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Abstract

Background: Previous studies showed that mesothelin (MSLN) plays important roles in survival of pancreatic
cancer (PC) cells under anchorage dependent/independent conditions as well as resistance to chemotherapy. The
recent success of intratumorally-injected adeno-encoded, chemo/radiation-inducible-promoter driven hTNF-a,
(TNFerade) + gemcitabine in pre-clinical models of PC have renewed interest in use of TNF-a as a therapeutic
component. To help find additional factors which might affect the therapy, we examined the resistance of MSLN-
overexpressing pancreatic cancer cell lines to TNF-a-induced growth inhibition/apoptosis.

Methods: Stable MSLN overexpressing MIA PaCa-2 cells (MIA-MSLN), stable MSLN-silenced AsPC-1 cells (AsPC-
shMSLN) and other pancreatic cells (MIA-PaCa2, Panc 28, Capan-1, BxPC3, PL 45, Hs 766T, AsPC-1, Capan-2, Panc 48)
were used. NF-kB activation was examined by western blots and luciferase reporter assay. TNF-a induced growth
inhibition/apoptosis was measured by MTT, TUNEL assay and caspase activation. IL-6 was measured using luminex
based assay.

Results: Compared to low endogenous MSLN-expressing MIA PaCa-2 and Panc 28 cells, high endogenous MSLN-
expressing Capan-1, BxPC3, PL 45, Hs 766T, AsPC-1, Capan-2, Panc 48 cells were resistant to TNF-a. induced growth
inhibition. Stable MSLN overexpressing MIA-PaCa2 cells (MIA-MSLN) were resistant to TNF-a-induced apoptosis
while stable MSLN-silenced AsPC1 cells (AsPC-shMSLN) were sensitive. Interestingly, TNF-a-treated MIA-MSLN cells
showed increased cell cycle progression and cyclin A induction, both of which were reversed by caspase inhibition.
We further found that MIA-MSLN cells showed increased expression of anti-apoptotic Bcl-XL and Mcl-1; deactivated
(p-Ser’®) BAD, and activated (p-Ser’®) Bcl-2. Constitutively activated NF-xB and Akt were evident in MIA-MSLN cells
that could be suppressed by MSLN siRNA with a resultant increase in sensitivity of TNF-a. induced apoptosis.
Blocking NF-xB using IKK inhibitor wedelolactone also increased sensitivity to TNF-a.-mediated cytotoxicity with
concomitant decrease in Mcl-1. Blocking Akt using PI3K inhibitor also had a likewise effect presumably affecting
cell cycle. MIA-MSLN cells produced increased IL-6 and were increased furthermore by TNF-o treatment. SIRNA-
silencing of IL-6 increased TNF-a. sensitivity of MIA-MSLN cells.

Conclusions: Our study delineates a MSLN-Akt-NF-£B-IL-6-Mcl-1 survival axis that may be operative in PC cells, and
might help cancer cells’ survival in the highly inflammatory milieu evident in PC. Further, for the success of
TNFerade + gemcitabine to be successful, we feel the simultaneous inhibition of components of this axis is also
essential.
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Background
The importance of mesothelin (MSLN) as a biomarker
and preferred immunotherapeutic target is steadily
growing for many cancers, including pancreatic cancer
(PC) [1-3]. The functional consequence of MSLN over-
expression in various neoplasms has only recently begun
to emerge. Evidence suggests that MSLN confers resis-
tance to anoikis in breast cancer [4] and chemotherapy
(platinum + cyclophosphamide/paclitaxel) in ovarian
cancer [5]. In pancreatic cancer, it was suggested that
MSLN is up-regulated following K-RAS, p53, p16 muta-
tions [6], denoting its advantage in surviving early geno-
toxic insult. Our previous data [1] showed that MSLN-
induced Stat3/cyclin E promotes survival/proliferation of
pancreatic cancer cells under reduced serum conditions.
Studies to ascertain role of MSLN in resisting other
kinds of stress/apoptotic stimuli are thus warranted.

Tumor necrosis factor-o¢ (TNF-o.) is a vital member of
the TNF-a super family, and plays roles in immunity,
cellular remodeling, apoptosis and cell survival [7]. It
acts primarily through tumor necrosis factor receptor-1
(TNFR1) (55 kD) to induce apoptosis by activating cas-
pases through both mitochondria-dependent and inde-
pendent pathways. A second receptor, TNFR2 (75 kD),
signals primarily in immune cells [8]. TNF-o. was identi-
fied as a cytokine that induces tumor necrosis/regression
in animals [9]. Early studies suggesting an increased
TNF-a sensitivity in oncogene/chemically transformed
cells [10,11] aroused huge hopes but eventually subsided
because of the issue of systemic toxicity. Recently, intra-
tumorally-injected adeno-encoded, chemo/radiation-
inducible-promoter driven hTNF-a, (TNFerade) in con-
junction with conventional chemotherapy (e.g. gemcita-
bine in pre-clinical models of PC without metastasis at
diagnosis) is largely devoid of the toxicity issue and has
generated renewed interest in TNF- o treatment [12,13].
However, a large percentage of patients and/or cell lines
are resistant to TNF-o treatment [14,15]. TNF-a also
plays a significant role in the inflammatory etiology of
pancreatic cancer [16,17]. Macrophages and other
immune cells invading the tumor space, and tumor cells
themselves, secrete TNF-o [17,18]. TNF-o. was found to
support pancreatic cancer cell growth through epider-
mal growth factor receptor (EGFR) and transforming
growth factor (TGF-a) expression [19]. Thus factors
determining cell fate in presence of TNF-a need to be
studied. Therefore, there is a need to: 1) Identify TNE-
a-responsive cells to select patients potentially respon-
sive to TNF-o; and 2) ascertain factors responsible for
resistance in an effort to improve therapeutic
approaches.

NEF-xB proteins are transcription factors induced in
response to inflammatory and other stress stimuli [17].

Page 2 of 14

A majority of cancer cells become resistant to TNF-a as
a result of the activation of NF-xB [17] and consequent
induction of anti-apoptotic molecules (e.g. IAPs/Bcl-
XL), as the pro-survival effects of TNF-a out-perform
the pro-apoptotic effects. Literature shows that blocking
NF-xB activation can overcome TNF-a resistance [17],
although a constitutive NF-xB activation, rather than
the inducible one, has been suggested to be more
important [20].

Here, we aimed at deciphering how MSLN overex-
pression in pancreatic cancer cells affects sensitivity to
TNEF-a-induced apoptosis. A panel of stable MSLN-
overexpressing and MSLN-shRNA silenced cells were
treated with TNF- a and examined for the changes of
relevant signaling pathways, pro- and anti-apoptotic
molecules and cytokine production. Our results demon-
strate that MSLN overexpression leads to constitutive
NEF-xB/Akt activation resulting in resistance to TNF-o
mediated cytotoxicity, presumably through de-activation
of BAD, activation of Bcl-2 and upregulation of Mcl-1,
in an IL-6 dependent manner. Our study may indicate a
very important survival axis of MSLN-expressing pan-
creatic cancer cells in midst of inflammatory cytokines
abundant in this cancer.

Methods

Cell culture, chemicals, and antibodies

Human pancreatic cancer cell lines MIA PaCa-2, Panc
28, Capan-1, BxPC3, PL 45, Hs 766T, AsPC-1, Capan-2,
Panc 48 were purchased from the American Type Cul-
ture Collection (ATCC, Rockville, MD). Puromycin,
anti-B-actin antibody were purchased from Sigma (St.
Louis, MO). Recombinant human TNF-a was from
R&D Systems. Antibodies for p-1xB-a/IxB-a/Bcl-XL/
Bcl-2/Mcl-1/BAX/BAD/phospho-BAD/IKK-o./goat anti-
rabbit IgG-HRP/goat anti-mouse IgG-HRP are from Cell
Signaling Technology Laboratories Inc (Beverly, MA);
p65 antibody was from Santa Cruz Biotechnology (Santa
Cruz, CA); and Lamin A antibody from Abcam (Cam-
bridge, MA). MSLN overexpressing stable cells were
selected in PC cells using retroviral cloning as described
previously [3].

Cell proliferation measurement by cell viability assay
(MTT)

Two thousand cells were plated and serum starved for
24 h. Various treatments were added to the media and
the culture was continued for 2/4/6 days. Proliferating
capacity was measured by dividing the OD (590 nm) at
a time point by OD at 0 day (day after plating cells).
Percent viability was measured by dividing OD value of
the treated cells by that for untreated cells multiplied by
100.
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TUNEL assay

Apoptosis was evaluated by measuring DNA fragmenta-
tion using the Apo-Direct assay kit (Pharmingen, San
Diego, CA) for TUNEL (terminal deoxynucleotidyltrans-
ferase dUTP nick end labeling). Briefly, cells were serum
starved for 24 h (with or without pre-treatments) fol-
lowed by treatment with 0/10/20/50 ng/ml of TNF-a,
for 24/48/72 h. At each time-point, cells were harvested,
fixed in 1% Paraformaldehyde, stained in 300 pL of pro-
pidium iodine/RNase solution and analyzed by flow

cytometry.

Real-Time RT-PCR

MSLN, TNFR1, TNFR2, and GAPDH mRNA levels
were analyzed by real-time RT-PCR using the SYBR
Green supermix kit (Bio-Rad) using 40 cycles at 95°C
for 20 sec and 60°C for 1 min. Target gene mRNA was
normalized to GAPDH mRNA level. Relative mRNA
level was presented as unit values of 2" [Ctgappm) - Ct
(gene of interest)]s Ct = threshold cycle. Primer sequences
for the genes are as follows; hMSLN sense: 5'-CTCA
ACCCAGATGCGTTCTCG-3’, hMSLN antisense: 5-AG
GTCCACATTGGCCTTCGT-3’, hTNFR1 sense: 5’CCT
GGTCATTTTCTTTGGTC TTTG-3’, hTNFR1 anti-
sense: 5’-GGGTGAAGCCTGGAGTGG-3’, hTNFR2
sense: CCAAGCACCTCCTTCCTG, hTNFR2 antisense:
CACCACTCCTATTATTAGTAGA CC, hGAPDH
sense: 5-TGCACCACCAACTGCTTA GC-3', hGAPDH
antisense: 5'-GGCATGGACTGTGGTCATGAG-3'.

Immunoblot analysis

Cells were lysed with lysis buffer (Cell Signaling Tech-
nology, Beverly, MA) with phosphatase and protease
inhibitors. Proteins were then resolved by SDS-PAGE,
transferred to nitrocellulose membrane (Bio-Rad
Laboratories, Hercules, CA) and detected using specific
primary antibodies, appropriate HRP-conjugated second-
ary antibodies and ECL detection system (Amersham
Biosciences, UK). The nuclear/cytoplasmic extracts were
prepared using the N-PER nuclear and cytoplasmic
extraction reagents (Pierce Biotechnology, Rockford, IL,
U. S, A).

Treatment with Wedelolactone

MIA-MSLN and MIA-V were treated with 0, 12.5 or 25
puM of the IKK inhibitor Wedelolactone (Calbiochem La
Jolla, CA). Cells were collected after 24 h and whole cell
and cytoplasmic/nuclear extracts were prepared similarly
as previously described [1] and used for western blot to
detect various proteins. For functional assays following
12 h Wedelolactone treatment, cells were washed thor-
oughly, and then treated with various concentrations of
TNF-a and outcomes measured.
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NF-<B Reporter Assay

One day after plating, cells were co-transfected with 10
pg of pGL3-NF-xB-Firefly luciferase reporter plasmid
and 0.1 pg of pGL3-B-Actin-Renilla luciferase as an
internal control. 24 h post-transfection, cells were har-
vested in reporter lysis buffer and lysates were assayed
for luciferase activities using a dual luciferase assay kit
(Promega, Madison, WI). Luciferase activities were nor-
malized by the ratio of firefly and Renilla luciferase
activities. All experiments were carried out in duplicates.

MSLN and IL-6 shRNA/siRNA transfections

For MSLN shRNA transfection experiments, plasmid
encoding MSLN shRNA (TR311377, Origene, Rockville,
MD) and 29-mer shRNA encoding non-effective expres-
sion plasmid against GFP (TR30003) were used. MIA-
MSLN and MIA-V cells were transfected with MSLN/
IL-6 specific siRNA using Lipofectamine 2000 (Invitro-
gen, CA, USA). Cells treated with transfection reagent
alone (mock) or a control scrambled siRNA (for MSLN
siRNA experiments) were used as negative controls.
Cells/supernatants were collected 48 h post transfection
for mRNA/proteins extraction for real time-PCR/protein
detection and 72 h for apoptosis assays.

Statistical Analysis

A two tailed student’s t-test was used to compare the
statistical difference between two groups. The results
were expressed as the mean with SD. The differences
were considered statistically significant when the p value
was < 0.05, although various levels were represented in
the figures with appropriate symbols in the legends.

Results

High MSLN expressing pancreatic cancer cells are
resistant to TNF-a-induced growth inhibition/apoptosis
To determine the role of MSLN in PC cells’ sensitivity
to TNF-a-induced growth-inhibition/apoptosis, cell
lines with differential MSLN expression levels (Figure
1A) were used, including MSLN-low MIA PaCa-2
(MIA) [3] and Panc 28, and MSLN-high Capan-1,
BxPC3, PL 45, Hs 766T, AsPC-1, Capan-2 and Panc 48
cells. Following serum starvation, cells were treated with
0/20/50 ng/ml of recombinant human TNF-a in serum
free medium and the viability determined by MTT. As
shown in Figure 1B, MSLN-high cells Capan-1, BxPC3,
Hs 766T, AsPC-1, Capan-2 and Panc 48 were relatively
resistant to growth inhibition by TNF-a, showing only
about 8-17% reduction and in most cases these
decreases were not significant. PL 45 was the only cell
line which showed around 30% reduction in viability
upon TNF-a treatment. At least three cell lines (BxPC3,
Capan-2 and Panc 48) actually showed an increase in
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Figure 1 MSLN expression level positively correlates with protection of pancreatic cancer cell lines from TNF-o induced apoptosis. (A).
Evaluation of MSLN mRNA expression in PC cell lines. Relative MSLN mRNA levels in pancreatic cancer cell lines MIA PaCa-2, Panc28, Capan-1,
BXPC3, PL 45, Hs 766T, AsPC-1, Capan-2 and Panc 48 cells. Total mRNA from the cell lines were reverse transcribed and tested for MSLN
expression by Real Time PCR. The results depicted denote MSLN mRNA levels in each cell line normalized to the GAPDH mRNA level. Relative
mRNA level is presented as 2A[Ct{GAPDH)-Ct(MSLN)]. The bars denote SD of duplicate data. (B). A panel of PC cells' viability with or without
TNF-ou treatment. Cells were seeded in 96-well plates, serum-starved for 24 h, and then cultured in serum free medium + 20/50 ng/ml of TNF-a.
for 72 h. Viable cells were quantitated by using MTT assay. Relative fold increase in viability is plotted along Y axis. Data plotted show means of
triplicate wells.
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viability under identical conditions. In contrast, MSLN-
low cells MIA PaCa-2 and Panc 28 had viability drasti-
cally reduced to 50-60% (*p < 0.05) upon TNF-a treat-
ment. These data indicated a positive correlation
between high MSLN expression and increased resistance
against TNF-a. To test if serum level affects viability,
two MSLN-high cells, BxPC-3/AsPC-1, were serum-
starved and treated with 20 ng/ml of TNF-a in 0/0.2/2/
10% FBS-containing media. As shown in Additional File
1, Fig. S1, TNF-a treatment did not affect viability in
either BxPC-3 or AsPC-1 at any of these FBS concentra-
tions. Given these results, we used serum free media for
TNF-a treatment in subsequent experiments.

To further confirm if MSLN overexpression in PC
cells is responsible for resistance to TNF-a-induced
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apoptosis, we selected at least three different clones of
MSLN stably overexpressed MIA PaCa-2 cell lines
(MIA-MSLN) to study the role of MSLN in TNF-a-
induced apoptosis. As shown in Figure 2A, the untrans-
fected MIA PaCa-2 cells, the vector control cells (MIA-
V), and the GFP expressing control cells (MIA-GFP)
showed significant viability reduction (**p < 0.01) upon
TNEF-o treatment, but only MIA-MSLN cells were resis-
tant to this effect (p > 0.05).

We then examined whether reduction in viability of
control cells by TNF-o. was due to decreased prolifera-
tion and/or increased apoptosis. As shown in Figure 2B
about 50% of MIA-V cells underwent apoptosis after
TNEF-o treatment. Under similar conditions, only about
6% of MIA-MSLN cells underwent apoptosis. Bar chart
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cells viability assay with or without TNF-a. treatment. About 3000 cells were plated in 96 well plates, serum starved for 24 h and treated with
TNF-a at 20 ng/ml for 96 h after which viability was measured by MTT. Relative increase in viability was measured by dividing viability at a time
point by viability of same cells at day 0 (day after plating) and is plotted along Y axis. Data plotted show mean of triplicate wells. Bars denote s.
d. of triplicate data. *, # denote p < 0.05, **, ## denote p < 0.01, compared with controls by using student t test. (B). MIA-MSLN cells are resistant
to TNF-a. induced apoptosis using TUNEL assay. Cells were treated + 20 ng/ml of TNF-a for 72 h and apoptosis was measured by TUNEL assay.
Representative flow histograms show percentage of dUTP-FITC-positive apoptotic cells. Lower panel shows mean number of TUNEL positive cells
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(Figure 2B lower panel) from duplicate treatment wells
showed minimal apoptosis in MIA-MSLN cells upon
TNF-a treatment, compared to significant apoptosis in
MIA-V cells (**p < 0.01)). The extent of apoptosis in
MIA-V cells was time and TNF-o concentration-depen-
dent (data not shown). To ascertain whether this protec-
tion against TNF-a was a direct effect of MSLN
overexpression, we used specific siRNA against MSLN
to knock down MSLN expression in MIA-MSLN cells
and examine whether this could reverse the protective
effect. As shown in Figure 2C, treatment with 10 ng/ml
of TNF-a resulted in about 16% and 6% of MIA-V/
mock-transfected MIA-MSLN cells undergoing apopto-
sis, respectively. However, significantly increased apop-
tosis (37%) was observed in MSLN-siRNA transfected
cells. Additional File 2, Fig. S2 confirms that MSLN-spe-
cific siRNA significantly (p < 0.005) knocked down
MSLN mRNA in MIA-MSLN cells. Furthermore, an
examination of 7 high-MSLN-expressing cells Capanl,
BxPC3, PL 45, AsPC-1, Capan-2, Panc 48 revealed that
all of them were more resistant to TNF-a (20 ng/ml, 72
h) induced apoptosis (Table 1). When the base line
TUNEL positivity (without TNF-a treatment) varied
around 5%, TNF-a increased the percentages of TUNEL
positivity to around 8.5% for most of them. AsPC-1 cells
in fact showed a decrease in percentage of apoptotic
cells from 4.7% to 1.8%. In comparison, MIA cells, with
negligible MSLN expression were very sensitive and
showed around 30% apoptosis (Table 1). These data
suggest that MSLN overexpression has a direct effect on
sensitivity/resistance of PC cells to TNF-a.

MSLN confers resistance to TNF-a-induced apoptosis
through caspase-3 activation

To obtain further insight into the mechanism of TNF-
o resistance in MIA-MSLN, we compared caspase-3
cleavage + TNF-a treatment in MIA-V/MIA-MSLN
cells. In accordance with our viability/TUNEL assay

Table 1 Percent of cells undergoing apoptosis by TNF-a
treatment

Cell Line % TUNEL positive % TUNEL positive
(without TNF-o)) (20 ng/ml TNF-or)

MIA 0.0 273

Capan-1 4.7 53

BxPC3 49 76

PL 45 45 29

AsPC-1 4.7 1.8

Capan-2 4.8 87

Panc 48 43 85

Cells were plated in 6 well plates, starved over night and treated with 20 ng/
ml of TNF-a for 72 h. Cells were collected, fixed, washed and then processed
for TUNEL assay.
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data, we found decreased caspase-3 cleavage in MIA-
MSLN cells compared to MIA-V cells upon TNF-a
treatment (Figure 3A). This result was confirmed in
another PC cell line, AsPC-1. Shown in Figure 3B,
silencing MSLN using MSLN specific ShRNA, corre-
lated with increased caspase-3 cleavage with TNF-a
treatment. Furthermore, as shown in Figure 3C, when
MIA-V cells were pre-treated with pan-caspase inhibi-
tor zVAD-fmk, a reduced percentage of apoptosis
(from 87% to about 33%) was observed, indicating that
MIA-V cells undergo caspase-dependent apoptosis
upon treatment with TNF-a, while MIA-MSLN cells
are resistant.

Upregulated anti-apoptotic proteins and downregulated
pro-apoptotic proteins in MIA-MSLN cells

To further delineate the mechanism of TNF-a-resis-
tance in MIA-MSLN cells, we examined expression of
key anti/pro-apoptotic molecules + TNF-a treatment.
As shown in Figure 3D, two anti-apoptotic Bcl-2
family members, Bcl-XL/Mcl-1, were upregulated in
MIA-MSLN cells. Importantly, Mcl-1 levels remained
high even after TNF-a treatment. In MIA-V cells, on
the other hand, Mcl-1 level increased slightly upon
TNF-a treatment, but still remained lower than in
MIA-MSLN cells. Another significant aspect is
increased phosphorylation of anti-apoptotic molecule
Bcl-2 at Ser70 position in its positive regulatory loop
enhancing its anti-apoptotic action [21]. MIA-MSLN
cells had increased p-Ser70; which could be a major
factor behind the observed TNF-a resistance. In a
dose-dependence study, we found that even with 50
ng/ml TNF-o treatment, Bcl-XL/Mcl-1 expression
were still high in MIA-MSLN cells compared with
control cells (Figure 3E). TNF-a treatment slightly
decreased expression of two pro-apoptotic molecules,
BAX and BAD (Figure 3D) in MIA-MSLN cells com-
pared with a slight increase of BAX in control cells.
Dephosphorylated BAD promotes apoptosis by binding
and sequestering Bcl-2 and/or Bcl-XL away from pro-
apoptotic Bax/Bak proteins [22,23]. Phosphorylated
BAD, conversely, is bound and sequestered in cytosol
by the chaperone protein 14-3-3. Phosphorylations at
Ser75/Ser99/Ser118 are thus inhibitory for the pro-
apoptotic function of BAD [24,25] as these affect inter-
actions with 14-3-3 and/or Bcl-2 family members. The
p-BAD (Ser75) level was consistently high in MIA-
MSLN + TNF-a treatment (Figure 3D, E) and thus
might make BAD ineffective in inducing apoptosis in
MIA-MSLN cells. Further, MIA-V pre-treatment with
zVAD-fmk reversed the pattern of expression of the
above pro- and anti-apoptotic molecules in the TNF-a
treated MIA-V (Figure 3F), concomitant with the
apoptosis reversal as shown in Figure 3C.
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Figure 3 MSLN overexpression makes PC cells resistant to TNF-a. induced apoptosis through reduced Caspase 3 cleavage and up
endogenous MSLN in AsPC-3 cells renders it sensitive to TNF-a induced apoptosis through increased Caspase 3 cleavage. Panel (i) shows the

reduction of MSLN expression level in AsPC-shMSLN stable cell line. Panel (i) shows the increased caspase 3 cleavage upon TNF-a treatment.

without treatment of 20 ng/ml TNF-a assayed by Western blot. (E). Effect of different TNF-a. doses on selected pro/anti-apoptotic molecules
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TNF-a induced cyclin A and concomitant cell cycle
progression in MIA-MSLN cells

Loss of cyclin A and G1-cell cycle arrest was found to
precede cell-killing by TNF-a in endothelial cells [26].
TNF-o promoted cell cycle progression and cyclin A
synthesis in serum starved HeLa cells to rescue them
from pro-apoptotic effects [27]. To determine whether
TNEF-o treatment promotes cell cycle progression or
arrest in MIA-MSLN cells, cell cycle analysis was used.
Shown in Figure 4A, we found an induction of serum-
starved MIA-MSLN cells into S phase (from 27.8% to
50%) by 10/20 ng/ml of TNF-a in presence of 0.2%
serum with concomitant decrease of cells in GO/G1
phase. In contrast, the number of MIA-V cells going to
S phase was much lower (from 29% to 33%). This

indicates that TNF-a promotes growth of MSLN overex-
pressing cells. We further examined S-phase promoting
cyclins A/E [28] and cdk2. Consistent with our previous
report [1], cyclin E/cdk2 were slightly elevated in MIA-
MSLN cells but remained unaffected by TNF-a treat-
ment (Figure 4B). However, there was a clear induction
of cyclin A in MIA-MSLN cells but not in MIA-V cells
by TNF-a treatment.

Since we found previously that caspase inhibitor z-
VAD-fmk rescued MIA-V cell from TNF-a-induced
apoptosis, we examined its effect on both S phase pro-
gression and cyclin A induction. Interestingly, z-VAD-
fmk pre-treatment not only decreased the apoptotic
sub-GO fraction (from 8% to 2.9%), it also increased
MIA-V cells in S phase (from 15.4% to 26.9%) by TNEF-



Bharadwaj et al. Molecular Cancer 2011, 10:106
http://www.molecular-cancer.com/content/10/1/106

Page 8 of 14

' B. MA-Y MAMSLH
Gontrol TNF-c10 ng/mi TNF-c 20 ng/ml 0 10 20 0 10 20 THF-a {ngimi)
) 614 e {57 4 100 1567 P— ' e |<CyciinE
w 1000 1008 —
MA-V E oo
* s J 292 L J 324 so 33.2 79 ’ PR ISST— -Ter )
. 75 ] L . - »
] wo an o0 Eoo Wm0 ] 00 40 EOD mWOD  TEO0 [ ] 00 400 GO0 mWoD mog
100 n )
- 60.6 - 30.0 1::: 337 - - “ «Cytlin A
2 o 00
MA-MSLN 2 523 . !
*® 5 278 LT . 513 - BActin
75 75 1 77 ———
! o o W mo m wo ! o wo mo wme wm om0 40 E00 00 W
=
C D. g
- MIA-V - = »
= <
MIA-MSLN DMSO ZVAD-fmk H E
1500 + + + TNF- & 50 ngiml
1:0{49.0 1500 51 +  2\AD-fmk
1000
1000 ] 1000
00 50 500 -_— e («Cydin A
1 26.9
53 [\ 23 122 . NEL 1143 _
O an e b oo L0 Mo @ WO w0 1m0 0 200 a0 00 800 1000 —— v — |+ f AN
TNF-a50 ngiml TNF-a50 ngiml
Figure 4 TNF-a induces S phase progression and induction of cyclin A in MIA-MSLN cells. (A). Cell cycle analysis of MIA-V/MIA-MSLN cells
treated with 10/20 ng/ml of TNF-a for 24 h. (B). Cell cycle related molecules detection by western blot using the lysates from cells treated as in
(A). (©). Cell cycle analysis of MIA-V/MIA-MSLN cells after pre-treatment with ZVAD-fmk and then treated with 50 ng/ml of TNF-a for 72 h. (D).
Cyclin A detection by western blot using the cell lysates from cells treated as in (C).

o treatment (Figure 4C). This indicates that a failure to
go into DNA synthesis is linked to MIA-V cells’ induc-
tion to apoptosis by TNF-a treatment. In agreement
with this observation, cyclin A expression also increased
in z-VAD-fmk treated MIA-V cells (Figure 4D).
Together, our data shows that TNF-a induces MSLN
overexpressing PC cells progress to S phase through
upregulation of cyclin A which makes the cells resistant
its cytotoxic effects.

The level of TNF receptor-1 expression is unchanged
upon MSLN overexpression

To further dissect MIA-MSLN cells’ resistance to TNF-o.-
induced apoptosis, we examined the expression of TNF
receptors one (TNFR1) and two (TNFR2). Real-time PCR
data showed there was high expression of TNFR1 (Addi-
tional File 3, Fig. S3A) and low expression of TNFR2 (data
not shown) in both MIA-V and MIA-MSLN cells. TNFR1
was slightly decreased in MIA-MSLN cells (statistically
insignificant). Western blot analysis showed that there was
no significant difference of TNFR1 protein (~55 kD)
expression between MIA-V and MIA-MSLN cells (Addi-
tional File 3, Fig. S3B). This data indicate that resistance of
MSLN high expressing cells to TNF-o. may not be caused
by a differential receptor expression on these cells.

MSLN overexpression induces NF-xB activation and
nuclear translocation of its subunits in pancreatic cancer
cell MIA PaCa-2

To identify signals activated by MSLN, we examined
various transcription factors, kinases, and related inter-
mediates in MIA-MSLN cells. One of our major find-
ings is that MIA-MSLN cells had significantly higher
constitutive NF-xB activity than control cells. As repre-
sented in Figure 5A, relative NF-xB luciferase activity
was increased 26-fold in MIA-MSLN cells compared to
control cells. Figure 5B-(i) shows an increased nuclear
translocation of p65/p50 subunits in MIA-MSLN cells.
MSLN shRNA reduced nuclear translocation of p65
(Figure 5B, ii), indicating a causal relationship between
MSLN overexpression and NF-xB activation.

Nuclear translocation of p65 was observed in two dif-
ferent MSLN overexpressing cell populations selected at
different times (Figure 5C). We also observed an
increased phosphorylation of NF-xB cytoplasm-seques-
tering inhibitor IxB-a (Figure 5C). Not surprisingly, we
found an increased expression of IxB-a, a NF-£B regu-
lated gene, in both MSLN overexpressing cells. An
increased phosphorylation of NF-xB subunit p65 was
also seen. All these data indicate that the IKK-IxB-a
pathway may be operative in MSLN overexpressing cells.
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MSLN overexpression activates Akt activity in pancreatic
cancer cells

To delineate MSLN-induced signaling, we also examined
Akt pathway in MSLN overexpression or silencing stable
cells. Shown in Figure 5D, we found activation of Akt
(increased p-Thr473 and total Akt), the Akt kinase
PDK1 (p-Ser241), and a deactivation of Akt inhibitor
PTEN (p-Ser380) in MIA-MSLN cells. Correspondingly,
the MSLN-silenced AsPC-1 cells (AsPC-shMSLN) had
decreased p-Akt, p-GSK-3B (p-Ser9), PDK1 (p-Ser241)
and PTEN (p-Ser380). Together, this data indicate that
MSLN expression leads to Akt activation in PC cells.

Abrogating the PI3K and NF-xB activity sensitizes MIA-
MSLN cells to TNF-o-induced apoptosis

Aberrant NF-£B activity in cancer cells is implicated in
apoptosis resistance to various stimuli, including inflam-
matory cytokines like TNF-a [17]. Activated Akt was
implicated in proliferation/survival of PC cells and/or
resistance to TNF-a mediated cell death in various can-
cers [29,30]. Here, we found that MSLN-induced NF-xB

rescues cells from TNF-a-induced apoptosis. Pre-treat-
ment with the pharmacological IKK inhibitor wedelolac-
tone or the PI3K inhibitor Ly2940002 rendered MIA-
MSLN cells sensitive to TNF-o.-mediated viability reduc-
tion (Figure 6A, B) and apoptosis (Figure 6C). While the
MIA-V cells had a 45% reduction in cell viability follow-
ing TNF-a treatment, 100% of MIA-MSLN cells
remained viable after 3 days of treatment. Twelve hours
pre-treatment with Wedelactone, however, made MIA-
MSLN cells extremely sensitive to TNF-a-induced apop-
tosis, with 83% and 93% reduction in viability respec-
tively with 12.5 pug/ml and 25 pug/ml of Wedelolactone
(Figure 6A). Pretreatment with Ly294002 also reduced
viability to similar levels (Figure 6B). The TUNEL-posi-
tive apoptotic fraction of MIA-MSLN cells after TNF-o
treatment (20 ng/ml, 72 h) increased from 5% to 80%
(Figure 6C) upon pre-treatment with 25 pg/ml of Wede-
lolactone and 44% upon pretreatment with Ly294002.
These data clearly indicate a role of constitutive NF-xB
as well as activated Akt in MIA-MSLN cells’ protection
from TNF-o-induced apoptosis.



Bharadwaj et al. Molecular Cancer 2011, 10:106
http://www.molecular-cancer.com/content/10/1/106

Page 10 of 14

A 1T 1 B
1207 —— 1209 —— [
l: —
= I: =
o 80 4
= £ S 804 .
-y a =
£3 Z3
o— T
85 40- g5
> > " S = 40 4
2 i — a
2 ;.E "
0 - - - - - - 0
TNFa - * - * * * TNFa - + - + + +
Wedelolactone - - - 125uM  25uM LY 2940002 N . 25uM 50uM
M-V MIA-MSLN MIAV MIAMSLN
C.
D. MA-Y MA-MSLH
MA-V MA-MSLN ; N + ‘: * + ;:;—(“Hﬂ'ﬂ"l
.. - . s - Ly2940002
DMSO Ly2940002 Wedelolactone - - - - - + Wedelolactone
S = = — e == Cazpezel {Unclegved)
-g g g 44% -g B80%
bt S 3 S — e —— e Mcl-1
© F vivem srem O Fevremy rrewy rorm O FH vy rrrwwpaer
0% 01 102 0% 0% 0% 10" 102 10% 0% 0% 0! 102 10% 10? | e = gED GED SR s [« Bolxl
FL1-H FL1-H FL1H
.
With 20 ng/ml TNF o treatment — i —— o — (4 B AX
Figure 6 Inhibiting NF-<B/Akt pathway or endogenous IL-6 abrogates MIA-MSLN cells resistance to TNF-o-induced apoptosis. (A). MIA-
MSLN cell viability was reduced upon pre-treatment with IKK inhibitor wedelolactone and then 20 ng/ml of TNF-a for 72 h. (B). MIA-MSLN cell
viability was reduced upon pre-treatment with PI3K inhibitor Ly 2940002 and then 20 ng/ml of TNF-a for 72 h. (C). Cell apoptosis was
determined by TUNEL assay in samples treated as in (A) and (B). (D). Proteins from similarly treated cells were subjected to western blot to
detect caspase 3 cleavage and key pro/anti-apoptotic molecules.

Inhibiting PI3K and NF-xB activity increases Caspase
activity and decreases anti-apoptotic protein expression
in MIA-MSLN cells

We further found that both Ly294002 & Wedelolactone
pre-treatment increased caspase-3 activation in MIA-
MSLN cells after TNF-a treatment compared with con-
trols (Figure 6D). In addition, the levels of Mcl-1/Bcl-XL
were also reduced in Wedelolactone/TNF-o-treated
MIA-MSLN (Figure 6D). Interestingly, we did not find a
reduction in Mcl-1 by Ly294002 pre-treated cells. We
then did a cell cycle analysis (Additional File 4, Fig. S4)
with similar treatments and found that Ly2940002/TNE-
o caused a G1 arrest (from 54.6%G1/26.6%S to 73.6%
G1/12.4%S) of MIA-MSLN. In contrast, Wedelolactone/
TNF-a treatment decreased S phase cells (to 17.4%) but
increased G2 (23.9%) and partly increased sub GO cells
thus denoting a G2 arrest and apoptosis. Our data
strongly implicate Mcl-1 may act as a major molecule
that protecting MSLN overexpressing cells from TNF-o.-
mediated cytotoxicity.

Silencing the endogenous production of IL-6 in MIA-
MSLN cells increases the sensitivity of the cells to TNF-o-
mediated cytotoxicity

We previously showed that cells overexpressing MSLN
either naturally (e.g. BxPC3) or artificially (e.g. MIA-
MSLN) express increased IL-6 at both mRNA/protein
levels [31]. We also found this IL-6 was NF-xB-regu-
lated. Previous studies showed IL-6 as protective against
cytokine-induced apoptosis in various cells [32,33]. We
asked whether protective effect of MSLN against TNF-o
is due to increased IL-6. We examined IL-6 production
by MIA-V/MIA-MSLN cells + TNF-a treatment. As
demonstrated in Figure 7A, a significantly higher pro-
duction of IL-6 was observed in MIA-MSLN cells, and
this was further increased by TNF-o treatment. We
then blocked IL-6 production using IL-6 specific siRNA
pool and examined the effect of TNF-a treatment on
apoptosis by TUNEL. Shown in Figure 7B, IL-6-silenced
MIA-MSLN cells had increased apoptotic (28% TUNEL
positive) fraction after TNF-a treatment compared to
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only 9% in non-targeting siRNA transfected cells, indi-
cating the protective role of IL-6.

Discussion

In our previous publications, we have reported that
MSLN overexpression is associated with increased
migration [3], and increased colony forming ability

under both anchorage independence as well as in matri-
gel [31]. These characteristics all pointing towards a
tumorigenic role and metastasis related phenotypes of
mesothelin. The current study is a significant step for-
ward in understanding the role of MSLN in PC patho-
genesis, especially with regards to cancer cell survival in
a highly inflammatory milieu, a hallmark of this deadly
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cancer. There is a clear correlation between MSLN level
and resistance to TNF-a induced apoptosis in various
PC cells lines. We also convincingly show that forced
overexpression of MSLN in the PC cell line MIA PaCa-
2 made these cells resistant to TNF-a-induced growth
inhibition/apoptosis, and that silencing endogenous
MSLN in AsPC-1 cells renders these cells sensitive.
TNF-o also induced S-phase promoting effects in MIA-
MSLN cells with concomitant induction of cyclin A.
Furthermore, an increased constitutive activation of NF-
kB in MIA-MSLN cells seemed to be responsible for its
apparent TNF-a resistance, as blocking this activation
using the IKK inhibitor wedelolactone significantly
increased the sensitivity to TNF-o.-mediated cytotoxicity.
Similarly, an activated Akt pathway also contributes
towards resistance to growth inhibition by TNF-a.
Furthermore, high endogenous production of NF-xB-
regulated IL-6 and increased Mcl-1 seem to be direct
players in this protection. Our results describe a novel
function for MSLN, inducing an NF-xB/Akt-dependent,
anti-apoptotic pathway which can protect PC cells from
TNF-a-induced apoptosis, and describe a probable
mechanism of PC cell survival in midst of inflammation
and inflammatory mediators.

Previous data [14,34] and ours presented here show
that PC cell lines Capan-1, BxPC3, PL 45, Hs 766T,
AsPC-1, Capan-2, Panc 48 cells are resistant to TNF-a.
Interestingly, all these cells have high MSLN expression
[35], while TNF-a sensitive cells such as MIA PaCa-2
and Panc 28 expresses low MSLN [35]. In addition,
silencing MSLN expression in AsPc-1/MIA-MSLN cells
reversed the TNF-a resistance, indicating a direct role
of MSLN. The ability of normal mesothelial and
mesothelioma cells [36-38] to survive/proliferate in pre-
sence of TNF-a is intriguing. Another interesting obser-
vation is that TNF-a induces MIA-MSLN cells to go
into cell cycle rather than stalling the process, similar to
previous reports of auto/paracrine growth stimulation
by TNEF-a [17]. PC cells are prone to proliferation by
TNF-a through up-regulation of PDGF [39] and/or
EGFR/TGF-a [19]. Given our data it’s a strong proposi-
tion that MSLN contribute towards this. Further, our
PI3 kinase inhibition data indicates that the cells’ ability
to evade growth inhibition might be due to activated
Akt found in these cells.

Mesothelin promotes both survival and proliferation
under anchorage dependence [1,3] and independence
[4,31] in low serum conditions [31]. Furthermore, loss
of cyclin A and G1-cell cycle seemed to proceed cell-
killing by TNF-a in endothelial cells & TNF-o pro-
moted cell cycle progression and cyclin A synthesis
[26,27]. Based on these facts, we raised a question
whether a lack of cell cycle promotion by TNF-a is
essential for its pro-apoptotic role in MSLN-low cells.
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In addition, caspase inhibition not only decreased the
apoptotic sub-GO fraction (from 8% to 2.9%), but also
increased MIA-V cells in S phase (from 15.4% to 26.9%)
by TNF-a treatment (Figure 4C). This indicates that a
failure to go into DNA synthesis is linked to MIA-V
cells” induction to apoptosis by TNF-a treatment.

Bcl-2 regulates apoptosis by heterodimerization with
its pro-apoptotic partner, Bax, to maintain mitochon-
drial integrity [40]. Phosphorylation of Bcl-2 at Ser70 is
necessary for its anti-apoptotic function [41]. Although
we have not identified the responsible kinase, neverthe-
less an increased p-Ser70 in MIA-MSLN cells is a signif-
icant observation with respect to its anti-apoptotic role.
BAD is a pro-apoptotic Bcl-2 family member coordinat-
ing survival and mitochondrial cell death signals [42].
BAD phosphorylation is essential to block apoptosis
[24]. An increased Ser75 phosphorylation of BAD in
MIA-MSLN cells could be thus critical for its anti-apop-
totic functions. PI3K activity supports EGF/serum
induced survival of cancer cells, through phosphoryla-
tion-mediated inactivation of BAD [43] although other
kinases could also control Ser75 phosphorylation [25].
Given that inhibiting PI3K activity rendered MIA-MSLN
cells sensitive to TNF-a, the pathway could be involved
in BAD-inactivation and hence protection from TNF-a.
Another interesting finding is that Mcl-1 is a major
player in MSLN-induced resistance to TNF-a. Although
primarily a Stat3 regulated gene, NF-xB regulated Mcl-1
is responsible for TRAIL resistance in various tumors
[44,45] including the MSLN-high PC cell line BxPC-3
[46]. The fact that MIA-MSLN cells have activated Stat3
[1] indicates a probable role of the factor in TNF-a
resistance as well. MSLN-induced Mcl-1 upregulation
has been reported in taxol resistant ovarian cancer cells
[47] indicating its importance in MSLN induced protec-
tion from various apoptotic stimuli.

TNF-a induces NF-xB activation in most cells [17,18]
but this is not always sufficient to avoid the pro-apopto-
tic effects of TNF-a; rather, a constitutive activation of
NE-xB seems to be necessary [20]. Similarly, we found
that constitutively activated NF-xB is responsible for
resistance to TNF-a-induced apoptosis. Autocrine IL-6-
induced Mcl-1 could protect prostate cancer cells from
apoptosis [33]. IL-6 also protects pancreatic islet beta
cells from TNF-o-induced cell death [32]. Incidentally,
MSLN is highly expressed in the islet beta cells of devel-
oping rat pancreas [48] leading one to speculate its role
in IL-6 production and subsequent TNF-o protection.
We found that MIA-MSLN cells produce increased IL-6
in a NF-xB regulated manner [31] and IL-6 production
increased significantly upon TNF-a treatment. In fact,
studies reveal that co-operative action of IL-6 and TNEF-
o induces proliferation during liver regeneration after
multiple partial hepatectomy [49]. Thus it could be the
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co-operativity between the two that results in S-phase
induction by TNF-o under reduced serum conditions.
The elevated IL-6 may be responsible for increased Mcl-
1 expression and partially contribute to Stat3 activation
in these cells. More precisely, we hypothesize that a
MSLN-NEF-£B-IL-6-Stat3-Mcl-1 axis may be a major
survival axis operating in these cells. Our data clearly
show that silencing endogenous IL-6 increased sensitiv-
ity of MIA-MSLN cells to TNF-a-induced cell death.
Although Mcl-1 is not a direct target for Akt, NF-kappa
B and Akt signaling pathways can converge. Therefore,
an indirect relationship could be established between
Akt and Mcl-1 through NF-xB. MSLN-Akt-NF-kB-IL-6-
Mcl-1 survival axis could be unique for PC cells.

The recent success of intratumorally-injected adeno-
encoded, radiation-inducible-promoter driven hTNF-a,
AdEgr. TNF.11D (TNFerade)+gemcitabine [12] proves
TNF-a could still be useful as anti-tumor agent. The
balance between cytotoxicity and stimulation of growth
factor synthesis determines which biological effects will
finally result from TNF-a. This critical balance even-
tually decides which PC cells might escape the anti-pro-
liferative effects of TNF-a, and the effects that these
properties will have on patient tumors. Deciphering the
mechanism of TNF-a resistance in MSLN-expressing
tumors would thus help provide rationale for designing
combined chemotherapy with TNF-a + MSLN inhibi-
tion to efficiently target these tumors.

Conclusions

In summary, we found that MSLN overexpressing cells are
generally resistant to TNF-o induced cytotoxicity and cell
inhibition, which helps the cells thrive in an inflammatory
milieu which is a hallmark of PC. There is a renewed inter-
est in intratumorally-injected TNFerade in conjunction
with conventional chemotherapy in PC without metastasis
at diagnosis. Because MSLN is expressed in about 90% of
PC patients, a simultaneous blocking of its action is war-
ranted for the success of a therapeutic regimen.

Additional material

Additional file 1: Additional Figure S1: Effect of serum on the
resistance to TNF-a mediated cytotoxicity. The MSLN-high BxPC3 and
AsPC-1 cells were tested for viability by MTT assay after treatment with
20 ng/ml of TNF-a for 72 h. Data plotted shown mean value from
quadruplicate wells.

Additional file 2: Additional Figure S2: Knocking-down MSLN
expression in MIA-MSLN cells by specific siRNA directed against
MSLN. Y axis shows the GAPDH-normalized mRNA levels as 2/A[Ct
(GAPDH)-Ct(MSLN)]. Bars denote s.d. of duplicate data. *, # denote p <
0.05, **, ## denote p < 0.01, compared with controls by using t test.

Additional file 3: Additional Figure S3: TNFR1 expression levels in
MIA-V/MIA-MSLN cells. (A). Real-time PCR analysis of TNFR1 relative
MRNA levels. Results denote GAPDH-normalized mRNA levels as 2A[Ct
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(GAPDH)-Ct(TNFRT1)]. The bars denote s.d. of duplicate data. (B). Western
blot data showing TNFR1 protein expression in MIA-V/MIA-MSLN cells.

Additional file 4: Additional Figure S4: Sub-confluent MIA-V/MIA-
MSLN cells were serum starved for 24 h and then treated with 10/
20 ng/ml of TNF-o for 72 h. Cells were collected and fixed, Pl-stained,
and analyzed for cell cycle phase distribution (percentage of cells) with
FACS. Percentage of cells in GO/G1, S, G2/M phase are shown against the
respective peaks in the histograms.

List of abbreviations

MSLN: mesothelin; PC: pancreatic cancer; TNF-a: Tumor necrosis factor-a;
TNFR: tumor necrosis factor receptor; TNFerade: adeno-encoded, chemo/
radiation-inducible-promoter driven hTNF-a; MIA-MSLN: a MIA PaCa2 cell line
that stably overexpressing MSLN; MIA-V: a MIA PaCa2 cell line with vector
control; MIA-GFP: a MIA PaCa2 cell line that stably overexpressing GFP;
HPDE: Human pancreatic ductal epithelial cell
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