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Abstract 

Background Gastric cancer (GC) is one of the deadliest malignant tumors with unknown pathogenesis. Due to its 
treatment resistance, high recurrence rate, and lack of reliable early detection techniques, a majority of patients 
have a poor prognosis. Therefore, identifying new tumor biomarkers and therapeutic targets is essential. This review 
aims to provide fresh insights into enhancing the prognosis of patients with GC by summarizing the processes 
through which microRNAs (miRNAs) regulate the tumor microenvironment (TME) and highlighting their critical role 
in the TME.

Main text A comprehensive literature review was conducted by focusing on the interactions among tumor cells, 
extracellular matrix, blood vessels, cancer-associated fibroblasts, and immune cells within the GC TME. The role 
of noncoding RNAs, known as miRNAs, in modulating the TME through various signaling pathways, cytokines, growth 
factors, and exosomes was specifically examined. Tumor formation, metastasis, and therapy in GC are significantly 
influenced by interactions within the TME. miRNAs regulate tumor progression by modulating these interactions 
through multiple signaling pathways, cytokines, growth factors, and exosomes. Dysregulation of miRNAs affects 
critical cellular processes such as cell proliferation, differentiation, angiogenesis, metastasis, and treatment resistance, 
contributing to the pathogenesis of GC.

Conclusions miRNAs play a crucial role in the regulation of the GC TME, influencing tumor progression and patient 
prognosis. By understanding the mechanisms through which miRNAs control the TME, potential biomarkers and ther-
apeutic targets can be identified to improve the prognosis of patients with GC.
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Background
Gastric cancer (GC) is the fourth leading cause of can-
cer-related deaths worldwide and the fifth most preva-
lent disease globally [1]. This disease is often diagnosed 
at an advanced stage with metastases, as there are typi-
cally no early and accurate diagnostic methods or specific 
clinical symptoms. As a result, the 5-year survival rate for 
GC is only approximately 32% [2]. A noticeable process 
of connective tissue proliferation is present during solid 
tumor development, including that observed in GC. This 
process is intimately associated with immune cells, along 
with other types of mesenchymal stromal cells in the 
tumor microenvironment (TME) [3]. The TME includes 
fibroblasts, the extracellular matrix (ECM), blood ves-
sels, endothelial cells, immune cells, and non-cellular 
elements such as cytokines and exosomes. Thus, the 
TME plays a significant role in cancer progression [4, 5] 
(Fig.  1). In this context, the external and internal envi-
ronments in which the tumor cells are situated consid-
erably affect the onset, development, and metastasis of 
the tumor, and they are both interdependent and com-
petitive with each other [6]. Growth factors in the TME 

enhance the viability of tumor cells, reducing the uptake 
of chemotherapeutic agents or inactivating them. Addi-
tionally, the TME produces immunosuppressive factors, 
thereby promoting resistance to immunotherapy [7]. 
Therefore, understanding how the GC TME is regulated 
and applying these insights to clinical treatment is crucial 
to enhancing the poor prognosis of patients with GC.

In 1993, Ambros et al. discovered the first microRNA 
(miRNA) in nematodes. This discovery revealed an 
important part of the noncoding genome that acts as a 
critical player in post-transcriptional gene regulation 
[8]. miRNA dysregulation has been identified in several 
human diseases, including heart disease, diabetes, cancer, 
and schizophrenia [9]. Dysregulation of miRNA expres-
sion levels in cancer has been associated with a range of 
biological features of human cancer development, includ-
ing important roles in enhancing tumor cell proliferation, 
apoptosis, migration, epithelial-mesenchymal transition 
(EMT), metastasis, angiogenesis, autophagy, and inter-
actions between malignant cells and the TME [10–12]. 
miRNA expression profiles in normal cells are very dif-
ferent from those in cancer tissues, and different tumor 

Fig. 1 TME composition in gastric cancer. TME: Tumor microenvironment
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types and stages, including tumor development, pro-
gression, and metastasis, can be identified based on the 
expression of specific miRNAs [13, 14]. The regulation of 
miRNA expression has been associated with the suppres-
sion of oncogenic miRNAs and the replacement of tumor 
suppressor miRNAs [15]. Thus, miRNAs are a particu-
larly important area of cancer research, with relevance 
to cancer prognosis, pathogenesis, diagnosis, and treat-
ment, and are considered the perfect tool for improving 
cancer therapy [16].

Dysregulated miRNAs promote cancer-associated 
fibroblast (CAF) activation, inhibit myeloid-derived 
suppressor cells (MDSCs), inhibit T-cell differentiation, 
and facilitate angiogenesis, ultimately remodeling the 
TME [17]. Particularly, tumor cell-derived miRNAs are 
strongly associated with the production of an immu-
nosuppressive TME and the loss of effector cells and 
reduced tumor immunogenicity; moreover, they are key 
determinants of cancer immune outcomes [18, 19]. Addi-
tionally, cancer cells secrete exosomes containing tumor 
suppressor miRNAs that propagate altered sets of miR-
NAs to different cellular compartments within the TME 
[20]. miRNAs may be key to immune-mediated tumor 
clearance, as miRNAs subtly repress genes and preferen-
tially inhibit dose-sensitive targets [21].

Recently, miRNAs have been considered important 
potential biomarkers for gastric pathology, as they are 
frequently dysregulated in gastric tissues in preneoplas-
tic lesions such as Helicobacter pylori infection, chronic 
gastritis, atrophic gastritis, and intestinal metaplasia, 
as well as in early-stage dysplasia and invasive cancers 
[22]. Meanwhile, increasing evidence indicates that 
miRNAs can be considered novel biomarkers; notably, 
many researchers have analyzed the miRNA profiles in 
serum and tissue samples from GC to assess their prog-
nostic and diagnostic potential [23, 24] (Table  1). As 
previously described, miRNAs regulate mesenchymal 
interactions, immune invasion, and tumor angiogenesis, 
leading to malignant phenotypes of GC such as tumor 
growth, metastasis, angiogenesis, and drug resistance 
[25]. GC cells release extracellular vesicles (EVs) that are 
enriched in miR-1290. This miRNA enhances the inhibi-
tory impact of GC cells on T-cell activation by targeting 
grainyhead-like 2 and activating the zinc finger E-box 
binding homeobox  1/programmed cell death ligand 1 
(PD-L1) axis, facilitating GC cell immunological escape 
[26]. Drug resistance is one of the major challenges facing 
GC treatment, and manipulating miRNA expression has 
been shown to alleviate this therapeutic hurdle [27, 28]. 
Thus, miRNA-targeted GC therapies have great potential 
to enhance immunotherapy compared to existing thera-
pies [29]. The investigation of microRNAs in GC have 
entered the clinical settings (Table 2).

A comprehensive understanding of the biological 
mechanisms facilitated by miRNAs in the TME of GC 
may, therefore, offer valuable perspectives for the iden-
tification of antitumor drugs and the advancement of 
targeted cancer treatments in the future. This review 
emphasizes the pivotal role that miRNAs play in the 
TME and focuses on how control of the TME by miRNAs 
influences GC development. Increased understanding 
of these processes may assist in the development of new 
therapies for patients with GC and the identification of 
new biomarkers that can improve management and fol-
low-up strategies for patients with GC.

Main text
miRNAs and H. pylori/Epstein–Barr virus in the GC TME
H. pylori infection is one of the most significant risk 
factors for GC [66]. Immune monitoring of the gastric 
mucosa may be impeded by H. pylori-induced activa-
tion of signal transducer and activator of transcription 
1 (STAT1) and PD-L1 expression, allowing malignant 
lesions to develop into GC [67]. The H. pylori virulence 
factor CagA affects multiple types of miRNAs in GC cells 
[68]. CagA inhibits proliferative and antitumor effects 
of CD8 + T cells and increases PD-L1 levels in GC cell-
derived exosomes via suppressing miRNA-34a and P53 
[69]. Moreover, CagA promotes miR-543 overexpression, 
which inhibits autophagy by targeting sirtuin 1, subse-
quently inducing EMT and triggering cell invasion and 
migration [70]. The phosphatidylinositol 3-kinase (PI3K)/
protein kinase B (AKT)/mammalian target of rapamycin 
(mTOR) signaling pathway is activated by H. pylori infec-
tion, which results in the TME secreting T regulatory 
cells (Tregs), suppressing tumor cell death, and enhanc-
ing the TME immunosuppressive state. This pathway 
activation aids in immune evasion, which in turn facili-
tates the development of tumors [71, 72]. On the con-
trary, H. pylori induces miR-223, which downregulates 
the expression of interleukin (IL)-6, IL-8, IL-1β, and 
tumor necrosis factor (TNF)-α and inhibits macrophage 
activation [73].

T helper 1 (Th1) and 17 (Th17) cell differentiation 
are influenced by miR-155 and contribute to immunity 
against H. pylori infection, along with infection-asso-
ciated immunopathology [74]. However, Tsai et  al. [75] 
noted that GC associated with H. pylori significantly 
increased miR-4286 and miR-18a-3p (5.73-fold and 
6.02-fold, respectively). Moreover, invasion and miR-
18a-3p, as well as lymph node metastases, tumor size, 
and tumor stage and miR-4286, have been shown to be 
significantly associated. Overexpression of miRNA-4286 
and miR-18a-3p also inhibits benzodiazepine receptor-
associated protein 1 expression while promoting the 
motility and proliferation of cancer cells. Furthermore, H. 
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Table 1 miRNAs that potentially represent GC biomarkers

Symbol Materials Function Biomarker sensitivity specificity Reference

miR-21 Serum and PBMCs Promote GC prolifera-
tion and invasion

Diagnostic and Prog-
nostic

88.4% (Serum)
79.6% (PBMCs)

60.5% (Serum)
55.9% (PBMCs)

 [30]

miR-21 and miR-222 Plasma Regulate apopto-
sis, proliferation, 
and migration

Diagnostic 86.7% (miR-21)
62.5% (miR-222)

72.2% (miR-21)
56.2% (miR-222)

 [31]

miR-22 Tissues Suppress GC cell pro-
liferation and inva-
sion

Prognostic - -  [32]

miRNA-22-3p Plasma Inhibit GC growth 
and metastasis

Prognostic - -  [33]

miR-200c Blood Regulate invasiveness 
and migration

Diagnostic and prog-
nostic

65.4% 100%  [34]

miR-28-5p Cell lines Inhibit GC migration 
and invasion

Prognostic - -  [35]

miR-29c Tissues Inhibit GC prolifera-
tion, adhesion, inva-
sion, and migration

Diagnostic - -  [36]

miR-19b miR-106a Serum Exosomal Related to GC lym-
phatic metastasis

Diagnostic 95% 90%  [37]

miR-21 miR-106a Gastric Juice Increase GC prolif-
eration, migration, 
and invasion

Diagnostic 85.7% (miR-21)
73.8% (miR-106a)

97.8% (miR-21)
89.3% (miR-106a)

 [38]

miR-24 and miR-101 Tissues Promote GC occur-
rence, develop-
ment, infiltration 
and metastasis

Diagnostic and Prog-
nostic

- -  [39]

miR-124-3p Tissues and cell lines Suppressed GC pro-
liferation and induce 
apoptosis

Prognostic - -  [40]

miR-129–1-3p 
and miR-129–2-3p

Gastric juice GC suppressor 
activity

Diagnostic 68.7% 71.9%  [41]

miR-133a Gastric juice Inhibit GC prolif-
eration, migration 
and invasion

Diagnostic 85.9% 84.8%  [42]

miR-140-5p Tissues Suppress GC prolif-
eration and invasion

Prognostic - -  [43]

miR-181d Tissues Promote GC prolif-
eration, migration 
and invasion

Prognostic - -  [44]

miR-187 Tissues Inhibit GC prolifera-
tion and induce cell 
cycle arrest at the G0/
G1 phase

Prognostic - -  [45]

miR-196a/b Plasma OncomiRs Monitoring, Diagnos-
tic and Prognostic

69.5% (miR-196a)
62.2% (miR-196b)

97.6% (miR-196a)
96.1% (miR-196b)

 [46]

miR-196a Plasma Carcinogenesis Diagnostic 100.00% 75.00%  [47]

miR-203 Serum Reduce GC EMT phe-
nomena and tumor 
aggressiveness

Prognostic and Pre-
dict metastasis

- -  [48]

miR-212 Serum Suppress GC prolif-
eration and induce 
apoptosis

Prognostic 95.1% 78.7%  [49]

miR-302b Tissues Suppressed GC 
tumorigenesis 
and metastasis

Prognostic - -  [50]

miR-345 Tissues and cell lines Inhibit GC migration, 
stem-like cell pheno-
type, and EMT

Prognostic - -  [51]
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pylori infection induces IL-6, which affects STAT3 activ-
ity, inhibits miR-520d-5p expression, and activates the 
STAT3 and Janus kinase (JAK)/STAT pathway, leading to 
the proliferation of GC cells [76].

In H. pylori-infected T cells along with primary mac-
rophages, miR-155 expression is dependent on forkhead 
box protein 3 (FOX3), indicating a potential functional 
relationship between the host immune response and 
miR-155 [77]. Huang et  al. [78] indicated that miR-134 
directly targets forkhead box protein M1 (FOXM1), and 
FOXM1 knockdown prevents the EMT induced by H. 
pylori CagA + /P + . Therefore, by targeting FOXM1, miR-
134 suppresses invasion, proliferation, and EMT of SGC-
7901 cells and may be protective against the GC process 
caused by H. pylori CagA + /P + (Fig. 2).

Besides H. pylori, Epstein–Barr virus (EBV) is also a 
causative factor for GC [79]. EBV has been shown to be 
the first virus to encode its own miRNA. Immune escape 
is facilitated by EBV-encoded gene products, it-mediated 
epigenetic and structural variations, and miRNAs, which 
all assist in malignant transformation [80]. Furthermore, 
the EBV-miR-BART cluster, including miRBART-2, -4, 
-5, -18, and -22, is expressed in GC and linked to a poor 
prognosis [81]. Moreover, simultaneous infection with 
EBV also hinders the host response to H. pylori. Addi-
tionally, EBV synergism may strengthen the oncogenic 
potential of H. pylori CagA [82]. Notably, EMT-induc-
ing transcription factors are induced in EBV-related GC 
upon downregulation of miR-200b and miR-200a [83]. In 
EBV-infected GC cells, miR-34a downregulation causes 

Table 1 (continued)

Symbol Materials Function Biomarker sensitivity specificity Reference

miR-379 Tissues and cell lines Inhibit GC migration, 
invasion and EMT

Prognostic - -  [52]

miR-421 Tissues Promote GC metasta-
sis, inhibit apoptosis, 
and induce cisplatin 
resistance

Prognostic - -  [53]

miR-421 Plasma Diagnostic 66.29% 95.56%  [54]

miR-421 Gastric juice Carcinogenesis Diagnostic 71.4% 71.7%  [55]

miR-484 Tissues Inhibit GC prolif-
eration, migration, 
and invasion

Prognostic - -  [56]

miR-520a-3p Tissues and cells Inhibit GC prolif-
eration, migration 
and invasion

Prognostic - -  [57]

miR-208a Tissues Promote GC prolifera-
tion and invasion

Prognostic - -  [58]

miR-552 Tissues Promote GC prolif-
eration, migration, 
and invasion

Prognostic - -  [59]

miR-585 Tissues and cell lines Inhibit GC growth 
and migration

Monitoring - -  [60]

miR-601 Tissues and cells Promote GC prolif-
eration, migration, 
and invasion

Prognostic - -  [61]

miR-1225-5p Tissues Inhibit GC prolif-
eration, colony 
formation, migration 
and invasion

Diagnostic, Prog-
nostic

- -  [62]

miR-1236-3p Tissues Suppress GC migra-
tion and invasion

Diagnostic, Prog-
nostic,
Monitoring, Recur-
rences

73.68% 60.53%  [63]

miR-718 Tissues Promote GC prolifera-
tion and invasion

Prognostic - -  [64]

miR-4257, miR-
6785-5p, miR187-5p, 
and miR-5739

Serum Diagnostic 98.3% (discovery set)
99.6% (validation set)

97.7% (discovery set)
95.3% (validation set)

 [65]

Abbreviations: miRNAs MicroRNAs, GC Gastric cancer
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NADPH oxidase 2 upregulation, which promotes reactive 
oxygen species (ROS) generation and improves cell sur-
vival [84]. Notably, Choi et al. [85] determined that EBV-
infected GC cells secrete miR-BART15-3p via exosomes 
that target the apoptosis inhibitor BRUCE. Subsequently, 
polybromo‐1 and FOXP1 separately suppress EBV-miR-
BART17-3p along with EBV-miR-BART11 and increase 

PD-L1 transcription, thereby promoting tumor immune 
escape [86]. Low levels of viral antigen expression help 
EBV evade the host immune response. Additionally, 
viral miRNAs directly inhibit the release of the pro-
inflammatory cytokine IL-12, thereby modulating the 
inflammatory response of T cells [87]. Moreover, viral 
miRNA-BART6-5p targets host cell Dicer and impairs 

Table 2 Summary of microRNAs in GC of clinical trials

Abbreviation: GC Gastric cancer

MicroRNA(s) Source Purpose Enrolled ClinicalTrials.gov 
identifier

Status Organizing Location

miR-20a, miR-21, miR-106b, 
miR-199a, miR-223

Blood Diagnostic 280 NCT05901376 Recruiting Thailand

micro RNAs Blood Diagnostic 6862 NCT04329299 Completed Singapore

miR-215-5p Tumor Tissues Predictive 35 NCT01178944 Completed United States

micro RNAs Serum Diagnostic 809 NCT06342427 Completed United States, Japan

micro RNAs Blood Predictive 150 NCT06490055 Recruiting Japan

micro RNAs Plasma Diagnostic 150 NCT06277986 Recruiting China

micro RNAs Blood Predictive 150 NCT06490159 Recruiting Japan

Tissue and Blood Predictive 800 NCT03253107 Recruiting Korea

micro RNAs Serum - 100 NCT05544396 Recruiting Taiwan

micro RNAs Blood Diagnostic 498 NCT05224596 - China

micro RNAs Blood Diagnostic 2430 NCT05431621 Completed China

micro RNAs Blood Diagnostic 15000 NCT05633342 Recruiting Singapore

Fig. 2 miRNAs and Helicobacter pylori in the gastric cancer TME. miRNAs: MicroRNAs, TME: Tumor microenvironment
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host cell miRNA expression, thus helping EBV evade the 
host immune response and achieve chronic infection 
[88].

miRNAs regulate tumor angiogenesis in the GC TME
Angiogenesis plays a crucial role in cancer progression, 
as it is associated with immunosuppression and is essen-
tial for tumor growth, invasion, and metastasis [89, 90]. 
Based on the downstream targets of miRNAs, the expres-
sion of the most potent regulators of angiogenesis in dif-
ferent tumors has been extensively investigated, and a 
variety of miRNAs have been found to target angiogenic 
factors. Additionally to being a significant angiogenic 
agent, the vascular endothelial growth factor (VEGF) 
functions as an immunomodulator of the TME, promot-
ing tumor-associated macrophages (TAMs) and Treg 
activation and preventing antigen presentation [91]. 
In addition to VEGF, phosphatase and tensin homolog 
(PTEN), mitogen-activated protein kinase (MAPK), 
and PI3K/AKT/mTOR are the major signaling pathways 
through which vascular-regulated miRNAs affect GC, 
and they are important mechanisms through which aber-
rant miRNAs regulate the development and progression 
of GC [92, 93].

Wu et al. [94] observed that miR-616-3p overexpression 
in GC triggers the downstream AKT/mTOR signaling 
pathway, targets PTEN, and facilitates EMT and angio-
genesis [95]. Furthermore, miR-21 targets the tumor sup-
pressor gene RECK, which is linked to tumor metastasis 
and angiogenesis, to cause cancer [96]. MiR-132 has been 
demonstrated to activate endothelial cells and targets 
p120RasGAP to induce pathological angiogenesis [97]. 
Additionally, exosomes, generated from GC cells that 
carried miR-23a, induced angiogenesis in a co-culture 
system by suppressing PTEN [98]. When GC cells over-
expressed miR-574-3p and miR-210, VEGF and hypoxia-
inducible factor 1-alpha (HIF-1α) were upregulated, 
leading to increased GC cell proliferation, migration, and 
invasion along with angiogenesis [99, 100]. Subsequently, 
reduction of invasion, migration, angiogenesis, and EMT 
resulting from overexpression of paired box 8 on GC cells 
is replicated by ectopic expression of miR-612 [101].

Meanwhile, miR-574-5p inhibits the expression of 
protein tyrosine phosphatase non-receptor type 3 and 
increases phosphorylation of p44/42 MAPKs in GC 
cells, which promotes angiogenesis [102]. Through its 
modulation of cancer stem cells (CSCs) and the EMT, the 
miR-29c-VEGFA/VEGFR2/extracellular signal-regulated 
kinases (ERK) signaling axis serves as a significant player 
in the course of GC metastatic disease, making it a pro-
spective acts for GC clinical interventions [103].

With the rapid development of research on miR-
NAs, their function in tumor suppression through their 

anti-angiogenic function offers multifaceted therapeutic 
potential for these molecules. For example, miR-26a/b 
can directly act on VEGFA in GC, and its overexpres-
sion can directly suppress VEGF expression and reduce 
cell proliferation and angiogenesis, thereby inhibiting 
GC growth in mice [104]. Besides facilitating GC cell 
proliferation and migration, a reduction in miR-1 may 
also trigger pro-angiogenic signaling and encourage 
endothelial cell migration and proliferation [95]. Moreo-
ver, through suppression of VEGFA and fibroblast growth 
factor 1 expression, miR-205-5p inhibits angiogenesis in 
GC [105].

Furthermore, the PI3K/AKT signaling pathway medi-
ates invasion, metastasis, angiogenesis, and lymphangi-
ogenesis in GC after the downregulation of miR-30b-3p 
[106]. By suppressing ETS1 expression through a bind-
ing site in the 3′-UTR, miR-145 and miR-506 inhibit GC 
cell invasion, metastasis, and angiogenesis [107, 108]. 
Through the STAT3/VEGFA pathway, downregulation 
of miR-874 facilitates tumor angiogenesis in GC tissues 
[109]. In GC, miR-590 can concurrently modulate neu-
ropilin 1 and VEGFR1/2. Furthermore, miR-590 over-
expression can suppress GC cell migration, invasion, 
proliferation, and migration, as well as the release of 
D-MVA both in vivo and in vitro [110]. Similarly, miR-7 
targets Raf-1 to suppress angiogenesis and tumorigenesis 
in GC cells [111].

Zhang et al. [112] confirmed the anti-angiogenic action 
of miR-218 in GC and demonstrated that tumor angio-
genesis inhibition might be achieved therapeutically by 
administering miR-218. GC with low expression of miR-
200C was markedly enriched for angiogenesis, hypoxia, 
TGF-β signaling genomes, and EMT, all of which con-
tribute to tumor development and metastasis [113]. 
Interestingly, miR-29a-low GC is enriched for genes cor-
related with cell apoptosis, proliferation, angiogenesis, 
and metastasis; it is linked to less anticancer immune cell 
infiltration and immune-related scores [114] (Fig. 3).

Peritoneal dissemination is the main cause of patient 
mortality and the most frequent reason for tumor pro-
gression following GC surgery. Notably, GC development 
and peritoneal dissemination are significantly influenced 
by angiogenesis [115], and increased expression of VEGF 
has been found to promote the production of malignant 
ascites [116]. Additionally, the expression pattern of miR-
NAs in peritoneal exosomes serves as a valuable diagnos-
tic tool for peritoneal metastasis treatment, reflecting the 
tumor load within the abdominal cavity [117]. Transi-
tioning from these observations, research into the regu-
latory mechanisms of miRNAs in tumor angiogenesis 
has made significant strides. Despite remaining obsta-
cles, these rapidly evolving findings will make way for the 
future application of miRNAs as predictive biomarkers 
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for anti-angiogenic therapy and miRNA-based antitumor 
angiogenesis strategies.

miRNAs regulate CAFs in the GC TME
As the major cells in the TME of solid tumors, fibro-
blasts are controlled by a multitude of factors released by 
immune or tumor cells [118]. CAFs express a wide range 
of pro-inflammatory molecules, including chemokines, 
interleukins, and components of the ECM, which even-
tually stimulate the growth of tumors by regulating the 
inflammation associated with the tumor or directing 
intercellular communication [119]. In the TME, miRNAs 
are implicated in the whole process of CAF generation 
and their functional execution, promoting cancer cell 
proliferation, drug resistance, and immunosuppression 
via secreting ECM proteins, inflammatory ligands, and 
growth factors [120].

The high levels of miR-27a observed in GC cell 
exosomes stimulate the metastasis, motility, and prolif-
eration of cancer cells both in  vitro and in  vivo, as well 
as the reprogramming of fibroblasts into CAFs [121]. 
Meanwhile, another study reported that transformation 
of CAFs in GC was linked to miR-200b downregulation. 
Particularly, methylation of the miR-200b promoter was 
detected in GC cases exhibiting elevated expression of 
the CAF-specific marker α-smooth muscle actin [122]. 

However, in contrast to normal fibroblasts, the expres-
sion of miR-224-3p was lower in CAFs from patients 
with squamous GC, and miR-224-3p mimics were found 
to attenuate CAF migration and invasion [123]. miR-214 
in CAFs directly modulates fibroblast growth factor 9 
expression, which facilitates cell invasion and GC migra-
tion in vitro [124]. Likewise, miR-496 upregulates IL-33, 
which amplifies CAFs’ tumor-promoting properties by 
improving GC cell proliferation, EMT, migration, and 
invasion [125].

It has been confirmed that CAFs elevate miR-106b 
levels, targeting PTEN to facilitate cell invasion and 
migration [126]. Zhang et  al. [127] demonstrated that 
the heterogeneous nuclear ribonucleoprotein A1 axis 
and ubiquitin-specific protease 7 are activated by pacli-
taxel and cisplatin, which makes it easier for miR-522 to 
be secreted from CAFs through the de-ubiquitination 
pathway. Furthermore, miR-522 targets arachidonic acid 
lipoxygenase 15, which also prevents ROS accumulation. 
This suppresses ferroptosis in GC cells, causing GC cells 
to become resistant to chemotherapy [127]. Moreover, 
by targeting the STAT4/Wnt/β-catenin axis, miR-141-3p 
suppresses normal fibroblasts from transforming into 
CAFs, which in turn inhibits GC invasion and migra-
tion [128] (Fig.  4). Overall, the activation and creation 
of CAFs are intimately linked to miRNA dysregulation, 

Fig. 3 miRNAs regulate angiogenesis in the development of gastric cancer. miRNAs: MicroRNAs
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which plays a role in both executive function and CAF 
generation. These results offer fresh perspectives on the 
relationship between GC cells and CAFs.

miRNAs regulate immunosuppressive cells in the GC TME
The TME consists of various stromal cells such as mac-
rophages, T cells, MDSCs, Tregs, and the ECM; fur-
thermore, blood vessels, lymphatic vessels, cytokines, 
mediators, and other non-cellular components are vital 
in defending the human body against pathogen inva-
sion. These cells also impact GC through the modulation 
of immune responses and the elimination of mutated or 
damaged cells [129, 130]. miRNAs are implicated in the 
function and maintenance of Tregs and macrophage 
polarization, maintaining homeostasis in  vivo under 
physiological conditions and driving immune tolerance 
or immunosuppression under pathological conditions 
[131].

Macrophages are a crucial component of both the 
innate and adaptive immune systems, playing key roles in 
pathogen defense and the regulation of body homeostasis 
[132]. The polarization of macrophages is influenced by 
the PI3K/AKT and JAK/STAT pathways, along with criti-
cal regulators such as the STAT family, peroxisome pro-
liferation-activated receptor-g (PPARg), and interferon 
modulator [133, 134]. This process can lead to the devel-
opment of TAMs in response to chemokines, cytokines, 

and other growth factors secreted by tumor cells, as well 
as tumor-associated conditions. TAMs may adopt the 
M1 phenotype, which exhibits antitumor activity, or the 
M2 phenotype, which supports tumor growth [135]. Pre-
dominantly, TAMs align with the M2 phenotype and are 
more likely to promote tumor progression [136]. In GC 
tissues and ascites, TAMs are abundant and may enhance 
GC cell migration and invasion through the secretion of 
EVs [137]. Moreover, dysregulation of miRNAs in tumors 
facilitates the shift of macrophage polarization from M1 
to M2, adversely impacting TAM phenotypes and sup-
pressing the immune response [138]. The involvement of 
TAMs in GC underscores their complex role, suggesting 
that miRNA-based reprogramming of TAM polarization 
could advance tumor immunotherapy.

According to Yun et al. [139], downregulating miR-30c 
under hypoxic environments decreased mTOR and glyc-
olysis activity in TAMs in GC and further suppressed M1 
macrophage differentiation and antitumor effects. With 
PTEN and IFN-γ/STAT1, miR-21 modulates TAMs, 
enhancing tumor cell motility and M2 polarization while 
lowering the expression of PD-L1 and M1 polarization to 
promote cancer progression [140]. Interestingly, TAMs 
deficient in miR-21 had an inflammatory gene signature, 
and antagonism of miR-21 increased the level of gran-
zyme B, which enhanced the cytotoxicity of CD8 + T cells 
in immune TME [141].

Fig. 4 miRNAs regulate CAFs in the development of gastric cancer. miRNAs: MicroRNAs
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Additionally, exosomes derived from M2 macrophages 
may transfer miR-487a into GC cells, possibly facilitat-
ing GC progression through the downregulation of T-cell 
intracellular antigen [142]. Exosomes derived from M2 
macrophages produce miR-588, which targets cylindro-
matosis and enhances resistance to cisplatin in GC cells 
[143]. Moreover, exosome miR-21 translocates directly 
from TAMs to GC cells and modulates GC resistance to 
cisplatin by targeting PTEN, suppressing apoptosis, and 
activating the PI3K/AKT signaling pathway [144]. These 
studies highlight the importance of miRNA regulation of 
macrophages through key signaling pathways.

Compared with other intra-abdominal tumors, GC is 
more prone to peritoneal metastases, and the peritoneal 
immune microenvironment is critical for GC progres-
sion [145, 146]. Notably, TAM in malignant ascites of 
GC showed a significant M2-like phenotype, which pro-
motes peritoneal metastasis of GC [147, 148]. Microarray 
analysis revealed a significant connection in GC tissue 
between the expression of miR-210 and CD204 + M2-like 
TAM infiltration. TNF-α, released by CD204 + M2-like 
TAMs, upregulates miR-210 through NF-κB/HIF-1α 
signaling to facilitate GC progression [149]. In summary, 
these candidate preclinical and clinical miRNAs under-
score their roles as TME immune modulators and their 
therapeutic potential. A deeper understanding of how 
different miRNAs influence the M1/M2 balance could 
aid in developing targeted therapies to re-educate mac-
rophages toward the M1 phenotype.

After antigenic stimulation, naive CD4 + T cells dif-
ferentiate into multiple effector Th subpopulations with 
distinct phenotypes, such as Th1, Th2, Treg, and IL-
17-producing Th17 [150]. Certain miRNAs have been 
shown to regulate T-cell differentiation. For example, the 
differentiation of Treg/Th17 and Th1 cells is inhibited by 
miR-23 and -27, whereas miR-24 facilitates their differ-
entiation, creating an immunosuppressive microenviron-
ment conducive to GC progression and metastasis [151]. 
Furthermore, the miR-192-5p/Rb1/NF-κBp65 signaling 
axis stimulates Treg differentiation by modulating IL-10 
production in GC while also facilitating EMT in tumor 
cells [152]. Importantly, exosomes promote the differ-
entiation of primary neoplastic Treg cells at the expense 
of antitumor Th1/Th17 differentiation, suggesting that 
tumor miRNAs can orchestrate immune evasion through 
multiple simultaneous mechanisms [153, 154]. Further-
more, the secretion of exosomal miR-451, which esca-
lates under low-glycemic conditions and is subsequently 
transferred to T cells, supports the differentiation of T 
cells into Th17 cells by diminishing AMP-activated pro-
tein kinase and enhancing mTOR activity, marking a 
potential indicator of poor prognosis [155]. Additionally, 
a hypoxic TME reduces miR-34a expression, resulting in 

elevated lactate levels in GC tumor-infiltrating lympho-
cytes and a reduction in Th1 cells and cytotoxic T lym-
phocytes (CTLs), thereby compromising the immune 
efficacy of GCs [156].

Moreover, MDSCs, a heterogeneous group of mye-
loid-derived cells, facilitate tumor invasion and metas-
tasis through diverse mechanisms, with tumor miRNAs 
directly governing the recruitment and functional-
ity of MDSCs [157]. Notably, MDSCs characterized 
by the expression of the myeloid differentiation factor 
schlafen4 + , a regulator of myeloid differentiation, have 
been identified in GC, particularly in preneoplastic lesions 
infected with H. pylori [158]. miR-130b is increased in 
Schlafen4 + GC cells and promotes gastric epithelial cell 
proliferation, which is essential for MDSCs to suppress 
T-cell functions [159]. Exosomes secreted by GC deliver 
miR-107 to host MDSCs and induce their amplification 
and activation by targeting DICER1 and PTEN genes, thus 
providing new cancer therapeutic targets for GC [160]. 
Furthermore, miR-200C reduces PTEN and friend of Gata 
2 expression, induces the PI3K/Akt cascade, promotes 
MDSCs amplification, and suppresses immune response 
in TME [161] (Fig. 5).

The miRNAs can also directly affect immunosuppres-
sive signaling, thereby altering the TME. Meanwhile, 
miR-4510 inhibits GC cell metastasis by altering immu-
nosuppressive signals in the TME through the downregu-
lation of glypican-3 [162]. miR-148b-5p deficiency results 
in immunological tolerance and GC development via the 
CSF1 and miR-148b-5p/ATPIF1/TNFa + IL6 axis [163].

These studies suggest that many miRNAs play essential 
roles in regulating TME-mediated immunosuppressive 
mechanisms. However, this area of research still needs to 
be further explored.

miRNAs modulate immunoreactive cells in the TME of GC
T cells are vital to maintaining health and preventing 
disease and are divided into two main subpopulations: 
CD4 + and CD8 + T-cell subpopulations [164]. Longer 
survival from cancer is linked to infiltration of CD8 + T 
cells; however, low immunogenicity of tumor cells in 
the TME inhibits T lymphocyte immunological activity, 
which reduces their antitumor capacity [165]. Post-tran-
scriptional gene regulation via miRNAs has emerged as a 
major control mechanism for a variety of biological pro-
cesses, including T-cell development and function [166]. 
Given that T cells can perform both pro-inflammatory 
and pro-absorptive tasks, identification and characteri-
zation of miRNAs associated with T-cell function will 
reveal miRNA-mediated mechanisms as therapeutic tar-
gets for immunotherapy against a wide range of diseases 
with inflammatory and immunosuppressive environ-
ments [167].
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miRNAs regulate the expression of immune check-
point ligands and protect tumors from T-cell-mediated 
lysis [168]. For instance, miR-105-5p, serving as a key 
player in the post-transcriptional suppression of PD-L1 
in GC, prevents immunological escape resulting from 
upregulation of PD-L1 in cancer cells [169]. Further-
more, miR-424 has been identified as a potential inhibi-
tor of the PD-L1/PD-1 pathway, and restoration of 
miR-424 expression reverses chemotherapy resistance 
[170].

miR-138 mainly modulates the immune system by 
interacting with CTLA-4 and PD-1 to repress tumor-
infiltrating Tregs, thereby mitigating damage to 
immune-disordered cells in the TME [171]. Notably, 
H. pylori-positive GC has considerably higher PD-L1 
expression levels, and miR-140 overexpression sup-
presses the proliferation and tumor growth of GC cells by 
blocking PD-L1 and mTOR activity [172]. Additionally, 
by repressing the expression of miR-513, reducing the 
translational repression of PD-L1, activating the pathway 
of JAK2/STAT1/IFR-1, and augmenting PD-L1 expres-
sion, INF-γ induces GC immune escape [173]. Notably, 
in  vitro silencing of PD-1 enhances miR-21 expression, 
increases the proportion of Th17 cells, and decreases that 
of Treg cells [174]. miRNAs play an essential role in regu-
lating the immune response, and miRNAs can interact 
with immune checkpoint inhibitors.

Additionally, elevated miR-152 levels improve immune 
responses by facilitating effector cytokine production 
and T-cell proliferation through the suppression of the 
B7-H1/PD-1 pathway. MiR-152 may be a potential thera-
peutic approach for GC [175]. Notably, manipulation of 
immune checkpoint protein expression by miRNA-based 
therapies combined with anti-immune checkpoint drugs 
may be an improved approach to GC treatment.

Dendritic cells (DCs) are the most potent antigen-pre-
senting cells, capable of efficiently cross-presenting anti-
gens. DCs contribute significantly to antitumor immunity 
by modulating the TME and attracting and activating 
anticancer T cells [176]. Thus, by impairing DC activa-
tion, antigen presentation, maturation, recruitment, and 
differentiation, TME and GC cells evade immune con-
trol [177]. Many miRNAs are implicated in the develop-
ment and differentiation of DCs and in the regulation 
of inflammatory responses in DCs. Tumor miRNAs can 
directly or indirectly control DCs maturation and induce 
a tolerant state [178]. miR-17-5p decreased the secre-
tion of TNF-α and IL-12 while increasing the produc-
tion of IL-10. This shift inhibits the stimulation of T cells 
by DCs and promotes the expansion of Tregs. Further-
more, it can be utilized as a biomarker for GC originat-
ing from GC cells [179]. Additionally, in gastric TME, H. 
pylori can suppress miRNA-375 expression. This triggers 
the JAK2-STAT3 pathway, consequently promoting the 

Fig. 5 miRNAs regulate immunosuppressive cells in the development of gastric cancer. miRNAs: MicroRNAs, CAFs: Cancer-associated fibroblasts
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release of VEGF, IL-10, and IL-6. These released factors 
promote DCs to differentiate immaturely and contribute 
to the induction of GC [180] (Fig. 6). These studies have 
demonstrated that miRNAs regulate the development, 
differentiation, and function of DCs, establishing them 
as pivotal regulators of the immune response. Another 
critical cellular component of innate immunity is the nat-
ural killer (NK) cells, which are essential in the immune 
response against cancer by killing tumor cells and secret-
ing immunostimulatory cytokines [181]. Variations in 
miRNA expression influence the progression of NK 
and invariant NKT cells differently. For example, invari-
ant NKT cells in the peripheral and thymus lymphoid 
organs are negatively regulated by miR-150 [182]. Con-
versely, miR-155 enhances NK cell function by increas-
ing NKG2D, IFN-γ, and granzyme B production [183]. 
Furthermore, lncRNA-GAS5 enhances IFN-γ secretion 
by targeting miR-18a, thus promoting NK cell responses 

against GC cells [184]. In addition to modulating recep-
tor signaling, miRNAs directly affect the production of 
effector molecules that determine NK cell activity.

Exosome‑derived miRNAs regulate the GC TME
The discovery of exosomes and their multiple functions 
in cancer biology is undoubtedly one of the most exciting 
discoveries in recent years. Exosomes are nanoscale (30–
150 nm in diameter) EVs that can transport a broad range 
of substances, including metabolites, proteins, lipids, and 
nucleic acids [185]. miRNAs in cancer-derived exosomes 
promote intercellular communication, targeting them-
selves and contributing to the regulation of multiple 
components of the immune system, ultimately modulat-
ing the TME to regulate GC development, metastasis, 
invasion, drug resistance, and angiogenesis [186, 187]. 
They are very valuable for the prognosis and early GC 
diagnosis and, to some extent, reflect the malignant 

Fig. 6 miRNAs modulate immunoreactive cells in gastric cancer. miRNAs: MicroRNAs
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characteristics of the tumor [188, 189]. Meanwhile, miR-
NAs play a role in the communication between tumor 
cells and TME through exosomal secretion and transport 
[190].

GC cells release exosomes containing miR-582-3p, 
which targets VEGF to stimulate cell invasion and prolif-
eration [191]. Exosomes produced from GC cells carry-
ing miR-135b have been found by Bai et al. [192] to lower 
FOXO1 protein levels and stimulate angiogenesis. GC 
cells can give rise to exosomes enriched in miR-301a-3p 
in hypoxic TMEs, which contribute to EMT, GC pro-
liferation, invasion, and migration, along with HIF-1α 
accumulation [193]. Additionally, individuals with GC 
hepatic metastases demonstrate serum exosomes exhib-
iting considerably higher miR-519a-3p levels compared 
to individuals without liver metastases. Moreover, by 
targeting DUSP2, exosomal miR-519a-3p promotes the 
MAPK/ERK pathway, leading to M2-like polarization of 
macrophages, resulting in angiogenesis, facilitating the 
development of pre-metastatic niches in the liver, and 
accelerating the process of liver metastasis [194].

Exosomal miR-106a and miR-21-5p activates the 
TGF-β pathway by targeting TIMP2 and SMAD7, dis-
rupts the mesothelial barrier, and promotes the peri-
toneal spread of GC by integrating into peritoneal 
mesothelial cells [195, 196]. Moreover, serum exosomes 
from patients with GC were enriched in miR-423-5p, 
and a significant correlation existed between lymph node 
metastasis and extracellular miR-423-5p levels, which 
facilitated cancer growth and metastasis [197].

Macrophages produce exosomes containing miR-16-5p 
that translocate to GC cells and target PD-L1 to acti-
vate T cells, thereby suppressing GC development [198]. 
Exosomes containing miR-21 are produced in tumors 
when the EMT transcription factor Snail activates miR-
21. These exosomes are taken up by CD14 + human 
monocytes, which then cause a rise in M2 marker 
expression and ultimately accelerate tumor progression 
[199]. Furthermore, exosomal miR-15b-3p suppresses 
apoptosis in  vivo and in  vitro by inhibiting the expres-
sion of DYNLT1, cleaved caspase-3, and caspase-9. This 
promotes the proliferation, invasion, and migration of 

Fig. 7 miRNAs modulate GC chemoresistance through several mechanisms. miRNAs: MicroRNAs, GC: Gastric cancer
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Table 3 miRNAs that play roles in GC chemoresistance

Symbol Status Signaling Pathway/ 
Targets

Function Effects on 
chemosensitivity

Resistance Reference

miR-1 Downregulated Sorcin Promote the accumu-
lation of intracellular 
drugs and enhance 
apoptosis

Increasing Adriamycin, Vincristine [210]

miR-7 Downregulated LDH-A Increase apoptosis 
and caspase-3 activa-
tion

Increasing Cisplatin [211]

miR-16–1 Downregulated FUBP1 Inhibit GC prolif-
eration and inva-
sion, and advanced 
apoptosis

Increasing Adriamycin [212]

miR-17 Upregulated EMT, DEDD Inhibit apoptosis Decreasing Cisplatin, 5-Fluorouracil [213]

miR-17-5p Downregulated P21 Inhibit apoptosis Decreasing Cisplatin [214]

mir-15b or miR-16 Downregulated Bcl-2 Induce apoptosis Increasing Doxorubicin, Etoposide, 
Vincristine, Cisplatin

[215]

miR-19a/b Upregulated PI3K-Akt/ PTEN Accelerate drug efflux 
and inhibit apoptosis

Decreasing Cisplatin, 5-Fluorouracil, 
Adriamycin

[216]

miR-20a Upregulated NFκB/CYLD Inhibit apoptosis Decreasing Cisplatin [217]

miR-20a - PI3K-AKT and MAPK-
ERK/ LRIG1

Reduce apoptosis Decreasing Adriamycin, Vincristine [218]

miR-21 Upregulated PTEN-PI3K-Akt/PTEN Reduce antiproliferative 
effects and apoptosis

Decreasing Cisplatin [219]

miR-23b-3p Downregulated ATG12 and HMGB2 Inhibit autophagy Increasing Vincristine, 5-Fluoroura-
cil and Cisplatin

[220]

miR-25 Upregulated FOXO3a Promote GC cycle 
progression

Decreasing Cisplatin [221]

miR-27a and miR-155 Upregulated RKIP Inhibit apoptosis Decreasing 5-Fluorouracil 
and Oxaliplatin

[209]

miR-30a Upregulated beclin 1 Suppress autophagy, 
induce apoptosis 
and G2/M cell cycle 
arrest

Increasing Cisplatin [222]

miR-31 Downregulated RhoA Enhance apoptosis, 
inhibit cell cycle

Increasing 5-Fluorouracil [223]

miR-34 - Bcl-2, Notch, 
and HMGA2

Induce GC apoptosis, 
Caspase-3 activation, 
and accumulate in G1 
phase

Increasing Docetaxel, Gemcitabine, 
Cisplatin, Doxorubicin

[224]

miR-34a Upregulated MET Inhibit GC proliferation 
and induct apoptosis

Increasing Cisplatin [225]

miR-34c Downregulated Promote GC apoptosis 
and inhibit proliferation

Increasing Paclitaxel, Cisplatin [226]

miR-34c-5p Downregulated MAPT Regulate DNA methyla-
tion, inhibit GC prolif-
eration and promote 
apoptosis

Increasing Paclitaxel [227]

miR-96 Upregulated FOXO1 Promote GC prolifera-
tion

Decreasing Cisplatin, Doxorubicin [228]

miR-99a and miR-491 Upregulated AKT-FOX3A/ CAPNS1 Induced GC apoptosis Increasing Cisplatin [229]

miR-101 Downregulated p38MAPK and AKT / 
ANXA2

Promote GC apoptosis Increasing Cisplatin, Vincristine [230]

miR-106a Upregulated RUNX3 Accelerate ADR efflux, 
and suppress apoptosis

Decreasing Adriamycin, Vincristine [231]

miR-106a Upregulated PI3K-AKT/ PTEN Regulate GC apoptosis Decreasing Cisplatin [232]

miR-126 Downregulated EZH2 Promote GC prolifera-
tion and migration

Increasing Vincristine, Adriamycin [233]

miR-128 Downregulated HMGA2 Increase GC apoptosis Decreasing Cisplatin [234]
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Table 3 (continued)

Symbol Status Signaling Pathway/ 
Targets

Function Effects on 
chemosensitivity

Resistance Reference

miR-129 Downregulated P-gp Activate apoptotic 
pathway via upregulat-
ing caspase-9 and cas-
pase-3

Increasing Cisplatin [235]

miR-130b Upregulated CMPK1 Reduce sensitivity 
and DNA damage

Increasing 5-Fluorouracil [236]

miR-132 Upregulated SIRT1-CREB-ABCG2/ 
SIRT1

Regulate CSC Decreasing Cisplatin [237]

miR-135a-5p Upregulated AP-2α/ BCL-2 Enhance cell resistance 
to apoptosis

Increasing Adriamycin [238]

miR-135b Upregulated MAPK/ MST1 Inhibit apoptosis, 
and induce proliferation

Decreasing Cisplatin [239]

miR-145 Downregulated CD44 Regulate CSC Decreasing 5-Fluorouracil, Cisplatin [240]

miR-148a-3p Downregulated AKAP1, RAB12 Activate mitochondrial 
fission and apoptosis

Increasing Cisplatin [241]

miR-138-5p Downregulated ERCC Regulate DNA damage 
repair

Increasing Cisplatin [242]

miR-155 Upregulated STAT3 and NF-κB Inhibit GC apoptosis, 
promote proliferation

Decreasing Cisplatin and 5-Fluo-
rouracil

[243]

miR-155-5p Upregulated GATA3
TP53INP1

Regulate EMT Decreasing Paclitaxel [244]

miR-181a Upregulated MTMR3 Attenuate GC apoptosis 
and autophagy

Decreasing Cisplatin [245]

miR-181a-2-3p Upregulated Inhibit GC apoptosis Increasing Cisplatin [246]

miR-181b Downregulated BCL2 Induce apoptosis Increasing Vincristine, Cisplatin, 
Adriamycin, Etoposide, 
5-Fluorouracil

[247]

miR-185 Upregulated ARC Induce apoptosis Increasing Cisplatin, Doxorubicin [248]

miR-193a-3p Upregulated Mitochondrial apopto-
sis/ SRSF2

Inhibit apoptosis Decreasing Cisplatin [249]

miR-195-5p Downregulated ZNF139 Regulate MDR Increasing 5-Fluorouracil, Oxali-
platin

[250]

miR-200bc/429 Downregulated BCL2, XIAP Induce apoptosis Increasing Vincristine, Cisplatin, 
Adriamycin, Etoposide, 
5-Fluorouracil

[251]

miR-200c Downregulated Zinc finger E-box bind-
ing homeobox 2

Induce apoptosis Increasing Cisplatin [252]

miR-204 Downregulated Bcl-2 Promote GC apoptosis Increasing 5-Fluorouracil; Oxali-
platin

[253]

miR-204 Downregulated TGFBR2 Regulate EMT Increasing 5-Fluorouracil [254]

miR-218 Upregulated mTOR Induce apoptosis Increasing Cisplatin [255]

miR-223 Upregulated FBXW7 Regulate cell cycle 
and apoptosis

Decreasing Cisplatin [256]

miR-223 Upregulated FBXW7 Regulate EMT Decreasing Doxorubicin [257]

miR-193-3p Upregulated PTEN Promote GC prolifera-
tion migration

Decreasing 5Ffluorouracil [258]

miR-301b-3p Upregulated TXNIP Promote MDR Decreasing Cisplatin, Vincristine [259]

miR-361-5p - PI3K-AKT-mTOR/ 
FOXM1

Inhibit autophagy Increasing Docetaxel [260]

miR-363 Upregulated FBW7 Promote GC prolifera-
tion

Decreasing docetaxel + cispl-
atin + 5-FU

[261]

miR-375 Upregulated PI3K-AKT/ ERBB2 Anti-proliferative 
and apoptosis-inducing

Increasing Cisplatin [262]

miR-421 Upregulated E-cadherin and cas-
pase-3

Promote metastasis, 
inhibit apoptosis

Decreasing Cisplatin [53]
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GC cells [200]. Additionally, GC cells secrete exosomes 
capable of delivering miR-107 to MDSCs, which causes 
the activation and amplification in MDSCs by targeting 
PTEN and DICER1 [160].

Notably, exosomal miR-122-5p inhibits both tumor 
development in vivo and GC cell migration and prolifera-
tion in vitro [201]. Furthermore, exosomal miR-139 pro-
duced by CAFs suppresses GC cell metastasis and tumor 
growth by decreasing the expression of matrix metallo-
proteinase 11 both in vitro and in vivo [202]. Moreover, 
exosomal miR-29b-1-5p generated from CAFs inhibits 

GC cell survival, invasion, and migration, as well as vas-
cular mimicry development; however, it also stimulates 
apoptosis [203]. Additionally, CAF-derived EVs contain-
ing miR-199a-5p downregulate FKBP5, resulting in ele-
vated AKT1 phosphorylation and mammalian target of 
rapamycin complex 1 activation, thereby promoting GC 
[204].

Chemotherapy is the cornerstone of cancer treat-
ment; however, some individuals develop resistance 
to the drugs administered. GC has the highest rate of 
drug-resistant recurrence among all cancer types; this 

Table 3 (continued)

Symbol Status Signaling Pathway/ 
Targets

Function Effects on 
chemosensitivity

Resistance Reference

miR-424-3p Downregulated ABCC2 Promote GC prolifera-
tion

Decreasing Cisplatin [263]

miR-429 Downregulated PI3K-AKT-mTOR/ SOX2 Inhibit apoptosis Decreasing Cisplatin [264]

miR-492 Upregulated DNMT3B Induce GC proliferation Decreasing Cisplatin [265]

miR-493 MAD2L1 Regulate chemosen-
sitivity

Decreasing Paclitaxel [266]

miR-495-3p Downregulated GRP78-mTOR/ GRP78 Inhibit autophagy Increasing Vincristine, Adriamycin [267]

miR-497 Upregulated Bcl-2 Induce apoptosis Increasing Vincristine; Cisplatin; 
Etoposide; Adriamycin

[268]

miR-500a-3p Upregulated FBXW7 Induce CSCs properties Decreasing Cisplatin [269]

miR-503 Downregulated IGF1R, BCL2 Inhibit GC proliferation, 
induce apoptosis

Increasing Cisplatin [270]

miR-508-5p Downregulated ZNRD1,ABCB1 Induce apoptosis Increasing Vincristine; Adriamycin; 
5-Fluorouracil; Cisplatin

[271]

miR-524-5p Upregulated SOX9 Inhibit GC proliferation 
and invasion

Increasing Cisplatin [272]

miR-590-5p Upregulated AKT-ERK and STAT3/ 
RECK

Promote GC prolifera-
tion and invasion

Decreasing Cisplatin and Paclitaxel [273]

miR-623 Downregulated Cyclin D1 Inhibit GC proliferation Increasing 5-Fluorouracil [274]

miR-647 Downregulated ANK2-CD44-SNAIL1/ 
Ankyrins

Induce GC apoptosis 
and prevent cells 
from entering S phase 
of the cell cycle

Increasing Vincristine [275]

miR-648 Downregulated ET-1 Induct apoptosis Increasing 5-Fluorouracil [276]

miR-708-3p Upregulated ETNK1 Promote GC prolif-
eration and migration, 
inhibit apoptosis, 
and facilitate the transi-
tion from the G0/G1 
to the G2/M phase

Decreasing [277]

miR-873-5p Downregulated THUMPD1 Regulate migration, 
invasion, and chemore-
sistance

Increasing Doxorubicin, 5-Fluoro-
uracil, Cisplatin

[278]

miR-874 Downregulated ATG16L1 Inhibit autophagy Increasing Cisplatin [279]

miR-1229-3p Upregulated SLC22A7 Induce chemoresist-
ance

Decreasing 5-Fluorouracil [280]

miR-1284 Downregulated EIF4A1-JUN-MYC/ EIF4F Promote cell cycle 
arrested at the G0/G1 
phase, induce apoptosis

Increasing Vincristine [281]

miR-4295 Upregulated EGFR-PI3K-AKT/ LRIG1 Induce apoptosis Decreasing Cisplatin [282]

Abbreviations: miRNAs MicroRNAs, GC Gastric cancer
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phenomenon considerably restricts the long-term pros-
pects of patients with cancer, with 5-year survival rates 
dropping as low as 30% [205]. An increasing number of 
miRNAs have been found to be aberrantly expressed in 
drug-resistant GC tissues and are involved in the process 
of chemoresistance. These miRNAs function through 
complex mechanisms, including inactivation of apop-
totic signaling pathways, loss of cell cycle checkpoint 
control, accelerated cell proliferation and autophagy 
flux, enhanced DNA damage repair, and drug transport 
and regulation. Furthermore, they activate CSCs and 
EMT [206–208] (Fig. 7). These correlations suggest that 
miRNA analysis will be a valuable tool for accurately 
assessing cellular sensitivity to chemotherapy and can 
be used to develop novel therapeutic approaches capa-
ble of overcoming resistance to GC chemotherapy [209] 
(Table 3).

This phenomenon of chemoresistance is also linked 
to miRNAs in exosomes. For example, patients with GC 
who have elevated miR-500a-3p levels in their plasma 
exosomes are more likely to be resistant to cisplatin, 

which lowers their progression-free survival rate [269]. 
Additionally, exosomes allow miR-21 to be transported 
from macrophages to GC cells, which significantly low-
ers the sensitivity of GC cells to cisplatin treatment both 
in  vitro and in  vivo, partly through modulation of the 
PTEN/PI3K/AKT signaling pathway [144].

Clinically, GC tissues display markedly elevated levels 
of miR-223 expression. Moreover, a strong correlation 
between high expression levels of plasma exosomal miR-
223 and doxorubicin resistance is observed in patients 
with GC [257]. For example, biologically active miR-
769-5p spreads cisplatin resistance by integrating into 
exosomes and infiltrating sensitive cells. Furthermore, 
by targeting CASP9, miR-769-5p enables the ubiqui-
tin–proteasome pathway to degrade p53, an apoptosis-
associated protein, while suppressing the downstream 
caspase pathway [283]. Furthermore, by modulating the 
high mobility group A2/mTOR/P-GP axis, exosome-
secreted miR-107 dramatically increases the sensitivity 
of drug-resistant GC cells to chemotherapeutic drugs 
[284]. Finally, in paclitaxel-resistant GC cells, exosomal 

Fig. 8 Exosome-derived miRNAs regulate TME and participate in the development of gastric cancer. miRNAs: MicroRNAs, TME: Tumor 
microenvironment
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administration of miR-155-5p promotes chemoresistant 
phenotypes and EMT, which may be mediated by sup-
pression of TP53INP1 and GATA3 [244] (Fig. 8). Overall, 
these findings imply that exosomal-derived miRNAs are 
essential for the development of medication resistance.

Conclusions
Despite treatment efforts, GC remains one of the dead-
liest tumors. Over the past years, growing research has 
indicated the significant role of the TME in the devel-
opment, advancement, invasion, and metastasis of GC. 
Recent studies have shown a strong correlation between 
GC and miRNA dysregulation, which has a significant 
impact on TME-related activities and provides new 
insights into the relationship between immune cells, mes-
enchymal stromal cells, malignant cells, and non-cellular 
components of the TME, promoting tumor proliferation, 
angiogenesis, and metastasis.

Particularly, malignant and drug-resistant tumor cells 
secrete exosomes containing specific miRNAs. Therefore, 
exosomes are crucial for material exchange, energy flow, 
and signaling between the different cellular components 
of the TME. An in-depth study of the effect of miRNAs 
on TME is of great significance in furthering our under-
standing of the biology of GC. Based on the role of miR-
NAs in TME, the development of miRNAs as synergistic 
tumor immunotherapeutics is of great significance to 
improve the efficacy of monotherapy and reduce tumor 
survival.

Notably, several challenges remain to be addressed 
before these studies can be translated into clinical appli-
cations. Firstly, due to the complexity of the TME, the 
exact mechanisms of different miRNAs in different cell 
types in the TME remain largely unknown [285]. To 
select the optimal targets, a deeper understanding of 
the role of each specific miRNA in all immune cell sub-
populations and their complete regulatory networks is 
essential. Additionally, given that naked miRNAs have a 
short half-life in vivo and are easily degraded, there is an 
urgent need to identify a safe, effective, and targeted vec-
tor to protect the miRNAs and ensure their delivery to 
the intended sites [286].

In conclusion, this review describes the communica-
tion mechanisms of miRNAs between the TME and GC 
tumor cells. Dysregulated miRNAs are found in both 
non-tumor and tumor cells within the TME, emphasiz-
ing the key role played by the TME and miRNAs in the 
development and metastasis of cancer. While their exact 
mechanism of action is still being investigated, several 
miRNAs have emerged as potential therapeutic targets 

and GC biomarkers. Exploring and studying the regula-
tory effects of naturally derived drugs on the TME at the 
miRNA level holds promise, especially considering the 
polygenic targeting of miRNAs and the anticancer effects 
of natural drugs on various types of mesenchymal stro-
mal cells within the TME.
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