that interact and influence tumor growth and progression

the behavior of cancer cells [14]. Moreover, it is con-
formed that the establishment of a pre-metastatic niche
is orchestrated by the secretion of soluble factors from
the primary tumor into the systemic circulation. Among
these factors, tumor-derived exosomes (TDEs) are of par-
ticular significance, as they are small extracellular vesicles
that encapsulate a diverse range of biomolecules, includ-
ing RNA, DNA, proteins, metabolites, and microRNAs,
derived from their parent cells [15, 16].

Liu and Cao have identified six key features of the
pre-metastatic niche that facilitate tumor cell coloniza-
tion and metastasis: inflammation, immunosuppression,
organotropism, reprogramming, lymphangiogenesis,
angiogenesis, and vascular permeability. These features
collectively regulate the colonization and survival or
dormancy of circulating tumor cells upon arrival in the
target organ, influencing the ultimate fate of these dis-
seminated cells [6]. Various studies have confirmed the
contribution of exosomes in cancer metastasis, through
their role in formation of the premetastatic niche, influ-
encing tumor cells and TME, and determining specific
organotropic metastasis [17, 18]. TDEs exhibit a predi-
lection for homing to highly vascularized tissues, such as
the lung and liver, owing to their distinctive surface inte-
grin profiles [15]. Specifically, TDEs interact with inflam-
matory molecules to facilitate the formation of the PMN.
Moreover, TDEs exert a multifaceted influence on the

establishment of the PMN, encompassing immunosup-
pression and immune surveillance, promotion of angio-
genesis and vascular permeability, activation of stromal
cells, and remodeling of the extracellular matrix (ECM),
as well as organotropic metastasis [19]. Given their ubiq-
uity in bodily fluids and their potential as non-invasive
biomarkers for cancer diagnosis, TDEs are being exten-
sively explored as a novel therapeutic target in clinical
settings [15].

There has been an increasing focus on the role of TDEs
in mediating complex intratumoral communications
within the tumor microenvironment [20]. TDEs have
been shown to modulate tumor progression by secret-
ing pro-inflammatory cytokines, promoting angiogen-
esis, triggering Toll-like receptor 3 (TLR-3)-dependent
neutrophil infiltration, and recruiting myeloid-derived
suppressor cells (MDSCs) [21]. The non-coding RNA
cargo of TDEs, particularly microRNAs has been increas-
ingly recognized as a critical component of the PMN. In
fact, the intricate dialogue between tumor cells and the
microenvironment is orchestrated by a complex inter-
play of signaling pathways, wherein miRNAs assume a
pivotal role in shaping the pre-metastatic niche. TDEs
have been shown to transfer miRNAs to surrounding
cells or cells in distant metastatic niches by conditioning
the pre-metastatic tumor microenvironment (TME) [14,
22]. Tumor-derived miRNAs selectively target key genes
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involved in immune cell suppression, angiogenesis, and
EMT, thereby priming the pre-metastatic niche in distant
organs (Fig. 2). This miRNA-mediated signaling cascade
enables the primary tumor to establish a permissive envi-
ronment for subsequent metastasis. Furthermore, organ-
specific miRNA profiles play a crucial role in directing
metastasis to specific tissues by regulating gene expres-
sion and modulating cellular processes [23, 24]. In fact,
detection of specific miRNAs may serve as a potential
biomarker for predicting or prognosticating metastasis,
thereby providing a means to prevent or delay its onset
[15, 19, 25, 26].

With that context, through this section we will delve
into the pivotal role of exosomal miRNAs in orchestrating

Pre-metastatic niche
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organ-specific metastasis and PMN establishment across
various cancer types, thereby highlighting the intricate
molecular mechanisms underlying the heterogeneous
patterns of tumor dissemination.

Colorectal cancer

Colorectal cancer (CRC) is the third most prevalent can-
cer globally. Despite advances in treatment, CRC has
a significant mortality rate, with approximately 56% of
patients succumbing to their disease. Notably, approxi-
mately 20% of patients present with metastatic disease at
the time of diagnosis, a phenomenon that has remained
relatively stable over the past two decades [27]. The most
frequent sites of metastasis from CRC are the liver, lung,

Fig. 2 The effect of tumor microenvironment in preparation of pre-metastatic niche. Exosomal microRNA derived from tumor cells and tumor
microenvironment can alter pre-metastatic niche in favor of tumor metastasis
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peritoneum, brain, and bone, with less common metasta-
sis to the adrenal glands and spleen (Fig. 3) [28].
Exosomes derived from CRC cells can contain onco-
genic miRNAs that suppress EMT inhibitors and triggers
CRC metastasis [29]. For example, exosomal miR-335-5p
originated from metastatic CRC cells are found to induce
CRC metastasis through enhancing EMT by target-
ing RASA1 [30] and DLC-1 [31]. Besides, EMT-CRC-
secreted exosomal miR-27b-3p triggers metastasis by
inducing EMT through targeting p120 and vascular
endothelial cadherin (VE-Cad) CRC cells [32]. In addi-
tion, exosomal components can be originated from or
delivered to tumor cells or cells within the tumor micro-
environment, elevating the metastatic activity through
triggering the EMT process in tumor cells and effecting
the microenvironment’s characteristic [29]. For instance,
EMT-CRC-derived exosomal miR-29a  enhances
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metastasis in endothelial cells in the TME by targeting
KLF4 [33].

Furthermore, tumor-derived exosomes within serum
can deliver miRNAs to distant sites and trigger metasta-
sis. Altered regulation of exosomal miRNAs can promote
metastatic cascade through upregulating EMT markers
and phenotypic features of pro-metastatic cells. MiR-
221/222-3p is an onco-miRNA that is associated with
poor prognosis in CRC individuals [34, 35]. Recently,
Tian et al. [36] reported exosomal miR-221/222-3p
secreted from CRC cells enhances liver metastasis by
positively increasing the expression level of hepatocyte
growth factor through inhibiting SPINT1. Furthermore,
exosomes originated from HCT116-TP53(R273H) cells
are adsorbed by mouse embryonic fibroblasts (MEFs)
and became activated. Furthermore, it has been shown
that miR-21-3p and -769-3p are capable of activating

Fig. 3 The effect of tumor-derived exosomes in selective metastasis. Organotropism in A colorectal cancer, B breast cancer, C lung cancer,

D hepatocellular carcinoma
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fibroblasts and exerting a synergistic influence on
the transforming growth factor-f (TGEF-B)/Smad axis
through their target genes. Overall, the mutant p53 CRC
cells-derived exosomal miR-21-3p and -769-3p enhances
pulmonary metastasis by activating stromal fibroblasts
and premetastatic niche. In return, activated fibroblasts
promotes tumor cell EMT by positively regulating TGF-§
[37]. Exosomal miR-106b-3p derived from high invasive
potential CRC cells contributes to lung metastasis in
mice by targeting DLC-1 [31].

Immunosuppression is a critical factor for forming
and developing the PMN and development of PMN, and
the main contributor to tumors survival and develop-
ment in vivo. plasma-derived exosome miR-203 is dem-
onstrated to promote the differentiation of monocytes
in distal organs into M2 TAMs of immunosuppressant
phenotype [38]. Meanwhile, it has been established that
exosomal miR-934 can induce the differentiation of nor-
mal phenotype M1 into M2 TAMs [39]. Downregulation
of SOCS3 through miR-222-3p in TDEs is established
to promote STAT3-mediated M2 and contribute to the
immunosuppressive microenvironment [40]. Moreover,
the upregulatory effect of exosomal miR-425-5p and -25-
3p on M2 TAMs expression through the PI3K/AKT axis,
have been demonstrated to trigger distant metastasis in
CRC [41].

Noteworthy, inflammation is found to be implicated in
suppression of the tumor progression as well as promo-
tion of tumor occurrence and metastasis. For instance,
inflammatory M1 TAM:s are found to contribute to CRC
development in colitis through their capability to have
pro-inflammatory and immunostimulatory activity as
well as producing anti-tumor factors, including IL-1f,
IL-6 and TNF-a [42]. Hence, during tumor growth and
metastasis, chronic inflammation that is the foundation
of inflammatory microenvironment, can trigger the PMN
formation in distant organs [43]. In fact, the aforemen-
tioned pro-inflammatory cytokines serve a crucial role in
inflammatory microenvironment, which promotes tumor
survival, proliferation and metastasis [43]. It has been
established that low-density IL-1p can induce the local
inflammatory response and result in protective immune
responses, whereas high densities can trigger the inflam-
mation-related cancer tissue damage [44]. On the other
hand, during the immune response, IL-6 can activate T
and B cells to perform an anti-inflammatory role [45]. It
has been demonstrated that exosomal miRNAs derived
from CRC tumor cells can upregulate IL-6 secretion,
therefore elevating inflammatory responses [46]. In fact,
high concentration of IL-6 has been identified in serum,
live tumors or biopsies of cancer individuals, confirm-
ing that the inflammatory effects of this cytokine might
be associated with the cancer occurrence [47]. Exosomal
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miR-21 can trigger the release of pro-inflammatory IL-6
and IL-21 and their presence within circulation, thereby
promoting the formation of an inflammatory microenvi-
ronment [48]. More studies are shown in Tables 1 and 2.

In conclusion, the identification of specific exosomal
microRNAs that promote EMT and tumor invasiveness,
as well as those that contribute to immunosuppression
and inflammation, may lead to the development of inno-
vative therapeutic strategies aimed at disrupting these
pathways and inhibiting CRC progression.

Breast cancer

Invasive breast cancer often exhibits a propensity for
lymphatic and distant metastasis. At early-stage metas-
tasis breast cancer, dissemination of tumor cells through
both lymphatic and hematogenous systems occurs [14].
Multiple organs including lymph nodes, bone, lungs,
brain, and liver are often found as receiver of the breast
cancer metastasis (Fig. 3) [14]. The aberrant downregula-
tion of miR-130a-3p has been identified in human breast
cancer tissues and exosomes from circulating blood. The
lower levels of exosomal miR-130a-3p are also found to
be related to lymph node metastasis and advanced TNM
stage [159]. In vitro study has established that exosomal
miR-130a-3p can inhibit the cell proliferation, migration,
and invasion of human breast cancer stem cells (BCSCs)
through regulation of RAB5B/epidermal growth factor
receptor signaling pathways [160]. Moreover, it has been
established that exosomal miR-770 can be transmitted
into tumor-associated macrophages, and subsequently
increase the expression of miR-770 in macrophages
[160]. In addition, upregulation of miR-770 is established
to suppress the invasion and migration of Triple-nega-
tive breast cancer (TNBC) through targeting STMNI.
On the other hand, Let-7a and c-Myc exhibit a negative
correlation with BC. The exosomal Let-7a originated
from MDA-MB-231 cell can suppress the proliferation,
migration, and invasion both in vitro and in vivo through
downregulating the c-Myc expression [161]. Moreover,
it has been demonstrated that miR-188-5p can suppress
breast cancer-cell proliferation and migration, through
targeting IL-6 signal transducer (IL6ST) [162]. This data
have confirmed the selective sorting of miR-188-5p into
exosomes from malignant BC cells [14].

In the process of metastatic and diffusion, BC gains
the capability to transmigrate through blood vessels
via promoting alteration within the endothelial bar-
rier [14]. Exosomal miR-939 in TNBC cells elevated
tumor cell trans-endothelial migration and directly tar-
geted vascular endothelial cadherin (VE-cadherin) in
endothelial cells [163]. This suggests that BC-secreted
exosomal miR-939 is implicated in the extracellular
pro-tumorigenic characteristic and is correlated with
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Table 2 Role of Exosomal miRNAs in inhibiting in cancer metastasis
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Exosomal miRNAs

Originating cells

Receiving cells

Target

Note

Ref

miR-29¢-3p (Down)

miR-320a (Down)

miR-34a-5p

miR-148b (Down)

miR-146a-5p (Down)

miR-319

miR-3940-5p

miR-23b

miR-100 and miR-143

miR-499a-5p

miR-342-3p

miR-128

miR-320a

miR-199a-5p

miR-363-5p

Omental-CAFs

CAFs

CAFs

CAFs

CAFs

CAFs

MSC

BM-MSC

MSCs

MSCs

MSCs

MSCs

Umbilical cord mesenchymal stem
cells

Hypoxic Ovarian cancer

Breast cancer

Ovarian cancer peritoneal

HCC

0OscC

Endometrial cancer

Prostate cancer

Gastric cancer

CRC

Breast cancer cell (BM2)

CRC

Endometrial cancer

Breast cancer

Urothelial carcinoma

Lung cancer

Ovarian cancer

Breast cancer cell (MCF-7)

MMP2

PBX3

AXL

DNMT1

EGFR

MMPT1

TGA6

MARCKS

VAV3

D4

CCL18

SOX4

HIF-2a

PDGFB

Omental-CAFs-derived exosome
with low miR-29¢-3p enhances
ovarian cancer peritoneal metastasis
by targeting MMP2

Downregulated exosomal miR-320a
derived from CAFs leads to induc-
ing HCC metastasis by upregulating
PBX3

CAFs-derived exosomal m miR-
34a-5p inhibits OSCC metastasis
by reducing EMT and MMP
through targeting AXL

Exosomal miR-148b inhibits endo-

metrial cancer metastasis by allevi-
ates EMT, and invasion through tar-
geting DNMT1

DHT-treated CAFs-derived exosomal
miR-146a-5p inhibits prostate
cancer metastasis by inhibiting EMT,
invasion and migration by targeting
EGFR

Gastric CAFs-derived exosomal
miR-319 inhibits gastric cancer
metastasis by negatively regulating
MMP11 levels

MSC-derived exosomal miR-
3940-5p suppresses CRC metastasis
by inhibiting invasion and EMT
through ITGA6

BM-MSC-derived exosomal miR-23b
aggravates the dormancy of breast
cancer in the metastatic niche

MSCs-derived exosomal miR-100
and miR-143 inhibits CRC metastasis
maybe by targeting mTOR

MSC-derived exosomal miR-499a-5p
inhibits endometrial cancer metas-
tasis by inhibiting angiogenesis
through targeting VAV3

MSC-derived exosomal miR-342-3p
suppresses breast cancer metastasis
by inhibiting invasion through tar-
geting ID4

MSC-derived exosomal miR-128
suppresses urothelial carcinoma
metastasis by inhibiting migration
and invasion through targeting
ccLig

Umbilical cord MSCs-derived exoso-
mal miR-320a inhibits lung cancer
metastasis by targeting SOX4

Hypoxic ovarian cancer cell-derived
eoxosmal miR-199a-5p inhibits
ovarian cancer metastasis by target-
ing HIF-2a

Exosomal miR-363-5p inhibits breast
cancer cell metastasis by inhibiting
migration and invasion through tar-
geting PDGFB

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[142]

[143]

[144]

[145]

[146]

[147]

[148]
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Table 2 (continued)
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Exosomal miRNAs  Originating cells

Receiving cells

Target  Note Ref

miR-122-3p Breast cancer (MCF-7)

miR-550a-3-5p Lung cancer Brain

Serum-derived exosomes NSCLC
patients

Let-7e

miR-338-3p Human normal lung epithelial cells ~ NSCLC

(BEAS-2B)

miR-3180-3p (Down) Human bronchial epithelial cells NSCLC

miR-125b Non-metastatic HCC HCC
miR-10527-5p ESCC

miR-485-3p Pancreatic ductal epithelial cells

miR-7 TWEAK-stimulated macrophages

miR-490 Mast cells (MCs) HCC

Breast cancer (MCF-7/ADR cells) GRK4

NSCLC (H1299 cells)

HLECs and ESCC

Pancreatic cancer PAK1

Epithelial ovarian cancer -

Breast cancer-derived exosomal
miR-122-3p suppresses metastasis
by inhibiting Wnt/[-catenin signal-
ing pathway through targeting
GRK4

YAP1 Lung cancer-derived exosomal
miR-550a-3-5p can control brain
metastasis by targeting YAP1

[149]

SUV39H2  Exosomal let-7a derived from serum
of NSCLC patients suppresses
invasion and migration of NSCLC

by targeting SUV39H2

Human normal lung epithelial cells
(BEAS-2B)-derived exosomal miR-
338-3p inhibits NSCLC metastasis
by targeting CHL1

Exosomal miR-3180-3p inhibits
NSCLC metastasis by targeting
FOXP4

Exosomal miR-125b inhibits HCC
metastasis by inhibiting EMT
through targeting SMAD2

ESCC-derived exosomal miR-
10527-5p can inhibit ESCC metas-
tasis by suppressing EMT, migration
and invasion through negatively
regulating Rab10/ Wnt/f-Catenin
Signaling

CHL1 [152]

FOXP4 [153]

SMAD2 [154]

Rab10 [155]

Pancreatic ductal epithelial cells- [156]
derived exosomal miR-485-3p sup-
presses pancreatic cancer metastasis
by targeting PAK1

Exosomal miR-7 derived

from TWEAK-stimulated mac-
rophages inhibits the metastasis

of epithelial ovarian cancer cells

by regulating EGFR/AKT/ERK1/2
pathway

[157]

- Mast cells (MCs)-derived exosomal [158]
miR-490 inhibits HCC metastasis

by inhibiting invasion and migration

by regulating EGFR/AKT/ERK1/2

pathway

a worse prognosis in TNBCs. MiR-105 was character-
istically secreted by memory B cell (MBC) and was a
potent migration regulator through targeting the tight
junction protein zona occluden-1 (ZO-1) [164]. In
endothelial monolayers, exosomal miR-105 secreted
by BC cells disrupts the integrity of natural barriers
and favors metastasis. Clinically, miR-105 have been
detected in the circulation at the pre-metastatic stage,
and its levels in the blood and tumor were associated
with ZO-1 expression and metastasis in early-stage
BC. Prior to neoadjuvant therapy, a comparative anal-
ysis of exosomal miRNA expression levels revealed
significantly elevated levels of miR-21 and miR-105 in

patients with metastatic breast cancer compared to
those with non-metastatic disease and healthy donors
[165].

MiR-155 is an oncogenic miRNA which its upregula-
tion is commonly detected in BC and is implicated in the
recurrence, metastasis, and resistance. MiR-155 is found
to be abundant in cancer stem cells (CSCs) and resist-
ant cells, and can be transmitted to BC cells through
exosomes [166]. It has been demonstrated that exosomes
can modify the migratory potential and enhance EMT
in sensitive cells, partly through exosomal transfer of
miR-155. A study by Gorczynski et al. found that both
miR-155 and miR-205 play a crucial role in modulating
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the inflammatory response, thereby influencing the
metastatic growth of BC cells in lung and liver metas-
tasis models. Notably, elevated levels of BC exosomal
miR-205 have been shown to suppress BC metastasis,
whereas miR-155 has been found to have an opposite
effect [167]. Through a bioinformatic analysis, Kia et al.
identified that miR-9 and miR-155 were among the most
highly expressed miRNAs in highly metastatic TNBC
cells and their corresponding exosomes. This finding
was subsequently validated through qRT-PCR experi-
ments, providing further evidence for the potential
role of these miRNAs in the biology of TNBC metas-
tasis [83]. A luciferase assay confirmed that the miR-9
and miR-155, which were present in the exosomes of
BC cells, specifically targeted the UTRs of PTEN and
DUSP14 genes, respectively. In a subsequent study,
when low-metastatic MCF-7 cells were treated with
exosomes from highly metastatic MDA-MB-231 cells,
they exhibited an enhanced metastatic phenotype, sug-
gesting that the transfer of these exosomal miRNAs
can modulate the migratory behavior of recipient cells
[168]. The study revealed that the miR-155 shuttled by
exosomes introduced a novel mechanism that promoted
the development and metastasis of cancer. Furthermore,
the researchers found that the levels of miR-7641 were
elevated in the exosomes derived from BC cells and were
also present in the plasma of breast cancer patients with
distant metastases. Notably, this miR-7641 was found to
stimulate tumor growth both in vitro and in vivo, sug-
gesting a potential role for this miRNA in the progression
of BC [169]. The study demonstrated that the miR-7641,
secreted through exosomes, can promote the prolifera-
tion and invasion of BC cells. Additionally, miR-7641 can
also induce epigenetic changes in recipient cells through
exosome-mediated transfer. Similarly, another study
found that the exosomal miR-1246, secreted from meta-
static BC cells, plays a crucial role in promoting metas-
tasis by inducing invasion in non-metastatic BC cells.
Specifically, miR-1246 was shown to target the CCNG2
gene, leading to enhanced invasion capabilities in recipi-
ent cells. These findings suggest that exosomal miRNAs
may play a significant role in modulating the behavior of
BC cells and potentially contributing to disease progres-
sion [84].

In selective metastasis, tumor-derived exosomal miR-
NAs exhibit abnormal expression and play a key role in
preparing the pre-metastatic niche by reprogramming
the target organ, enhancing the likelihood of success-
ful metastasis [14]. For instance, the expression of exo-
somal miR-19a and integrin-binding sialoprotein (IBSP)
is significantly upregulated in the secretion of estro-
gen receptor-positive (ER+) bone-tropic breast cancer
cell lines, as well as in ER+breast cancer patients with
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bone metastases [86]. Additionally, Wu and colleagues
[86] has identified that exosomal miR-19a derived from
ER+breast cancer cells enhances bone metastasis by
promoting osteoclastogenesis through the targeting of
PTEN. In the early metastatic niche, ER+breast cancer
cells secrete integrin-binding sialoprotein (IBSP) as a che-
moattractant, recruiting precursors of osteoclast (OC)
cells and creating an OC precursor-enriched microenvi-
ronment. These OC precursors subsequently internalize
exosomes from breast cancer cells, allowing miR-19a to
be transported into the OC precursors, where it exerts
its pro-tumorigenic effects [86]. Within the OC precur-
sors, the internalized miR-19a suppresses the expression
of phosphatase and tensin homolog (PTEN), activates
the nuclear factor kappa B (NF-kB) and protein kinase B
(AKT) signaling pathways, and promotes osteoclastogen-
esis. The resulting mature OC cells subsequently induce
bone resorption, releasing growth factors from the bone
matrix, which in turn facilitates the proliferation and
survival of cancer cells [86]. Recently, Singh et al. [80]
observed that miR-10b is significantly overexpressed in
metastatic breast cancer cells compared to non-meta-
static breast and non-malignant breast cells. Further-
more, upon internalization, miR-10b has been found to
suppress the protein levels of its target genes, including
homeobox D10 (HOXD10) and Kriippel-like factor 4
(KLF4), indicating its functional significance. Moreover,
treatment with exosomes derived from metastatic breast
cancer cells has been shown to induce metastasis by
inducing invasive behavior in non-invasive breast epithe-
lial HMLE cells through the targeting of HOXD10 [80].
More studies are shown in Tables 1 and 2.

Altogether, exosomal miRNAs have been identified as
key mediators of selective metastasis, regulating gene
expression, inducing EMT, and suppressing the immune
response. These findings highlight the potential thera-
peutic significance of exosomal miRNAs as targets for
the treatment of breast cancer.

Lung cancer

The majority of lung carcinomas are initially diagnosed at
an advanced stage IV, often with widespread metastatic
disease. Notably, lung carcinomas exhibit a propensity for
metastasis via both lymphatic and hematogenous routes,
reflecting their ability to spread through lymphatic ves-
sels and the bloodstream [170]. The most common sites
of metastasis for lung cancer are proposed to be the cen-
tral nervous system, bone, liver, respiratory tract, and
adrenal glands (Fig. 3) [171]. Recent studies have identi-
fied that certain exosomal miRNAs play a pivotal role in
promoting lung cancer cell migration, invasion, tumor
growth, and metastasis through multiple mechanisms
[172, 173]. Notably, the dysregulation of these miRNAs
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can be targeted to counteract their oncogenic effects,
such as through gene silencing strategies. Runx3 (Runt-
related transcription factor 3) has been found to be
downregulated in lung cancer tissues, and it is considered
a tumor suppressor due to its ability to antagonize the
activation of the Wnt signaling pathway [174]. Exosomes
derived from non-small cell lung cancer (NSCLC) cells,
which contain miR-210 (miR-210-Exo), have been shown
to modulate the behavior of recipient lung cancer cells
by inhibiting Runx3 expression and activating the PI3K/
Akt signaling pathway. This results in enhanced prolif-
eration, migration, and invasion of the recipient cells
[175]. In vivo, exosomal miR-210 was found to target the
Runx3/PI3K/Akt axis, thereby promoting the growth of
transplanted tumors in nude mice. Consistently, silenc-
ing of miR-210 gene expression significantly attenuated
the carcinogenic effect induced by exosomal miR-210,
underscoring the potential therapeutic relevance of tar-
geting this axis in cancer treatment [175].

Epitopic overexpression of miRNA-30a-5p in lung can-
cer cells was found to significantly inhibit cell prolifera-
tion, migration, and invasion by targeting the cell-cycle
phase regulator cyclin E2. Notably, miR-30a-5p-con-
taining exosomes produced by vascular endothelial cells
from lung adenocarcinoma (LUAD) patients were also
found to effectively suppress cell proliferation, migra-
tion, and invasion, highlighting the potential therapeu-
tic utility of miR-30a-5p-Exo in LUAD treatment [176].
HEY-like protein (HEYL) is a member of the hairy and
enhancer of the split-related (HESR) family, and func-
tions as a downstream target molecule of the Notch
signaling pathway. This pathway has been implicated in
the regulation of cell growth and metastasis in lung can-
cer (LC), suggesting that HEYL may also play a role in
these processes [177, 178].

A comparison of exosomes derived from benign pleu-
ral effusion (BPE) and malignant pleural effusion (MPE)
in lung cancer (LC) patients revealed that the level of
miR-665 is significantly higher in MPE-derived exosomes
[179]. Both cultured cells and experiments in zebrafish
have confirmed that exosomes enriched with IncRNA
SCIRT and miR-665 can enhance the migratory and
invasive abilities of lung cancer cells by specifically tar-
geting and suppressing HEYL. Furthermore, these find-
ings indicated that the plasma concentrations of miR-665
and IncRNA SCIRT are significantly elevated in patients
with metastatic lung cancer compared to those with
non-cancerous diseases or non-metastatic lung cancer,
suggesting that these exosomal biomarkers may serve as
valuable indicators for the diagnosis and monitoring of
metastatic disease [179]. Therefore, exosomal miR-665
in serum or lung pleural effusion may serve as a specific
marker for the early diagnosis of lung cancer metastasis.
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Additionally, FOXP4, a member of the human forkhead-
box (FOX) family, has been found to play a key role in
cell cycle regulation and tumorigenesis. Notably, it has
been established that FOXP4 protein and mRNA levels
are significantly elevated in NSCLCs compared to nor-
mal lung tissue, indicating that FOXP4 may be a potential
biomarker for LC diagnosis [180]. Chen and colleagues
demonstrated that exosomal miR-3180-3p derived from
NSCLC cells can exert anti-tumor effects by suppress-
ing cell proliferation, migration, and invasion in recipi-
ent NSCLC cells through the downregulation of FOXP4
expression. Furthermore, the in vivo administration of
miR-3180-3p-exosomes was shown to impede the growth
and metastatic potential of NSCLC xenografts in nude
mice [153].

The androgen receptor (AR) is a member of the ster-
oid hormone receptor family and acts as a nuclear tran-
scription factor. When bound to a ligand, AR undergoes
a conformational change, allowing it to translocate
to the nucleus, where it regulates the transcription of
genes responsive to AR signaling. Notably, male NSCLC
patients who exhibit androgen pathway manipulation
(APM) have been found to have a survival advantage,
suggesting a potential therapeutic benefit from targeting
the androgen axis in this patient population [181]. Female
NSCLC patients who have higher levels of (AR) expres-
sion have a substantially better overall survival compared
to those without AR expression [182]. This suggests that
the relationship between steroid hormones and their
receptors in lung cancer patient survival is complex and
warrants further investigation. Recent research by Zhou
and colleagues has made progress in this area, reveal-
ing that miR-224-5p is overexpressed in cancer tissues
from NSCLC patients and cell lines. Additionally, the
study found that miR-224-5p, specifically in the form of
extracellular vesicle-derived miR-224-5p, is produced by
lung cancer cells and exerts oncogenic effects, promoting
metastasis and cell proliferation in both NSCLC cells and
normal human lung cells. These findings suggest a poten-
tial role for miR-224-5p in the progression of lung cancer,
highlighting the need for further research to elucidate
the underlying mechanisms [183]. The study also demon-
strated that the overexpression of miR-224-5p in NSCLC
cells led to a suppression of AR expression. This repres-
sion of AR had a profound impact on the behavior of the
cancer cells, as it promoted EMT, proliferation, migra-
tion, invasion, and resistance to apoptosis. Furthermore,
this overexpression also drove the growth of lung cancer
xenografts. Conversely, silencing the AR gene in NSCLC
cells enhanced their migratory potential and increased
their resistance to apoptosis. These findings suggest that
miR-224-5p plays a key role in regulating the progres-
sion of lung cancer by targeting the AR pathway, which
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may have important implications for the development
of novel therapeutic strategies [183]. This suggests that
miR-224-5p-Exo can promote NSCLC progression by
directly targeting AR. More studies are shown in Table 2.
Overall, these studies suggests that exosomal miRNAs
play a pivotal role in the selective metastasis of lung can-
cer by facilitating the colonization of specific organs.
Once internalized, these exosomal miRNAs reprogram
recipient cells to promote their own proliferation, migra-
tion, and invasion, thereby creating a conducive micro-
environment for metastatic lesion establishment. The
targeting of specific organs by exosomal miRNAs is influ-
enced by the expression profile of specific receptors or
ligands on recipient cell surfaces, allowing lung cancer
cells to selectively colonize particular organs and tissues.
These findings underscore the significance of exosomal
miRNAs in mediating selective metastasis in lung cancer
and imply potential therapeutic strategies aimed at tar-
geting these molecules to prevent or treat this disease.

Hepatocellular carcinoma

Hepatocellular carcinoma (HCC) is a prevalent can-
cer type, ranking sixth in terms of incidence and third
in terms of mortality globally. Notably, lung metastasis
is the most frequent extrhepatic manifestation of HCC,
underscoring the importance of understanding the mech-
anisms underlying this phenomenon [184]. In addition,
bone metastases (BM) are a common phenomenon in
patients with metastatic HCC, affecting 2—-25% of cases.
The presence of BM is often associated with a poor prog-
nosis in HCC, highlighting the need for more effective
diagnostic and therapeutic strategies to address this com-
plication [185]. It has been demonstrated that exosomal
miRNAs derived from HCC cells can play a significant
role in promoting lung and bone metastasis. For instance,
liver cancer-derived exosomal miR-574-5p has been
shown to exacerbate bone metastasis by enhancing oste-
oclastogenesis through direct targeting of the BMP2 gene
[102]. Furthermore, exosomal miR-1247-3p derived from
high-metastatic HCC cells has been found to contrib-
ute to the conversion of fibroblasts to cancer-associated
fibroblasts (CAFs) by directly targeting the B4GALT3
gene. In turn, CAFs have been shown to enhance lung
metastasis by promoting EMT and stemness, indicat-
ing a critical role for exosomal miRNAs in the crosstalk
between cancer cells and stromal cells during metastatic
progression [103].

Exosomes released by HCC cells have also been found
to influence the metastatic behavior of tumor cells.
Research suggests that exosomal miR-21 and exosomal
miR-10b, which are induced by acidic microenviron-
ments, promote the proliferation and metastasis of can-
cer cells. As such, these exosomal miRNAs may serve as
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potential prognostic molecular markers and therapeutic
targets for HCC [101]. In addition, exosomal miR-125b
has been found to exert anti-tumor effects by inhibiting
the metastasis of HCC cells. Specifically, exosomal miR-
125b has been shown to suppress EMT by targeting the
SMAD?2 gene, which is a key regulator of EMT [154].
Interestingly, exosomal miR-29a-3p released by high-
metastatic HCC cells has been found to promote metas-
tasis by enhancing EMT in low-metastatic HCC cells.
This pro-metastatic effect is mediated by exosomal miR-
29a-3p targeting the phosphatase and tensin homolog
(PTEN) gene, a key regulator of EMT. This finding sug-
gests that exosomal miR-29a-3p may act as a "metastatic
bridge" between high-metastatic and low-metastatic
HCC cells, promoting the dissemination of cancer cells
through EMT activation [100].

Blood-borne metastasis, which refers to the spread
of cancer cells through the bloodstream, is the primary
cause of mortality in patients with cancer. The process
of metastasis is facilitated by increased vascular per-
meability, which allows cancer cells to extravasate from
the bloodstream and colonize distant organs. This high-
lights the critical role of the vasculature in promoting
tumor dissemination and underscores the importance
of understanding the molecular mechanisms underlying
vascular permeability in cancer progression. Further-
more, targeting these mechanisms may provide a prom-
ising therapeutic strategy for inhibiting metastasis and
improving patient outcomes [186]. A study by Fang et al.
[92] demonstrated that exosomes secreted by HCC cells
can transfer miR-103 to endothelial cells, thereby inhibit-
ing the expression of key proteins involved in endothelial
tight junction integrity, such as human vascular endothe-
lial cadherin, zonula occludens 1, and p120-catenin. This
led to a weakening of endothelial connectivity, increased
vascular permeability, and accelerated metastasis. In a
xenograft mouse model, high miR-103 expression was
associated with an increased probability of intrahepatic
and pulmonary metastasis. Notably, HCC patients with
elevated serum miR-103 levels exhibited a higher meta-
static potential compared to those with low miR-103
expression levels. These findings collectively suggest a
positive correlation between exosomal miR-103 expres-
sion and the metastatic capacity of HCC [92, 187].

The mitogen-activated protein kinases (MAPKs)
constitute a family of evolutionarily conserved serine/
threonine protein kinases that play crucial roles in vari-
ous cellular processes, including cell proliferation, dif-
ferentiation, motility, and apoptosis [188]. The MAPK
family, comprising p44/42 (ERK1/2), p46/p54 (JNK), and
P38, serves as a critical component of protein kinase cas-
cades, which are essential for regulating cell growth and
differentiation, as well as modulating cellular responses
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to cytokines and stress signals [189]. The p44/42 MAPK
(ERK1/2) signal transduction pathway is activated in
response to a diverse range of extracellular stimuli,
including mitogens, growth factors, and cytokines [190,
191], and it is an important target for cancer diagnosis
and treatment [192]. Recent studies have demonstrated
that exosomal miR-320a exhibits anti-tumor effects on
HCC cells by suppressing cell proliferation, migration,
and metastasis through the inhibition of the MAPK path-
way, which ultimately leads to the induction of EMT and
the upregulation of cyclin-dependent kinase 2 (CDK2)
and matrix metallopeptidase 2 (MMP2) expression [135].
In the study conducted by Li Xiong et al., mast cells have
been shown to inhibit the ERK1/2 pathway by deliver-
ing exosomal miR-490 to HCC cells, thereby suppressing
the metastatic potential of HCC cells [158]. Activation of
MAPK signaling pathway is a frequently observed event
in the progression and metastasis of tumors, highlighting
its significance as a potential therapeutic target for can-
cer treatment [193, 194]. These studies can provide new
insights into the regulatory mechanism of HCC in the
MAPK signaling pathway and identify potential ways of
the therapeutic intervention for the disease.

Overall, these findings highlight the potential for exo-
somal miRNAs to serve as key mediators of metastatic
spread in HCC, and underscores the importance of fur-
ther investigating their mechanisms of actions.

Head and neck cancer

Head and neck cancer (HNC) is a prevalent and debili-
tating neoplasm globally, with a significant burden on
public health. Despite ongoing advances in therapeutic
modalities, the 5-year overall survival rate for advanced
HNC remains disappointingly low, hovering around 50%,
underscoring the pressing need for innovative treat-
ment strategies to improve patient outcomes [195-198].
HNC often originates from mucosal surfaces, specifically
the oral cavity, which includes the tongue, lip, buccal
mucosa, gingiva, and palate, as well as the oropharynx,
larynx, and perioral skin, highlighting the importance
of early detection and surveillance in these high-risk
areas [199]. The majority of HNCs, exceeding 90%, are
classified as head and neck squamous cell carcinomas
(HNSCCs). Recent studies have uncovered a wealth of
evidence indicating that tumor-derived exosomal miR-
NAs play a pivotal role in the oncogenic process, facilitat-
ing intercellular communication and signal transduction
pathways that contribute to tumor development, progres-
sion, and treatment resistance [200, 201]. For instance,
research has demonstrated that exosomes secreted by
hypoxic oral squamous cell carcinoma (OSCC) cells
transfer viral miR-21 to normoxic cells, inducing EMT
and subsequently promoting cell migration and invasion
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[202]. Notably, research has shown that exosomal miR-
21 derived from esophageal carcinoma cell line EC9706
promotes metastasis in esophageal cancer by enhancing
migration and invasion through targeting the protein
programmed cell death 4 (PDCD4) [115]. It has been
demonstrated that miR-23b-3p derived from salivary
adenoid cystic carcinoma (SACC) cells and packaged in
exosomes can contribute to SACC metastasis by exacer-
bating angiogenesis through direct targeting of the tumor
suppressor phosphatase and tensin homolog (PTEN)
[111]. In addition, miR-34a-5p in CAF-derived exosomes
in OSCC can stimulate the proliferation and metastasis
of oral cancer cells by activating the AKT/glycogen syn-
thase kinase-3 beta/B-catenin/Snail signaling cascade
[136]. A recent investigation has shown that extreme
metastatic oral squamous cell carcinoma cells secrete
exosomes containing miR-1246 and -342-3p, which
enhance the oncogenic growth, metastasis, and invasion
of recipient cells [110]. The transformation of poor met-
astatic cells into aggressive metastatic cells is facilitated
by the downregulation of the Multiple Acyl-CoA Dehy-
drogenase Deficiency (MADD)/DENN domain contain-
ing protein 2D (DENN2D) via the influence of exosomal
miR-1246. Additionally, exosomes containing miR-21
exhibit increased expression of mesenchymal markers,
such as vimentin and snail, and decreased expression
of E-cadherin. These findings collectively suggest that
OSCC malignant cell clusters undergo EMT and migrate
to distant organs [202—204].

Lymphangiogenesis, the process of forming new lym-
phatic vessels, has been recognized as a novel prognostic
indicator for predicting the risk of lymph node metas-
tasis (LNM) [205]. During the progression of lymphatic
metastasis, lymphatic vessels at the tumor periphery
function as conduits for the dissemination of tumor cells
to regional lymph nodes (LNs) [206]. Several cytokines,
including vascular endothelial growth factor C (VEGEF-C)
and VEGE-D, engage with vascular endothelial growth
factor receptor-3 (VEGFR-3) to stimulate the prolif-
eration, tube formation, and migration of lymphatic
endothelial cells (LECs) within the tumor microenvi-
ronment [207]. In various experimental tumor models,
inhibition of the VEGF-C/VEGEFR-3 signaling pathway
was found to significantly reduce LNM by approximately
60-70% [208, 209], the effectiveness and side effects of
these drugs still need to be carefully evaluatedNotably,
some patients with esophageal squamous cell carcinoma
(ESCC) with LNM display low levels of VEGE-C. Con-
sequently, the identification of novel lymphangiogenesis
regulators is crucial. Recent studies have revealed that
miR-10527-5p, which is derived from ESCC-derived
exosomes, exhibits potent inhibitory effects on the
migration, invasion, and EMT of ESCC cells as well as
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the migration and tube formation of human lymphatic
endothelial cells. This inhibitory activity prevents lym-
phatic metastasis and lymphangiogenesis of ESCC
through the Wnt/fB-catenin signaling pathway by directly
targeting Rab10 [155]. In contrast, ESCC-derived exoso-
mal miR-320b has been found to induce the metastasis
of human lymphatic endothelial cells (HLECs) and lym-
phatic metastasis by promoting EMT through direct
targeting of PDCD4 [114]. More studies about the role
of exosomal miRNAs derived from other types of tumor
cells are shown in Table 2.

Conclusion
The propensity of cancer cells to colonize specific organs
and tissues, a phenomenon known as organ-specific
metastasis, is a complex process governed by a delicate
interplay of genetic and environmental factors. Tumor-
derived exosomes exert a pivotal role in the orchestration
of organ-specific metastasis by facilitating the transfer
of a distinct repertoire of pro-metastatic cargo between
cancer cells and the target organ microenvironment.
Exosomes derived from primary tumors exhibit a selec-
tive enrichment for specific biomolecules, including
transcriptional regulators, growth factors, and adhesion
molecules, which are instrumental in inducing a pre-
metastatic niche in recipient cells, thereby enabling them
to undergo EMT and adapt to the foreign microenviron-
ment. The selective loading of exosomes with pro-met-
astatic molecules enables cancer cells to "pre-condition”
the target organ microenvironment, thereby increasing
their likelihood of successful colonization and growth.
Exosomal miRNAs have been demonstrated to exert
a profound impact on the selective metastatic process,
facilitating the establishment of metastatic niches by
modulating gene expression through selective target-
ing of recipient cells. Exosomal miRNAs orchestrate
the preparation of the pre-metastatic niche, a com-
plex microenvironment that facilitates the homing and
colonization of cancer cells at distant sites. By regulat-
ing the expression of genes involved in inflammation,
angiogenesis, and immunosuppression, exosomal miR-
NAs create a permissive microenvironment that fosters
a pro-tumorigenic landscape conducive to metastasis.
Conversely, these miRNAs also repress the expres-
sion of genes involved in immune surveillance and
tissue repair, thereby generating an environment that
enables cancer cells to establish a foothold and thrive.
This dual function of exosomal miRNAs underscores
their pivotal role in shaping the microenvironmental
conditions that enable cancer cell metastasis, making
them attractive targets for therapeutic exploitation [29,
210]. Furthermore, these exosomal miRNAs have been
identified as potential biomarkers for cancer diagnosis
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and monitoring, owing to their unique profiles and
dynamic expression patterns. In fact, the TDEs emerge
as a prime candidate for the development of prognostic
biomarkers for PMNs, boasting a trifecta of attributes
that render them particularly well-suited for this pur-
pose: their remarkable stability, widespread presence
in bodily fluids, non-invasive accessibility, and tumor-
specific expression patterns [211]. However, a striking
disparity is observed in the research landscape regard-
ing the role of exosomal microRNAs in selective metas-
tasis across distinct cancer types. For instance, while
their involvement in lung and breast cancer metastasis
has been extensively explored, analogous investigations
remain scarce for other tumor types, such as pancre-
atic or ovarian cancer. This observation underscores the
need for comprehensive and organ-specific studies to
elucidate the underlying mechanisms driving exosomal
microRNA-mediated selective metastasis in each can-
cer type. By deciphering these mechanisms, research-
ers may uncover novel therapeutic targets and develop
more effective strategies for preventing and treat-
ing cancer metastasis, ultimately improving patient
outcomes.

Over the past three decades, groundbreaking discover-
ies in the elucidation of cancer metastasis have unveiled
a plethora of novel targets for preventing this insidious
process. Notably, significant strides have been made in
modulating the biochemical pathways and signaling cas-
cades governing cell adhesion, dissociation, migration,
invasion, and the complex interactions between cancer
cells and the tumor microenvironment (TME). These
advances have significantly expanded our understanding
of the intricate mechanisms underlying cancer dissemi-
nation, thereby providing a rich source of opportunities
for therapeutic interventions aimed at thwarting the
metastatic process [9]. The development of exosomal
miRNA-based therapeutics holds great promise, with
potential treatments focused on inhibiting the transfer
of these molecules to prevent reprogramming of recipi-
ent cells. Elucidating the specific receptors and ligands
involved in targeting will enable the design of targeted
therapies to block this interaction. Moreover, exoso-
mal miRNAs may serve as non-invasive biomarkers for
early detection of metastasis, revolutionizing diagnos-
tic capabilities. The exploration of combination thera-
pies targeting multiple components will also be crucial
in combating this complex disease. Ultimately, a deeper
understanding of exosome biology will inform the devel-
opment of novel therapeutic approaches, paving the
way for improved patient outcomes and a more effective
treatment landscape for cancer.
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