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Exosomal miRNAs: the tumor’s trojan horse 
in selective metastasis
Mobina Bayat1 and Javid Sadri Nahand1* 

Abstract 

Organs of future metastasis are not passive receivers of circulating tumor cells, but are instead selectively and actively 
modified by the primary tumor before metastatic spread has even occurred. Tumors orchestrate a pre-metastatic pro-
gram by conditioning distant organs to create microenvironments that foster the survival and proliferation of tumor 
cells before their arrival, thereby establishing pre-metastatic niches. Primary tumor-derived exosomes modulate these 
pre-metastatic niches, generating a permissive environment that facilitates the homing and expansion of tumor cells. 
Moreover, microRNAs have emerged as a key component of exosomal cargo, serving not only to induce the for-
mation of pre-metastatic niches but also to prime these sites for the arrival and colonization of specific secondary 
tumor populations. Against this backdrop, this review endeavors to elucidate the impact of tumor-derived exosomal 
microRNAs on the genesis of their individualized pre-metastatic niches, with a view towards identifying novel means 
of specifying cancer metastasis and exploiting this phenomenon for cancer immunotherapy.
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Introduction
Metastasis, a terminal stage of cancer progression char-
acterized by the aberrant migration and colonization 
of tumor cells in distant organs, represents a profound 
and debilitating hallmark of cancer pathophysiology. 
This phenomenon frequently culminates in suboptimal 
therapeutic outcomes and exacerbates patient mortality. 
Despite a plethora of investigations into the underlying 
mechanisms, the metastatic cascade remains shrouded 
in complexity, with numerous aspects remaining poorly 
understood and in need of further elucidation [1–3]. The 
successful colonization of circulating tumor cells (CTCs) 
in secondary or distant organs represents a pivotal step 
in the metastatic process. However, this process is pro-
foundly influenced by the local microenvironment of the 

target organ, which can either facilitate or impede tumor 
cell colonization [4].

To unravel the intricate molecular mechanisms gov-
erning cancer metastasis, Chaffer and Weinberg have 
posited a two-stage paradigm; the initial phase encom-
passes the physical dissemination of malignant cells from 
the primary tumor to the secondary tissue microenvi-
ronment, thereby initiating the metastatic cascade. This 
inaugural step is followed by a subsequent phase, which 
involves the colonization of these disseminated cells, 
requiring their successful adaptation to the novel tissue 
context and establishment of a self-sustaining population 
[3].

Primary tumors have been found to modulate the 
microenvironment of distant organs prior to CTC arrival, 
thereby establishing a pre-metastatic niche that primes 
the subsequent colonization of disseminated tumor 
cells [4]. A diverse array of molecular and cellular con-
stituents has been pinpointed as critical mediators of 
pre-metastatic niche formation across various tumor 
models. These niche-inducing molecules are secreted by 
tumor cells, myeloid cells, and stromal cells, functioning 
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in concert to initiate, polarize, and establish a pre-meta-
static niche in distant organs, thereby generating a per-
missive environment for metastatic colonization [5, 6].

The extracellular vesicles derived from the tumor 
microenvironment assume a pivotal role in the forma-
tion of pre-metastatic niches within specific organs. 
Exosomes, small membrane-bound vesicles that are part 
of the extracellular vesicle population, play a vital role 
in pre-metastatic niche formation by functioning as a 
means of intercellular communication between tumor 
cells and their surrounding microenvironment. These 
extracellular vesicles are capable of transferring vari-
ous biomolecules, including proteins, mRNAs, micro-
RNAs, small RNAs, and DNA fragments, to recipient 
cells through a process known as horizontal gene trans-
fer. This phenomenon enables the exchange of molecular 
information between tumor cells and their surroundings, 
thereby facilitating the establishment of a pre-metastatic 
niche [6]. Notably, microRNAs (miRNAs) assume a piv-
otal role in the multifaceted process of tumor growth 
and metastasis, encompassing all stages of carcinogen-
esis. Aberrant miRNA expression patterns are a hallmark 
of cancer cells, with numerous cancer types exhibiting 
either elevated or diminished miRNA levels. Cancer-
secreted exosomes also display aberrant miRNA profiles, 
which can contribute to the creation of a permissive envi-
ronment for tumorigenesis. By modulating the expres-
sion of oncogenes and/or tumor suppressor genes in 
recipient cells, these miRNAs can influence cellular pro-
cesses and promote tumorigenesis. This underscores the 
potential significance of miRNA-containing exosomes as 
a key mechanism by which cancer cells exert their influ-
ence on the microenvironment, ultimately facilitating the 
development of cancer [7].

Selective metastasis
Cancer metastasis refers to the process through that can-
cer cells spread from the main tumor, settle, and develop 
at a location beyond the primary tumor site. For this pur-
pose, cancer cells need to detach from their primary site 
and enter the bloodstream or lymphatic system. Once in 
circulation, they must survive the rigors of travel, includ-
ing the immune response and blood flow, to reach their 
secondary sites [8–11]. At these new sites, they must 
adapt to their new environment by undergoing further 
changes that allow them to grow and thrive [12].

Captivatingly, most cancer types appear to have prefer-
ential locations to colonize, confirming that the spread of 
metastases is not random [12]. In fact, certain tissue micro-
environments, known as ‘‘anti-metastatic niches,’’ are found 
to be inhospitable for formation of secondary tumor [4]. 
The metastatic localization of cancer cells is a complex 
process orchestrated by a multitude of pivotal mediators, 

including chemokines and secreted proteins. Another 
critical determinant of successful metastasis is the ability 
of metastatic cells to survive and adapt in their new envi-
ronment. To enable successful engraftment, the second-
ary environment must undergo modifications to create a 
permissive microenvironment for cancer cell colonization 
(Fig.  1) [12]. Tumor-secreted factors, including tumor-
derived extracellular vesicles and particles, circulate in the 
bloodstream and modulate distant organs, thereby influ-
encing metastatic progression. Primary tumors can induce 
early changes in the microenvironment of secondary 
organs devoid of cancer cells, creating a permissive envi-
ronment conducive to cancer cell settlement and metasta-
sis initiation. This phenomenon gives rise to pre-metastatic 
niches (PMNs), which provide a fertile ground for the 
establishment of metastatic foci, preceding the arrival of 
cancer cells [4]. The seed and soil hypothesis, posits that 
cancer cells (the seeds) require a receptive microenviron-
ment (the soil) for engraftment during metastasis [12]. It is 
established that the primary tumor can trigger the perpetu-
ation of pre-metastatic niches (soil) through a process anal-
ogous to irrigation, where the tumor acts as the "watering 
can" that nourishes the soil, allowing it to become receptive 
to seed colonization.

The PMN is shaped by intricate interactions between 
cancer-secreted factors and resident stromal cells at distant 
sites, as well as bone marrow-derived cells (BMDCs). The 
priming of a distant organ comprises a stepwise process 
that subverts tissue homeostasis, creating an environment 
receptive to circulating tumor cell (CTC) colonization. This 
multifaceted process involves the induction of vascular 
leakiness, lymphangiogenesis, extracellular matrix (ECM) 
remodeling, and the generation of an immunosuppressive 
microenvironment. These alterations collectively create 
a permissive environment that enables CTCs to establish 
a foothold and initiate metastatic growth [4]. It has been 
reported that the exosomes derived from tumor cells 
that are capable of migrating have the ability for interact-
ing with blood vessels, stromal components, and immune 
cells to establish a pre-metastatic niche [13]. Therefore, 
the mechanisms by which tumor-derived exosomes sub-
serve the tumor are still being investigated. Through the 
next section, we will delve into the most recent discoveries 
regarding the impact of cancer cell-derived exosomes and 
the miRNAs they transport, as one of the most important 
cargos, on selective and distant metastasis.

Role of cancer cells‑derived exosomal miRNAs 
in selective metastasis
The metastatic potential of cancer cells is contingent 
upon a dynamic crosstalk between the tumor cells and 
their microenvironment (TME), where the tumor influ-
ences the microenvironment, which in turn shapes 
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the behavior of cancer cells [14]. Moreover, it is con-
formed that the establishment of a pre-metastatic niche 
is orchestrated by the secretion of soluble factors from 
the primary tumor into the systemic circulation. Among 
these factors, tumor-derived exosomes (TDEs) are of par-
ticular significance, as they are small extracellular vesicles 
that encapsulate a diverse range of biomolecules, includ-
ing RNA, DNA, proteins, metabolites, and microRNAs, 
derived from their parent cells [15, 16].

Liu and Cao have identified six key features of the 
pre-metastatic niche that facilitate tumor cell coloniza-
tion and metastasis: inflammation, immunosuppression, 
organotropism, reprogramming, lymphangiogenesis, 
angiogenesis, and vascular permeability. These features 
collectively regulate the colonization and survival or 
dormancy of circulating tumor cells upon arrival in the 
target organ, influencing the ultimate fate of these dis-
seminated cells [6]. Various studies have confirmed the 
contribution of exosomes in cancer metastasis, through 
their role in formation of the premetastatic niche, influ-
encing tumor cells and TME, and determining specific 
organotropic metastasis [17, 18]. TDEs exhibit a predi-
lection for homing to highly vascularized tissues, such as 
the lung and liver, owing to their distinctive surface inte-
grin profiles [15]. Specifically, TDEs interact with inflam-
matory molecules to facilitate the formation of the PMN. 
Moreover, TDEs exert a multifaceted influence on the 

establishment of the PMN, encompassing immunosup-
pression and immune surveillance, promotion of angio-
genesis and vascular permeability, activation of stromal 
cells, and remodeling of the extracellular matrix (ECM), 
as well as organotropic metastasis [19]. Given their ubiq-
uity in bodily fluids and their potential as non-invasive 
biomarkers for cancer diagnosis, TDEs are being exten-
sively explored as a novel therapeutic target in clinical 
settings [15].

There has been an increasing focus on the role of TDEs 
in mediating complex intratumoral communications 
within the tumor microenvironment [20]. TDEs have 
been shown to modulate tumor progression by secret-
ing pro-inflammatory cytokines, promoting angiogen-
esis, triggering Toll-like receptor 3 (TLR-3)-dependent 
neutrophil infiltration, and recruiting myeloid-derived 
suppressor cells (MDSCs) [21]. The non-coding RNA 
cargo of TDEs, particularly microRNAs has been increas-
ingly recognized as a critical component of the PMN. In 
fact, the intricate dialogue between tumor cells and the 
microenvironment is orchestrated by a complex inter-
play of signaling pathways, wherein miRNAs assume a 
pivotal role in shaping the pre-metastatic niche. TDEs 
have been shown to transfer miRNAs to surrounding 
cells or cells in distant metastatic niches by conditioning 
the pre-metastatic tumor microenvironment (TME) [14, 
22]. Tumor-derived miRNAs selectively target key genes 

Fig. 1 Illustration of tumor microenvironment. Diverse range of cell types exist in tumor microenvironment, including immune cells, stem cells, 
and other cell subtypes that interact and influence tumor growth and progression
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involved in immune cell suppression, angiogenesis, and 
EMT, thereby priming the pre-metastatic niche in distant 
organs (Fig. 2). This miRNA-mediated signaling cascade 
enables the primary tumor to establish a permissive envi-
ronment for subsequent metastasis. Furthermore, organ-
specific miRNA profiles play a crucial role in directing 
metastasis to specific tissues by regulating gene expres-
sion and modulating cellular processes [23, 24]. In fact, 
detection of specific miRNAs may serve as a potential 
biomarker for predicting or prognosticating metastasis, 
thereby providing a means to prevent or delay its onset 
[15, 19, 25, 26].

With that context, through this section we will delve 
into the pivotal role of exosomal miRNAs in orchestrating 

organ-specific metastasis and PMN establishment across 
various cancer types, thereby highlighting the intricate 
molecular mechanisms underlying the heterogeneous 
patterns of tumor dissemination.

Colorectal cancer
Colorectal cancer (CRC) is the third most prevalent can-
cer globally. Despite advances in treatment, CRC has 
a significant mortality rate, with approximately 56% of 
patients succumbing to their disease. Notably, approxi-
mately 20% of patients present with metastatic disease at 
the time of diagnosis, a phenomenon that has remained 
relatively stable over the past two decades [27]. The most 
frequent sites of metastasis from CRC are the liver, lung, 

Fig. 2 The effect of tumor microenvironment in preparation of pre-metastatic niche. Exosomal microRNA derived from tumor cells and tumor 
microenvironment can alter pre-metastatic niche in favor of tumor metastasis
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peritoneum, brain, and bone, with less common metasta-
sis to the adrenal glands and spleen (Fig. 3) [28].

Exosomes derived from CRC cells can contain onco-
genic miRNAs that suppress EMT inhibitors and triggers 
CRC metastasis [29]. For example, exosomal miR-335-5p 
originated from metastatic CRC cells are found to induce 
CRC metastasis through enhancing EMT by target-
ing RASA1 [30] and DLC-1 [31]. Besides, EMT-CRC-
secreted exosomal miR-27b-3p triggers metastasis by 
inducing EMT through targeting p120 and vascular 
endothelial cadherin (VE-Cad) CRC cells [32]. In addi-
tion, exosomal components can be originated from or 
delivered to tumor cells or cells within the tumor micro-
environment, elevating the metastatic activity through 
triggering the EMT process in tumor cells and effecting 
the microenvironment’s characteristic [29]. For instance, 
EMT-CRC-derived exosomal miR-29a enhances 

metastasis in endothelial cells in the TME by targeting 
KLF4 [33].

Furthermore, tumor-derived exosomes within serum 
can deliver miRNAs to distant sites and trigger metasta-
sis. Altered regulation of exosomal miRNAs can promote 
metastatic cascade through upregulating EMT markers 
and phenotypic features of pro-metastatic cells. MiR‐
221/222‐3p is an onco‐miRNA that is associated with 
poor prognosis in CRC individuals [34, 35]. Recently, 
Tian et  al. [36] reported exosomal miR-221/222‐3p 
secreted from CRC cells enhances liver metastasis by 
positively increasing the expression level of hepatocyte 
growth factor through inhibiting SPINT1. Furthermore, 
exosomes originated from HCT116-TP53(R273H) cells 
are adsorbed by mouse embryonic fibroblasts (MEFs) 
and became activated. Furthermore, it has been shown 
that miR-21-3p and -769-3p are capable of activating 

Fig. 3 The effect of tumor-derived exosomes in selective metastasis. Organotropism in A colorectal cancer, B breast cancer, C lung cancer, 
D hepatocellular carcinoma
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fibroblasts and exerting a synergistic influence on 
the transforming growth factor-β (TGF-β)/Smad axis 
through their target genes. Overall, the mutant p53 CRC 
cells-derived exosomal miR-21-3p and -769-3p enhances 
pulmonary metastasis by activating stromal fibroblasts 
and premetastatic niche. In return, activated fibroblasts 
promotes tumor cell EMT by positively regulating TGF-β 
[37]. Exosomal miR-106b-3p derived from high invasive 
potential CRC cells contributes to lung metastasis in 
mice by targeting DLC-1 [31].

Immunosuppression is a critical factor for forming 
and developing the PMN and development of PMN, and 
the main contributor to tumors survival and develop-
ment in vivo. plasma-derived exosome miR-203 is dem-
onstrated to promote the differentiation of monocytes 
in distal organs into M2 TAMs of immunosuppressant 
phenotype [38]. Meanwhile, it has been established that 
exosomal miR-934 can induce the differentiation of nor-
mal phenotype M1 into M2 TAMs [39]. Downregulation 
of SOCS3 through miR-222-3p in TDEs is established 
to promote STAT3-mediated M2 and contribute to the 
immunosuppressive microenvironment [40]. Moreover, 
the upregulatory effect of exosomal miR-425-5p and -25-
3p on M2 TAMs expression through the PI3K/AKT axis, 
have been demonstrated to trigger distant metastasis in 
CRC [41].

Noteworthy, inflammation is found to be implicated in 
suppression of the tumor progression as well as promo-
tion of tumor occurrence and metastasis. For instance, 
inflammatory M1 TAMs are found to contribute to CRC 
development in colitis through their capability to have 
pro-inflammatory and immunostimulatory activity as 
well as producing anti-tumor factors, including IL-1β, 
IL-6 and TNF-α [42]. Hence, during tumor growth and 
metastasis, chronic inflammation that is the foundation 
of inflammatory microenvironment, can trigger the PMN 
formation in distant organs [43]. In fact, the aforemen-
tioned pro-inflammatory cytokines serve a crucial role in 
inflammatory microenvironment, which promotes tumor 
survival, proliferation and metastasis [43]. It has been 
established that low-density IL-1β can induce the local 
inflammatory response and result in protective immune 
responses, whereas high densities can trigger the inflam-
mation-related cancer tissue damage [44]. On the other 
hand, during the immune response, IL-6 can activate T 
and B cells to perform an anti-inflammatory role [45]. It 
has been demonstrated that exosomal miRNAs derived 
from CRC tumor cells can upregulate IL-6 secretion, 
therefore elevating inflammatory responses [46]. In fact, 
high concentration of IL-6 has been identified in serum, 
live tumors or biopsies of cancer individuals, confirm-
ing that the inflammatory effects of this cytokine might 
be associated with the cancer occurrence [47]. Exosomal 

miR-21 can trigger the release of pro-inflammatory IL-6 
and IL-21 and their presence within circulation, thereby 
promoting the formation of an inflammatory microenvi-
ronment [48]. More studies are shown in Tables 1 and 2.

In conclusion, the identification of specific exosomal 
microRNAs that promote EMT and tumor invasiveness, 
as well as those that contribute to immunosuppression 
and inflammation, may lead to the development of inno-
vative therapeutic strategies aimed at disrupting these 
pathways and inhibiting CRC progression.

Breast cancer
Invasive breast cancer often exhibits a propensity for 
lymphatic and distant metastasis. At early-stage metas-
tasis breast cancer, dissemination of tumor cells through 
both lymphatic and hematogenous systems occurs [14]. 
Multiple organs including lymph nodes, bone, lungs, 
brain, and liver are often found as receiver of the breast 
cancer metastasis (Fig. 3) [14]. The aberrant downregula-
tion of miR-130a-3p has been identified in human breast 
cancer tissues and exosomes from circulating blood. The 
lower levels of exosomal miR-130a-3p are also found to 
be related to lymph node metastasis and advanced TNM 
stage [159]. In vitro study has established that exosomal 
miR-130a-3p can inhibit the cell proliferation, migration, 
and invasion of human breast cancer stem cells (BCSCs) 
through regulation of RAB5B/epidermal growth factor 
receptor signaling pathways [160]. Moreover, it has been 
established that exosomal miR-770 can be transmitted 
into tumor-associated macrophages, and subsequently 
increase the expression of miR-770 in macrophages 
[160]. In addition, upregulation of miR-770 is established 
to suppress the invasion and migration of Triple-nega-
tive breast cancer (TNBC) through targeting STMN1. 
On the other hand, Let-7a and c-Myc exhibit a negative 
correlation with BC. The exosomal Let-7a originated 
from MDA-MB-231 cell can suppress the proliferation, 
migration, and invasion both in vitro and in vivo through 
downregulating the c-Myc expression [161]. Moreover, 
it has been demonstrated that miR-188-5p can suppress 
breast cancer-cell proliferation and migration, through 
targeting IL-6 signal transducer (IL6ST) [162]. This data 
have confirmed the selective sorting of miR-188-5p into 
exosomes from malignant BC cells [14].

In the process of metastatic and diffusion, BC gains 
the capability to transmigrate through blood vessels 
via promoting alteration within the endothelial bar-
rier [14]. Exosomal miR-939 in TNBC cells elevated 
tumor cell trans-endothelial migration and directly tar-
geted vascular endothelial cadherin (VE-cadherin) in 
endothelial cells [163]. This suggests that BC-secreted 
exosomal miR-939 is implicated in the extracellular 
pro-tumorigenic characteristic and is correlated with 
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Table 2 Role of Exosomal miRNAs in inhibiting in cancer metastasis

Exosomal miRNAs Originating cells Receiving cells Target Note Ref

miR-29c‐3p (Down) Omental-CAFs Ovarian cancer peritoneal MMP2 Omental-CAFs-derived exosome 
with low miR-29c‐3p enhances 
ovarian cancer peritoneal metastasis 
by targeting MMP2

[134]

miR-320a (Down) CAFs HCC PBX3 Downregulated exosomal miR-320a 
derived from CAFs leads to induc-
ing HCC metastasis by upregulating 
PBX3

[135]

miR-34a-5p CAFs OSCC AXL CAFs-derived exosomal m miR-
34a-5p inhibits OSCC metastasis 
by reducing EMT and MMP 
through targeting AXL

[136]

miR-148b (Down) CAFs Endometrial cancer DNMT1 Exosomal miR-148b inhibits endo-
metrial cancer metastasis by allevi-
ates EMT, and invasion through tar-
geting DNMT1

[137]

miR-146a-5p (Down) CAFs Prostate cancer EGFR DHT-treated CAFs-derived exosomal 
miR-146a-5p inhibits prostate 
cancer metastasis by inhibiting EMT, 
invasion and migration by targeting 
EGFR

[138]

miR-319 CAFs Gastric cancer MMP11 Gastric CAFs-derived exosomal 
miR-319 inhibits gastric cancer 
metastasis by negatively regulating 
MMP11 levels

[139]

miR-3940-5p MSC CRC ITGA6 MSC-derived exosomal miR-
3940-5p suppresses CRC metastasis 
by inhibiting invasion and EMT 
through ITGA6

[140]

miR-23b BM-MSC Breast cancer cell (BM2) MARCKS BM-MSC-derived exosomal miR-23b 
aggravates the dormancy of breast 
cancer in the metastatic niche

[141]

miR-100 and miR-143 MSCs CRC - MSCs-derived exosomal miR-100 
and miR-143 inhibits CRC metastasis 
maybe by targeting mTOR

[142]

miR-499a-5p MSCs Endometrial cancer VAV3 MSC-derived exosomal miR-499a-5p 
inhibits endometrial cancer metas-
tasis by inhibiting angiogenesis 
through targeting VAV3

[143]

miR-342-3p MSCs Breast cancer ID4 MSC-derived exosomal miR-342-3p 
suppresses breast cancer metastasis 
by inhibiting invasion through tar-
geting ID4

[144]

miR-128 MSCs Urothelial carcinoma CCL18 MSC-derived exosomal miR-128 
suppresses urothelial carcinoma 
metastasis by inhibiting migration 
and invasion through targeting 
CCL18

[145]

miR-320a Umbilical cord mesenchymal stem 
cells

Lung cancer SOX4 Umbilical cord MSCs-derived exoso-
mal miR-320a inhibits lung cancer 
metastasis by targeting SOX4

[146]

miR‐199a‐5p Hypoxic Ovarian cancer Ovarian cancer HIF‐2α Hypoxic ovarian cancer cell-derived 
eoxosmal miR‐199a‐5p inhibits 
ovarian cancer metastasis by target-
ing HIF‐2α

[147]

miR-363-5p Breast cancer Breast cancer cell (MCF-7) PDGFB Exosomal miR-363-5p inhibits breast 
cancer cell metastasis by inhibiting 
migration and invasion through tar-
geting PDGFB

[148]
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a worse prognosis in TNBCs. MiR-105 was character-
istically secreted by memory B cell (MBC) and was a 
potent migration regulator through targeting the tight 
junction protein zona occluden-1 (ZO-1) [164]. In 
endothelial monolayers, exosomal miR-105 secreted 
by BC cells disrupts the integrity of natural barriers 
and favors metastasis. Clinically, miR-105 have been 
detected in the circulation at the pre-metastatic stage, 
and its levels in the blood and tumor were associated 
with ZO-1 expression and metastasis in early-stage 
BC. Prior to neoadjuvant therapy, a comparative anal-
ysis of exosomal miRNA expression levels revealed 
significantly elevated levels of miR-21 and miR-105 in 

patients with metastatic breast cancer compared to 
those with non-metastatic disease and healthy donors 
[165].

MiR-155 is an oncogenic miRNA which its upregula-
tion is commonly detected in BC and is implicated in the 
recurrence, metastasis, and resistance. MiR-155 is found 
to be abundant in cancer stem cells (CSCs) and resist-
ant cells, and can be transmitted to BC cells through 
exosomes [166]. It has been demonstrated that exosomes 
can modify the migratory potential and enhance EMT 
in sensitive cells, partly through exosomal transfer of 
miR-155. A study by Gorczynski et  al. found that both 
miR-155 and miR-205 play a crucial role in modulating 

Table 2 (continued)

Exosomal miRNAs Originating cells Receiving cells Target Note Ref

miR-122-3p Breast cancer (MCF-7) Breast cancer (MCF-7/ADR cells) GRK4 Breast cancer-derived exosomal 
miR-122-3p suppresses metastasis 
by inhibiting Wnt/β-catenin signal-
ing pathway through targeting 
GRK4

[149]

miR-550a-3-5p Lung cancer Brain YAP1 Lung cancer-derived exosomal 
miR-550a-3-5p can control brain 
metastasis by targeting YAP1

[150]

Let-7e Serum-derived exosomes NSCLC 
patients

NSCLC (H1299 cells) SUV39H2 Exosomal let-7a derived from serum 
of NSCLC patients suppresses 
invasion and migration of NSCLC 
by targeting SUV39H2

[151]

miR-338-3p Human normal lung epithelial cells 
(BEAS-2B)

NSCLC CHL1 Human normal lung epithelial cells 
(BEAS-2B)-derived exosomal miR-
338-3p inhibits NSCLC metastasis 
by targeting CHL1

[152]

miR-3180-3p (Down) Human bronchial epithelial cells NSCLC FOXP4 Exosomal miR-3180-3p inhibits 
NSCLC metastasis by targeting 
FOXP4

[153]

miR-125b Non-metastatic HCC HCC SMAD2 Exosomal miR-125b inhibits HCC 
metastasis by inhibiting EMT 
through targeting SMAD2

[154]

miR-10527-5p ESCC HLECs and ESCC Rab10 ESCC-derived exosomal miR-
10527-5p can inhibit ESCC metas-
tasis by suppressing EMT, migration 
and invasion through negatively 
regulating Rab10/ Wnt/β-Catenin 
Signaling

[155]

miR-485-3p Pancreatic ductal epithelial cells Pancreatic cancer PAK1 Pancreatic ductal epithelial cells-
derived exosomal miR-485-3p sup-
presses pancreatic cancer metastasis 
by targeting PAK1

[156]

miR-7 TWEAK-stimulated macrophages Epithelial ovarian cancer - Exosomal miR-7 derived 
from TWEAK-stimulated mac-
rophages inhibits the metastasis 
of epithelial ovarian cancer cells 
by regulating EGFR/AKT/ERK1/2 
pathway

[157]

miR-490 Mast cells (MCs) HCC - Mast cells (MCs)-derived exosomal 
miR-490 inhibits HCC metastasis 
by inhibiting invasion and migration 
by regulating EGFR/AKT/ERK1/2 
pathway

[158]
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the inflammatory response, thereby influencing the 
metastatic growth of BC cells in lung and liver metas-
tasis models. Notably, elevated levels of BC exosomal 
miR-205 have been shown to suppress BC metastasis, 
whereas miR-155 has been found to have an opposite 
effect [167]. Through a bioinformatic analysis, Kia et  al. 
identified that miR-9 and miR-155 were among the most 
highly expressed miRNAs in highly metastatic TNBC 
cells and their corresponding exosomes. This finding 
was subsequently validated through qRT-PCR experi-
ments, providing further evidence for the potential 
role of these miRNAs in the biology of TNBC metas-
tasis [83]. A luciferase assay confirmed that the miR-9 
and miR-155, which were present in the exosomes of 
BC cells, specifically targeted the UTRs of PTEN and 
DUSP14 genes, respectively. In a subsequent study, 
when low-metastatic MCF-7 cells were treated with 
exosomes from highly metastatic MDA-MB-231 cells, 
they exhibited an enhanced metastatic phenotype, sug-
gesting that the transfer of these exosomal miRNAs 
can modulate the migratory behavior of recipient cells 
[168]. The study revealed that the miR-155 shuttled by 
exosomes introduced a novel mechanism that promoted 
the development and metastasis of cancer. Furthermore, 
the researchers found that the levels of miR-7641 were 
elevated in the exosomes derived from BC cells and were 
also present in the plasma of breast cancer patients with 
distant metastases. Notably, this miR-7641 was found to 
stimulate tumor growth both in  vitro and in  vivo, sug-
gesting a potential role for this miRNA in the progression 
of BC [169]. The study demonstrated that the miR-7641, 
secreted through exosomes, can promote the prolifera-
tion and invasion of BC cells. Additionally, miR-7641 can 
also induce epigenetic changes in recipient cells through 
exosome-mediated transfer. Similarly, another study 
found that the exosomal miR-1246, secreted from meta-
static BC cells, plays a crucial role in promoting metas-
tasis by inducing invasion in non-metastatic BC cells. 
Specifically, miR-1246 was shown to target the CCNG2 
gene, leading to enhanced invasion capabilities in recipi-
ent cells. These findings suggest that exosomal miRNAs 
may play a significant role in modulating the behavior of 
BC cells and potentially contributing to disease progres-
sion [84].

In selective metastasis, tumor-derived exosomal miR-
NAs exhibit abnormal expression and play a key role in 
preparing the pre-metastatic niche by reprogramming 
the target organ, enhancing the likelihood of success-
ful metastasis [14]. For instance, the expression of exo-
somal miR-19a and integrin-binding sialoprotein (IBSP) 
is significantly upregulated in the secretion of estro-
gen receptor-positive (ER +) bone-tropic breast cancer 
cell lines, as well as in ER + breast cancer patients with 

bone metastases [86]. Additionally, Wu and colleagues 
[86] has identified that exosomal miR-19a derived from 
ER + breast cancer cells enhances bone metastasis by 
promoting osteoclastogenesis through the targeting of 
PTEN. In the early metastatic niche, ER + breast cancer 
cells secrete integrin-binding sialoprotein (IBSP) as a che-
moattractant, recruiting precursors of osteoclast (OC) 
cells and creating an OC precursor-enriched microenvi-
ronment. These OC precursors subsequently internalize 
exosomes from breast cancer cells, allowing miR-19a to 
be transported into the OC precursors, where it exerts 
its pro-tumorigenic effects [86]. Within the OC precur-
sors, the internalized miR-19a suppresses the expression 
of phosphatase and tensin homolog (PTEN), activates 
the nuclear factor kappa B (NF-κB) and protein kinase B 
(AKT) signaling pathways, and promotes osteoclastogen-
esis. The resulting mature OC cells subsequently induce 
bone resorption, releasing growth factors from the bone 
matrix, which in turn facilitates the proliferation and 
survival of cancer cells [86]. Recently, Singh et  al. [80] 
observed that miR-10b is significantly overexpressed in 
metastatic breast cancer cells compared to non-meta-
static breast and non-malignant breast cells. Further-
more, upon internalization, miR-10b has been found to 
suppress the protein levels of its target genes, including 
homeobox D10 (HOXD10) and Krüppel-like factor 4 
(KLF4), indicating its functional significance. Moreover, 
treatment with exosomes derived from metastatic breast 
cancer cells has been shown to induce metastasis by 
inducing invasive behavior in non-invasive breast epithe-
lial HMLE cells through the targeting of HOXD10 [80]. 
More studies are shown in Tables 1 and 2.

Altogether, exosomal miRNAs have been identified as 
key mediators of selective metastasis, regulating gene 
expression, inducing EMT, and suppressing the immune 
response. These findings highlight the potential thera-
peutic significance of exosomal miRNAs as targets for 
the treatment of breast cancer.

Lung cancer
The majority of lung carcinomas are initially diagnosed at 
an advanced stage IV, often with widespread metastatic 
disease. Notably, lung carcinomas exhibit a propensity for 
metastasis via both lymphatic and hematogenous routes, 
reflecting their ability to spread through lymphatic ves-
sels and the bloodstream [170]. The most common sites 
of metastasis for lung cancer are proposed to be the cen-
tral nervous system, bone, liver, respiratory tract, and 
adrenal glands (Fig. 3) [171]. Recent studies have identi-
fied that certain exosomal miRNAs play a pivotal role in 
promoting lung cancer cell migration, invasion, tumor 
growth, and metastasis through multiple mechanisms 
[172, 173]. Notably, the dysregulation of these miRNAs 
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can be targeted to counteract their oncogenic effects, 
such as through gene silencing strategies. Runx3 (Runt-
related transcription factor 3) has been found to be 
downregulated in lung cancer tissues, and it is considered 
a tumor suppressor due to its ability to antagonize the 
activation of the Wnt signaling pathway [174]. Exosomes 
derived from non-small cell lung cancer (NSCLC) cells, 
which contain miR-210 (miR-210-Exo), have been shown 
to modulate the behavior of recipient lung cancer cells 
by inhibiting Runx3 expression and activating the PI3K/
Akt signaling pathway. This results in enhanced prolif-
eration, migration, and invasion of the recipient cells 
[175]. In vivo, exosomal miR-210 was found to target the 
Runx3/PI3K/Akt axis, thereby promoting the growth of 
transplanted tumors in nude mice. Consistently, silenc-
ing of miR-210 gene expression significantly attenuated 
the carcinogenic effect induced by exosomal miR-210, 
underscoring the potential therapeutic relevance of tar-
geting this axis in cancer treatment [175]. 

Epitopic overexpression of miRNA-30a-5p in lung can-
cer cells was found to significantly inhibit cell prolifera-
tion, migration, and invasion by targeting the cell-cycle 
phase regulator cyclin E2. Notably, miR-30a-5p-con-
taining exosomes produced by vascular endothelial cells 
from lung adenocarcinoma (LUAD) patients were also 
found to effectively suppress cell proliferation, migra-
tion, and invasion, highlighting the potential therapeu-
tic utility of miR-30a-5p-Exo in LUAD treatment [176]. 
HEY-like protein (HEYL) is a member of the hairy and 
enhancer of the split-related (HESR) family, and func-
tions as a downstream target molecule of the Notch 
signaling pathway. This pathway has been implicated in 
the regulation of cell growth and metastasis in lung can-
cer (LC), suggesting that HEYL may also play a role in 
these processes [177, 178].

A comparison of exosomes derived from benign pleu-
ral effusion (BPE) and malignant pleural effusion (MPE) 
in lung cancer (LC) patients revealed that the level of 
miR-665 is significantly higher in MPE-derived exosomes 
[179]. Both cultured cells and experiments in zebrafish 
have confirmed that exosomes enriched with lncRNA 
SCIRT and miR-665 can enhance the migratory and 
invasive abilities of lung cancer cells by specifically tar-
geting and suppressing HEYL. Furthermore, these find-
ings indicated that the plasma concentrations of miR-665 
and lncRNA SCIRT are significantly elevated in patients 
with metastatic lung cancer compared to those with 
non-cancerous diseases or non-metastatic lung cancer, 
suggesting that these exosomal biomarkers may serve as 
valuable indicators for the diagnosis and monitoring of 
metastatic disease [179]. Therefore, exosomal miR-665 
in serum or lung pleural effusion may serve as a specific 
marker for the early diagnosis of lung cancer metastasis. 

Additionally, FOXP4, a member of the human forkhead-
box (FOX) family, has been found to play a key role in 
cell cycle regulation and tumorigenesis. Notably, it has 
been established that FOXP4 protein and mRNA levels 
are significantly elevated in NSCLCs compared to nor-
mal lung tissue, indicating that FOXP4 may be a potential 
biomarker for LC diagnosis [180]. Chen and colleagues 
demonstrated that exosomal miR-3180-3p derived from 
NSCLC cells can exert anti-tumor effects by suppress-
ing cell proliferation, migration, and invasion in recipi-
ent NSCLC cells through the downregulation of FOXP4 
expression. Furthermore, the in  vivo administration of 
miR-3180-3p-exosomes was shown to impede the growth 
and metastatic potential of NSCLC xenografts in nude 
mice [153].

The androgen receptor (AR) is a member of the ster-
oid hormone receptor family and acts as a nuclear tran-
scription factor. When bound to a ligand, AR undergoes 
a conformational change, allowing it to translocate 
to the nucleus, where it regulates the transcription of 
genes responsive to AR signaling. Notably, male NSCLC 
patients who exhibit androgen pathway manipulation 
(APM) have been found to have a survival advantage, 
suggesting a potential therapeutic benefit from targeting 
the androgen axis in this patient population [181]. Female 
NSCLC patients who have higher levels of (AR) expres-
sion have a substantially better overall survival compared 
to those without AR expression [182]. This suggests that 
the relationship between steroid hormones and their 
receptors in lung cancer patient survival is complex and 
warrants further investigation. Recent research by Zhou 
and colleagues has made progress in this area, reveal-
ing that miR-224-5p is overexpressed in cancer tissues 
from NSCLC patients and cell lines. Additionally, the 
study found that miR-224-5p, specifically in the form of 
extracellular vesicle-derived miR-224-5p, is produced by 
lung cancer cells and exerts oncogenic effects, promoting 
metastasis and cell proliferation in both NSCLC cells and 
normal human lung cells. These findings suggest a poten-
tial role for miR-224-5p in the progression of lung cancer, 
highlighting the need for further research to elucidate 
the underlying mechanisms [183]. The study also demon-
strated that the overexpression of miR-224-5p in NSCLC 
cells led to a suppression of AR expression. This repres-
sion of AR had a profound impact on the behavior of the 
cancer cells, as it promoted EMT, proliferation, migra-
tion, invasion, and resistance to apoptosis. Furthermore, 
this overexpression also drove the growth of lung cancer 
xenografts. Conversely, silencing the AR gene in NSCLC 
cells enhanced their migratory potential and increased 
their resistance to apoptosis. These findings suggest that 
miR-224-5p plays a key role in regulating the progres-
sion of lung cancer by targeting the AR pathway, which 
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may have important implications for the development 
of novel therapeutic strategies [183]. This suggests that 
miR-224-5p-Exo can promote NSCLC progression by 
directly targeting AR. More studies are shown in Table 2.

Overall, these studies suggests that exosomal miRNAs 
play a pivotal role in the selective metastasis of lung can-
cer by facilitating the colonization of specific organs. 
Once internalized, these exosomal miRNAs reprogram 
recipient cells to promote their own proliferation, migra-
tion, and invasion, thereby creating a conducive micro-
environment for metastatic lesion establishment. The 
targeting of specific organs by exosomal miRNAs is influ-
enced by the expression profile of specific receptors or 
ligands on recipient cell surfaces, allowing lung cancer 
cells to selectively colonize particular organs and tissues. 
These findings underscore the significance of exosomal 
miRNAs in mediating selective metastasis in lung cancer 
and imply potential therapeutic strategies aimed at tar-
geting these molecules to prevent or treat this disease.

Hepatocellular carcinoma
Hepatocellular carcinoma (HCC) is a prevalent can-
cer type, ranking sixth in terms of incidence and third 
in terms of mortality globally. Notably, lung metastasis 
is the most frequent extrhepatic manifestation of HCC, 
underscoring the importance of understanding the mech-
anisms underlying this phenomenon [184]. In addition, 
bone metastases (BM) are a common phenomenon in 
patients with metastatic HCC, affecting 2–25% of cases. 
The presence of BM is often associated with a poor prog-
nosis in HCC, highlighting the need for more effective 
diagnostic and therapeutic strategies to address this com-
plication [185]. It has been demonstrated that exosomal 
miRNAs derived from HCC cells can play a significant 
role in promoting lung and bone metastasis. For instance, 
liver cancer-derived exosomal miR-574-5p has been 
shown to exacerbate bone metastasis by enhancing oste-
oclastogenesis through direct targeting of the BMP2 gene 
[102]. Furthermore, exosomal miR-1247-3p derived from 
high-metastatic HCC cells has been found to contrib-
ute to the conversion of fibroblasts to cancer-associated 
fibroblasts (CAFs) by directly targeting the B4GALT3 
gene. In turn, CAFs have been shown to enhance lung 
metastasis by promoting EMT and stemness, indicat-
ing a critical role for exosomal miRNAs in the crosstalk 
between cancer cells and stromal cells during metastatic 
progression [103].

Exosomes released by HCC cells have also been found 
to influence the metastatic behavior of tumor cells. 
Research suggests that exosomal miR-21 and exosomal 
miR-10b, which are induced by acidic microenviron-
ments, promote the proliferation and metastasis of can-
cer cells. As such, these exosomal miRNAs may serve as 

potential prognostic molecular markers and therapeutic 
targets for HCC [101]. In addition, exosomal miR-125b 
has been found to exert anti-tumor effects by inhibiting 
the metastasis of HCC cells. Specifically, exosomal miR-
125b has been shown to suppress EMT by targeting the 
SMAD2 gene, which is a key regulator of EMT [154]. 
Interestingly, exosomal miR-29a-3p released by high-
metastatic HCC cells has been found to promote metas-
tasis by enhancing EMT in low-metastatic HCC cells. 
This pro-metastatic effect is mediated by exosomal miR-
29a-3p targeting the phosphatase and tensin homolog 
(PTEN) gene, a key regulator of EMT. This finding sug-
gests that exosomal miR-29a-3p may act as a "metastatic 
bridge" between high-metastatic and low-metastatic 
HCC cells, promoting the dissemination of cancer cells 
through EMT activation [100].

Blood-borne metastasis, which refers to the spread 
of cancer cells through the bloodstream, is the primary 
cause of mortality in patients with cancer. The process 
of metastasis is facilitated by increased vascular per-
meability, which allows cancer cells to extravasate from 
the bloodstream and colonize distant organs. This high-
lights the critical role of the vasculature in promoting 
tumor dissemination and underscores the importance 
of understanding the molecular mechanisms underlying 
vascular permeability in cancer progression. Further-
more, targeting these mechanisms may provide a prom-
ising therapeutic strategy for inhibiting metastasis and 
improving patient outcomes [186]. A study by Fang et al. 
[92] demonstrated that exosomes secreted by HCC cells 
can transfer miR-103 to endothelial cells, thereby inhibit-
ing the expression of key proteins involved in endothelial 
tight junction integrity, such as human vascular endothe-
lial cadherin, zonula occludens 1, and p120-catenin. This 
led to a weakening of endothelial connectivity, increased 
vascular permeability, and accelerated metastasis. In a 
xenograft mouse model, high miR-103 expression was 
associated with an increased probability of intrahepatic 
and pulmonary metastasis. Notably, HCC patients with 
elevated serum miR-103 levels exhibited a higher meta-
static potential compared to those with low miR-103 
expression levels. These findings collectively suggest a 
positive correlation between exosomal miR-103 expres-
sion and the metastatic capacity of HCC [92, 187].

The mitogen-activated protein kinases (MAPKs) 
constitute a family of evolutionarily conserved serine/
threonine protein kinases that play crucial roles in vari-
ous cellular processes, including cell proliferation, dif-
ferentiation, motility, and apoptosis [188]. The MAPK 
family, comprising p44/42 (ERK1/2), p46/p54 (JNK), and 
p38, serves as a critical component of protein kinase cas-
cades, which are essential for regulating cell growth and 
differentiation, as well as modulating cellular responses 
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to cytokines and stress signals [189]. The p44/42 MAPK 
(ERK1/2) signal transduction pathway is activated in 
response to a diverse range of extracellular stimuli, 
including mitogens, growth factors, and cytokines [190, 
191], and it is an important target for cancer diagnosis 
and treatment [192]. Recent studies have demonstrated 
that exosomal miR-320a exhibits anti-tumor effects on 
HCC cells by suppressing cell proliferation, migration, 
and metastasis through the inhibition of the MAPK path-
way, which ultimately leads to the induction of EMT and 
the upregulation of cyclin-dependent kinase 2 (CDK2) 
and matrix metallopeptidase 2 (MMP2) expression [135]. 
In the study conducted by Li Xiong et al., mast cells have 
been shown to inhibit the ERK1/2 pathway by deliver-
ing exosomal miR-490 to HCC cells, thereby suppressing 
the metastatic potential of HCC cells [158]. Activation of 
MAPK signaling pathway is a frequently observed event 
in the progression and metastasis of tumors, highlighting 
its significance as a potential therapeutic target for can-
cer treatment [193, 194]. These studies can provide new 
insights into the regulatory mechanism of HCC in the 
MAPK signaling pathway and identify potential ways of 
the therapeutic intervention for the disease.

Overall, these findings highlight the potential for exo-
somal miRNAs to serve as key mediators of metastatic 
spread in HCC, and underscores the importance of fur-
ther investigating their mechanisms of actions.

Head and neck cancer
Head and neck cancer (HNC) is a prevalent and debili-
tating neoplasm globally, with a significant burden on 
public health. Despite ongoing advances in therapeutic 
modalities, the 5-year overall survival rate for advanced 
HNC remains disappointingly low, hovering around 50%, 
underscoring the pressing need for innovative treat-
ment strategies to improve patient outcomes [195–198]. 
HNC often originates from mucosal surfaces, specifically 
the oral cavity, which includes the tongue, lip, buccal 
mucosa, gingiva, and palate, as well as the oropharynx, 
larynx, and perioral skin, highlighting the importance 
of early detection and surveillance in these high-risk 
areas [199]. The majority of HNCs, exceeding 90%, are 
classified as head and neck squamous cell carcinomas 
(HNSCCs). Recent studies have uncovered a wealth of 
evidence indicating that tumor-derived exosomal miR-
NAs play a pivotal role in the oncogenic process, facilitat-
ing intercellular communication and signal transduction 
pathways that contribute to tumor development, progres-
sion, and treatment resistance [200, 201]. For instance, 
research has demonstrated that exosomes secreted by 
hypoxic oral squamous cell carcinoma (OSCC) cells 
transfer viral miR-21 to normoxic cells, inducing EMT 
and subsequently promoting cell migration and invasion 

[202]. Notably, research has shown that exosomal miR-
21 derived from esophageal carcinoma cell line EC9706 
promotes metastasis in esophageal cancer by enhancing 
migration and invasion through targeting the protein 
programmed cell death 4 (PDCD4) [115]. It has been 
demonstrated that miR-23b-3p derived from salivary 
adenoid cystic carcinoma (SACC) cells and packaged in 
exosomes can contribute to SACC metastasis by exacer-
bating angiogenesis through direct targeting of the tumor 
suppressor phosphatase and tensin homolog (PTEN) 
[111]. In addition, miR-34a-5p in CAF-derived exosomes 
in OSCC can stimulate the proliferation and metastasis 
of oral cancer cells by activating the AKT/glycogen syn-
thase kinase-3 beta/β-catenin/Snail signaling cascade 
[136]. A recent investigation has shown that extreme 
metastatic oral squamous cell carcinoma cells secrete 
exosomes containing miR-1246 and -342-3p, which 
enhance the oncogenic growth, metastasis, and invasion 
of recipient cells [110]. The transformation of poor met-
astatic cells into aggressive metastatic cells is facilitated 
by the downregulation of the Multiple Acyl-CoA Dehy-
drogenase Deficiency (MADD)/DENN domain contain-
ing protein 2D (DENN2D) via the influence of exosomal 
miR-1246. Additionally, exosomes containing miR-21 
exhibit increased expression of mesenchymal markers, 
such as vimentin and snail, and decreased expression 
of E-cadherin. These findings collectively suggest that 
OSCC malignant cell clusters undergo EMT and migrate 
to distant organs [202–204].

Lymphangiogenesis, the process of forming new lym-
phatic vessels, has been recognized as a novel prognostic 
indicator for predicting the risk of lymph node metas-
tasis (LNM) [205]. During the progression of lymphatic 
metastasis, lymphatic vessels at the tumor periphery 
function as conduits for the dissemination of tumor cells 
to regional lymph nodes (LNs) [206]. Several cytokines, 
including vascular endothelial growth factor C (VEGF-C) 
and VEGF-D, engage with vascular endothelial growth 
factor receptor-3 (VEGFR-3) to stimulate the prolif-
eration, tube formation, and migration of lymphatic 
endothelial cells (LECs) within the tumor microenvi-
ronment [207]. In various experimental tumor models, 
inhibition of the VEGF-C/VEGFR-3 signaling pathway 
was found to significantly reduce LNM by approximately 
60–70% [208, 209], the effectiveness and side effects of 
these drugs still need to be carefully evaluatedNotably, 
some patients with esophageal squamous cell carcinoma 
(ESCC) with LNM display low levels of VEGF-C. Con-
sequently, the identification of novel lymphangiogenesis 
regulators is crucial. Recent studies have revealed that 
miR-10527-5p, which is derived from ESCC-derived 
exosomes, exhibits potent inhibitory effects on the 
migration, invasion, and EMT of ESCC cells as well as 
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the migration and tube formation of human lymphatic 
endothelial cells. This inhibitory activity prevents lym-
phatic metastasis and lymphangiogenesis of ESCC 
through the Wnt/β-catenin signaling pathway by directly 
targeting Rab10 [155]. In contrast, ESCC-derived exoso-
mal miR-320b has been found to induce the metastasis 
of human lymphatic endothelial cells (HLECs) and lym-
phatic metastasis by promoting EMT through direct 
targeting of PDCD4 [114]. More studies about the role 
of exosomal miRNAs derived from other types of tumor 
cells are shown in Table 2.

Conclusion
The propensity of cancer cells to colonize specific organs 
and tissues, a phenomenon known as organ-specific 
metastasis, is a complex process governed by a delicate 
interplay of genetic and environmental factors. Tumor-
derived exosomes exert a pivotal role in the orchestration 
of organ-specific metastasis by facilitating the transfer 
of a distinct repertoire of pro-metastatic cargo between 
cancer cells and the target organ microenvironment. 
Exosomes derived from primary tumors exhibit a selec-
tive enrichment for specific biomolecules, including 
transcriptional regulators, growth factors, and adhesion 
molecules, which are instrumental in inducing a pre-
metastatic niche in recipient cells, thereby enabling them 
to undergo EMT and adapt to the foreign microenviron-
ment. The selective loading of exosomes with pro-met-
astatic molecules enables cancer cells to "pre-condition" 
the target organ microenvironment, thereby increasing 
their likelihood of successful colonization and growth.

Exosomal miRNAs have been demonstrated to exert 
a profound impact on the selective metastatic process, 
facilitating the establishment of metastatic niches by 
modulating gene expression through selective target-
ing of recipient cells. Exosomal miRNAs orchestrate 
the preparation of the pre-metastatic niche, a com-
plex microenvironment that facilitates the homing and 
colonization of cancer cells at distant sites. By regulat-
ing the expression of genes involved in inflammation, 
angiogenesis, and immunosuppression, exosomal miR-
NAs create a permissive microenvironment that fosters 
a pro-tumorigenic landscape conducive to metastasis. 
Conversely, these miRNAs also repress the expres-
sion of genes involved in immune surveillance and 
tissue repair, thereby generating an environment that 
enables cancer cells to establish a foothold and thrive. 
This dual function of exosomal miRNAs underscores 
their pivotal role in shaping the microenvironmental 
conditions that enable cancer cell metastasis, making 
them attractive targets for therapeutic exploitation [29, 
210]. Furthermore, these exosomal miRNAs have been 
identified as potential biomarkers for cancer diagnosis 

and monitoring, owing to their unique profiles and 
dynamic expression patterns. In fact, the TDEs emerge 
as a prime candidate for the development of prognostic 
biomarkers for PMNs, boasting a trifecta of attributes 
that render them particularly well-suited for this pur-
pose: their remarkable stability, widespread presence 
in bodily fluids, non-invasive accessibility, and tumor-
specific expression patterns [211]. However, a striking 
disparity is observed in the research landscape regard-
ing the role of exosomal microRNAs in selective metas-
tasis across distinct cancer types. For instance, while 
their involvement in lung and breast cancer metastasis 
has been extensively explored, analogous investigations 
remain scarce for other tumor types, such as pancre-
atic or ovarian cancer. This observation underscores the 
need for comprehensive and organ-specific studies to 
elucidate the underlying mechanisms driving exosomal 
microRNA-mediated selective metastasis in each can-
cer type. By deciphering these mechanisms, research-
ers may uncover novel therapeutic targets and develop 
more effective strategies for preventing and treat-
ing cancer metastasis, ultimately improving patient 
outcomes.

Over the past three decades, groundbreaking discover-
ies in the elucidation of cancer metastasis have unveiled 
a plethora of novel targets for preventing this insidious 
process. Notably, significant strides have been made in 
modulating the biochemical pathways and signaling cas-
cades governing cell adhesion, dissociation, migration, 
invasion, and the complex interactions between cancer 
cells and the tumor microenvironment (TME). These 
advances have significantly expanded our understanding 
of the intricate mechanisms underlying cancer dissemi-
nation, thereby providing a rich source of opportunities 
for therapeutic interventions aimed at thwarting the 
metastatic process [9]. The development of exosomal 
miRNA-based therapeutics holds great promise, with 
potential treatments focused on inhibiting the transfer 
of these molecules to prevent reprogramming of recipi-
ent cells. Elucidating the specific receptors and ligands 
involved in targeting will enable the design of targeted 
therapies to block this interaction. Moreover, exoso-
mal miRNAs may serve as non-invasive biomarkers for 
early detection of metastasis, revolutionizing diagnos-
tic capabilities. The exploration of combination thera-
pies targeting multiple components will also be crucial 
in combating this complex disease. Ultimately, a deeper 
understanding of exosome biology will inform the devel-
opment of novel therapeutic approaches, paving the 
way for improved patient outcomes and a more effective 
treatment landscape for cancer.
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