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Introduction
Tumour infiltrating lymphocytes (TILs) are the front-
liner immune cells that populate the tumour microenvi-
ronment (TME), the very interface of cancer-immunity 
confrontation, in solid tumours. CD8+ T lymphocytes 
are considered one of if not the most important constit-
uents of TILs with quasi-universal prognostic benefits 
owing to their capability to unleash direct cytotoxicity 
upon encounter with tumour cells expressing the cognate 
antigen [1, 2]. In reality, however, the presence or even 
abundance of CD8+ TILs per se does not consistently 
translate into tumour control or regression, favourable 
survival outcomes, or response to T-cell-based immu-
notherapy to the same effect size [3], suggesting failure 
to divulge relevant modifying factors through undiffer-
entiated evaluation of all CD8+ T cells as a congruent 
whole. Recent advances in high-throughput, high-def-
inition cellular characterisation modalities such as sin-
gle-cell RNA sequencing (scRNA-seq), T cell receptor 
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Abstract
CD8+ T cells are the workhorses executing adaptive anti-tumour response, and targets of various cancer 
immunotherapies. Latest advances have unearthed the sheer heterogeneity of CD8+ tumour infiltrating 
lymphocytes, and made it increasingly clear that the bulk of the endogenous and therapeutically induced tumour-
suppressive momentum hinges on a particular selection of CD8+ T cells with advantageous attributes, namely the 
memory and stem-like exhausted subsets. A scrutiny of the contemporary perception of CD8+ T cells in cancer 
and the subgroups of interest along with the factors arbitrating their infiltration contextures, presented herein, 
may serve as the groundwork for future endeavours to probe further into the regulatory networks underlying their 
differentiation and migration, and optimise T cell-based immunotherapies accordingly.
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sequencing (TCR-seq), and Assay for Transposase 
Accessible Chromatin with high-throughput sequenc-
ing (ATAC-seq) have uncovered an unprecedented level 
of CD8+ TIL heterogeneity [4], while spatial transcrip-
tomic (ST) technologies have enabled faithful recon-
structions of the positional details inevitably lost during 
the tissue dissociation process required for scRNA-seq, 
permitting in-depth analysis of the contact-mediated 
and paracrine actions between cell populations that are 
intrinsically location-dependent [5]. Accumulating data 
on the immensely complex multi-omic landscape of 
CD8+ TILs suggest that only subpopulations with certain 
functional and differentiation statuses are empowered 
by the pre-requisite molecular machinery and stand at 
the immunological vantage points to act as the princi-
pal mediators of anti-tumour immunity and response to 
immunotherapy [6].

The blowout of high-dimensional data has nonethe-
less stirred up a taxonomical kerfuffle as it inundates the 
conventional T-cell classification systems. Before advanc-
ing the discussion, it is therefore crucial to reiterate the 
inherent limitations of the current T cell nomenclature 
and the caveats when making inferences based on it. 
Any cell clustering or annotation attempts are more or 
less arbitrary in nature and at risk of misinterpreting or 
under-representing the true biological significance of 
cells. Functional overlaps between pre-defined cell popu-
lations frequently exist, and misclassification is common. 
Besides, the transition from one distinguishable cell phe-
notype to another routinely involves a gradual, uninter-
rupted spectrum, but overly refined discretisation to 
meticulously mirror the continuum may produce unjusti-
fied sophistication and compromise generalisability, thus 
calling for an optimal resolution to meaningfully group 
cells.

A reference cell tree brilliantly named ‘consensus 
ontology’ has been envisaged, where the collection of all 
given cells in both physiological and pathological states 
over the lifespan of an organism can be moulded into a 
three-dimensional tree-like architecture with lineage, dif-
ferentiation, and elapsed time being the localising axial 
parameters, decorated with the key transcriptional pro-
grammes, molecular features, signalling pathways, and, 
where relevant, spatial information of the cells [7]. Such 
an epochal idea has provided much inspiration for this 
review, where we aim to present a lineage-orientated, 
function-centred panorama of the CD8+ TILs based on 
prevailing immunological knowledge, zoom in on the 
subpopulations of interest with regard to anti-cancer 
immunity and therapeutic benefits, and complement the 
discussion with pivotal cell-extrinsic and spatial determi-
nants of their successful tumour infiltration.

CD8+ T cell evolution in cancer
Early T cell activation
Naïve CD8+ T cells (TN) are the positively and nega-
tively selected, heterodimeric αβTCR-bearing, and 
lineage-committed single positive (CD4−CD8+) T cells 
that have not encountered the cognate antigen. Cyto-
metric definition of TN entails exclusive expression of 
the CD45RA isoform of leukocyte common antigen 
(CD45RA+CD45RO−) along with auxiliary naïve T cell 
markers, many of which are homing receptors such as 
C-C motif chemokine receptor 7 (CCR7) and CD62L 
(also known as L-selectin) that allows homing to lym-
phoid organs and tissues via blood circulation and then 
manoeuvring through the white pulp of the spleen or the 
T cell zone of lymph nodes to survey antigens. They are 
the last common precursors that beget all CD8+ T cell 
subtypes found in the secondary lymphoid organs (SLOs) 
and tumours [1, 8]. There exist numerous obstacles that 
act as physiological deterrents to autoimmunity and need 
to be surmounted before TN can be activated to effec-
tors (TEFF) with the full tumoricidal potential. In nascent 
tumorigenesis, immunologic ignorance can occur when 
pathological expression of tumour-associated self-anti-
gens is below threshold, not displaying a recognisable dif-
ferential pattern, or restricted to the immune-privileged 
sites; or when transformed cells expressing tumour-
specific neoantigens are shielded by surrounding tissues 
from detection and translocation to tumour-draining 
lymph nodes (TDLNs) for T cell priming. On the other 
hand, antigen recognition in the absence of a co-stimulus 
or signal transduction and augmentation by dedicated 
antigen-presenting cells (APCs) in an appropriately con-
ditioned inflammatory milieu results in a hyporesponsive 
‘anergic’ state of CD8+ T cells with limited proliferative 
and effector capacities [9]. Meanwhile, over-exposure to 
self-antigens can induce a ‘tolerised’ state that is deficient 
in cytotoxicity and prone to apoptosis, a phenomenon 
known as ‘peripheral deletion’ [10, 11].

In the meantime, the effector-memory equilibrium 
is known to be under tight regulation of orchestrated, 
potentially antigen-independent, and frequently coun-
terbalancing determinants in relation to cytokines (e.g., 
effector-predisposing interleukin-12 [IL-12], and IFN-γ 
versus memory-favouring IL-7, IL-15, IL-21, and trans-
forming growth factor [TGF]-β), TCR signal strength and 
antigen affinity, antagonising transcription factor duos 
(e.g., pro-effector T-bet versus pro-memory Eomesoder-
min, BLIMP-1 versus BCL-6, ID2 versus ID3, and STAT4 
versus STAT3), epigenetic remodelling, and metabolic 
machineries [12]. Resolution of an acute infection cus-
tomarily leads to a clear-cut inclination towards memory 
differentiation, survival and self-renewal under the com-
posite force of the regulatory network [13]. In contrast, 
with an unremitting threat such as a developing tumour, 
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differing chronology of antigen exposure and stimulation 
precludes fate unambiguity and accentuates the relevance 
of the variant, intermediate, and hybrid states of memory, 
effector, and exhausted CD8+ T cells. An entr’acte from 
constant antigen stimulation, most commonly in the ref-
uge of TDLNs [14, 15] and the blood circulation, is of 
utmost importance in initiating the memory-associated 
programmes while postponing the path to exhaustion, a 
fate ultimately manifested in most tumour-reactive CD8+ 
T cells [4, 10, 14, 16–19].

The transmuted memory lane in cancer
Immunological memory denotes the ability to stage a 
more expeditious and pronounced response upon re-
encounter with an earlier insult. Stemness and migrat-
ing capacity are the two pillars that uphold the depth 
(that is, the stretches of the possible effector progenies) 
and breadth (the tissue versatility and specificity) of the 
immune protection memory CD8+ T cells (TMEM) are 
capable of evoking. A substantial proportion of TMEM 
continually traverse the blood and/or the lymphatics 
to maximise the antigen screening range. The circulat-
ing TMEM were initially divided into central memory 
cells (TCM) and effector memory cells (TEM) based on 
expression of CCR7 and CD62L (thus having access to 
lymphoid tissue), or the lack thereof, respectively [20]. 
Subsequent investigation has revealed the extraordinary 
longevity and tremendous developmental and prolif-
erative potentials of TCM [21–25]. Additionally, stem cell 
memory T cells (TSCM) have been identified as a body 
of CD45RA+IL-7Rα+ cells sharing overlapping cardi-
nal memory and recirculation features with TCM but are 
even less differentiated and demonstrate enhanced self-
renewal, plasticity, and multipotency [26–30], though 
Galletti et al. have demonstrated that the apparent 
gene expression profile differences could very well be 
accounted for by differential inclusion of PD-1+TIGIT+ 
progenitors committed to exhausted-like progenies [31]. 
TEM, in comparison, are characterised by non-lymphoid 
tissue (NLT) tropism, more immediate effector functions 
upon restimulation, but less secondary expansion capac-
ity [25].

Although TCM and TSCM are abundant in the peripheral 
blood of cancer patients [17] and theoretically constitute 
a systemic reserve of effector CD8+ TILs, such untainted 
memory phenotypes are difficult to maintain with the 
systemic perturbations and local TME of tumour-bear-
ing individuals. Tumour-specific bona fide memory cells 
have been identified in TDLNs [14], but a plethora of 
single-cell and TCR-profiling studies on melanoma [18], 
hepatocellular carcinoma [32], colorectal carcinoma [33], 
and pan-cancer types [4] have unanimously indicated 
that infiltrating CD8+ T cells that are tumour-reactive 
almost exclusively reside in an exhausted state of various 

degrees, and that the heavily expanded, cancer antigen-
recognising intra-tumoural TCR clonotypes are rarely 
detected in the memory compartment of the peripheral 
circulation [18]. This could suggest inadequate develop-
ment of a circulating memory repertoire specifically tar-
geting tumours across different cancer types, and even 
if spawned, these memory cells may be rapidly depleted 
after mobilisation. Therefore, the precise size of the cir-
culating tumour-reactive memory compartment and 
magnitude of contribution from these cells to natu-
rally occurring anti-cancer immunity prior to acquiring 
exhaustion features are to be further assessed in human 
cancers.

That being said, the superior proliferative potential of 
TCM and TSCM can be leveraged in various forms of can-
cer immunotherapies. TSCM can be generated ex vivo 
from naïve precursors using clinical-grade culture pro-
tocols utilising IL7 and IL15 [27], or a combination of 
IL-7, IL-21 and the WNT agonist TWS119 [34]. Recently, 
MEK inhibition has also been shown to be capable of 
inducing TSCM and functionally superior TCM [30]. Com-
pared to chimeric antigen receptor (CAR)-T cell therapy 
derived from unselected T cells, adoptive transfer of 
CAR-TSCM and TCM have engendered expanded, persis-
tent, and intensified anti-tumour responses against hae-
matologic malignancy xenografts [34–36] with reduced 
risk of cytokine release syndrome [35], and, in combi-
nation with PD-1 blockade, achieved tumour control in 
OVCAR-3-inoculated mice [37]. Likewise, engineered 
expression of IL-7 along with CCL19 on CAR-T cells 
boosted memory responses to solid tumours and pro-
longed survival in mice [38].

Tissue-resident memory
The observation of ample long-lived, TEM-like CD8+ T 
cells in NLT heralded the revelation of tissue-resident 
memory T cells (TRM) [39], which have been formally 
recognised with skin [40] and intestinal [41] transplan-
tation in murine models and subsequently found preva-
lent in SLOs and both barrier and non-barrier tissues 
in mice and humans [42, 43]. The non-migratory nature 
of TRM stems from the expression of integrins CD49a 
and CD103, the latter of which is the integrin subunit 
αE (ITGAE) that serves as a canonical TRM marker, and 
CD69, an early activation marker and down-regulator of 
relocation-promoting sphingosine 1-phosphate recep-
tor-1 (S1PR1), in addition to a concomitant lack of tis-
sue egress mediators [42, 43]. An array of universal (e.g., 
CXCR6 and VIM) and site-specific (e.g., CCR4, CCR10, 
and CXCR4 for skin versus CCR9 for small intestine pre-
dilection) cell matrix and adhesion molecules also reli-
ably delineate TRM [44, 45]. Additionally, upregulation 
of transcription factors (TFs) such as BLIMP-1, HOBIT, 
RUNX3 and NOTCH is pivotal to TRM formation and has 
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further instituted TRM as separate entities to the circulat-
ing memory T cells in mouse models [46–48]. Suppres-
sion of KLF2 is another TRM hallmark that provides an 
additional binding force for TRM to the surrounding tis-
sue via resultant down-regulation of S1PR1 [49]. Many 
of these TRM-enriched TFs, including Runx3, Notch, 
and Hif1a, are known harbingers of effector T cell func-
tions, which underlie the phenotypic preparedness of 
TRM in repelling invading pathogens and rejecting trans-
formed cells [47, 48, 50]. However, it remains uncertain 
the extent to which the core transcriptional signature is 
shared with human TRM. Notwithstanding the discrepan-
cies in Hobit expression pattern [48], recent studies have 
corroborated perpetuation of some of these TRM TFs in 
humans, and identified other ones of interest such as 
AHR, KLF4, and Hic1 [44, 51, 52].

Mounting evidence has brought TRM to the centre 
of attention in quelling numerous cancers, particularly 
those of epithelial origins. It has been recognised that 
TRM cells are central to immunosurveillance, especially in 
tissue compartments not readily accessible by circulating 
memory, as well as curtailment and, in an ideal situation, 
prompt elimination of transformed cells and subclinical 
tumours, analogous to their presumed contribution in 
local containment of latent viruses [53–56]. Park et al. 
have notably shown in their seminal work that tumour-
specific TRM unfailingly prevented melanoma devel-
opment upon rechallenge independent of circulating 
memory depletion, and upon TRM knockdown, tumour 
outgrowth manifested in approximately 20% of mice with 
occult melanomas [54]. This is echoed by TRM-mediated 
protection against secondary breast tumour rechallenge 
in the ipsi- but not contralateral mammary fat pad [55]. 
TRM can also derive from intratumoural TMEM/TEM [57] 
and reside in the lymph nodes [58], offering protection 
against metastases at distant sites. Furthermore, tumour-
associated clones of TRM generated post-immune check-
point blockade (ICB) were able to persist for up to 9 
years [59], illustrating the long-lasting protection that 
TRM confer. The consequent selective pressure from 
TRM immunosurveillance, however, may paradoxically 
favour the clonal growth of cancer cells that are adept at 
immune evasive and suppressive manoeuvres, such as 
the cases in lung cancers where tumour cells escape TRM 
hammering by down-regulation of MHC-I molecules 
[60] and engaging epithelial-to-mesenchymal transition 
[61], which epitomises the phenomenon of immunoed-
iting that signifies the complex dynamic of the cancer-
immunity equilibrium [62].

In established solid tumours of many types, enrich-
ment of TRM transcriptomic signatures in tumours is 
also found invariably correlated with more intense anti-
tumour activity with respect to cytolytic molecule expres-
sion and pro-inflammatory cytokine release, and better 

prognoses, irrespective of the overall amount of CD8+ 
T cell infiltrates [59, 63–71]. As known expressors of 
immune checkpoint molecules [63, 66, 71, 72], infiltrat-
ing TRM represent one of the prime salvageable targets of 
ICB therapy [55, 67, 71, 73, 74], where reinvigoration and 
expansion of TRM have been consistently observed fol-
lowing ICB, and pre-treatment TRM signature prognosti-
cated response to ICB-based regimens [71, 73]. However, 
accurate measurement of the anti-tumour momentum 
and therapeutic efficacy attributable to conventional TRM 
and their progenies is challenging due to the entangled 
CD8+ T cell fates within the TME, as TILs with TRM-like 
phenotypes could very well develop from activated T cells 
of distinct lineages secondarily acquiring TRM features 
[55, 70, 75, 76]. Gavil et al. have demonstrated that, in the 
context of a tumour, the common TRM markers (CD69 
and CD103) failed to reflect tumour residence, nor did 
CD62L exclude the same [75]. Instead, chronic antigen 
stimulation endowed incoming tumour-specific CD8+ T 
cells with a distinct resident programme that matured in 
concert with exhaustion [75]. TME factors such as TGF-
β, which is known to induce CD103 [52, 61, 68, 77], could 
also be contributing. Furthermore, recently conducted 
in-depth TIL characterisation studies have resolved TRM 
subpopulations of extended significance. In tumours and 
vitiligo-affected skins of metastatic melanoma patients 
who responded well to immunotherapy, subcluster of 
TRM distinguished by abundant expression of certain 
pro-inflammatory cytokines and chemokines predicted 
better patient overall survival among other clinical vari-
ables, whereas the TRM cluster defined by TCR signal-
ling transcripts did not [59]. In ovarian cancers, a group 
of progenitor TRM descended from a recently activated 
CD103−CD69+ re-circulating population was pinpointed 
as the reservoir of tumour-reactive effectors and associ-
ated with improved outcomes [70]. Therefore, additional 
investigations are warranted for more rigorous ways to 
distinguish bona fide TRM from TRM-like cells in the TME 
and resolve the subsets with the most tumoricidal capac-
ity and the manipulable therapy targets.

The transcriptomic and epigenetic stigmata of exhaustion
Exhaustion entails the compromise in anti-tumour 
immunity due to prolonged stimulation of immune cells, 
which ubiquitously occurs in tumour-reactive CD8+ 
TILs and leads to dwindling overall magnitude of T cell 
anti-tumour response in the long term [78]. TCR acti-
vation is naturally an antecedent to and propagator of 
T cell exhaustion. Low-affinity interactions usually lead 
to functional inertness or failure to instigate a self-sus-
taining tumour-reactive T cell population [79], whereas 
exceedingly strong TCR signals may predispose tumour-
reactive CD8+ T cells to accelerated exhaustion [80–82]. 
A minimum length of time is also required for initiation 
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towards exhaustion differentiation [15, 83, 84], as evi-
denced by conserved lineage flexibility of virus-specific 
CD8+ T cells when removed from chronic infection in 
the first weeks [85], and yet the time point at which CD8+ 
T cells commit to the exhaustion fate in cancer remains 
a subject of active investigation. Recently, an interroga-
tion of chromatin accessibility and transcriptomic altera-
tions of early activated CD8+ T cells in tumour-bearing 
mice has revealed that acquisition of exhaustion hall-
marks commenced as early as within 6 h of tumour anti-
gen exposure, well in advance of the previously thought 
timeframe of days to short weeks [86]. Also, elements 
of exhaustion (loss of effector function, upregulation of 
immune checkpoint molecules, and contracted prolif-
erative capacity) are regulated independently and ripen 
asynchronously [86–88], where, for instance, IFN-γ and 
TNF loss preceded that of proliferative capacity by a large 
margin [86]. These findings suggest that extrapolation of 
CD8+ T cell exhaustion state from isolated parameters is 
an error-prone and misleading practice, and instead an 
all-inclusive, weighted scoring fabric may be necessitated.

Liberal usage of the term ‘exhaustion’ frequently con-
stitutes a misnomer in that cells commonly designated 
as exhausted CD8+ T cells (TEX) encompass a wide 
spectrum that spans across near-complete preservation 
of function to absolute indolence [4, 89], and that the 
degree of reprogrammability by ICB is not indicated by 
the somewhat deceptive terminology [90]. Despite these 
variations, once lineage committed, all TEX are, with-
out exception, constrained by the transcriptional rewir-
ing and epigenetic scarring that persisted in progenies 
and precluded complete reversal to the pristine naïve or 
memory-level of functional reserve even after antigen 
withdrawal [31, 91, 92]. TCR signalling-mediated upreg-
ulation of nuclear factor of activated T-cells (NFAT) 
family of TFs lays the foundation for the extensive and 
incompletely understood regulatory network of interde-
pendent TFs that perpetuate the exhaustion programme 
[84]. NFAT holds critical roles in both T cell activation/
effector function and tolerance/exhaustion, the former of 
which typically requires partnering of NFAT with AP-1 
proteins [93]. With relative scarcity of AP-1 secondary 
to, for instance, insufficient MAPK signalling from inad-
equate co-stimulation, uncomplexed NFAT is diverted 
to monomeric binding motifs unaccompanied by an 
adjacent AP-1 site, inducing transcription of exhaustion-
related genes encoding inhibitory molecules (e.g., Pdcd1 
[encoding PD-1], Lag3, Havcr2 [TIM3], Tigit, Ctla4) 
and repressive TFs (e.g., Tox, Egr1, Egr2, and Nr4a) 
[86–88, 93–97]. In conformation with the dynamics of 
the down-stream transcripts, NFAT motifs are enriched 
in the differentially accessible chromatin regions of TEX 
[84, 86, 97], and the predicted NFAT binding sites in the 
exhaustion-related genes also increased in accessibility 

[87, 88]. The partner-dependent functional bivalency of 
NFAT provides an opening for manipulating the exhaus-
tion-versus-effector differentiation, where overexpress-
ing c-Jun, a canonical AP-1 factor, granted the CAR T 
cells exhaustion resistance [98]. Akin to NFAT, BATF has 
bipartite roles after TCR signalling induction, and over-
expressing BATF promoted BATF-IRF4 cooperation, 
thereby skewing CAR TILs towards an effector pheno-
type [99].

Among other NFAT-induced TFs, TOX has gained 
recognition in recent years as an essential potentiator of 
exhaustion [87, 92, 100–102], without which differentia-
tion into TEX is averted altogether [100, 103]. Although 
acute infections saw temporary presence of TOX at 
low levels, sustained high-intensity TOX expression 
in chronic infections and tumours upregulates inhibi-
tory receptors, further modulates the TF network, and 
eventually engraves modification of the corresponding 
exhaustion-specific chromatin landscape in an NFAT-
independent, self-propagating manner [84, 87, 100], 
thereby inflicting the indelible epigenetic scars on TEX 
that forbid them from full recovery of memory/effector 
functions after antigen withdrawal [92] or ICB rescue 
[104]. With that said, TOX-knockout tumour-specific T 
cells failed to persevere in tumours and did not exhibit 
superior effector functions compared to the wild-type 
counterparts [87], which shows that TOX is necessary for 
TEX survival [102] and exemplifies the diverging regula-
tory networks underlying different exhaustion modules.

Stemness sustains response in the face of exhaustion
Founding and upkeep of tissues and cellular cohorts are 
routinely overseen by precursors with regenerative and 
stem-like attributes, and TEX are no exception. Despite 
the distinct exhaustion-associated epigenetic scars, an 
extensive and still expanding body of studies has firmly 
established a distinguishable subgroup of TEX with 
reserves for longevity, self-renewal, and proliferation 
transcending those of the rest, which is correspondingly 
named ‘precursor exhausted’ or ‘progenitor exhausted’ 
T cells (TPEX) but also sometimes referred to as ‘stem-
like’ and ‘memory-like’ cells [16, 76, 89, 103, 105–110]. 
The relevance of TPEX in cancer and immunotherapy was 
presaged by cornerstone works in chronic viral infec-
tions [105, 111, 112], and notably a PD-1+CXCR5+CD8+ 
T cell population possessed a gene signature resembling 
memory precursor cells and haematopoietic stem cell 
progenitors, and proliferative bursts after PD-1 blockade 
while differentiating into more terminally differentiated 
effector-like progenies [105], although TPEX are typically 
lacking in cytotoxicity themselves [17]. The existence and 
behaviour of such cells have been then substantiated in 
lung cancer [110] and melanomas [76, 90], and ablation 
of these cells dampened efficacy of checkpoint blockade. 
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Further studies have validated significant post-treatment 
intra-tumoural accumulation of TPEX exclusively in ICB 
responders, where lineage tracking analyses credited the 
cell population increase to the composite effect of local 
expansion of pre-existing tumour-specific clonotypes 
and likely an influx of extratumoural T cells, in light of 
the novel TCR clonotypes not present within the tumour 
prior to therapy [74, 107, 113].

Unsurprisingly, TPEX may co-express exhaustion (e.g., 
TOX and PD-1), memory (e.g., EOMES, SLAMF6 [Ly108 
in mice], BCL6, ID3, and IL7R[CD127]), and naïve-like 
cell markers (e.g., CCR7 and CD62L) [84, 105, 114]. 
TPEX differentiation is governed by an expansive set of 
TFs such as FOXO1 [115, 116], BCL6 [114], MYB [117], 
BACH2 [118], and HMGB2 [119]. Notably, T cell fac-
tor 1 (TCF1, encoded by Tcf7) has emerged as a key TF 
that dependably defines TPEX [76, 84, 108, 109]. TCF1 
is a well-known enactor of Wnt-β-catenin signals and 
assumes a myriad of roles in T cell development and 
maturation pending the precise circumstance [120, 121]. 
At the post-antigen encounter bifurcating point of CD8+ 
T cell fate, TCF1 conspicuously steer differentiation of 
effector-phase lymphocytes towards the stem-like end-
points as opposed to short-lived effectors, giving rise 
to TCM in acute infection [22, 122] and TPEX in chronic 
infection and tumour models [29, 92, 114, 123–125], 
suggesting the transcriptional schemes that instil stem-
ness in these two cell populations are, at the very least, 
partially overlapping [14, 31, 113, 126]. On the contrary, 
as TCF-1 suppresses TGF-β-induced CD103 expression 
[77], TRM are known to be TCF1− [70, 76, 77], despite 
displaying a stem-like phenotype comparable to that 
observed in TCM and TPEX. Moreover, involvement of 
TCF1 in TPEX generation is likely redundant and relies on 
coordinated changes in a set of additional factors [125], 
where Tcf7 knockout did not significantly alter the abun-
dance of TPEX TIL [76]. On the other hand, TCF1 has 
been demonstrated to be indispensable for the mainte-
nance of the TPEX phenotype and arbitrates tumour con-
trol and response to ICB as well as cancer vaccination, 
with clear superiority of the TCF1+CD8+ T cell popula-
tion over the TCF1− counterparts in these regards [76, 
90, 109, 127]. In fact, a recent study has shown that TCF1 
is required for optimal priming of tumour-specific CD8+ 
T cells and ICB efficacy in the context of poorly but not 
highly immunogenic tumours [124], resembling the criti-
cal role of TCF1 in ‘pre-programming’ the chromatin 
landscape of TCM for proper upregulation of the neces-
sary cell cycle, DNA replication and glycolysis-related 
genes during a recall response [122].

Nevertheless, closer examination of TPEX has shown 
that TCF1 alone is insufficient to demarcate the subsets 
of biological significance contained within the heterog-
enous cell population [103]. A recent study conducted in 

the murine LCMV infection model unveiled that CD62L+ 
TPEX, whose development relies on MYB, are transcrip-
tionally distinct and functionally superior to the CD62L 
ones, and bring forth the proliferative burst following 
PD-1 blockade[117]. Cells with a comparable transcrip-
tomic profile have been identified in CD8+ CAR-T cells 
responding to B-cell acute lymphoblastic leukaemia, with 
FOXP1 being a newly identified hub TF that orchestrates 
stemness and anti-tumour response, although the equiv-
alent to this subpopulation fortified with stemness was 
not readily evident in the cells infiltrating solid tumours 
in the same study[149]. Similarly, TCF1+ TPEX with cir-
culating capacities and greater proliferative potentials are 
found to be associated with an SLAMF6+ as opposed to 
SLAMF6−phenotype in a murine lung adenocarcinoma 
model[163].

En route to terminal exhaustion
Tumour-specific TPEX on the ground, along with other 
stem-like populations, eventually embark on the forced 
march in the direction of terminal exhaustion (Fig. 1A), 
at which point irrecoverable loss of intrinsic and thera-
peutically inducible anti-tumour activity manifests. 
Although terminally exhausted CD8+ T cells (TTEX) exu-
berantly express IFNG, PRF1 and GZMB transcripts [4, 
18], diminished polyfunctionality, survival, and expand-
ing capacities fundamentally restrict the cumulative 
anti-tumoural potential of individual TTEX, which are not 
amenable to ICB reinvigoration despite plentiful expres-
sion of checkpoint molecules such as PD-1 and TIM-3 
[88, 109, 113]. Markers for TTEX also notably include 
CD39 (ENTPD1) [4, 90, 113, 126], an ectonucleotid-
ase that, in conjunction with CD73, potently generates 
extracellular adenosine, which is known to inhibit T cell 
signalling cascades [128–130]. Accordingly, Vignali et 
al. have recently shown that not only do TTEX take on 
a powerless stance against tumour cells, but they also 
exert immunosuppressive effects comparable to those of 
Foxp3+ regulatory T cells (TREG) isolated from the same 
tumour environment, primarily through hypoxia-driven 
enhancement of CD39 density and activity [131], in 
accordance with the benefits observed with exploratory 
usage of CD39/CD73 monoclonal antibodies [132] and 
dual inhibition of CD39 and TIM3 [90] in mouse tumour 
models. Contrarily, the authors did not observe signifi-
cant alterations in tumour growths or TTEX-mediated 
immune suppression with germline deletion of or neu-
tralising antibody administration against IL-10 [131], a 
pleiotropic cytokine with well-recognised anti-inflamma-
tory and immunomodulatory functions whose involve-
ment in cancers is obscured by the discordant findings 
in available studies [133]. Interestingly, an engineered 
IL-10-Fc fusion protein actualised TPEX-independent re-
expansion and cytotoxic function revitalisation of TTEX 
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through fostering mitochondrial pyruvate carrier-depen-
dent oxidative phosphorylation [134], echoing other pre-
clinical [135] and clinical [136, 137] studies. However, the 
following phase II trials combining PEGylated IL-10 and 
anti-PD-1 antibodies led to doubling of treatment dis-
continuation rate due to adverse events while bringing 
no added survival benefits in metastatic non-small cell 
lung cancer patients [138]. Taken together, these findings 
highlight the fact that, in addition to being functionally 
subpar, TTEX can potentially exert suppressive actions 
owing to susceptibility to the various TME elements, 
and that therapeutic strategies alternative to ICB, espe-
cially those pertaining to reprogramming T cell metabo-
lism, could potentially exploit the remaining, albeit very 
limited, plasticity of TTEX, though how they may best 
synergize with other modalities of immunotherapy and 
accurately target the intended cells is to be explored.

Meanwhile, progression from TPEX to TTEX entails a 
sophisticated succession of events subject to an array of 
cell-intrinsic and extrinsic modifiers and thus markedly 
variable in pace, but generally aligns with the alterations 
in expression levels of the master regulators, namely a 
hierarchical loss of TCF1-instituted stemness and cul-
mination of TOX-associated epigenetic imprinting, 
which foreshadow the downstream transcriptional and 
functional changes [88, 102]. Though direct transition-
ing from TPEX to TTEX has been observed [139], TPEX 

differentiation into a metabolically rewired and actively 
proliferating intermediate-exhausted phenotype (TINT), 
marked by a Tim3+CD101− phenotype or CX3CR1 
expression in chronic infections [17, 139, 140], proves 
to be a pre-requisite step to liberate the full anti-tumour 
potential and ICB responsiveness of TPEX [103, 140–143], 
since TPEX are mostly quiescent by default, as attested 
by low expression of cell cycling genes such as MKI67 
[17]. This is validated by the latest advances, where ton-
ing down Ikzf1 (encoding IKAROS, which suppresses 
TCF1) has successfully retarded TPEX-to-TINT differentia-
tion, but failed to evoke added antitumour effects [142]. 
Admittedly, the transitory TEX populations were evident 
in earlier TME profiling studies [19, 32, 89, 90], but their 
structured categorization was pioneered by Beltra et 
al., where, using Ly108 (a proxy marker for TCF1) and 
CD69, they have distinguished the interconverting qui-
escent (TPEX1, Ly108+CD69+) and proliferating (TPEX2, 
Ly108+CD69−) subsets of TPEX, and established the 
developmental trajectory from TPEX2 to Ly108−CD69− 
TINT and ultimately Ly108−CD69+ TTEX [103], thus 
completing the TPEX1 ➜ TPEX2 ➜ TINT ➜ TTEX para-
digm that was consolidated by succeeding studies [142, 
144–146] (Fig. 1B). Increasing evidence suggests that the 
TPEX2-to-TINT junction harbours a critical epigenetic, 
transcriptional and metabolic checkpoint, whose regu-
lation incorporates inputs from activation of the mTOR 

Fig. 1  Outlining CD8+ T cell evolution in cancer. (A) On the way to terminally differentiated states, naïve CD8+ T cells in cancer move through a meshwork 
of transcriptomically distinct phenotypes. The cells may stroll down the exhausted (top) or memory (bottom) thoroughfare, though memory cells can 
give rise to exhausted cells after acquiring the epigenetic imprints and the TRM branch has clear transcriptional idiosyncrasies. In general terms, progres-
sion through either lane sees the waning of stem-like features and reprogrammability by immunotherapy and eventual fate convergence at the TTEX 
terminus. TEX

EFF and TEMRA are lineage-wise juxtaposed with TPEX but infused with heightened effector capacities. (B) Subsets of TEX are identifiable by the 
expression of an assortment of TFs and surface proteins. TPEX are vital to maintaining the exhausted T cell populations due to their stem-like features and 
capabilities to self-renew, as indicated by TCF1 expression, whereas TOX marks the inability of exhausted cells to fully reconstitute the memory or effector 
functions. The quiescent TPEX1 subset is distinguished from the mobilised ones by SLAMF6 and CD69 expression profiles. The activated state of TPEX2 is 
illustrated by the acquisition of the proliferative marker MKI67 and effector molecules IFN-γ and TNF-α, whose expression plateaus in TINT before returning 
to low levels in TTEX. In addition to escalation of immune checkpoint molecules (e.g., PD-1), TTEX also express terminal exhaustion makers (e.g., CD39 and 
TIM-3). TEX

EFF may form in place of TTEX only under certain circumstances such as TH-derived IL-21 induction. TEX differentiation is under the oversight of 
an extensive, tightly regulated TF network, as shown in the figure. Notably, many of the TFs maintaining the TPEX population are implicated in memory 
formation, and those propelling their differentiation support the effector cells during acute infection.
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pathway [142], which serves as a control panel integrat-
ing cellular metabolism sensor signals [147], and a range 
of TFs, including T-bet [103, 142, 148], BATF [148], 
KLF2 [149], ETS1 [142], and STAT5 [150]. In fact, aug-
mentation of Stat5 activity by employing an orthogonal 
IL-2:IL2Rβ pair system in established TEX cells not only 
stimulated TINT formation, especially when combined 
with PD-L1 blockade, but also improved their durability 
and effector functions in the face of persistent antigen 
stimulation, and suppressed differentiation to TTEX [150].

Indeed, TINT may still bear therapeutically accessible 
developmental pliability and effector potential. A grow-
ing body of studies has shed light onto an alternative 
differentiation path from the TINT waypoint to an effec-
tor-like exhausted (TEX

EFF) population that is inducible 
by IL-21-producing CD4+ helper T cells (TH) [139], TF 
ZEB2 [144], and lower TCR avidity [81, 146], and lineage-
wise juxtaposed with TTEX but possesses strong effector 
or NK cell characteristics [81, 139, 146]. Multiple lines of 
evidence derived from murine chronic infection models 
are in support of this bifurcating model placing TINT at 
the branch point, including the in silico predictions based 
on pseudotime and RNA velocity trajectory analyses, 
retained phenotypic plasticity in TINT but not TEX

EFF or 
TTEX upon adoptive transfer, and shared open chroma-
tin regions between TINT with either TEX

EFF or TTEX and 
the paucity thereof between TEX

EFF and TTEX [81, 139, 
146]. This novel model is of great therapeutic relevance, 
as it provides the theoretical foundation for a window of 
opportunity, perhaps the last one before the end-stage 
epigenetic ossification takes place, to expand the aggre-
gate effector activity by diverting TINT towards the TEX

EFF 
fate in lieu of TTEX [151].

To complicate matters even further, concurrent ‘non-
TPEX-origin’ trajectories to TTEX progressing through 
memory subsets have been described [4, 70, 72, 74, 144, 
152], which are generally organised into two interlaced 
paths marked by the resident-versus-circulating dual-
ity of memory (Fig. 1A). In a pan-cancer TIL atlas con-
structed from scRNA-seq data from 316 patients across 
21 cancer types, Zheng et al. projected that CD8+ TN 
could ultimately develop into either TEX or TEMRA [4], 
concordant with recent identification of a non-TEX 
ZNF683high TEFF/TEM endpoint that was accentuated in 
marrow-infiltrating CD8+ T cells in Richter syndrome 
responding to PD-1 blockade [152]. Along the path to 
TEX, TN first progressed to IL7R+ TMEM (TCM/TSCM) and 
then split into the GZMK+ TEM and ZNF683+CXCR6+ 
TRM branches before uniting at the GZMK+ TEX and, 
finally, TTEX fate [4]. A similar scheme was outlined 
in an NSCLC dataset, involving progression to TTEX 
(CD8-LAYN) through a transitional population (CD8-
GZMH) from circulating (CD8-KFL2/CD8-GZMK) and 
tissue-resident (CD8-XCL1) precursors, where the TRM 

population is deemed the main source of the more dif-
ferentiated tumour antigen-specific T cells based on TCR 
sharing [72] – a clonal predilection that was also seen in 
ovarian [70] and neoadjuvant ICB-treated oral cancers 
[74]. Taken together, suffice it to say, notwithstanding the 
concrete accomplishments in the nuanced dissection of 
the phenotypes, current models may still merit refine-
ment and reconciliation for an unequivocal representa-
tion of CD8+ TIL development and evolution, which is 
made particularly challenging by the confounding quali-
ties unique to chronic antigen stimulation and TME, the 
logistical and technical constraints, and the taxonomical 
dilemmas for the betwixt and between cell populations.

Navigating the haemolymphatics and TME: a 
spatial odyssey
The relevance of tumour-specific CD8+ T cell pheno-
types is nullified if detached from the position coor-
dinates, given the contact-dependent nature of their 
tumoricidal weaponries. Indeed, the quantity and spatial 
distribution of CD8+ TILs demonstrated drastic varia-
tions across the cancer types, anatomical sites, and lesion 
classifications (i.e., primary, recurrent, or metastatic) 
[2, 4]. This observation has prompted development of 
Immunoscore, a histological type-agnostic grading sys-
tem quantifying CD3+ and CD8+ lymphocyte densi-
ties in the tumour core and the invasive margin that has 
shown prognostic values in colorectal and other can-
cers [2, 153–156], effectively categorising tumours into 
immune infiltration-based ‘immunotypes’, namely the 
heavily infiltrated ‘hot’, the infiltration-devoid ‘cold’, and, 
between these two extremes, the uniformly poorly infil-
trated ‘immunosuppressed’, and the ‘excluded’ tumours 
where infiltrates are limited to the invasive margin [155]. 
Importantly, the immunotypes cannot be explicated 
by tumour cell antigenicity alone and are in fact telltale 
snapshots that mark the culmination of the long march 
of CD8+ T cells as they migrate through different circula-
tory compartments, penetrate multiple barriers, and per-
severe in spite of suppressive environments, to complete 
the larger cancer-immunity cycle [157]. Along the jour-
ney, CD8+ T cells adjust the balance of tissue anchoring 
and egress factors to facilitate or restrain translocation, 
perform tissue-specific adaptive manoeuvres, and pass 
through several key anatomical and microenvironmen-
tal locales that profoundly shape their dynamics (Fig. 2), 
leading to reverberations in the intratumoural CD8+ T 
cell landscape.

Tumour-specific CD8+ T cells gear up in TDLNs
The conventional school of oncology often view TDLNs 
as receptables forming the catchment for metastatic 
seeding, which is predisposed by the architectural and 
functional deviations from the non-draining nodes 
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provoked by tumour-derived lymph-borne factors 
[158]. Removal of uninvolved TDLNs, however, failed 
to improve outcomes in preclinical models or cancer 
patients [159–161]. In this day and age, the significance 
of TDLNs as a nexus between the cancer and immune 
cell ends of the tug-of-war has been brought back to 
attention and reinforced, and their role in facilitating 
generation of CD8+ TILs reaffirmed, for the key win-
dow for antigen presentation and T cell priming arises 
as tumour antigens, T lymphocytes, and dendritic cells 
(DCs) converge in the lymphatic endothelial cell (LEC)-
lined and macrophage-interspersed subscapular sinuses 
(SCS) of TDLNs [158, 162]. Current evidence suggests 
that CCR7-expressing type I conventional DCs (cDC1s) 
migrated from the TME are the main DC subset that 

internalise and transport tumour antigens in large quan-
tities and potently prime CD8+ T cells through MHC-I-
mediated cross-presentation or cross-dressing (direct 
transfer of peptide-MHC-I complex) [162–168] and 
CD4+ T cells through MHC-II-mediated direct presen-
tation, which reciprocally augment the immunostimu-
latory proficiency of DCs [169]. Meanwhile, the TME 
IFN-I-induced ISG+ cDC2s also demonstrated capability 
to activate CD8+ T cells by cross-dressing in the absence 
of cDC1s [170]. Once arrived at the TDLN, the migratory 
DCs may in turn transfer tumour antigen to their resi-
dent counterparts to prepare the inbuilt DC terrain for 
CD8+ T priming [168, 171], where the DC status across 
the tissue origin and the LN may also be synchronised 
with co-transfer of contextual cues [172].

Fig. 2  Critical anatomical and microenvironmental waypoints dictating success of CD8+ T cell infiltration. (A) TDLNs are the ideal venue for tumour 
antigen-bearing migratory DCs from the TME to condition the TH and CD8+ T cells. The migratory DCs also pass on the antigens and TME cues to their 
resident counterparts. With provision of the primary, costimulatory, and cytokine signals by the DCs and TH sans the inhibitory TME elements, CD8+ T cells 
have the privilege of remaining in the stem-like states and serving as a reservoir of tumour-repressive cells. Establishment of metastases in the LNs de-
molishes the supportive context for these population-sustaining CD8+ T cells. (B) Tumour-associated vascular endothelium is a major barrier against T cell 
infiltration. Endothelial expression of FasL can precipitate direct CD8+ T cell death. Aberrant adhesion molecule expression secondary to VEGF-induced 
endothelial cell anergy renders it impregnable to CD8+ T cells. Tumour-associated high endothelial venules are important sites for CD8+ T cell extravasa-
tion and aggregation. (C) CAFs orchestrate the tumour-associated stroma and mediate T cell exclusion in a multitude of ways, as illustrated. The APC 
niches and TLSs are on-site powerhouses that harbour stem-like CD8+ T cells and, by safeguarding their survival, greatly amplifies anti-tumour immunity. 
Conversion to the more terminally differentiated phenotypes ensues the longer the dwell time and the closer the distance to the tumour cells, which are 
known to foment an immunosuppressive aura.
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Given their nurturing multilayered cellular infrastruc-
ture and strategic anatomical locations, TDLNs are natu-
rally the reservoirs of tumour-specific CD8+ TILs. An 
abundance of studies have provided evidence of CD8+ 
T cell transmigration from TDLNs to the tumour [14, 
15, 141, 159, 163, 173–176] and vice versa [15, 177], as 
well as enrichment of tumour-reactive CD8+ clono-
types in TDLNs [175, 176, 178]. Unencumbered by the 
stress from persistent antigen stimulation and TME fac-
tors, activated tumour-specific CD8+ T cells in TDLNs 
are typically found in the minimally exhausted TPEX or 
TPEX-like states [79, 117, 141, 163, 173, 174, 178, 179], 
whereas those TILs clonally related to them predomi-
nantly display the TTEX phenotypes [141, 173, 178]. In 
fact, expansion of pre-existing or de novo LN-dwelling 
stem-like populations is vital to ICB response [14, 105, 
175, 176, 180] (Fig.  3A) and potentially accountable 
for a greater share of efficacy than those circulating or 
residing in the TME, as surgical removal of TDLNs [14, 
181], co-administration of FTY720, an inhibitor of T 
cell egress from lymphoid organs [175, 176, 181], was 
sufficient to negate the antitumour effects of ICB, and 
targeted delivery of ICB monoclonal antibodies to the 
TDLNs eclipsed systemic therapy in terms of efficacy 
and permitted dose sparing [179]. Furthermore, studies 
have consistently shown that the responses of TDLNs to 
ICB and the integrity of TLDNs as an immune reservoir 
and line of defence in general can be profoundly under-
mined by presence of metastases [141, 182–185]. In 
both melanoma murine models and human patients, LN 
metastases precipitated an altered immune contexture 

involving IFN-II-associated accumulation of regula-
tory T cells (TREGs) and PD-L1+ DCs that suppressed 
CD8+ T cells [183, 184]. These tolerogenic cells were 
also observed in LNs with HNSCC metastasis and, along 
with naïve/quiescent (CD45ROloPD-1loTCF-1hi) CD4+ T 
cells, formed the immunosuppressive niches encircling 
TPEX and TINT post-ICB [141]. Overall, these evidences 
offered an additional explanation to the prognostic values 
of TDLN statuses from the perspective of CD8+ T cell 
anti-tumour immunity, revealed the underappreciated 
role of TDLN statuses in predicting the response to ICB, 
and conceptualised the combination of ICB with agents 
targeting LN metastases, the latter of which, however, are 
yet to be developed.

Overcoming the vascular endothelial barrier
Following potentiation of tumour-specific CD8+ T cells 
in the TDLNs, an endurance run through systemic circu-
lation, tissue environment, and microvasculature awaits 
before they are able to reach the designated destination 
in the centre of tumour. Execution of such an extended 
process that requires extreme precision relies on coor-
dination and fine-tuning of various homeostatic control 
systems. After priming, exit from the LNs is classically 
conducted with upregulation of S1PR1 in the context 
of high concentration of S1P in efferent lymphatics and 
synchronous curtailment of CCR7 and CD69 [6, 186], 
whereas sympathetic neural inputs typically promote 
retention of T cells in the LNs [187, 188]. Intact chemo-
tactic systems are then a prerequisite for tumour hom-
ing, which include the CCR5-CCL5, CXCR3-CXCL9/

Fig. 3  Modifying CD8+ T response in cancer. (A) Immune checkpoint blockade radically changes the CD8+ T landscape via mobilisation of the stem-like 
populations, which primarily occurs in the company of supportive cells in the TDLNs and microenvironmental niches. Cancer cell death as a result of 
amplified response fosters a self-amplifying cycle owing to tumour antigen release and subsequent increased uptake and priming by APCs. ICBs can 
simultaneously stimulate TRM, which contributes to increased tumour killing and long-lasting immunosurveillance that deters recurrence and metastasis. 
(B) In addition to the conventional steps implicated in adoptive cell therapies (lymphocyte procurement, isolation, activation and expansion, pre-infusion 
lymphodepletion and post-infusion IL-2 administration), there have been multiple strategies in the phases of ex vivo manipulation and in vivo augmenta-
tion (marked with plus signs) to maximise the utility of transferred cells. A deeper understanding of the transcriptional, epigenetic, and metabolic controls 
of CD8+ T phenotypes will shed light on novel ways to engineer cells for the desirable attributes.
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CXCL10/CXCL11, CXCR5-CXCL13, CX3CR1-CX3CL1, 
and CXCR6-CXCL16 axes for CD8+ T cells [105, 109, 
139, 189–194], where the transition from TPEX to TINT/
TTEX may be accompanied by specific changes in expres-
sion of chemokine receptors [139, 177, 191]. Conversely, 
the elaborate interactions can be sabotaged or manipu-
lated by solid tumours to diminish the driving force for 
cytotoxic T cell migration while fostering preferential 
recruitment of suppressive immune cells including TREGs, 
myeloid-derived suppressor cells (MDSCs), and tumour-
associated macrophages (TAMs) and neutrophils (TANs) 
[189, 192]. The directionality of chemoattractant concen-
tration gradient, which steers the CD8+ T cell traffic, also 
bears obvious significance as, for instance, the interplay 
between CXCR4+ TEFF and tumour-associated lymphatic 
vessel-derived CXCL12 resulted in marginalisation and 
egress of TILs, which undermines tumour control and 
therapeutic response [177].

Before CD8+ T cells could set foot on the core of the 
tumour, they can be repulsed by multiple chemical, phys-
ical, and cellular ramparts, and the tumour vasculature 
represents the first tumour-orchestrated line of defence 
that must be surmounted. In acute inflammation, leu-
kocyte extravasation typically follows a multi-step pro-
gression, where friction for arresting cell locomotion is 
jointly supplied by selectins and adhesion molecules such 
as ICAMs and VCAM-1. Tumours resort to formation 
of blood vessels (termed ‘neo-angiogenesis’), which is 
stimulated by mechanical strain, hypoxia, and angiogenic 
molecules, with the VEGF family (VEGFA - F) being 
the most prominent, to fulfill the metabolic demands 
for neoplastic growths [195–197]. VEGF has the ability 
to directly influence immune cells, promoting develop-
ment of TREGs, M2-macrophags, and MDSCs, impairing 
DC maturation and T cell development, and inducing 
CD8+ TIL exhaustion [195, 198–201]. When faced with 
relentless malignancy-driven bombardment by VEGF 
and other angiogenic factors, endothelial cells lining the 
tumour-associated blood vessels are prevented from acti-
vation by pro-inflammatory cytokines and conspicuously 
deviate from those in inflammation in terms of surface 
protein expression. Differentially expressed by neoan-
giogenic endothelium are immune checkpoint molecules 
[202, 203], FasL that selectively mediate CD8+ T cell 
demise [204], and, importantly, fewer adhesion molecules 
[205, 206], referred to as ‘endothelial cell anergy’, thereby 
veiling the portal of entry for tumour-specific CD8+ T 
cells. These observations serve as the mechanistic under-
pinning for combining anti-angiogenic agents with ICBs 
[194, 199, 201, 204, 207], where clinical trials have veri-
fied additive if not synergistic effects across several can-
cer types [208–213], which may be seen regardless of the 
intra-tumoural immune checkpoint molecule expres-
sion status [208, 211]. Notably, recent advances have 

demonstrated endothelial cells comprising the post-cap-
illary venule (PCV)-derived MECA-79+ tumour-associ-
ated high endothelial venules (TA-HEV) as major breach 
sites for CD8+ T cells extravasation at baseline and in 
anti-CTLA-4 (+/- anti-PD-1) therapy, and increased 
number and maturation of these endothelial cells ush-
ered a higher percentage of stem-like (SMALF6+) CD8+ 
TILs [214]. In preclinical models, anti-VEGFR2, anti-PD-
L1 and LTβRAg triple therapy were sufficient to induce 
differentiation of PCVs into TA-HEVs that indeed facili-
tated lymphocyte infiltration and TPEX accumulation 
[215, 216].

Cancer-associated fibroblasts at the crux of CD8+ 
T-excluding and suppressing stroma
The tumour-associated stroma, apart from requitting the 
cancer-derived factors with direct facilitative and prohib-
itive influences on neoplastic cell-led tumour progression 
and metastatic transition, and thus holding cardinal non-
immune-related biological and prognostic implications 
[196, 217–219], lies in between the extravasated CD8+ 
T cells and the nest of tumour cells, and contains vari-
ous cellular and inanimate components with shielding 
effects. Being one of the most abundant and functionally 
significant constituents of tumour stroma, cancer-asso-
ciated fibroblasts (CAFs) are evidently discernible from 
normal quiescent fibroblasts [218, 220, 221], commonly 
arise from co-option of resident fibroblasts by mechani-
cal stress and cancer cell-secrete chemokines and growth 
factors (e.g., TGF-β, IL-1, IL-6, and PDGF), but are oth-
erwise of remarkable plasticity (i.e., reactivity to exter-
nal cues) and heterogeneity in origins and phenotypes 
and across tumour/tissue types, for which a unanimous 
classification system is lacking despite tentative, crude 
categorisation into myofibroblastic (myoCAFs, typically 
dependent on TGF-β for differentiation and ECM-asso-
ciated genes/αSMAhigh), inflammatory (iCAFs, IL-1-de-
pendent and IL-6/CXCL12high), and antigen-presenting 
CAFs (apCAFs, HLA-DR/MHC-IIhigh) [219–226].

Transcriptomic analyses have established the inverse 
correlations between myoCAF-associated signatures and 
abundance of CD8+ T cells as well as immunotherapy 
efficacy [219, 227–229]. Integration of spatial informa-
tion allowed pinpointing of several myoCAF subsets in 
particular that mediate T cell repression and exclusion 
predominantly by deposition of extracellular matrix 
(ECM, a known trigger of CD8+ T cell exhaustion in 
cancer [230] and impediment to lymphocyte locomo-
tion when densely packed or mal-aligned [231, 232]), 
as well as TGF-β secretion and interacting with other 
suppressive cell populations [221, 222, 227, 228, 233–
236]. Costa et al. are among the first groups to portray 
myoCAFs at higher resolutions, where, using six fibro-
blast markers, they ascertained one particular myoCAF 



Page 12 of 21Sun et al. Molecular Cancer          (2024) 23:193 

subset that tends to cluster near epithelial tumour cells 
in TNBCs and attracted, maintained, and differentiation 
into CD25highFOXP3high TREGs with augmented suppres-
sive effects on CD8+ T cells [234]. Further deciphering 
endeavours followed thereafter. For example, in KPR 
mouse pancreatic adenocarcinomas, TGF-β-signalling-
dependent LRRC15+ myoCAFs are shown to be in 
close proximity of and capable of suppressing CD8+ T 
cells [222]. In early- and advanced-stage lung cancers, 
MYH11+αSMA+ and FAP+αSMA+ myoCAFs have been 
respectively identified to obstruct T cell contact with 
tumour cells, albeit in different ways, where the for-
mer form a monolayer of elongated cells enveloping the 
tumour parenchyma and deposit type IV collagen fibres, 
and the latter are organised into patches or multiple lay-
ers and collagen XI and XII-producing instead [221].

In contrast, CAFs exhibiting an inflammatory or 
immune modulatory phenotype sculpt the immune 
cell landscape via extensive ligand-receptor interac-
tions [224, 237]. CAF-emanated IL-6 recruits FOXP3+ 
TILs [235], invokes CD73 expression in γδTREGs [130], 
and induces differentiation of TME monocytes into 
MDSCs through STAT3 signalling [238]. Even though 
CAF production of CXCL12 can attract CD8+ T cells 
in infiltrated tumours [193], it oftentimes culminates in 
T cell exclusion [239, 240]. This could be the combina-
tory result of CD8+ T cells being misdirected towards 
the tumour margin [239–241], the paradoxical repelling 
effects of CXCL12 at high concentrations [242], and the 
CXCR4-CXCL12 apparatus-orchestrated CAF crosstalk 
with TREGs [234], SPP1+ TAMs [243], and other myeloid 
populations [244]. Moreover, Ma et al. have computa-
tionally derived from harmonised scRNA and ST data a 
multitude of ligand-receptor interactions through which 
iCAF can directly corrupt CD8+ T cell robustness [224]. 
Notably, the LGALS1-PTPRC interaction is among the 
most frequently seen on ST slices, which triggers NFAT 
signalling and thus CD8+ T cell exhaustion [224]. On 
the other hand, apCAFs may render anergic or convert 
naïve CD4+ T cells to TREGs with antigen-specific MHC-
II-TCR crosslinking void of backing from co-stimulatory 
molecules [226, 245], and direct antigen-dependent 
interaction with CAFs can precipitate PD-L2 and FasL-
mediated lethality to the antigen-specific CD8+ T cells 
[246]. That being said, in lung cancers, apCAFs are found 
to activate and protect CD4+ T cells from apoptosis and 
consequently tumour-suppressive rather than permis-
sive [247]. Additionally, non-canonical markers have 
also proven to be useful for setting apart non-ternary 
CAF subsets with immunomodulatory effects. A dis-
tinct cluster of CAFs has been discovered in HNSCC that 
sequester TPEX (TCF1+GZMK+) by enhanced MHC-I 
and CXCLs expressions and impede their effector 
transformation through leveraging galectin-9 [240]. In 

pancreatic ductal adenomas (PDACs), CD105 effectively 
partitioned CAFs into two fractions displaying opposite 
correlations with immune cell subpopulations, with the 
CD105− subsets being positively associated with prolif-
eration of the CD8+ subsets, whilst the CD105+ coun-
terparts had a negative association [248]. Specifically, the 
CD105−MHCII+CD74+ CAFs were the sole mesenchy-
mal subset securing a positive correlation with antigen-
experienced but non-terminally exhausted CD8+ TILs 
[248].

Considering the myriad of ways CD8+ T cells are 
obstructed and subjugated, therapies targeting CAFs 
have been extensively investigated, and combination 
with therapeutic strategies carrying direct empowering 
effects on CD8+ T cells (e.g., ICBs and CAR-T therapy) 
attempted as a natural course of action for the pros-
pect of “infiltrate and eliminate“ [233, 239, 242]. As an 
embodiment of this approach, antecedent treatment with 
CAR-T targeting FAP+ CAFs in a recent study on murine 
PDAC models dismantled the desmoplastic stroma and 
dispersed the associated immunosuppressive environ-
ment, allowing full engagement of ICB-reprogrammable 
endogenous CD8+ T cells and CAR-T cells targeting 
tumour-associated antigen (Meso-CAR-T) with tumour 
cells [249]. Nonetheless, given the phenotypic multi-
plicity of CAFs and their restraining effects on tumours 
[226, 247, 250, 251], indiscriminate ablation of CAFs may 
accelerate cancer progression even with increased CD8+ 
T cell infiltration [250], hence the imperative to selec-
tively deplete the reprehensible CAF subsets for clear-cut 
clinical benefits.

Seeking sanctuary in the immune-permissive 
microenvironmental enclaves
Once advanced to the immediate vicinity of tumour cells, 
CD8+ TILs plunge into the hypoxic, acidified, adenosine 
and potassium ion-imbued, and nutrient-deficient or per-
turbed quagmire, which overwhelmingly favours CD8+ T 
dysfunction and sealing of the exhaustion fate [252, 253]. 
In accordance with this, intra- or peri-tumoural TPEX 
are rarely found flanked by tumour cells unbuffered, but 
tend to congregate in spatial niches conducive for popu-
lation maintenance and effector differentiation [76, 106, 
143, 174, 190, 191, 216, 254–256], and in some cancer 
types, the density and quality of these structures may 
set patients with favourable outcomes apart from those 
with poor prognosis [106, 257], and ICB responders from 
non-responders in the scenario of intact T cell priming in 
TDLNs and unhindered infiltration [143]. Cells with both 
antigen-presenting and immunomodulatory capabilities, 
especially DCs, are almost invariably implicated in the 
organisation of these CD8+ T-accommodating alcoves 
[174, 190, 191, 257–259]. DCs close the distance with 
the inbound CD8+ T cells through specific interactions 
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between chemokines and their receptors (e.g., CXCL16-
CXCR6 [191] and CXCL9/CXCL10-CXCR3 [190, 194, 
257]), granting the primary and co-stimulatory licences 
[169, 174, 255, 260], and unleash cytokines crucial for 
survival and induction of effector functions, such as 
IL-12 [261] and IL-15 [143, 191]. Prostaglandin E2 [262] 
and immune checkpoint molecules like TIM-3 [258] 
and PD-L1 [259] are notable for interfering with the 
DC-CD8+ TIL communication, thus explaining at least 
part of the benefits seen in respective therapies. Spatial 
profiling studies have also substantiated that DCs can 
complex with the CD4+ TH subsets they primed to form 
dyadic powerhouses that exert strengthened chemoat-
tractant and invigorating influences on CD8+ T cells 
[143, 169, 263].

Tertiary lymphoid structures (TLSs) are the most 
sophisticated form of ectopic lymphoid tissues that 
can be found in tumours. Representing the pinnacle of 
immune cell reciprocity within the TME, TLSs are struc-
turally less organised (i.e., unencapsulated and variable in 
T and B cell compartmentalisation) but cellular compo-
sition-wise reminiscent of SLOs, where each type of cells 
undertake corresponding roles that ultimately contribute 
to a brisk and self-replenishing local adaptive response 
[264], as tumours with TLSs had denser and less dysfunc-
tional intra-tumoural T cell infiltrates [254, 265–267]. 
Like in SLOs, presence of HEVs [216, 268] and a stromal 
network primarily consisting of follicular reticular cells 
(FRCs) [264] in TLSs secures the microanatomical space 
for lymphocyte passage and residence. The TLS-defining 
CD20+ B cells can be intermingled with T cells or gather 
in follicles with or without germinal centres, and nur-
tured by the CD4+ follicular helper or CD21+ follicular 
dendritic cells [264]. In addition to the canonical role 
of producing antibodies, TLS B cell subsets have been 
reported to be capable of energizing T lymphocytes by 
antigen presentation and cytokine secretion [266, 269–
271]. In the meantime, the CD4+ TH and DC duo have 
been found enriched in TLSs, predominantly in the T cell 
zones [254, 263], and so have tumour-reactive and stem-
like CD8+ T cells [76, 106, 256, 265, 272], which integrate 
the inputs from the neighbouring immune cells and pro-
ceed to tackle the tumour cells.

TLSs are generally associated with improved survival 
outcomes and immunotherapy responses [265, 266, 269, 
270], and yet, on scrutinisation, the localisation and 
maturity level of TLSs wield pivotal influences [267, 273], 
where extra-tumoural positioning and immaturity may 
underpin the negative prognostic impacts of TLSs in 
clear cell renal cell carcinoma [273, 274]. TLS formation 
beholds a choreography of lymphocytes, myeloid cells 
and mesenchymal cells under the guidance of molecular 
factors including lymphoid chemokines (e.g., CXCL13, 
CCL19, and CCL21), LTs, IFN-Is, TNFs, IL-17, many of 

which have been appropriated to experimentally induce 
TLSs in murine models [264]. CXCL13+CD8+ T cells 
have been described, were determined to be tumour-
reactive and predictive of ICB response [275], and indeed 
correlated with TLS presence [272, 276], though it was 
reported that their dysfunctional states and contribution 
to an immunosuppressive milieu might ultimately lead to 
unfavourable outcomes [276].

Perspectives
The notion that not all CD8+ TILs are created equal 
stands truer than ever. An outpouring of multi-dimen-
sional and high-resolution data over the past few years 
spotlighted the stem-like exhausted and memory cells 
as the subsets of the highest tumour-suppressive yield at 
baseline and upon therapeutic intervention. Their tran-
scriptomic and epigenetic properties are being character-
ised and phylogenetics elucidated, to a level of certainty, 
precision, and scale previously unfathomable, revealing 
invaluable insights into the promising biomarkers for 
prognostication, subpopulations for successful adop-
tive transfer, and strategies for engineering CAR-T cells 
(Fig. 3B).

Innovative and painstaking iterative processes with 
state-of-the-art technologies paved the way for these 
ground-breaking discoveries. Recent implementation of 
in vivo sc-CRISPR screening to TFs concerning CD8+ T 
cell differentiation and exhaustion in cancer may have 
just constructed the most comprehensive TF directory 
for T cell fate to date [142]. Synergising available omics 
modalities represents an alternative tactic for new dis-
coveries. Mapping and deconvolution algorithms are 
routinely applied to scRNA-seq and ST data to confer 
spatial coordinates to individual cells and deduce the 
cellular composition of each ST spot [5, 224, 236, 240]. 
Building on the previously known markers for tumour 
specificity, which are frequently also tokens of exhaus-
tion (e.g., CD39, PD-1, TIM-3 and TOX) [4, 18, 68, 277], 
coupling of scRNA-seq, sc-TCR-seq, and TCR specific-
ity testing data helped to fish out the tumour-reactive 
stem-like CD8+ T cells from the swarm of bystanders, 
which are otherwise difficult to tell apart due to tran-
scriptomic similarity [18, 56, 127, 275, 278]. Disciplined 
application of these investigative tools to the matched 
longitudinal samples enabled a chronicle of the tumour-
reactive clonotype dynamics in naturally occurring anti-
tumour immunity and immunotherapies [18, 56, 275], 
laying down the ground truth against which computa-
tional inferences can be compared, and the methods 
refined. Furthermore, the recent invention of Zman-
seq, which combines scRNA-seq with time-stamping by 
sequential injections of fluorescent anti-CD45 antibod-
ies that selectively tag circulating immune cells but not 
those already infiltrated the tumour, allows cataloguing 
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of transcriptomic states with different durations of TME 
residence and consequently deciphering of the temporal 
dynamics [279]. Much to the excitement of the academia 
and the medical community, the methodological revo-
lution seems to have provided the necessary means to 
materialise the envisioned all-encompassing cell tree for 
CD8+ T cells in health and disease [7]. The much-antici-
pated nomenclatural reform, however, has lagged behind, 
and work still needs to be done to mend the gap between 
the newly acquired high-dimensional information and 
legacy observations from the pre-omics era. Besides, cau-
tion should be exercised when interpreting data from the 
viral models, due to the overlapping but nuanced pheno-
types [56, 81, 84] and asynchronous pace of exhaustion 
[86] between the exhausted CD8+ T subsets in chronic 
viral infections and those in tumours.

That key steps of CD8+ T cell priming and matura-
tion take place across anatomical locations outside of 
the tumour mandates a cross-the-body relay in parallel 
with the phenotypic evolution of tumour-specific CD8+ 
T cells, which is an extremely error-prone process. Any 
misstep could end up with flawed immunotypes that 
render tumour cells inaccessible to the tumouricidal 
arsenal of CD8+ T cells, which operate exclusively in 
close quarters. Conversely, drawing on the continually 
expanding mechanistic insights, each nucleating point of 
CD8+ T anti-tumour immunity, be it the TDLNs, APC-
rich niches, or TLSs, may represent an opportunity for 
therapeutic amplification, and the vascular and stromal 
barriers for ablation, especially in the ‘excluded’ immuno-
type. Similarly, the phenotypic pliability of CD8+ T cells, 
whilst hijacked by TME factors for exhaustion induction, 
is a double-edged sword malleable to therapeutic honing 
in recognised and less obvious ways. In broader terms, 
CD8+ T cells are inscribed with marks of systemic immu-
nological wellbeing, which is dictated by age, sex, hor-
mone levels, antigen exposure history, and comorbidities 
of individuals, but also newly established determinants 
such as commensal microbiota. An elegant testament 
bolstering the linkage is the recent discovery of PD-1 
blockade efficacy enhancement by gut L. johnsonii and C. 
sporogenes, which collaborate to convert tryptophan to 
IPA, a metabolite that promotes H3K27 acetylation of the 
super-enhancer region of Tcf7, thereby diverting CD8+ T 
cells towards differentiation into TPEX [280]. The impacts 
of systemic immune health factors on CD8+ T-medi-
ated anti-tumour immunity are therefore also worthy 
of further investigation, from which individualised and 
easy-to-implement immune-boosting diet and lifestyle 
interventions can be devised.

In conclusion, CD8+ T cells are indispensable for 
executing adaptive antineoplastic response, as they are 
positioned at the converging point downstream of mis-
cellaneous immunomodulatory pathways to administer 

the coup de grâce to tumorous cells by unleashing direct 
cytotoxicity. The vast phenotypic and spatial heterogene-
ity of CD8+ TILs are being unveiled as we venture forth 
into the age of omics. Expanding on the preceding efforts 
to activate, reprogramme, and facilitate the infiltration 
of tumour-specific CD8+ T cells, the first-of-its-kind 
FDA approval for TIL infusion therapy in melanoma has 
officially advanced the forefront of immeasurable pos-
sibilities into clinical practice [281]. Working towards a 
consensus ontogeny to synthesise the multimodal data 
and delving into the mechanistic underpinnings will 
help to maximise the yield of CD8+ TIL-based cancer 
therapies, ultimately translating into better outcomes for 
patients.
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