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Abstract
Background  The cancer genome contains several driver mutations. However, in some cases, no known drivers have 
been identified; these remaining areas of unmet needs, leading to limited progress in cancer therapy. Whole-genome 
sequencing (WGS) can identify non-coding alterations associated with the disease. Consequently, exploration of non-
coding regions using WGS and other omics data such as ChIP-sequencing (ChIP-seq) to discern novel alterations and 
mechanisms related to tumorigenesis have been attractive these days.

Methods  Integrated multi-omics analyses, including WGS, ChIP-seq, DNA methylation, and RNA-sequencing (RNA-
seq), were conducted on samples from patients with non-clinically actionable genetic alterations (non-CAGAs) in lung 
adenocarcinoma (LUAD). Second-level cluster analysis was performed to reinforce the correlations associated with 
patient survival, as identified by RNA-seq. Subsequent differential gene expression analysis was performed to identify 
potential druggable targets.

Results  Differences in H3K27ac marks in non-CAGAs LUAD were found and confirmed by analyzing RNA-seq data, 
in which mastermind-like transcriptional coactivator 2 (MAML2) was suppressed. The down-regulated genes whose 
expression was correlated to MAML2 expression were associated with patient prognosis. WGS analysis revealed 
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Introduction
Lung cancer is one of the most frequently diagnosed can-
cers and the second most common cause of death world-
wide. Non-small cell lung cancer (NSCLC) accounts for 
approximately 85% of all lung cancers. Genetic altera-
tions can drive cancer, therefore, genetic testing using 
next-generation sequencing (NGS) to identify targeted 
mutations in lung cancer can facilitate strategic decisions 
regarding cancer therapy [1]. However, the discovery of 
genes altered in the coding regions of cancer is expected 
to reach a plateau. In other words, newly identified genes 
related to tumorigenesis may essentially be rediscoveries 
or already reported in cancer research. Therefore, cancer 
genome studies have gradually shifted from whole-exome 
sequencing (WES) to whole-genome sequencing (WGS) 
analysis and analyses of non-coding regions revealed 
novel mutations, highlighting the feasibility and ben-
efits of WGS. Non-coding or regulatory regions are cis-
regulatory elements that include promoters, enhancers, 
insulators, and 5ʹ- and 3ʹ-untranslated regions (UTRs) 
as locus control regions. Changes in DNA sequences or 
functional dysregulation in regulatory regions cause can-
cer. Thus, focusing on non-coding regions is highly ben-
eficial for cancer studies. As non-coding regions do not 
code proteins, methods other than genomic sequenc-
ing are more desirable. Specifically, multi-omics analy-
sis methods, including chromatin immunoprecipitation 
sequencing (ChIP-seq), can facilitate genome-wide DNA 
structure profiling effectively and elucidate cancer traits.

Genomic alterations differ according to race. Accord-
ing to The Cancer Genome Atlas (TCGA) lung adeno-
carcinoma (LUAD) database, mutations occur in KRAS 
(32.2%), EGFR (11.3%), and BRAF (7.9%), which are 
three of the four alterations with available molecular 
targeting medicines for lung cancer. However, the fre-
quency of EGFR mutations is higher in the East Asian 
LUAD population (~ 50%) [2]. This suggests that cancer 
research using defined cohort datasets is crucial for race-
based medicine or precision oncology and will contribute 
to better decision-making for cancer treatment. Fur-
thermore, driver mutations in 30–50% of patients with 
NSCLC, including those from East Asian and Caucasian 

populations, have not yet been identified [3], leading to 
limited progress in cancer therapy.

DNA methylation is an epigenetic marker found in 
the promoter region throughout the gene body and the 
levels of the DNA methylation are associated with gene 
expression. Another epigenetics, enhancer activity is an 
epigenetic landscape, which is characterized by histone 
modifications associated with chromatin structure, have 
potential clinical implications. In this study, we conduct 
multi-omics analysis of patients with non-CAGA LUAD 
using WGS to identify genomic alterations, ChIP-seq to 
examine histone modifications, RNA sequencing (RNA-
seq) to analyze gene expression, DNA methylation to 
identify epigenetic modifications, and clinical informa-
tion to characterize clinical features, reveal the onset of 
cancer and discover potential therapeutic targets.

Results
Mutational landscape in non-CAGAs LUAD samples
An overview of this study is shown in Fig. S1. After 
extracting LUAD, those with sufficient specimens to per-
form WGS and at least one epigenetic analysis (ChIP-seq 
and DNA methylation) were used for subsequent analysis 
(N = 184). Approximately 40% of the cohort was patients 
with non-CAGA. Additionally, we analyzed TCGA 
LUAD dataset and the analysis revealed that approxi-
mately 46% samples might be non-CAGA samples. 
Detailed information on the dataset are provided in the 
Table S1-3 and Supplementary Methods.

Previous studies have classified LUAD into driver gene 
mutation and driver mutation-negative subtypes based 
on various criteria. The definition of driver mutations in 
this study was based on three criteria detailed in the Sup-
plementary Methods. Samples that did not contain any of 
the mutations described in the Supplementary Methods 
and Table S3 were categorized as driver mutation-neg-
ative (hereafter referred to as non-clinically actionable 
genetic alterations (non-CAGAs)) in this study.

The global landscape of somatic mutations is shown 
in Fig. S2A (bin of 1 kb). The mutations in each sample, 
including non-coding mutations, are summarized in 
Table S4. Profiling of copy number alterations (CNAs) 
showed that chromosomes (Chr) 1, 5, 7, and 8 tended 

somatic mutations associated with the H3K27ac marks in the MAML2 region and high levels of DNA methylation 
in MAML2 were observed in tumor samples. The second-level cluster analysis enabled patient stratification and 
subsequent analyses identified potential therapeutic target genes and treatment options.

Conclusions  We overcome the persistent challenges of identifying alterations or driver mutations in coding regions 
related to tumorigenesis through a novel approach combining multi-omics data with clinical information to reveal 
the molecular mechanisms underlying non-CAGAs LUAD, stratify patients to improve patient prognosis, and identify 
potential therapeutic targets. This approach may be applicable to studies of other cancers with unmet needs.
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to have more gain (Fig. S2B). One patient showed mul-
tiple hetero losses in Chr4, 7, 11, 12, and 13, and the 
other patient showed duplications in Chr8, 10, 13, and 
14 (Fig. S2C and D). Allele-specific copy number analy-
sis detected patients with a copy neutral loss of heterozy-
gosity (LOH) (Fig. S2E). Hetero losses and copy neutral 
LOH were detected as a clonal event, whereas duplica-
tions were observed as a subclonal event. However, not 
all samples had apparent CNAs. Figure S2C – E shows 
examples of representative data for CNA in non-CAGA 
samples. Notably, we recently reported that 1.15% of 
non-CAGA LUAD cases exhibit chromosomal rearrange-
ment around ERBB2. This structural variation was linked 
to the super enhancer formation that was associated with 
ERBB2 overexpression. We further demonstrated that 
ERBB2 is a feasible of druggable target in non-CAGA 
LUAD patients [4].

Genomic, epigenomic, and transcriptomic differences 
between adjacent normal and tumor samples
Although we identified the CNAs in a few cases, a study 
reported that LUAD is generally rich in somatic muta-
tion compared to SV [5]. We therefore performed a 
comprehensive study of epigenomic alterations using a 
combination of WGS, ChIP-seq, RNA-seq, and DNA 
methylation analyses to investigate the non-coding 
mutations in enhancer regions, with the aim of reveal-
ing the molecular mechanisms underlying non-CAGAs. 
Here, we compared enhancer activity between normal 
and non-CAGA samples and found that enhancer activ-
ity at the mastermind-like transcriptional coactivator 2 
(MAML2) genomic locus (chr11:95976598–96343195) 
was ablated in a significant fraction of samples (Table S5). 
MAML is a coactivator of Notch and the MAML com-
plex induced Notch-dependent target genes, including 
c-MYC, p21, ERBB2, CCND3, HES1, HEY1, and NFKB1. 
MAML2 has conserved domains, forms stable DNA-
binding complexes, and regulates Notch and Wnt/β-
catenin signaling pathways by promoting β-catenin 
turnover independent of Notch signaling [6]. Several 
fusion genes, such as YAP1-MAML2, MECT1-MAML2, 
and CRTC1/3-MAML2 have been identified; among 
these, CRTC1-MAML2 is an oncogenic driver in muco-
epidermoid carcinoma (MEC) [7]. Here, the suppressed 
enhancer activity was coupled with the down-regulation 
of MAML2 expression. A comparison of the matched 
normal adjacent to tumor and tumor tissues samples 
showed that MAML2 was suppressed in tumors (Fig. 1A 
and B). To examine if somatic mutations are associated 
with enhancer activity, patients with mutations in any 
of genomic regions of FAM78B (95768953–95789782), 
CEP57 (CEP57:95790498–95832693), MTMR2 
(95832880–95924107), and CCDC82 (96352773–
96389912) genomic regions, which are neighboring genes 

of MAML2, were examined alongside those of MAML2. 
One hundred and seven of 184 patients had mutations 
in the MAML2 gene locus, whereas other genes showed 
relatively fewer mutations (Fig.  1C). H3K27ac ChIP-
seq peak of matched normal and tumor samples with 
genomic mutations are shown in Fig. 1D. Only two cases 
were mutated in the coding regions (R60Q and R422L) of 
the MAML2 gene, indicating that most detected altera-
tions were non-coding regions. Therefore, we further 
examined whether genomic alterations in those regions 
affect enhancer activity. We extracted a complete dataset 
that included WGS, ChIP-seq, and RNA-seq (N = 113). 
Forty-nine of the 113 samples had null mutations, 
whereas 64 samples had alterations at the MAML2 locus. 
Enhancer activity was suppressed in the mutated sam-
ples, which was associated with MAML2 gene expression 
(Fig.  1E and F). Analysis of the TCGA non-CAGA-like 
LUAD dataset revealed that MAML2 was also down-reg-
ulated in tumors compared its expression in a relatively 
large number of normal tissues adjacent to the tumors 
(Fig.  1G). This suggests that MAML2 expression was 
down-regulated in patients with non-CAGA LUAD in 
both cohorts.

DNA methylation is another epigenetic mechanism 
that is beneficial for revealing the underlying mechanisms 
in cancer. The EPIC array includes Functional Anno-
tation of the Mammalian Genome (FANTOM) 5 and 
Encyclopedia of DNA Elements (ENCODE) enhancer 
regions for DNA methylation detection, which promotes 
the study of regulatory regions. Therefore, we decided to 
use the EPIC array in this study to assess DNA methyla-
tion. Analysis using matched normal and tumor samples 
revealed that 18 of the 102 probes exhibited substantially 
different patterns in the MAML2 region (Fig. S3A). Simi-
larly, 46 of 102 probes had different methylation levels 
in normal to non-CAGA samples. Sixteen probes over-
lapped in both analyses (Fig. S3B, left, Venn diagram; 
right; summary), indicating that these methylation sites 
may be potential diagnostic markers. We identified low 
DNA methylation levels in normal samples but high 
DNA methylation levels in tumor samples, which were 
inversely correlated with MAML2 gene expression. This 
finding agrees with those of a previous report, in which 
high DNA methylation levels in the MAML2 region sup-
pressed gene expression [8]. To investigate how DNA 
methylation is regulated in MAML2, we examined the 
expression levels of known DNA methyltransferases 
(DNMTs) and demethylation-related enzymes. In this 
study, elongator complex protein 3 (ELP3), which plays a 
role in paternal genome demethylation, and tet methylcy-
tosine dioxygenase (TET) 2, which is involved in the TET 
dioxygenase-mediated oxidation of 5-methylcyotsine 
(5mC) pathways, were down-regulated in matched tumor 
and non-CAGA samples (Fig. S3C and D). However, we 
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Fig. 1  Genetic and epigenetic analysis in non-CAGA lung adenocarcinoma samples. AMAML2 expression in matched normal and tumor tissue samples. 
BMAML2 expression in normal and non-CAGA samples. C Number of patients with mutations in Chr11 (FAM78B:95768953-95789782, CEP57:95790498-
95832693, MTMR2:95832880-95924107, MAML2:95976598-96343195, and CCDC82:96352773-96389912). Somatic mutations and small insertions and de-
letions (INDELs) were analyzed, patients with at least one mutation were counted. D H3K27ac ChIP-seq peak of matched normal and tumor samples with 
genomic mutations. E Enhancer peak of H3K27ac in null and mutated samples at the MAML2 locus. FMAML2 expression of null and mutated samples 
at the MAML2 locus. GMAML2 expression analysis using the non-CAGA-like TCGA LUAD dataset. H-L Kaplan–Meier estimates of overall survival (OS) in 
patient with non-CAGA LUAD. A total of 154 patients were divided in half. H OS of FAT4. I OS of HMCN1. J OS of CD302. K OS of UTRN. L OS of FOXN3. M-Q 
Kaplan–Meier estimates of OS using the non-CAGA-like TCGA LUAD dataset. M OS of FAT4. N OS of HMCN1. O OS of CD302. P OS of UTRN. Q OS of FOXN3
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did not observe the up-regulation of DNA methyltrans-
ferases, suggesting that demethylation mechanisms play 
pivotal roles in patients with non-CAGA LUAD. Notably, 
these mechanisms could be tissue-specific, as DNMT3B 
is involved in breast cancer [8]; however, ELP3 and TET2 
were associated with patients with non-CAGA LUAD.

MAML2-dependent signaling pathways and genes related 
to clinical outcomes
To investigate whether known Notch and Wnt/β-catenin 
targeted genes are associated with MAML2, we selected 
seven Notch targeted genes (BCL2, CCND3, CDKN1, 
ERBB2, HERDUP1, HES1, HEY1), seven Wnt/β-catenin 
targeted genes (CD44, CTNNB1, FN1, MMP7, PMP22, 
SMYD3, VEGFA), and two common genes (CCND1 
and MYC) that are expressed in lung cancer (Table S6). 
We identified genes such as BCL2 (XM_047437733 
and NM_000633), CDKN1 (NM_001374511), CD44 
(NM_001001390, XM_005253238, and XM_006718390), 
PMP22 (XM_047436306 and NM_153322) were down-
regulated, whereas ERBB2 were overexpressed in non-
CAGA samples (Fig. S4A). Next, to identify prognostic 
biomarkers and potential therapeutic targets associated 
with MAML2, we performed a correlation analysis and 
identified the top 15 positively and negatively correlated 
genes against MAML2 (Table S7). The RNA-expression 
levels of these genes were compared to those in normal 
samples; all 15 genes were significantly down-regulated 
and most were up-regulated in response to MAML2 
down-regulation (Fig. S4B and C). Kaplan–Meier sur-
vival analysis revealed poor prognosis in the subgroups 
with low FAT4 (XM_011532237; isoform X1), HMCN1 
(XM_011510038; isoform X1), CD302 (NM_014880; iso-
form 1 precursor), UTRN (NM_007124; isoform 1), and 
FOXN3 (NM_001085471; isoform 1) expression (Fig. 1H-
L, Table S8). To validate our findings, we performed sur-
vival analysis using a Korean dataset (GSE8894), because 
the previously published paper showed that the genetic 
backgrounds of the Japanese and Korean populations 
were the closest among the populations analyzed [9]. 
Consistent with our earlier results, there was a tendency 
for low expression levels of marker genes that were asso-
ciated with poor prognosis (Fig. S5), Some of the genes 
did not show statistical significance, possibly due to the 
smaller sample size of the Korean dataset (N = 61) com-
pared to our dataset (N = 154) and/or the presence of 
samples with driver mutations (if any), which could 
affect the results, as genomic information was unavail-
able in the Korean cohort. To further investigate whether 
these prognostic marker genes were specific to the Asian 
cohort, we performed survival analysis using the non-
CAGA-like TCGA LUAD dataset, the results of which 
also revealed significant differences in survival accord-
ing to CD302 and FOXN3 expression (Fig.  1M-Q). In 

summary, CD302 and FOXN3 are prognostic markers in 
non-CAGA, Korean, and non-CAGA-like TCGA datas-
ets, independent of ethnicity or race.

Although we identified prognostic markers and poten-
tial therapeutic targets, the molecular mechanisms 
related to MAML2 are unclear. Therefore, to explore the 
underlying mechanisms, we performed weighted gene 
correlation network analysis (WGCNA) to identify clus-
ters of highly co-expressed hub genes (Fig. S6). We chose 
power 10 as the lowest possible power term where topol-
ogy fits a scale free network (Fig. S6A left and right) and 
constructed a gene dendrogram to detect modules by 
hierarchical clustering (Fig. S6B). The PCNX1 gene had 
the most gene connections at 48, and exhibited greatest 
co-expression with the RNLS gene, followed by FTO with 
19 connections, suggesting that these two genes are hub 
genes identified in MAML2-associated subgroups and 
may orchestrate the signaling pathways (Fig. S6C).

Identification of potential therapeutic target genes via 
unsupervised learning
Next, we examined whether the prognostic marker 
genes identified were commonly expressed in all sam-
ples. Approximately 30% of patients had a common gene 
expression profile and were subclassified into either the 
high expression group or low expression group (Fig. S7A 
and B). Then, Kaplan–Meier survival analysis was con-
ducted to determine whether commonly expressing sub-
groups showed improved patient stratification for overall 
survival (OS) compared with those analyzed using the 
expression of each gene. This approach failed to achieve 
better patient stratification (Fig. S7C and D). However, 
heatmap analysis of the prognostic genes enabled clus-
tering of the samples (Fig. S7E, I – III in samples and 
A and B in genes), indicating that patient stratification 
related to OS could be improved. Therefore, we aimed 
to re-cluster patients by reinforcing existing correlations 
between the expression levels of prognostic genes and 
survival associations, thereby inflating the association of 
these components with survival. The results of the sur-
vival analysis for each gene were regarded as a first-level 
cluster, and patients with low expression were labeled 
− 1, whereas those with high expression were labeled 1 
(Fig. 2A). Using these labels, hierarchical or non-hierar-
chical K–means clustering was performed to obtain sec-
ond-level cluster labels (Fig. S7F-H and Supplementary 
Method). The Elbow method was used to determine the 
optimal number of clusters for K–means analysis (Fig. 
S7G), and the clustering result were plotted (Fig. S7H). 
Based on the aforementioned results, we performed sec-
ond-level patient stratification related to prognosis using 
these labels. Here, we achieved the optimal classification 
using labels obtained from the hierarchical clustering of 
CD302, FAT4, and FOXN3 genes (Fig.  2B), rather than 
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Fig. 2  Second-level cluster analysis to improve patient stratification. A Workflow of the analysis. B-D Kaplan–Meier estimates of overall survival (OS) with 
secondlevel cluster analysis. B OS was assessed using hierarchical labels. Second-level cluster labels were obtained from the survival analysis of CD302, 
FAT4, and FOXN3 genes. C OS was assessed using hierarchical labels. Second-level cluster labels were obtained from the survival analysis of CD302, FAT4, 
and FOXN3 genes with weighted average adjustment. D OS was assessed using K–means labels. Second-level cluster labels were obtained from the sur-
vival analysis of CD302, FAT4, FOXN3, and UTRN genes. E-F Mutation profiles of high-risk (poor survival) and low-risk (better survival) subgroups. E Low-risk 
subgroup (cluster 1) from B. F High-risk subgroup (cluster 2) from B. G Patient characteristics in the two subgroups. $ represents p-values obtained from 
the Mann–Whitney U test. # represents p-values obtained from Fisher’s exact test. H Volcano plot of the genes differentially expressed between high-risk 
and low-risk subgroups. Up-regulated genes in the poor survival subgroup are represented in red and down-regulated genes are represented in blue.
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hierarchical clustering with weighted average adjustment 
and K–means cluster labels (Fig. 2C and D, Table S9 and 
10).

Genomic features and patient characteristics were 
examined in both groups. The high-risk group accumu-
lated more mutations than the low-risk group (Fig.  2E 
and F). For example, TP53 mutations were found in 72% 
of high-risk patients, whereas less than half of patients in 
the low-risk subgroup had TP53 mutations (29%). Other 
recurrently mutated genes such as TTN and RYR2 were 
also highly mutated in the high-risk group. A compari-
son of patient characteristics between the two groups 
revealed that the occurrence of smoking status, advanced 
cancer stage, and high tumor mutation burden (TMB) 
was greater in the high-risk group (Fig. 2G).

Differentially expressed gene (DEG) analysis revealed 
802 up-regulated and 289 down-regulated genes with 
a threshold of 2-fold difference and false discovery rate 
(FDR) < 0.05 in the high-risk subgroup (Fig.  2H). Nota-
bly, CD302, FAT4, HMCN1, and UTRN were significantly 
down-regulated whereas genes including PLK1, UBE2C, 
and LYPD3 which are reportedly elevated in LUAD, were 
up-regulated (Fig.  2H, Table S11). This finding suggests 
that second-level stratification, followed by DEG analysis 
can effectively identify therapeutic target genes. Accord-
ing to gene ontology (GO) biological processes, the up-
regulated DEGs were enriched in the mitotic cell cycle, 
cell cycle process, and cell cycle, whereas down-regulated 
DEGs were enriched in anatomical structure develop-
ment, developmental process, and anatomical structure 
morphogenesis in the poor survival subgroup (Fig. S8A 
and B, Table S12). To further investigate the global sig-
naling pathways related to the subgroups, we performed 
Gene Set Enrichment Analysis (GSEA) and Kyoto Ency-
clopedia of Genes and Genomes (KEGG) analyses. Blood 
vessel, circulatory system development, and vasculature 
development were enriched in GSEA, whereas focal 
adhesion, platelet activation, actin cytoskeleton regu-
lation, and vascular smooth muscle contraction were 
enriched in KEGG pathways (Fig. S8C-F).

WGCNA revealed that seven out of 14 modules were 
significantly correlated with the second-level cluster sub-
groups (Fig. S9A and B). Among the module eigengenes 
(MEs), MEblack, MEblue, MEpurple, MEmagenta, and 
MEbrown were top modules associated with the sub-
groups. MAML2, CD302, FAT4, FOXN3, and HMCN1 
were clustered as MEblack, whereas UTRN was clustered 
as MEblue (Fig. S9A and B, Table S13). FAT4, a human 
homolog of tumor suppressor gene Fat in Drosophila, 
modulates Wnt/β-catenin signaling. HMCN1 is associ-
ated with the Hippo pathway in cancer. CD302 is asso-
ciated with cancer-associated fibroblasts (CAFs) and is 
down-regulated in lung cancer. UTRN inhibits tumor 
growth by attenuating p38 and JNK/c-Jun signaling and 

FOXN3 functions as a tumor suppressor by suppress-
ing Wnt/β-catenin signaling. As previously identified by 
WGCNA for the subgroups with high and low MAML2 
expression (Fig. S6), similar genes were discovered as 
hub genes as well as components of the networks (Fig. 
S9C, Table S14). This indicates that second-level cluster 
analysis enabled the re-clustering of patients by reinforc-
ing existing correlations between the expression levels of 
genes and survival association for more accurate patient 
stratification.

Discussion
Although targeted therapies are clinically effective, a 
more comprehensive understanding of the cancer biol-
ogy is required for precision oncology because action-
able target-negative cancers have hampered progress 
in the field of cancer therapy for decades. Regulatory 
elements in non-coding regions are cis-regulatory ele-
ments that include promoters, enhancers, insulators, 
and 5ʹ- and 3ʹ-UTRs as locus control regions. Changes in 
DNA sequences in regulatory regions cause cancer, and 
histone modifications govern chromatin remodeling and 
enhance transcription activity. In this study, investigating 
the epigenomics revealed the clue of tumorigenesis and 
the mechanisms underlying non-CAGA LUAD patients. 
Later, we identified prognostic markers and potential 
therapeutic targets.

Here, we conducted an integrated multi-omics analy-
sis for regulatory genomics, focusing on samples with 
non-CAGAs or unmet needs. Genes that were posi-
tively correlated with MAML2 expression were consid-
ered prognostic maker genes and second-level cluster 
analysis demonstrated enhanced prognostic predictive 
power. MAML regulates Notch and Wnt/β-catenin sig-
naling pathways. MAML2 genomic rearrangement has 
been clinically evaluated in MEC (https://oncology.test-
catalog.org/show/MAMLF). MAML2-based therapeutic 
modalities could be approached through several strate-
gies. MAML2 regulates Notch signaling pathways and 
CTCR1-MAML2 is an oncogenic fusion gene in MEC. 
CTCR1-MAML2 requires AREG-EGFR signaling for 
MEC growth; co-targeting of Notch by DBZ and EGFR 
signaling by Erlotinib was an effective to anti-MEC treat-
ment by attenuating MEC growth [7]. We found that 
MAML2 was down-regulated in non-CAGA LUAD 
samples; therefore, rescuing MAML2 expression serves 
as a potential therapeutic approach. Putative transcrip-
tion factor binding sites to MAML2 has been previously 
predicted using the TransFac program [8]. Thus, recruit-
ing or enhancing binding affinity of those transcriptional 
factors to the promoter could induce MAML2 up-reg-
ulation. A second therapeutic approach could involve 
DNA methylation targeting. MAML2 expression nega-
tively correlates with DNA methylation. Hence, DNA 

https://oncology.testcatalog.org/show/MAMLF
https://oncology.testcatalog.org/show/MAMLF
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methylase inhibition or DNA demethylase activation 
could induce MAML2 up-regulation. The third therapeu-
tic approach could involve MAML2 expression-related 
prognostic marker targeting. In this case, positively and 
negatively correlated genes are considered potential ther-
apeutic targets for the treatment of non-CAGA LUAD. 
However, further studies are needed to evaluate the effi-
cacy and safety of these approaches.

In our study, Notch target gene BCL2 was down-reg-
ulated, and the pro-survival and pro-apoptotic BCL2 
family proteins are attractive for the canter treatment. 
CDKN1 is also one of the Notch targeted gene. Intrigu-
ingly, previously published literature demonstrated that 
knockdown of SOX9 in LUAD resulted in the up-regu-
lation of CDKN1, suggesting that CDKN1 gene might 
be a common target of Notch and Wnt/β-catenin [6, 
10]. A novel aspect of this study is that we regarded the 
poor and better survival groups as distinct clusters, and 
second-level cluster analysis using prognosis-related 
labels led to improved patient stratification. DEGs 
between groups demonstrated that the identified prog-
nostic markers were down-regulated, whereas poten-
tial therapeutic targets for human cancers such as PLK1 
and UBE2C were up-regulated, which overexpression 
represses autophagy, inducing initiation, progression, 
and metastasis in NSCLC [11, 12].

WGCNA identified PCNX1 and FTO as hub genes in 
both subgroups dichotomized by MAML2 expression 
and by second-level cluster labels. PCNX1 is an evolu-
tionarily conserved components that activates the Notch 
signaling. PCNX is a human homolog of Drosophila pec-
anex (pcx). Currently, the role of PCNX in Notch sig-
naling remains unknown; however, in Drosophila, pcx 
is a component of Notch signaling and in breast cancer, 
PCNX expression is associated with post-chemotherapy 
patient survival [13]. RNLS, PTEN, and ATAD1 were 
identified in prostate tumor [14], suggesting that RNLS 
plays a pivotal role in tumorigenesis. The other hub gene, 
FTO is a m6A demethylase associated with tumorigen-
esis in lung cancer and FTO down-regulation promotes 
epithelial-to-mesenchymal transition (EMT) by regulat-
ing Wnt/β-catenin signaling [15]. From the perspective 
of targeted therapy using non-CAGAs, we suggest that 
the identified prognostic marker genes, the genes identi-
fied by DEG analysis, and genes in the clinically relevant 
modules identified by WGCNA according to second-
level cluster labels all show considerable promise. We also 
suggest that the global molecular mechanisms underlying 
non-CAGAs cancer onset may involve MAML2-related 
signaling pathways such as Notch and Wnt/β-catenin, 
however, we cannot exclude other possibilities and fur-
ther investigation is required using gene knockout stud-
ies. Regarding the poor and better survival subgroups 
in non-CAGA samples divided by second-level cluster 

labels, immune check point inhibitors might be an option 
for the poor survival subgroup because patients in this 
group exhibited high TMB, which is associated with a 
favorable response to drugs in general.

Conclusion
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