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Abstract

appears to be the result of altered coactivator binding.

mitochondrial metabolism and breast differentiation.

Background: BRCA1 has recently been identified as a potential regulator of mammary stem/progenitor cell
differentiation, and this function may explain the high prevalence of breast cancer in BRCAT mutation carriers, as
well as the downregulation of BRCA1 in a large proportion of sporadic breast cancers. That is, loss of BRCA1
function results in blocked differentiation with expansion of the mammary stem/progenitor cells. Because BRCA1
also maintains genomic integrity, its loss could produce a pool of genetically unstable stem/progenitor cells that
are prime targets for further transforming events. Thus, elucidating the regulatory mechanisms of BRCAT expression
is important to our understanding of normal and malignant breast differentiation.

Results: Loss of BRCA1 expression in the ErbB2-amplified SK-BR-3 cell line was found to be the result of loss of
activity of the ets transcription factor GABP, a previously characterized regulator of BRCA1 transcription. The
expression of the non-DNA binding GABPB subunit was shown to be deficient, while the DNA binding subunit,
GABPa was rendered unstable by the absence of GABPB. Deletion analysis of the GABPB proximal promoter
identified a potential NRF-1 binding site as being critical for expression. Supershift analysis, the binding of
recombinant protein and chromatin immunoprecipitation confirmed the role of NRF-1 in regulating the expression
of GABPB. The siRNA knockdown of NRF-1 resulted in decreased GABPB and BRCAT1 expression in MCF-7 cells
indicating that they form a transcriptional network. NRF-1 levels and activity did not differ between SK-BR-3 and
MCF-7 cells, however the NRF-1 containing complex on the GABPB promoter differed between the two lines and

Conclusions: Both NRF-1 and GABP have been linked to the regulation of nuclear-encoded mitochondrial proteins,
and the results of this study suggest their expression is coordinated by NRF-1's activation of the GABPB promoter.
Their linkage to BRCAT, a potential breast stem cell regulator, implies a connection between the induction of

Background

BRCAL1 has been implicated in functions such as DNA
repair, cell-cycle checkpoint control, protein ubiquiti-
nylation, chromatin remodelling and transcriptional
regulation (for reviews see [1,2]). However, the discov-
ery that BRCA1 is required for mammary stem/pro-
genitor cell differentiation [3] has cast BRCAL in a
different light. Mammary stem cells produce two cell
populations - the inner luminal epithelial cells which
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express low molecular weight cytokeratins and estro-
gen receptor o (ERa), and the outer supporting basal
myoepithelial cells which express high molecular
weight cytokeratins and smooth muscle markers [4].
Liu et al. (2008) demonstrated that knockdown of
BRCAL1 in both in vitro and mouse model systems
causes an increase in the stem/progenitor and myoe-
pithelial cell populations (ERa-negative), and a
decrease in the differentiated luminal epithelial cell
population (ERa-positive). These results are consistent
with the fact that BRCA1 activates ERa gene expres-
sion [5], and indicate that BRCA1l expression is
required for the differentiation of mammary stem/
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progenitor cells into luminal epithelial cells and its loss
results in blocked differentiation with expansion of the
stem/progenitor cells [3]. Because BRCA1 also func-
tions in maintaining genomic integrity (reviewed in
[6]), these cells are more likely to progress to malig-
nancy. Characterization of epithelial subpopulations in
preneoplastic tissue from BRCA1 mutation carriers
identified an aberrantly expanded luminal progenitor
cell population as the likely target of transformation
[7]. This model is also consistent with clinical data, i.e.
the vast majority of breast tumours in women with
germ-line mutations in BRCAI display a basal-like
(stem cell-like) phenotype characterized by a lack of
expression of ER, PR and ErbB2 and robust expression
of markers of myoepithelial differentiation [8]. Thus,
there is strong evidence to suggest that loss of BRCA1
generates a cancer stem cell capable of initiating and
driving breast tumour formation.

While mutational inactivation of BRCA1 in some
familial breast and ovarian cancer is seen [9], a consis-
tent pattern of BRCAI gene mutation has not been
identified in sporadic breast tumours [10-12]. However,
decreased BRCAI expression is observed in sporadic
breast tumours, with decreasing expression correlating
with increasing tumour grade [13-15]. This suggests that
BRCA1 downregulation in sporadic cancer may also
lead to a block in stem cell differentiation with the
attendant increase in cancer risk.

The transcriptional regulation of the BRCA1 gene is
complex with a variety of transcription factor binding
sites having been identified (reviewed in [16]). Our
previous analysis of the BRCA1 promoter had pointed
to the ets transcription factor GA Binding Protein
(GABP) and its RIBS binding element as key regulators
of BRCA1 expression, particularly as it relates to its
decrease in sporadic breast cancers [17]. The SK-BR-3
cell line, which overexpresses ErbB2, is known to have
particularly low levels of BRCA1 protein. In this study,
the BRCA1 promoter was shown to be less active in
SK-BR-3 cells and the activity of the GABP protein
was shown to be compromised. GABP is comprised of
two distinct and unrelated subunits - GABPa, which
contains the DNA-binding domain, and GABPj, which
contains the nuclear localization signal and transcrip-
tional activation domain [18-21]. The expression of the
GABPp gene was shown to be decreased in SK-BR-3
cells and is in turn regulated by Nuclear Respiratory
Factor-1 (NRF-1) [22]. While NRF-1 levels and activity
are similar between MCF-7 and SK-BR-3 cells, the
NREF-1 specific complex was altered suggesting that a
coactivator interacting with NRF-1 differs between the
two lines. BRCA1 expression appears to be regulated
by a transcriptional network consisting of NRF-1 and
GABP.
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Methods

Cell culture

The human breast carcinoma cell lines MCF-7, T-47D,
SK-BR-3, ZR75-1 and MCF-10A were obtained from the
ATCC (Manassas, VA, USA), while 184hTERT cells [23]
were a generous gift of Dr. Calvin Roskelley. MCF-7 and
T-47D cells were maintained as previously reported [24].
ZR75-1 cells were maintained as per MCF-7/T-47Ds.
SK-BR-3 cells were maintained in Dulbecco’s modified
Eagle’s medium (Sigma, Oakville, Canada) supplemented
with 10% fetal bovine serum (HyClone, Logan, UT,
USA), 100 pg/mL streptomycin (Sigma) and 100 units/
mL penicillin (Sigma). MCF-10A cells were maintained
in DMEM F12 with L-Glutamine (HyClone) supplemen-
ted with 5% horse serum (Invitrogen, Burlington,
Canada), 20 ng/mL epidermal growth factor (Invitro-
gen), 10 pg/mL insulin (Sigma), 0.5 pg/mL hydrocorti-
sone (Sigma), 100 ng/mL cholera toxin (Sigma), 100
units/mL penicillin and 100 pg/mL streptomycin.
184hTERT cells were maintained in Clonetics® MEBM
medium supplemented with Clonetics® SingleQuot, 400
pg/mL G418 (BioShop, Burlington, Canada), 1 pg/mL
transferrin (BD, Mississauga, Canada) and 1.25 pg/mL
isoproterenol (Sigma). Cells were cultured in a humidi-
fied atmosphere at 37°C and 5% CO,.

DNA constructs

Creation of L6-pRL has been previously described [24].
To create the FLAG-GABPa construct, the human
GABPo gene was PCR amplified using pCAGGS-
E4TF1-60 (obtained from Hiroshi Handa, [25]) as the
template with the primers specified in Additional File 1.
The GABPa PCR product was cloned into the pSCT-
Gal vector using the restriction enzymes Xbal/HindIIL
The pSCT-Gal-GABPa construct was then digested
with HindlIIl, filled-in by Klenow, and then cut with
Xbal. The p3xFLAG-CMV-10 vector (Sigma) was cut
with BamH]I, filled-in using Klenow, and digested with
Xbal. The complete FLAG-GABPa construct was
obtained by ligation of these two fragments. To generate
the FLAG-GABPJ construct, the human GABPP gene
was PCR amplified using pCAGGs-E4TF1-53 (obtained
from Hiroshi Handa, [25]) as the template with the pri-
mers specified in Additional File 1. The GABP PCR
product was then cloned into the pMAL-c2 vector (New
England Biolabs (NEB), Pickering, Canada) using the
restriction enzymes Xbal/Sall. Isopropyl B-D-1-thioga-
lactopyranoside (IPTG)/Xgal colour screening was used
to select positive clones. The GABPJ fragment was then
cut out of the pMAL-c2 vector using Sall, filled in by
Klenow, and subsequently digested using Xbal. The
p3xFLAG-CMV-10 vector was prepared by first cutting
with BamHI, followed by a Klenow fill-in reaction, and
then digestion using Xbal. The final FLAG-GABPf
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construct was generated by the ligation of these two
fragments. pTRE-tight-GABPP was prepared by digest-
ing FLAG-GABPP with Sacl (partial) and Xmal and
cloning the FLAG-tagged GABPJ sequence into pTRE-
tight (Clontech, Mountain View, CA, USA).

To create the NRF-1 expression vector, pTRE-tight-
GABPp was digested with Bglll and Mlul to remove the
GABPp sequence, but retain the FLAG sequence. The
human NRF-1 coding sequence was PCR amplified from
pSG5-NRF-1 [26], a generous gift of RC Scarpulla, using
the primers specified in Additional File 1. The PCR pro-
duct was digested with BglIl and Mlul and cloned into
pTRE-tight with the FLAG sequence to create pTRE-
tight-NRF-1. The FLAG-tagged NRF-1 sequence was cut
from pTRE-tight-NRF-1 using Sacl and Xbal and cloned
into p3xFLAG-CMV-10 vector to create the NRF-1
expression vector, p3xFLAG-NRF-1.

The GABPp proximal promoter sequences were PCR
amplified using the primers and templates specified in
Additional File 1. The promoter regions were cloned
into the pRL-null reporter plasmid (Promega, Madison,
WI, USA) using the restriction sites indicated in Addi-
tional File 1. Gb-270 multimer was prepared by cloning
double-stranded oligonucleotides comprised of 3 repeats
of Gb-270 (sequence specified in Figure 6) with HindIII
(5") and Kpnl (3’) overhangs into pRL-null containing a
TATA box derived from the albumin gene and a G-free
cassette.

Recombinant NRF-1

The human NRF-1 coding sequence was PCR amplified
from pSG5-NRF-1 [26] using the primers specified in
Additional File 1. The PCR product was digested and
cloned into the BamHI and HindIII sites of pMAL-c2.
The recombinant protein was expressed and purified
according to the manufacturer’s protocol. The purified
protein was eluted with 10 mM maltose in nuclear dia-
lysis buffer (10 mM HEPES pH 7.6, 0.1 mM EDTA, 40
mM KCI, 10% glycerol, 1 mM dithiothreitol, 1 mg/mL
leupeptin, 1 mg/mL pepstatin, 0.1 mM phenylmethane-
sulphonylfluoride (PMSF), 1% aprotinin, 1 mM
benzamidine).

Dual luciferase assay

Approximately 24 h prior to transfection, cells were pla-
ted in 12-well plates at 1 x 10° cells/well. Cells were
transfected in triplicate using a total of 250 ng DNA per
well with 0.75 puL/well FuGENE (Roche, Laval, Canada)
according to the manufacturer’s protocol. The specific
amounts of material used per well were: 25 ng of the
CMV-luc internal control, 25 ng of each expression vec-
tor or empty vector control, 50 ng of shRNA plasmid
and a Renilla luciferase reporter vector up to a total of
250 ng. Approximately 48 h post-transfection, the cells
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were washed with phosphate buffered saline (PBS), lysed
in 150 pL passive lysis buffer (Promega), and 20 pL of
the cell lysates were assayed using the Dual-Luciferase®
Reporter Assay System according to the manufacturer’s
instructions (Promega) with a EG&G Berthold micro-
plate luminometer.

Electrophoretic mobility shift assay (EMSA)

Nuclear extracts were prepared as previously described
[17] with the exception that nuclear proteins were not
concentrated by (NH3),SO, precipitation, but were dia-
lyzed against 10 mM HEPES pH 7.6, 40 mM KCl, 0.1
mM EDTA, and 10% glycerol. Nuclear extracts or
recombinant protein (2-4 pg unless otherwise indicated)
were combined with ** P-labelled oligonucleotides (1
ng) in binding buffer (25 mM HEPES pH 7.6, 5 mM
MgCl,, 34 mM KCl, 50 pg/mL poly dI:dC (Sigma), 0.5
mg/mL bovine serum albumin (BSA)). Binding reactions
(20 pL final volume) were incubated on ice for 15 min
prior to separation on a 6% acrylamide 0.25 x TBE non-
denaturing gel. For competition assays, unlabelled oligo-
nucleotide competitors were mixed with ** P-labelled
oligonucleotides in binding buffer prior to the addition
of nuclear extracts. For the supershift assay, 2 pg anti-
NREF-1 (ab34682, Abcam, Cambridge, MA, USA) or PBS
(negative control) was incubated with 4 pg of nuclear
extracts for 30 min on ice prior to the addition of ** P-
labelled oligonucleotide in binding buffer. Oligonucleo-
tide sequences are given in Figures 6 and 9 (positive
strand only). The sequence of RC4, an oligonucleotide
containing the NRF-1 binding sequence from the rat
cytochrome C promoter (nucleotide -173 to -147), has
been previously reported [22].

Chromatin immunoprecipitation (ChIP)

ChIP assays were performed with the ChIP-IT™
Express kit according to the manufacturer’s instructions
(Active Motif, Carlsbad, CA, USA). Each immunopreci-
pitation reaction contained chromatin from 1.5 x 10°
cells, and 2 pg of antibody (or water as a negative con-
trol). The following antibodies were used: acetylated his-
tone H3K9 (06-599, Upstate Biotechnology, Lake Placid,
NY, USA), haemagglutinin (Y-11, Santa Cruz Biotech-
nology, Santa Cruz, CA, USA), RNA polymerase II
(Covance, Emeryville, CA, USA), histone deacetylase I
(ab7028, Abcam), NRF-1 (ab34682, Abcam), and Oct-4
(ab19857, Abcam). PCR primers amplified the BRCA1
promoter from position -341 to +116 ((+) 5-GATTGG
GACCTCTTCTTACG and (-) 5-TACCCAGAGCA
GAGGGTGAA)) and the GABPfB promoter from posi-
tion -358 to -178 ((+) 5-CTCCTACCCACCGCAGAAC
and (-) 5’-CCATTTCTAGCGCTTCAGCC). A water
blank (no template) and the initial chromatin were also
subjected to PCR amplification as controls.
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siRNA Knockdown

For dual luciferase assays involving siRNA knockdown,
MCE-7 cells were plated at 5 x 10* cells/well in 24-well
plates approximately 24 h prior to transfection. Cells were
transfected in triplicate with siRNA (100 ng/well), GABPS
promoter constructs (175 ng/well), and CMV-luc (25 ng/
well) for normalization of transfection efficiency, using
TransMessenger™ Transfection Reagent (Qiagen, Missis-
sauga, Canada) according to the manufacturer’s protocol.
Approximately 48 h post-transfection, the cells were
washed with PBS, lysed in 75 pL passive lysis buffer and
20 pL of the cell lysates were assayed using the Dual-Luci-
ferase™ Reporter Assay System according to the manufac-
turer’s recommendations. For Western blots, MCF-7 cells
were plated at 2.5 x 10° cells/well in 6-well plates approxi-
mately 24 h prior to transfection. Cells were transfected
with siRNA (1 pg per well) using Santa Cruz Transfection
Reagent (Santa Cruz Biotechnology) according to the
manufacturer’s protocol. Approximately 72 h post-trans-
fection, cells were washed twice with PBS and lysed in 200
uL loading buffer (2.5% SDS, 25 mM Tris-HCl pH 6.8,
10% glycerol, 1% apropotin, 1 mM dithiothreitol, 1 pg/mL
leupeptin, 1 pg/mL pepstatin, 0.1 mM PMSF, 1 mM NaF,
1 mM sodium orthovanadate, 20 mM B-glyceropho-
sphate). siRNA used: siGAPDH (siGENOME® GAPD
Control siRNA, Thermo Scientific Dharmacon, Lafayette,
CO, USA) and siNRF-1 (5-CGUUAGAUGAAUAUA-
CUACtt, Ambion, Austin, TX, USA) [27].

Semi-quantitative RT-PCR

RNA was isolated using the Genelute Mammalian Total
RNA Miniprep Kit (Sigma). cDNA was generated by
reverse-transcribing 2.5 ug of RNA for 5 min at 70°C and
then 1 h at 42°C in a reaction mix containing 1 x MMIuV
reaction buffer (Invitrogen), 1 pg pol(N)g primer (Pharma-
cia), 0.5 mM dNTPs, 1 uL. RNAse OUT (Invitrogen), and 1
uL MMIuV-RTase enzyme (Invitrogen) made up to 50 pL
with diethylpyrocarbonate (DEPC)-treated water. Primer
pairs specific to each of the GABP subunits and GAPDH
were then used to amplify 2 pL of each RT product. In
addition to the RT product and 500 ng of each primer, the
reactions contained 1 x Thermopol buffer (NEB), 0.25
mM dNTPs, 1 uL. Vent (NEB) and DEPC-treated water up
to a final volume of 50 uL. The PCR protocol consisted of
4 min at 98°C, 29-33 cycles of (30 sec at 98°C, 1 min at 55°
C, 1 min at 72°C) followed by 4 min at 72°C. Loading buf-
fer was added to each sample to a final concentration of
2.5% Ficoll, 0.025% bromophenol blue and 0.1 mM EDTA,
and 10 pL of each sample was resolved on a 1.5% agarose
gel. Primers are specified in Additional File 2.

Quantitative RT-PCR
RNA and RT products were prepared as described
above. Quantitative RT-PCR reactions for BRCA1 (with
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TBP as an internal control) were performed using the
SuperScript® III Platinum® One-Step Quantitative RT-
PCR system (Invitrogen) with 500 ng RNA per reaction
and LUX™ primers specified in Additional File 2
according to the manufacturer’s instructions. The PCR
protocol consisted of 1 cycle of (900 sec at 55°C and
120 sec at 95°C), followed by 40 cycles of (30 sec at 95°
C, 30 sec at 55°C, 30 sec at 72°C). BRCA1 expression
for each cell line was calculated relative to the results
for the MCEF-7 cell line using the Pfaffl method [28].

Quantitative RT-PCR reactions for GABPP were per-
formed using the QuantiTect SyBr Green PCR kit
(Qiagen) with 2.5 pL of RT product as per the manufac-
turer’s instructions. Primer pairs and annealing tem-
peratures (Tm) are specified in Additional File 2. The
PCR protocol consisted of 1 cycle of 900 sec at 95°C
followed by 45 cycles of (15 sec at 95°C, 30 sec at Tm"®
C, 30 sec at 72°C). GABPp expression for each cell line
was calculated relative to the results for the 184hTERT
cell line using the delta-delta Ct method presented by
PE Applied Biosystems (Perkin Elmer, Forster City, CA,
USA).

Preparation of whole cell lysates

For GABP subunit complementation assays, cells were
plated as described for dual luciferase assays. Transfec-
tions were performed using 3 pL. FUGENE transfection
reagent and 1 pg of each expression plasmid per well
(total of 2 pg DNA per well), as per the manufacturer’s
instructions. Forty-eight hours post-transfection, the
cells were scraped using a rubber policeman and lysed
using 50 pL/well modified RIPA buffer (50 mM Tris-
HCL pH 7.4, 1% Igepal C630, 0.25% Na-deoxycholate,
150 mM NaCl, 1 mM EDTA, 1 mM PMSF, 1 pug/mL
each of aprotinin, leupeptin and pepstatin, 1 mM
sodium orthovanadate, 1 mM NaF) for 15 min at 4°C.
An equal amount of 2 x SDS-PAGE loading buffer was
added to each lysate. To determine the endogenous
BRCA1, GABPa and GABPJ protein levels, cells were
grow to 60% confluence, scraped using a rubber police-
man and lysed using modified RIPA buffer for 15 min
at 4°C. An equal amount of 2 x SDS-PAGE loading buf-
fer was added to each lysate.

Western blot

Whole cell lysates were resolved on a SDS-polyacryla-
mide gel, transferred to a nitrocellulose or PVDF mem-
brane, and probed with the appropriate antibody.
Primary antibodies included: anti-BRCA1 (0P92, 1:500,
Calbiochem, San Diego, CA, USA), anti-GABPa (H-180,
1:500, Santa Cruz Biotechnology), anti-GABPB (H-265,
10 x, 1:5000, Santa Cruz Biotechnology), anti-FLAG
(M2, 1:1000, Sigma), anti-NRF-1 (M01, 1:500, Abnova,
Taipei, Taiwan), anti-y-tubulin (GTU-88, 1:5000, Sigma),
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and anti-TBP (1TBP18, 1:2000, Abcam). Secondary anti-
body detection was performed by chemiluminescence
(Thermo Scientific/Fisher, Nepean, Canada).

Immunofluorescence

For immunofluorescence analysis of proteins, cells were
plated on coverslips 24 h prior to transfection, in 12-
well plates at a density of 1 x 10> cells/mL. Transfec-
tions were performed using 0.75 pL of FuGENE trans-
fection reagent and 125 ng of each expression plasmid
per well (total of 250 ng DNA per well), as per the man-
ufacturer’s instructions. Cells were incubated at 37°C for
48 h at which time the media was aspirated and the
wells washed with PBS. The cells were fixed at room
temperature using 4% paraformaldehyde in PBS, aspi-
rated, washed with PBS, and then permeablized at room
temperature using 0.5% TritonX-100 in PBS. The cells
were incubated in blocking buffer (3% BSA, 10% Normal
Goat Serum, 0.1% Triton X-100, 0.1% Tween 20 in PBS)
at room temperature for one hour, followed by primary
antibody solution (1:200 dilution of antibody in PBS, 3%
BSA) at room temperature for one hour in a humidified
chamber, and then washed with PBS. All steps were per-
formed in the dark from this point onward. The cover-
slips were incubated in secondary antibody solution
(1:100 dilution of antibody in PBS, 3% BSA) for one
hour in the humidified chamber, washed with PBS, and
then the nuclei were stained for 10 minutes with
Hoechst in PBS. The coverslips were given a final wash
with PBS and then mounted onto slides using Permount
Anti-fade mounting medium. Images were visualized on
a Leica TCS SP2 Multi Photon confocal microscope.
FITC was excited using a 488 nm laser and detected at
525 nm + 20, and Hoescht was excited using a 2-photon
laser at 780 nm and detected at 450 nm * 20. The ima-
ging software used was Image Pro Plus.

Results
Differential expression of BRCA1 in MCF-7 verses SK-BR-3
cell lines
Cell lines and tumours overexpressing ErbB2 have been
reported to have particularly low BRCA1 levels [29,30].
This phenomenon was confirmed by comparison of the
breast cancer cell lines MCF-7, which has low ErbB2
levels, and SK-BR-3, which highly overexpresses the
receptor. Western blot analysis of whole cell lysates con-
firmed the low level of BRCA1 protein in SK-BR-3 cells
(Figure 1a) and quantitative RT-PCR analysis of BRCA1
mRNA levels in multiple breast lines suggests this
decrease may be due to limited transcription in SK-BR-
3 cells (Figure 1b).

To investigate the molecular basis of low BRCA1
expression in the SK-BR-3 line, the activity of the
BRCA1 proximal promoter (i.e. L6-pRL) [24] was
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examined in the two lines. When the activities of the
constructs were normalized using a dual luciferase
assay, expression was approximately 6-fold lower in the
SK-BR-3 line compared to MCE-7 cells (Figure 1c).
Consistent with this observation, chromatin immuno-
precipitation (ChIP) revealed that the BRCAI promoter
is occupied by RNA polymerase II (RNA pol II) in
MCE-7 but not SK-BR-3 cells, suggesting that the pro-
moter is transcribed at a low level in the SK-BR-3 cell
line (Figure 1d). The lack of histone deacetylase I
(HDAC) binding suggests this protein is not involved in
BRCA1 downregulation (Figure 1d).

Having previously demonstrated that the multi-subu-
nit ets transcription factor GABP is a critical regulator
of the BRCA1 proximal promoter [17], the effects of
modulation of GABP levels on BRCAI promoter activity
were evaluated. Co-transfection of a shRNA construct
directed against the alpha subunit of GABP resulted in a
dramatic decrease in BRCAI promoter activity in MCE-
7s, but had no effect on its activity in the SK-BR-3 line
(Figure le). Overexpression of the GABP alpha and beta
subunits however, had no effect on promoter activity in
MCE-7s (Figure 1f), presumably due to the presence of
saturating endogenous levels of these proteins. In con-
trast, cotransfection of these expression vectors resulted
in a dramatic increase in the transcriptional activity of
the L6-pRL promoter in SK-BR-3 cells (Figure 1f).
These results suggest that endogenous GABP is either
absent or non-functional in the SK-BR-3 cell line and
that this loss is responsible for the low level of BRCA1
expression in this line.

Endogenous GABPP activity and levels are lower in SK-
BR-3 cells

To determine if GABP protein levels were altered in SK-
BR-3 cells, cell lysates from three breast cell lines, MCEF-
7, T-47D and SK-BR-3, were evaluated by Western blot.
Equal quantities of total protein from both nuclear (data
not shown) and whole cell extracts (Figure 2a) were
analyzed. Levels of both GABPa. and GABP were dra-
matically reduced in SK-BR-3 cells compared to MCE-7
cells and T-47D cells, though some reduction in the
levels of these proteins in T-47D cells was noted (Figure
2a). Semi-quantitative RT-PCR was then carried out on
all three cell lines using PCR primers directed against
the alpha and beta subunits, as well as GAPDH as an
internal control. The alpha subunit mRNA appears to
be expressed at similar levels in all three cell lines while
the beta form is significantly reduced in SK-BR-3 cells
(Figure 2b). The reduced levels of GABP mRNA in
SK-BR-3 cells were confirmed by quantitative RT-PCR
(Figure 2c). These results suggest that the low levels of
GABPp protein in the SK-BR-3 cell line are the result of
a lack of expression of the beta gene. While the GABPa
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the L6-pRL promoter construct in both cell lines. Results are expressed in relation to the empty vector controls for each cell line.
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Figure 2 GABPa and B subunit protein and mRNA levels are
decreased in the SK-BR-3 cell line. (a) Western blot analysis of
whole cell lysates from MCF-7, T-47D and SK-BR-3 cells was carried
out using antibodies to GABPa, GABPB and the blots were then
reprobed with anti-y-tubulin as an internal control. Apparent
molecular weight markers (kDa) are indicated to the right of the
panels. (b) The relative transcript levels of the GABP subunits in
MCF-7 (M), T-47D (T) and SK-BR-3 (S) cells were examined by semi-
quantitative RT-PCR. Specific products were amplified from equal
amounts of RT product from the cell lines indicated using primer
sets for GABPa, GABPB and GAPDH as an internal control. Products
were separated on a 1.5% agarose gel with 100 bp ladder in
leftmost lane. (c) Quantitative RT-PCR analysis of GABP beta-41
subunit mMRNA was carried out on the indicated cell lines. Levels are
expressed in relation to the 184hTERT cell line.
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mRNA levels are similar, the low levels of GABPa pro-
tein may be attributable to the lack of its binding
partner.

Expression of exogenous GABPJ restores BRCA1 proximal
promoter activity, and GABPa. levels and localization in
SK-BR-3 cells
These results suggest that GABPB expression is com-
promised and was confirmed when cotransfection of the
beta subunit alone, but not the alpha subunit, was able
to transactivate the BRCA1 promoter in SK-BR-3 cells
(Figure 3a). To confirm these results, whole cell lysates
from SK-BR-3 cells transfected with FLAG-tagged
expression vectors for GABPa and GABPP were evalu-
ated by Western blot to determine the relative levels of
GABP subunit expression (Figure 3b). The FLAG-
GABPa levels were also increased by the presence of
FLAG-GABPp confirming that alpha protein is stabi-
lized by the presence of its partner. Endogenous GABPa
levels were almost undetectable in the lysates from cells
transfected with the empty FLAG vector (Figure 3b,
FLAG vector, anti-GABPa), the arrow indicates endo-
genous GABPa. Cells transfected with the FLAG-
GABPJ expression vector however, produced detectable
amounts of endogenous GABPa protein, confirming
that exogenous GABPP protein is able to stabilize endo-
genous GABPa expression (Figure 3b, FLAG-GABPf,
anti-GABPa), while endogenous GABPJ remains unde-
tectable in all cases. No effect on endogenous BRCA1
levels was detected following exogenous GABPo and/or
GABPp expression (data not shown) likely due to the
initial regulation defect leading to permanent downre-
gulation of BRCA1 in this cell line consistent with the
low level of RNA pol II detected by ChIP (Figure 1d).
Translocation of GABPa into the nucleus is dependent
on a nuclear localization signal present in GABPf [21].
The effect of beta levels on alpha translocation was deter-
mined by transfection of the FLAG-tagged GABPa con-
struct into MCF-7 and SK-BR-3 cells and visualization of
the proteins using confocal microscopy with antibodies
against the FLAG moiety. In MCEF-7 cells, the alpha pro-
tein is present in the nucleus and addition of an expres-
sion vector for GABPP does not alter its location (Figure
4, FLAG-GABP alpha, FLAG-GABP alpha + GABP beta).
In contrast, the alpha subunit is present in the cytoplasm
in SK-BR-3 cells (Figure 4, FLAG-GABP alpha), presum-
ably due to the lack of GABPB. Addition of a GABPp
expression vector causes the alpha protein to translocate
into the nucleus (Figure 4, FLAG-GABP alpha + GABP
beta). This confirms the absence of beta in SK-BR-3 cells
and indicates that nuclear localization of the alpha pro-
tein can be rescued by the addition of exogenous GABPp.
Thus, the decreased expression of BRCA1 in SK-BR-3
cells appears to be the result of a loss of GABPp



Thompson et al. Molecular Cancer 2011, 10:62
http://www.molecular-cancer.com/content/10/1/62

Page 8 of 17

3.0x10° -
I | 6-pRL

2.0x10°1

Relative light units

1.0x10°4

—
anti-FLAG e — 62
— 62
— —

anti-GABPp
47

62

anti-GABPu ...

i

anti-y-tUDUIIN | i — - 47

Figure 3 Exogenous GABPp in SK-BR-3 cells restores BRCA1
proximal promoter activity and stabilizes endogenous GABPa.
(@) Expression vectors for the individual GABP subunits, or both
together, were cotransfected with the BRCAT L6-pRL promoter
construct in SK-BR-3 cells. (b) SK-BR-3 cells were co-transfected with
the indicated FLAG-tagged GABP expression vectors. Whole cell
lysates from these cells were analyzed by Western blots probed
with antibodies against GABPa,, GABPB or the FLAG moiety and
then reprobed with anti-y-tubulin to control for sample loading. The
arrow indicates the band corresponding to endogenous GABPa.
protein. Apparent molecular weight markers (kDa) are presented to
the right of the panels.

expression, destabilizing the a/B heterodimer and in
turn leading to decreased BRCAL expression due to the
absence of GABP-mediated activation of the BRCA1
promoter.

A critical activating factor(s) binds to the GABPJ
promoter between -268 and -251

In order to characterize the basis for the downregulation
of GABPp in SK-BR-3 cells, the proximal promoter from

MCF-7 SK-BR-3

- VeCtor. .
-]
Flag-GABP beta 3

Flag-GABP beta
+ GABP alpha

°
Flag-GABP alpha .
+ GABP beta

Figure 4 GABPa nuclear localization is rescued by GABPP in
SK-BR-3 cells. MCF-7 and SK-BR-3 cells were transfected with the
indicated expression vectors. Cells were stained with anti-FLAG FITC-
labeled antibodies (green) and Hoechst dye (blue). Confocal
imaging of the overlay of the two stains is shown.

-1023 to +194 was cloned and a series of deletion con-
structs were prepared using a Renilla luciferase reporter
plasmid. These constructs identified a decrease in activ-
ity when the sequence between positions -268 and -251
was deleted in both MCF-7 and SK-BR-3 cells (Figure
5a). This suggested that a critical activating factor(s)
binds to this site. Adjusting the Renilla light units to
compensate for differences in transfection efficiency to
permit a comparison of the absolute promoter activity
between the two cell lines, revealed a reduction
(approximately 2 to 3.5-fold) in GABP promoter activ-
ity in SK-BR-3 cells compared to MCF-7 cells (Figure
5b), although both cell lines showed similar deletion
profiles. This indicates that the promoter is less active
in SK-BR-3 cells, but the principle transcription factor(s)
required for promoter activity is functional in both cell
lines.
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To confirm binding of a critical activating factor(s) to
this region of the promoter, six overlapping 20-mer oli-
gonucleotides representing the GABPf promoter from
position -290 to -221 were synthesized (Figure 6a) and
assessed in an electrophoretic mobility shift assay
(EMSA) with MCF-7 nuclear extracts (Figure 6b). Dif-
ferent binding complexes for each oligonucleotide were
observed including a non-specific binding complex (NS)
on each oligonucleotide, a weak doublet on Gb-240 (S),
and a large binding complex on Gb-270 (S), which
encompasses the critical sequence identified by deletion
analysis ( -268 to -251). Interestingly, the complex that
forms on Gb-270 differs between MCF-7 and SK-BR-3
cells (Figure 6¢). While a robust single band represent-
ing a large binding complex was formed with MCEF-7
nuclear extracts, a weaker doublet was formed with the
same amount of SK-BR-3 nuclear extracts by weight
(with normalization verified via the non-specific binding
complex, NS). It is possible that this difference in the
levels of binding proteins is responsible for the lower
GABPp promoter activity observed in SK-BR-3 cells
(Figure 5b).

NRF-1 binds to the GABPB promoter between -268 to
-251

Analysis of the GABPf3 promoter sequence between
-268 and -251 revealed its similarity to the consensus
binding sequence of NRF-1 [22]. Given that GABP and
NREF-1 are key regulators of mitochondrial respiration
[31], this suggested a potential linkage in their regula-
tion. Binding of NRF-1 to the GABPJ promoter was
initially demonstrated in an EMSA in which Gb-270 was
able to compete in a dose-dependent fashion for NRF-1
binding with RC4, an oligonucleotide containing the
NREF-1 binding site from the rat cytochrome C promoter
[22] (Figure 7a). This result was verified by an EMSA in
which recombinant NRF-1, prepared and purified as a
fusion with maltose binding protein, bound in a concen-
tration-dependent manner to both Gb-270 and RC4
(Figure 7b). Finally, binding of NRF-1 to the GABPS
promoter in vivo was verified by ChIP (Figure 7c).
MCE-7 chromatin was immunoprecipitated with a vari-
ety of antibodies and after PCR amplification of the
proximal promoter, the antibody against NRF-1 gave a
positive signal, while negative controls did not.
Together, the EMSA and ChIP results confirm that
NRF-1 binds to the GABPJ promoter between -268 and
-251 in vitro and in vivo.

Loss of NRF-1 decreases GABPP and BRCA1 gene
expression

To investigate the role of NRF-1 on the GABPf3 promo-
ter, MCF-7 cells were transfected with siRNA against
NRE-1 or GAPDH (as a negative control), and one of
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Figure 5 GABPS promoter activity in MCF-7 and SK-BR-3 cell
lines. A series of 5 deletion mutants of the GABPB proximal
promoter were prepared in the pRL-null reporter plasmid. Promoter
constructs are named according to the 5’ nucleotide position
relative to the transcription start site with all constructs extending
to nucleotide +194. The transcriptional activity of the GABPS
promoter constructs was assessed via dual luciferase assay using the
pCMV-luc plasmid as an internal control. (@) Promoter activity is
expressed relative to the activity of the longest construct,-1023. (b)
SK-BR-3 raw Renilla light units were multiplied by a correction factor
to compensate for differences in transfection efficiency and permit
a comparison of the absolute promoter activity between the two
cell lines (Relative Renilla light units). The correction factor was
based upon the luciferase light units (LLU) of the internal control,
pCMV-luc, and was calculated by dividing the mean MCF-7 LLU by
the mean SK-BR-3 LLU for the longest GABPB promoter construct,-

1023.

two GABPJ promoter constructs, -268 which contains
the NRF-1 binding site, and -251 which does not (Figure
8a). Knockdown of NRF-1 attenuated the promoter
activity of -268, but not -251, indicating that loss of
NREF-1 binding decreases GABPf transcription and
depends on this promoter region. The effects of NRF-1
knockdown were confirmed in a Western blot on whole
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square brackets) spanning the GABPB promoter from nucleotide -290 to -221 were prepared to examine the binding complexes that form on
the promoter. The deletion constructs that border the sequence critical for promoter activity (Figure 5) are indicated (arrows, bold). (b) The 20-
mer oligonucleotides were used as probes in an EMSA with nuclear extracts from MCF-7 cells. Binding complexes are indicated (Shift = S), as are
non-specific binding complexes (NS) and free probe (F). (c) Gb-270 was used as a probe in an EMSA with increasing amounts of nuclear extracts

(NE) from MCF-7 and SK-BR-3 cells. Binding complexes are as indicated above.

cell lysates from MCF-7 cells transfected with siGAPDH
or siNRF-1 (Figure 8b). NRF-1 was reduced to undetect-
able levels, while GABP was decreased to approxi-
mately 40% (normalized with the loading control, TBP).
Interestingly, the levels of GABPo were unaffected by
NREF-1 knockdown, although the change in band
appearance (i.e. single band to a doublet) could indicate
an alteration in post-translational modification (Figure
8b). BRCAL1 protein levels were also decreased by the
NREF-1 siRNA indicating that it lies downstream of both
GABP and NRF-1, forming a transcriptionally regulated
network.

NRF-1 levels and activity are similar between MCF-7 and
SK-BR-3 cells

Given that NRF-1 binds to and regulates the GABPf3
promoter (Figure 7, 8a, b), it was important to deter-
mine if low GABPf expression in SK-BR-3 cells could
be the result of decreased NRF-1 levels. Western blot
analysis demonstrated that the levels of NRF-1 between
MCEF-7 and SK-BR-3 cells are similar (Figure 8c), and
thus, are unlikely to be responsible for low GABPf
expression in SK-BR-3 cells. It was also important to
ascertain whether NRF-1 activity was compromised in
SK-BR-3 cells. MCEF-7 and SK-BR-3 cells transfected
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Figure 7 NRF-1 binds to the GABPS promoter. (a) An oligonucleotide with a known NRF-1 binding site (RC4) [22] was used as a probe in an
EMSA with MCF-7 nuclear extracts and Gb-270 as a cold competitor. NRF-1 binding (NRF-1), non-specific (NS) binding and free probe (F) are
indicated. (b) Recombinant NRF-1 (rNRF-1) was prepared as a fusion with the maltose binding protein. Decreasing amounts of recombinant

_] NRF-1

protein (5, 2.6, 1.3, 0.26, 0.13 and 0.03 pg) were used in an EMSA with RC4 and Gb-270 probes. Binding complexes as indicated above. (c) A ChIP
assay was performed using MCF-7 chromatin and antibodies against acetylated histone H3K9 (acH3), haemagglutinin (HA, negative control), NRF-
1 and Oct-4 (transcription factor, negative control). PCR products obtained using primers specific to the GABPB promoter (refer to Methods) are

shown.

with an NRF-1 expression vector (p3xFLAG-NRF-1) and
one of two GABPJ promoter constructs, Gb-270 multi-
mer (which contains a triple repeat of the Gb-270
sequence specified in Figure 6) and -268 (as referenced
above), were assessed in a dual luciferase assay. Activa-
tion of the promoter constructs by exogenous NRF-1
was similar in the MCF-7 and SK-BR-3 lines confirming
that NRF-1 function was not defective in SK-BR-3 cells
(Figure 8d). In addition, ChIP analysis revealed that the
GABPp promoter is active (as evidenced by the presence
of acetylated histone H3K9 (acH3) and RNA pol II, and
the lack of HDAC) and occupied by NRF-1 in both cell
lines (Figure 8e). Thus, altered NRF-1 activity does not
appear to account for the discrepancy in GABPS expres-
sion between MCEF-7 and SK-BR-3 cells.

NRF-1 is one member of a protein complex that activates
GABPS transcription

Binding of NRF-1 to the GABPf promoter was further
characterized by evaluating a series of mutant oligonu-
cleotides in an EMSA with MCF-7 nuclear extracts. The

consensus binding sequence for NRF-1 [22] indicated
that the NRF-1 binding site in Gb-270 began at nucleo-
tide 5 (Figure 9a). Therefore, mutant versions of Gb-270
were prepared with conservative nucleotide replace-
ments (i.e. C to G and G to C) at positions 4-6 (m4-6),
and non-conservative single nucleotide replacements (.
e. Cto T and G to A) at positions 4, 5 and 6 (mT4,
mT5, mA6) (Figure 9a). Mutation of nucleotides 4-6 dis-
rupted the large protein complex that normally forms
on Gb-270 (Figure 9b, m4-6), whereas single nucleotide
replacements at positions 4, 5 and 6 diminished the for-
mation of the large protein complex and, in the case of
positions 4 and 5, yielded faster migrating complexes as
well (Figure 9b, mT4, mT5, mA6). A supershift EMSA
with oligonucleotides mT4 and mT5 were used to probe
MCEF-7 nuclear extracts in the absence and presence of
an antibody against NRF-1 (Figure 9c). Addition of the
anti-NRF-1 antibody shifted the faster migrating com-
plex (S) to a slower migrating complex (SS) for both oli-
gonucleotides confirming that the faster migrating
complex contained NRF-1. The fact that NRF-1 binding
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Figure 8 NRF-1 loss attenuates GABP3 promoter activity and GABPB/BRCA1 expression; NRF-1 is consistent between cell lines. (a) The
transcriptional activity of the GABPB promoter constructs -268, which contains the NRF-1 binding site, and -251 which does not, was assessed in
MCF-7 cells via dual luciferase assay in the presence of siRNA against GAPDH (siGAPDH, negative control) and NRF-1 (siNRF-1). Promoter activity
is expressed as relative light units. (b) The protein levels of NRF-1, GABPB, GABPa, BRCA1 and TBP (internal control) were assessed by Western
blot in whole cell lysates prepared from MCF-7 cells treated with siGAPDH or siNRF-1. (c) NRF-1 levels were determined by Western blot in MCF-
7 and SK-BR-3 whole cell lysates. TBP was used as an internal control. Apparent molecular weight markers (kDa) are indicated to the right of the
panels. (d) The activity of two GABPB promoter constructs, Gb-270 multimer (which contains a triple repeat of the Gb-270 sequence specified in
Figure 6) and -268 (see part a), was examined via dual luciferase assay in MCF-7 and SK-BR-3 cells following exogenous NRF-1 expression.
Promoter activation by NRF-1 is expressed as a fold relative to empty vector controls in each cell line. () A ChIP assay was performed using
MCF-7 and SK-BR-3 chromatin and antibodies against acetylated histone H3K9 (acH3), haemagglutinin (HA, negative control), RNA polymerase |l
(RNA pol II), histone deacetylase | (HDAC), NRF-1 and Oct-4 (transcription factor, negative control). PCR products obtained using primers specific
to the GABPB promoter (refer to Methods) are shown.

produces a faster migrating complex than what is nor-
mally observed on Gb-270 strongly suggests that the
complex that forms on Gb-270 is actually a larger pro-
tein complex containing NRF-1. This is further sup-
ported by the faster migration of recombinant NRF-1
bound to Gb-270 (Figure 7b). The banding pattern

observed (Figure 9b) suggests that NRF-1 binds to the
GABPJ promoter in complex with at least two other
proteins (Figure 9e).

To verify the role of NRF-1 on the GABPJ promoter,
the mutants described were incorporated into the -268
promoter construct and these plasmids tested in co-
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transfection experiments in MCF-7 cells. As previously
observed (Figure 8a), knockdown of NRF-1 attenuated
the promoter activity of -268, which contains the NRF-1
binding site, but had no effect on the minimal activity
of -251, which does not contain the NRF-1 site (Figure
9d). Mutation of nucleotides 4-6 decreased the GABPf
promoter activity to levels similar to -251 (m4-6) consis-
tent with the disruption of the large protein complex
previously observed by EMSA (Figure 9b, m4-6).
Furthermore, knockdown of NRF-1 using a siRNA had
no effect on the activity of this construct indicating that
NRF-1 no longer binds and activates the GABPJ promo-
ter. Mutation of nucleotides 4 and 5 did not decrease
GABPp promoter activity (Figure 9d, mT4, mT5) despite
the diminished full protein complex formation observed
by EMSA (Figure 9b). The promoter activities of mT4
and mT5 were attenuated by NRF-1 knockdown (Figure
9d) consistent with their ability to bind NRF-1 (Figure
9c¢). Interestingly, mA6, which showed diminished full
complex formation but no uncomplexed NRF-1 binding
(Figure 9b), exhibited reduced promoter activity that
was also attenuated by NRF-1 knockdown (Figure 9d).
This suggests that mutation of nucleotide 6 allowed
binding of the full NRF-1-containing complex but with
a reduced affinity. In summary, nucleotides 4-6 are
required for assembly of the multi-protein complex,
while binding of NRF-1 is required and sufficient for
full promoter activity in vitro. The ability of the multi-
protein complex to form in the presence of a point
mutant in the NRF-1 site, though with lower affinity (as
exemplified by mA6), as well as the decreased binding
to Gb-270 observed in SK-BR-3 cells (Figure 6¢) sug-
gests the NRF-1 may bind co-operatively with other pro-
teins (Figure 9e).

Discussion

Like many ErbB2-overexpressing tumours [29,30], the
SK-BR-3 cell line has low levels of BRCA1 protein and
mRNA. In searching for the basic cause of this defect,
we determined that the beta subunit of GABP, a key
transcriptional regulator of the BRCA1 promoter [17], is
itself downregulated. Decreased GABPP activity is in
turn linked to defects in an NRF-1/coactivator complex
present on the GABPJ promoter. Knockdown of NRF-1
in MCEF-7 cells confirms that this represents a NRF-1 >
GABP > BRCALI regulatory pathway. Given the inverse
correlation between BRCA1l and ErbB2 levels in
tumours, it was expected that some component of the
NRF-1 > GABP > BRCA1 pathway would be sensitive to
ErbB2-overexpression. However, cotransfection and
siRNA knockdown experiments with both ErbB2 and all
of the other Erb family members failed to affect the
expression of any of these genes in both MCF-7 and
SK-BR-3 lines (data not shown). This suggests that
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inactivation of this pathway is not a direct consequence
of ErbB2 overexpression.

Both NRF-1 and GABP are known to control the
expression of a wide variety of nuclear encoded mito-
chondrial proteins (reviewed in [31]). These include pro-
teins involved in electron transport, such as cytochrome
C and the cytochrome oxidases, as well as proteins
involved in mitochondrial replication and maintenance.
The expression of NRF-1 and GABP appear to be coor-
dinated during mitochondrial biogenesis [31], but the
basis for this has not previously been investigated. Our
discovery of the presence of a functional and key NRF-1
regulatory element within the GABPJ promoter provides
a molecular mechanism to explain this linkage. Because
GABP is an obligate heterodimer [32], the GABPa pro-
tein levels must be coordinated with GABPp levels. The
GABPa promoter has previously been shown to be
autoregulated [33], and GABPa levels in heterozygous
knockout mice are the same as the wildtype indicating
that protein levels are under tight control [34]. We have
demonstrated that in the absence of GABPB, GABPa
protein is made but is unstable due to the lack of its
partner, possibly as a result of changes in post-transla-
tional modification as seen with the siNRF-1 experiment
(Figure 8b). This suggests that levels of GABPB may be
limiting and regulated, with GABPa being both stabi-
lized and transcriptionally upregulated as GABPJ levels
increase. This arrangement suggests that a positive feed-
back switch may exist, with GABP either lying down-
stream of NRF-1, or with NRF-1 also being regulated by
GABP. Consistent with this, ChIP on CHIP analysis has
located a GABP site in the proximal promoter of the
NREF-1 gene [35]. The observation that BRCA1 may also
be involved in negative autoregulation of its own pro-
moter means that it could also participate in this feed-
back loop [36]. The formation of the NRF-1 complex on
the GABPJ promoter, which differs between cell lines
(Figure 6), was also shown to be dependent on the inter-
action of a coactivator complex with DNA sequences
adjacent to the NRF-1 site (Figure 9). Because the
induction of mitochondrial activity is controlled by the
co-activator PGCla which acts in conjunction with
NRF-1 and GABP in muscle and fat tissue (reviewed in
[37]), PGCla was a candidate for the complex observed
on the GABPfS promoter. We have been unable to
observe any role for this coactivator in the induction of
GABP function (data not shown). This has included
cotransfection, siRNA and western blot analysis which
indicate that neither PGCla, PGC1p nor PRC are active
or present in a variety of breast cell lines (data not
shown). Indeed we have identified a different class of
coactivators which are associated with NRF-1, and
which could control mitochondrial biogenesis in these
cells.
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The identification of BRCA1 as a stem cell regulator
in mammary cells [3] has expanded its already extensive
list of possible functions. Based on this role, the fre-
quent downregulation of BRCA1 expression seen in
sporadic breast cancers could reflect the disruption of a
stem cell differentiation program. Our findings suggest
that BRCAL is at the end of a transcriptional regulatory
network consisting of NRF-1 and GABP. GABPa has
been shown to be necessary for early embryonic growth
with the homozygous knockout leading to death of the
pre-implantation embryo [34]. The complete GABPf
knockout also exhibits early embryonic lethality [38], so
that any defect in the GABP complex inhibits embryo-
nic development. Interestingly, the NRF-1 knockout
exhibits a similar phenotype [39], as would be expected
if it was part of a common pathway with GABP. This
pre-implantation phase of development is associated
with a burst of mitochondrial synthesis [40]. BRCA1
knockouts are also embryonic lethal, but at a slightly
later stage [41] suggesting that BRCA1 may lie down-
stream of both NRF-1 and GABP during embryogenesis.
GABP has previously been implicated in the regulation
of stem cells as a downstream target of STAT3, and
ectopic expression of GABPa in embryonic stem cells
activates Oct3/4 transcription by downregulating repres-
sors of Oct3/4 expression [42]. In addition, bioinfor-
matic analysis of stemness genes had previously
implicated GABP in the regulation of stem cell prolif-
eration [43]. This strongly suggests that GABP is linked
to the regulation of stemness, in both the embryo and
adult. At the same time, the linkage of NRF-1 and
GABP to mitochondrial metabolism implies that
BRCA1 expression, and thus the regulation of stemness,
may also be linked to the activation of oxidative phos-
phorylation in these cells. The Warburg effect suggests
that most cancers have a defect in oxidative phosphory-
lation which results in tumours primarily consuming
glucose and producing lactic acid as the endpoint of
metabolism [44]. Stem cells, and cancer stem cells, have
also been suggested to be dependent on glycolysis [45].
If differentiation in the breast is linked by BRCA1 to
the induction of mitochondrial metabolism, then block-
ade of this pathway will lead to both the persistence of
stem-like properties and the lack of oxidative phosphor-
ylation. The Warburg effect can then be viewed as the
persistence of a metabolic program present in stem
cells into the tumour state. Explanations of the War-
burg effect have focused on alterations in proteins
involved in mitochondrial function and uncoupling [46].
These changes must be underlaid by alterations in tran-
scriptional regulation, presumably in networks such as
NREF-1 and GABP involved in upregulating oxidative
phosphorylation. Many of the pathways previously
shown to be affected may represent compensatory
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activation of alternative metabolic pathways used by the
cell to overcome defective induction of oxidative
phosphorylation.

Conclusions

In summary, recent evidence suggests that loss of
BRCA1 function impairs normal breast differentiation
thereby facilitating tumour initiation. Investigation of
low BRCA1 expression in the human breast cancer cell
line SK-BR-3 revealed a transcriptional network consist-
ing of NRF-1 > GABPB > BRCAL. Given the common
role of NRF-1 and GABP in regulating mitochondrial
function, the NRF-1 > GABPB > BRCA1 pathway sug-
gests a link between tumour initiation via disruption of
stem cell maturation and the abnormal mitochondrial
metabolism (Warburg effect) that has long been
observed in tumours.
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