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Nicotine, IFN-y and retinoic acid mediated
induction of MUC4 in pancreatic cancer requires
E2F1 and STAT-1 transcription factors and utilize
different signaling cascades
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Abstract

Background: The membrane-bound mucins are thought to play an important biological role in cell-cell and cell-matrix
interactions, in cell signaling and in modulating biological properties of cancer cell. MUC4, a transmembrane mucin is
overexpressed in pancreatic tumors, while remaining undetectable in the normal pancreas, thus indicating a potential
role in pancreatic cancer pathogenesis. The molecular mechanisms involved in the regulation of MUC4 gene are not yet
fully understood. Smoking is strongly correlated with pancreatic cancer and in the present study; we elucidate the
molecular mechanisms by which nicotine as well as agents like retinoic acid (RA) and interferon-y (IFN-y) induce the
expression of MUC4 in pancreatic cancer cell lines CD18, CAPAN2, AsPC1 and BxPC3.

Results: Chromatin immunoprecipitation assays and real-time PCR showed that transcription factors E2F1 and STATT can
positively regulate MUC4 expression at the transcriptional level. IFN-y and RA could collaborate with nicotine in elevating
the expression of MUC4, utilizing E2F1 and STAT1 transcription factors. Depletion of STATT or E2F1 abrogated the
induction of MUC4; nicotine-mediated induction of MUC4 appeared to require a7-nicotinic acetylcholine receptor
subunit. Further, Src and ERK family kinases also mediated the induction of MUC4, since inhibiting these signaling
molecules prevented the induction of MUC4. MUC4 was also found to be necessary for the nicotine-mediated invasion
of pancreatic cancer cells, suggesting that induction of MUC4 by nicotine and other agents might contribute to the
genesis and progression of pancreatic cancer.

Conclusions: Our studies show that agents that can promote the growth and invasion of pancreatic cancer cells induce
the MUC4 gene through multiple pathways and this induction requires the transcriptional activity of E2F1 and STATT.
Further, the Src as well as ERK signaling pathways appear to be involved in the induction of this gene. It appears that
targeting these signaling pathways might inhibit the expression of MUC4 and prevent the proliferation and invasion of
pancreatic cancer cells.
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Background

Smoking is strongly correlated with cancers of the lung,
pancreas, and prostate [1-3]. In relation to pancreatic
pathology, smoking has been described as an important
risk factor for chronic pancreatitis and remains the only
widely acknowledged environmental risk factor for pan-
creatic cancer [4]. The nature of association between
smoking and pancreatic cancer is, however, not yet well
understood, and it remains to be elucidated whether
tobacco smoke is a true etiologic factor or it helps aggra-
vate the disease in presence of other causal risk factors
[5]. Such information will provide an insight into the
molecular mechanisms by which smoking accelerates
the pancreatic inflammatory process and/or contributes
to the pancreatic cancer development. Cigarette smoke
contains a variety of chemicals, many of which are well-
established carcinogens; tobacco specific nitrosamines,
which are structurally related to nicotine, fall under this
category [6]. Moreover, studies have shown that nico-
tine, the major addictive component of the tobacco
smoke, induces widespread changes in the pancreatic
exocrine function. Nicotine has been found to promote cell
proliferation, angiogenesis as well as tumor metastasis
[2,7,8], suggesting that it has the potential to act as a tumor
promoter. Further, it has been reported that nicotine can
prevent apoptosis induced by various chemotherapeutic
agents as well as radiation, by activating various survival
pathways in cancer cells [9].

MUC4, a member of the membrane-bound mucin gene
family, is a high molecular weight O-glycoprotein produced
by secretory epithelial cells for the lubrication and protec-
tion of ducts and lumen [10]. MUC4 is aberrantly expressed
in pancreatic adenocarcinoma and tumor cell lines, while
remaining undetectable in the normal pancreas or chronic
pancreatitis [11]. Furthermore, a progressive increase in
MUCH4 expression has been observed in precancerous pan-
creatic intraepithelial neoplasias (PanINs) [12], indicating
its role in disease development. Functional studies on
MUCHA4 have provided substantial evidence for its role in the
promotion of pancreatic cancer cell growth and metastasis
[13]. Recent studies have shown that knock-down of MUC4
expression reduced pancreatic tumor cell growth and me-
tastasis. Further the studies on Muc4 shows that it influ-
ences tumor growth via the suppression of apoptosis and
potentiate metastasis via multiple mechanisms. It has been
shown that overexpression of the cell-surface Muc4/SMC
disrupts integrin-mediated cell adhesions as well as the
homotypic cell-cell interactions, causing the dissociation of
tumor cells in culture [14].The expression of MUC4 can be
regulated at both transcriptional and post-transcriptional
levels [15,16]. There are reports showing that CDX, HNE,
FOXA, GATA and HNFla transcription factors regulate
MUC4 transcription through their binding sites present on
the MUC4 promoter [17].
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Given the presence of various regulatory elements in the
promoter of MUCH4, it is not surprising that it responds to
a variety of extracellular signaling molecules. Indeed,
MUCH4 is induced by IFN-y as well as retinoic acid (RA)
[18]. IFN-y is a cytokine that is critical for innate and adap-
tive immunity against viral and intracellular bacterial infec-
tions. It is secreted by activated T lymphocytes and natural
killer cells and regulates a variety of physiological responses
[19] . The binding of IFN-y to its cell surface receptor acti-
vates the receptor-associated tyrosine kinases, resulting in
the activation of various STAT transcription factors and ex-
pression of their target genes [20]. Findings of Andrianifa-
hanana et al, [21] suggest that IFN-y can induce the
expression of MUC4 through STAT1. RA is present in the
plasma [22] and exerts its effects via the nuclear RA recep-
tors and retinoic X receptors. Typically, heterodynes of
RAR/RXR act as transcription factors to promote the tran-
scription of RA-induced genes [23,24]. The multifunctional
agent retinoic acid (RA) and its derivatives have been used
to treat many tumor types. The antitumor effects of retin-
oid are in part due to their ability to inhibit proliferation of
cancer cells. However, smokers receiving dietary vitamin A
and beta carotene in chemoprevention studies had a higher
incidence of cancer in particular pancreatic and lung can-
cer. These studies imply that lower doses of retinoids may
have tumor-promoting activity [25]. Based on these reports
we attempted to check the effect of RA on E2F1 and Statl
transcription factor and in turn the expression of MUCA4.
Choudhury et al,, [26] have shown that RA treatment cul-
minated the TGF-B-2-mediated up regulation of MUC4: ex-
pression. Interestingly, IFN-y and RA are known for their
ability to evoke a synergistic effect, which leads to an
enhanced induction of target gene(s) and an exacerbation
of the associated biological response(s) [18]. The impact of
this synergism has been observed in a wide range of malig-
nant tumor cell types, including pancreatic tumor cells
[26].

In the present study we explored the molecular
mechanisms governing MUC4 expression in pancreatic
cancer cell lines in response to stimulation with different
agents that are known to affect the biology of pancreatic
cancer. Our studies show that E2F1 and STAT1 mediate
the expression of MUC4 in response to various signals
and that the depletion of MUC4 prevents the prolifera-
tion and invasion of these cells in response to nicotine
stimulation. These findings also reveal that different
downstream signaling events mediate the induction of
MUCH4 in response to these agents.

Results

IFN-y and RA co-operate with nicotine to induce the
MUC4 promoter

Smoking is a well-known risk factor for pancreatic cancer,
while MUC4 is aberrantly over expressed in pancreatic
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cancer and contributes to its pathogenesis [27]. Recently,
nicotine was shown to induce mucin genes in cancer
[28,29] and that many endogenous molecules like Retinoic
Acid (RA) [26] and IFN-y [18] can induce expression of
MUC4 in CDI18/HPAF pancreatic cancer cells. Earlier
studies had shown that nicotine stimulation of non-small
cell lung cancer cells leads to an induction of E2F1 binding
to promoters followed by their transcriptional activation
[7,30]. An examination of the MUC4 promoter showed
the presence of four E2F binding sites at positions (-346 to
- 362, -349 to - 365, -409 to - 425 and -410 to - 426).
Given that nicotine stimulates the binding of E2F1 to a
variety of promoters, and since STAT1 is known to induce
MUCH4, we decided to examine whether these factors me-
diate the induction of MUC4 in pancreatic cancer cells.
To examine whether E2F1 and STAT1 can bind to the
MUC4 promoter and whether such an association is
induced by nicotine IFN-y and RA, a series of chromatin
immunoprecipitation experiments were carried out on
four pancreatic cancer cell lines, namely CD-18/HPAF,
ASPC-1, CAPAN-2 and SW1990. CD18 is a poorly differ-
entiated cell line derived from HPAF has mutated K-Ras
gene and deletions of the p53 gene; Rb-1 gene is wild type.
AsPCl is a poorly differentiated human pancreatic adeno-
carcinoma cell line has the mutated K-Ras, p53 and pl6
genes and deletion of BRCA2 gene and wild type Rb-1.
SW1990 is a well differentiated human pancreatic adeno-
carcinoma with K-ras mutation. CAPAN2, a moderately
differentiated human pancreatic adenocarcinoma cell line
has the mutated K-Ras gene and deletions of the p53 gene
[31].

PC cells were rendered quiescent by serum starvation
and stimulated with nicotine, IFN-y alone, nicotine in
combination with IFN-y, RA alone and nicotine in com-
bination with RA, respectively for 48 h. ChIP assay
lysates were prepared using our published protocols
[29,32] and immunoprecipitated with antibodies against
E2F1, STAT1 as well as with an irrelevant antibody as
control. It was found that there were minimal amounts
of E2F1 or STAT1 associated with the MUC4 promoter
in quiescent CD18/HPAF cells. Stimulation with nico-
tine, IFN-y or RA induced the binding of both E2F1 and
STAT1 to the promoter (Figure 1A-D). When the cells
were stimulated with a combination of nicotine with
IFN-y, there appeared to be a synergistic binding of
the two factors to the promoter; in contrast, stimula-
tion with nicotine and RA together appeared to have
an added effect. There was no binding observed in
lanes immunoprecipitated with the control antibody.
Similar results were also obtained in other three cell
lines (Figure 1A-D), but there was no noticeable co-
operative effect of these agents on the association of
E2F1; there appeared to be an added effect in the
case of STAT1 binding in this case.
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Transcriptional activation of genes is generally asso-
ciated with acetylation of histones in their promoter re-
gion [33]. Both E2F1 and STAT1 mediated induction of
transcription is known to correlate with enhanced acetyl-
ation of histones. To examine whether such an event
occurs in the case of MUC4 gene, the ChIP assay lysates
were immunoprecipitated with an antibody to acetylated
lysines on histone H3. As shown in Figure 1A, there was
only low amount of acetylated lysines in the quiescent
cells. Stimulation with nicotine, IFN-y or RA led to a
marked increase in the acetylation of lysines on the
MUC4 promoter, suggesting that the promoter is tran-
scriptionally active. Similar expression of MUC4 at pro-
tein level was confirmed by western blotting in CD18
and SW1990 cell lines (data not shown). Attempts were
made to assess whether an enhanced binding of E2F1
and STAT1 correlated with elevated expression of
MUC4. Real-time PCR assays showed that nicotine
induced the expression of MUC4 in both CD18/HPAF
that produces relatively high levels of MUC4 [26] and
also in ASPC-1, CAPAN-2 and SW1990. As shown in
Figure 2A-D, nicotine increased MUC4 expression more
than 2-fold in CD18/HPAF cells and nearly 2-fold in
ASPC-1, CAPAN-2 and SW1990 cells compared to qui-
escent control cells. Further, we observed that IFN-y and
RA increased the expression of MUC4 in CD-18/HPAF,
ASPC-1, CAPAN-2 and SW1990 cells (Figure 2A). Inter-
estingly, combination of nicotine with IFN-y or RA led
to an addictive induction of the promoter, correlating
with the enhanced binding of E2F1 and STAT1 seen in
ChIP assays. Taken together, these results suggest that
STAT1 and E2F1 mediate the induction of MUC4 in re-
sponse to nicotine, IFN-y and RA.

E2F1 and STAT1 are necessary for nicotine, IFN-y and RA-
mediated MUC4 induction

Since we found that stimulation with nicotine, IFN-y or
RA led to an increased recruitment of E2F1 and STATI,
attempts were made to see whether these transcription
factors are necessary for the induction of this gene. To
examine this possibility, real-time PCR experiments were
conducted on cells transfected with a control siRNA or
siRNA to E2FI or STATI. Essentially, cells were trans-
fected with the siRNAs for 24 hours and allowed to re-
cover for 18 h. They were rendered quiescent by serum
starvation and subsequently stimulated with nicotine,
IEN-y or RA for 24 h. RNA was prepared and real-time
PCR was conducted using standard protocols. The effi-
ciency of siRNA transfection was supported by real-time
PCR analysis for both E2F1 and Statl (Figure 3D). As
shown in the Figures 3A, B and C, it was found that de-
pletion of E2F1 or STAT1 significantly reduced the nico-
tine-mediated induction of MUC4 in CD18/HPAF cells
at the transcriptional level. The results were more
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Figure 1 IFN-y and (RA) co-operate with nicotine to induce the MUC4 promoter. Chromatin IP assays showing the occupancy of E2F1 and
STAT1 on the MUC4 promoter in 4 different pancreatic cancer lines. CD18/HPAF-SF (A), ASPC-1 (B), SW1990 (C) and CAPAN2 (D). Cells were
treated with nicotine, IFN-y, IFN-y in combination with nicotine, RA and RA in combination with nicotine showed increased E2F1 and STAT1
binding on the MUC4 promoter. Sonicated genomic DNA is used for input. C-Fos was used as a negative control. Nonspecific IgG was used as a
negative control in pull-down assays.

obvious in IFN-y stimulation, where the induction was
completely inhibited when these factors were depleted
(Figure 3B). Similarly, RA stimulation required both these
factors in CD18/HPAF cells (Figure 3C). Given that E2F1
siRNA and STAT1 siRNA reduces the expression of these
transcription factors as expected (Figure 3D), these results
in combination with the ChIP assay results, strongly sug-
gest that E2F1 and STAT1 play a major role in mediating
the induction of the MUC4 gene in pancreatic cancer cells
in response to various upstream signals.

Nicotine induces MUC4 in a receptor-dependent fashion

Nicotine exerts its biological effects through nicotinic
acetylcholine receptors (nAChRs) that are widely expressed
in neurons and at neuromuscular junctions; they are
present on a wide array of non-neuronal cells as well. We
next examined whether nicotine-mediated recruitment of
E2F1 and STAT1 on the MUC4 promoter required nAChR
function. Towards this purpose, quiescent CD18/HPAF
cells were stimulated with nicotine in the presence of hex-
amethonium bromide or «a-bungaratoxin, which are
nAChR antagonists; atropine, which is an antagonist of
muscarinic acetylcholine receptors, was used as a control.

ChIP assay results suggests that a-bungarotoxin sensitive
a7 nAChR subunit plays an important role in mediating
nicotine-induced recruitment of E2F1 and STAT1 to the
MUC4 promoter, since cells treated with this agent showed
lower amounts of E2F1 and STAT1 on the MUC4 pro-
moter (Figure 3E). On the other hand, cells treated with at-
ropine showed no reduction in the recruitment of these
factors, suggesting that muscarinic type acetylcholine
receptors play no role in the recruitment of these regula-
tory factors.

Experiments were conducted to assess whether the tran-
scriptional induction of MUC4 correlated with the
enhanced binding of these factors and whether nAChR
antagonists had a similar effect. Real-time PCR experiments
were conducted on CD18/HPAF cells treated with hexam-
ethonium bromide, a-BT or atropine and stimulated with
nicotine. The induction of MUC4 was assessed by real-time
PCR. As shown in Figure 3F, stimulation with nicotine
induced MUC4 promoter in CD18 cells; the stimulation
was abrogated in the presence of hexamethonium bromide
and a-BT, but not atropine. These results suggest that
nAChRs, especially the a7 subunit, plays a major role in
nicotine-mediated stimulation of the MUC#4 gene.
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Figure 2 IFN-y and (RA) co-operate with nicotine to induce the MUC4 promoter. Real time-PCR showing the expression of MUC4 in CD18/
HPAF (A), ASPC-1 (B), SW1990 (C) and CAPAN-2 (D) treated with nicotine, IFN-y, IFN-y in combination with nicotine, RA and RA in combination
with nicotine. The upregulation of MUC4 upon stimulation was significant in pancreatic cancer cells treated with nicotine, IFN-y, IFN-y, RA or
combinations (*p <0.01, **p £0.03). The results shown are the average of three separate experiments.
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Differential contribution of Akt, Src and ERK signaling in
regulating MUC4 expression
Experiments were conducted to understand the down-
stream signaling events that mediate the induction of
MUCH4 in response to nicotine, IFN-y and RA stimulation.
We focused on Akt, Src and Erk pathways, since they are
known to mediate the effects of nicotine in different sys-
tems. In this initial set of experiments, ChIP assays were
conducted on quiescent CD18 cells or those stimulated
with nicotine, IEN-y or RA alone, or in the presence of
LY249002, a PI3 kinase inhibitor, or PD98059, a MEK in-
hibitor or PP2, a Src kinase inhibitor. It was found that
nicotine-mediated recruitment of E2F1 and STATI1
required signaling through all the three pathways tested
(Figure 4A); Src seemed especially vital for the enhanced
association of STAT1 with the promoter. In contrast, IFN-
y stimulation did not require PI3 kinase/Akt pathway to
recruit E2F1 or STAT1, but ERK and Src seemed to con-
tribute. In the case of RA stimulation, the contribution of
Src seemed minimal, while Akt and ERK pathways
appeared to be important. The signaling requirements
were similar in both the cell lines tested.

Real-time PCR assays were conducted to assess
whether the requirement of E2F1 and STAT1 observed

with the inhibitors correlated with the expression of the
MUC4 gene as well. As shown in Figure 4B, it was found
that the expression pattern paralleled the binding of
E2F1 and STAT1; thus, nicotine stimulation required
mainly ERK and Src pathways, while IFN-y required the
contribution of all the three pathways to a certain extent.
One point of variation was the contribution of the PI3K/
Akt pathway, which had minimal impact on the recruit-
ment of E2F1 and STAT1, but had significant impact on
gene expression. In the case of RA stimulation, the main
contributors were PI3 Kinase/Akt pathway as well as
ERK pathway, with Src playing a minimal role. These
studies show that MUC4 gene can respond to various
signaling pathways induced by different upstream
molecules.

Real-time PCR experiments were also conducted to as-
sess whether the same pathways are operational when
two of the stimulatory agents are used in combination.
As shown in Figure 4C-D the PI3/Akt, ERK as well as
Src seemed to be involved in the induction of the MUC4
promoter when nicotine and IFN-y was used in combin-
ation. Similarly, Src seemed to have only a minimal effect
when RA was combined with nicotine. These results
show that the major mediators of MUC4 induction are
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PI3K/Akt, ERK and Src kinases, depending on the up-
stream activation agents.

Involvement of JAK-STAT signaling in upregulation of
MUC4

Expression of MUC4 at protein level increased at 24 h in
Nicotine and after 4 h in IFN-y and RA treatment as
shown by SDS-Agarose gel electrophoresis (Figure 5A).
Further, we found that the expression of MUC4 was
more than 8 fold in IFN-y treated cells compared to the
control cells and more than 3 fold in RA treated cells.
Furthermore the expression of MUC4 in nicotine and
IFN-y treated cells was nearly one and half fold more

than IFN-y alone and nearly 0.5 fold more in nicotine
and retinoic acid than retinoic acid alone treated CD18
cells (Figure 5B). A time dependent treatment with nico-
tine, IFN-y and Retinoic acid showed a gradual increase
in the phosphorylation of Tyk2 and Statl in the HPAF/
CD18-SF cells (Figure 5C). 1 uM nicotine showed a
slight increase in the Tyk2 and Statl phosphorylation in
CD18 cells at 10-15 min and 30-45 minutes respectively
(Figure 5D), whereas, no change was observed in the
total Tyk2 and Statl expression. We also checked for the
different Jak kinase family members but we did not see
any change in the phosphorylation status of other family
members (data not shown). These results suggest that
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Tyk2 and STAT1 contribute to the induction of MUC4
in response to various signals.

MUC4 is necessary for nicotine-induced proliferation and
invasion of pancreatic cancer cells

Fauquette et al. [34-36] has reported that MUC4 plays a
pivotal role in the proliferation and invasion of pancre-
atic cancer cell lines. Our earlier experiments had shown
that nicotine promotes the proliferation as well as inva-
sion of a variety of lung cancer cell lines and that nico-
tine enhances metastasis in mouse models of lung cancer
[2]. Given this background, experiments were conducted
to assess whether MUC4 plays a role in mediating the
proliferation as well as invasion of pancreatic cancer
cells. In the first set of experiments, CD18/HPAF cells
were transfected with a control siRNA or siRNA to MUC4%;
cells were rendered quiescent by serum starvation for 18 h
and stimulated with nicotine for 24 h. Cell proliferation
was assessed by measuring BrdU incorporation, using the

kit according to the manufacturer’s protocol. It was
found that depletion of MUC4 greatly reduced the pro-
liferation of both CD18 cells when stimulated with nico-
tine (Figure 6A-C). Similar results were obtained when a
different siRNA to MUC4 was used (data not shown).
This result clearly shows that MUC4 is a major mediator
of the proliferative effects of nicotine. IFN-y and RA did
not have a significant proliferative effect on the cells and
were not studied further.

Boyden chamber assays were carried out to assess
whether MUC4 play a role in nicotine-mediated invasion
of pancreatic cancer cells. As in the previous experi-
ments, CD18 cells were transfected with a control siRNA
or siRNA to MUC4 and serum starved for 18 h. Cells
were stimulated with nicotine and plated on Boyden
chambers. Invading cells could be visualized using crystal
violet staining of the membranes (Figure 6D). It was
found that depletion of MUC4 greatly inhibited the inva-
sive properties of both the cell lines. The results are
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Figure 5 Involvement of Jak-Stat signaling in upregulation of MUC4. (A) The expression of MUC4 in CD18 cells upon treatment with
Nicotine, IFN-y and RA were analyzed by agarose gel electrophoresis. Serum-starved CD18 cells were treated with 1 pM nicotine, IFN-y and RA for
the given time points. (B) MUC4 expression at protein level was analyzed in nicotine in combination of IFN-y and also nicotine in combination
with retinoic acid by western blot analysis and the quantification of the bands is shown below. (C) Kinetics (starting at 10 min - 2 h) of
Phosphorylation status of Jak kinases at the protein level was analyzed by immunoblotting. (D) Kinetics (starting at 10 min - 2 h) of
Phosphorylation status of Stat1 at the protein level was analyzed by immunoblotting. In addition, the levels of total Tyk2, Jak2 and Stat1 were also
assessed by immunoblotting. 3-actin was used as a loading control. All immunoblotting results are representative of two independent
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depicted graphically in Figure 6B; these results were con-
firmed by using a different siRNA to MUC4 and similar
results were obtained (data not shown). These studies
show that MUC4 is a major mediator of nicotine func-
tions and is involved in promoting proliferation as well
as invasion of pancreatic cancer cells. Figure 6E, shows
that RA stimulated cells have invasive properties similar
to nicotine stimulated cells but this is significantly inhib-
ited by the depletion of MUC4 in CD18 cells. But IFN-y
did not have any significant effect on the invasive behav-
ior of CD18 cells.

Discussion

Understanding of molecular mechanisms that govern
tissue-specific gene expression often lead to the identifi-
cation of transcription factors responsible for overex-
pression of certain genes leading to tissue specialization

and maturation. In this report, we show that E2F1 and
STAT1 are activators of MUC4 mucin tumor marker.
We find a positive correlation between the binding of
E2F1 and STAT1 with MUC4 promoter and its expres-
sion in pancreatic cancer cell lines. As reported in other
studies, MUCH4 is expressed in 83 % of pancreatic ductal
adenocarcinoma samples, both poorly differentiated as
well as well-differentiated types [34]. No expression was
found in normal pancreas or chronic pancreatitis [37].
The significant overexpression of MUC4 points to an
important role for MUC4 in tumor progression, espe-
cially in pancreatic cancer. However, the molecular
mechanisms underlying the dysregulation of MUC4
observed in pancreatic cancer are still poorly under-
stood. In this paper, we investigated the role of E2F1 and
STAT1 transcription factors on MUC4 regulation in
pancreatic cancer cells and found that both the
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Figure 6 Nicotine induces proliferation and invasion of pancreatic cancer cells. (A) Quiescent CD18 cells were stimulated with 1 uM
nicotine for 18 h and S-phase entry was measured by BrdU assays. The proliferative effects of nicotine in pancreatic cancer cells were abrogated
in the MUC4 silenced cells, indicating that MUC4 function is required for the proliferative effects of nicotine. (B) Shows the efficiency of MUC4-
SIRNA transfection in CD18 cells. (C) Quantification of proliferation assay. (D) Nicotine was able to potently promote invasion of CD18 cells at a
concentration of 1 uM as seen in a Boyden-chamber assay. The pro-invasive activity of nicotine was abrogated by MUC4-siRNA demonstrating a
requirement for MUC4 role in invasion. Graphical representation of the results from Boyden-chamber assay shows the results are significant

(*p <001, *p<0.04). (E) RA was able to potently promote invasion of CD18 cells at a concentration of 10 nM as seen in a Boyden-chamber assay.
The pro-invasive activity of RA was abrogated by MUC4-siRNA significantly demonstrating a requirement for MUC4 role in invasion. Graphical
representation of the results from Boyden-chamber assay (*p <0.01, **p < 0.03).

transcription factors can positively regulate MUC4 tran- The biological effects of nicotine are mediated by
scription. The results obtained at the promoter level nAChRs, which are widely expressed in neurons and
correlate well with those obtained at the mRNA level, in  neuromuscular junctions; certain subtypes of the recep-
response to three different extracellular signals. tor are expressed on a variety of non-neuronal cells as
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well. Recent reports show that cigarette smoke ingredients
can modulate the a7 and a4f32 nAChRs and has shown
the presence of these receptors on lung and pancreatic
cancer cells [2,38]. Attempts made to elucidate the
increased recruitment of E2F1 and STAT1 in response to
nicotine stimulation showed a requirement of the a7
subunit. This was determined using specific antagonists
of the a7-subunit (a-bungarotoxin), which blocked nico-
tine-mediated recruitment of the transcription factor on
to the MUC4 promoter. Apart from this, the Real-time
PCR results showed that the expression of MUC4 upon
nicotine stimulation was significantly suppressed by a-
bungarotoxin. These results suggest that the increased
expression of MUC4 by nicotine is mediated through
a7-subunits nAChRs on pancreatic cancer cells. Earlier
studies had shown that different subunits mediate the
proliferative and survival functions of nicotine in lung
cancer cells [2,7,9,30]; it appears that a7, which is more
relevant to cell proliferation, mediates the induction of
MUCH4 in these experiments.

The proto-oncogene c-Src is a non-receptor tyrosine
kinase whose expression is correlated with cancer pro-
gression and poor prognosis in pancreatic cancer. Src
family kinases are involved in regulating signaling of re-
ceptor tyrosine kinases, G-protein-coupled receptors and
FAK influencing wide array of functionalities of tumor
cell behavior like proliferation, survival, angiogenesis, ad-
hesion, invasion, and metastasis [39,40]. Src integrates
divergent signals, facilitating the action of other signaling
proteins; it is able to channel phosphorylation signals
through Ras/Raf/ERK1/2 and also PI3-K/AKT pathways
[41,42]. Attempts were made to understand the molecu-
lar mechanisms underlying the overexpression of MUC4
by nicotine, IFN-y and RA. It is well documented that
nicotine stimulates phosphorylation and activation of
ERK1/2 [43]; the Akt pathway has been implicated in
nicotine function for cell survival [9] and our lab
reported that nicotine activates Src kinase [7]. ChIP
assays as well as the real-time PCR results showed that
the ERK and Src-family kinases are involved in the upre-
gulation of MUC4 upon nicotine stimulation. At the
same time in the case of IFN-y stimulation, all the three
inhibitors (LY294002, PD98059 and PP2) showed a
decreased expression of MUC4 whereas with RA stimu-
lation, PP2 did not show a significant inhibition in the
expression of MUC4. This suggests that the PI3 kinase
pathway plays a role in IFN-y and RA-mediated induc-
tion of MUC4, but not a major role in nicotine-mediated
stimulation of this promoter. It thus appears that different
signaling components mediate the induction of MUC4 in
pancreatic cancer cells depending upon the stimulant.
While these signaling molecules facilitate nicotine stimu-
lated induction of MUCY4, it is likely that other kinases like
the JAK family proteins might also contribute to the
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induction. These JAK kinases are known to modulate mul-
tiple STAT family members, including STAT1 and STATS3.
These members of the signal transducer and activator of
transcription (STAT) family of transcription factors have
been implicated in transformation, tumor cell survival, in-
vasion, and metastasis. Hence role of additional STAT
family members cannot be ruled out. A schematic of the
signaling pathways involved in the induction of MUC4 is
shown in Figure 7.

The E2F transcription factors play a role in diverse bio-
logical functions such as cell proliferation, differentiation
and apoptosis. Studies presented here show that it may
also regulate the expression of genes like MUC4, which
contribute to oncogenesis and tumor progression. Inter-
estingly, E2F1 and STAT proteins appear to contribute
to the induction of MUC4 in response to multiple sig-
nals, including the major addictive component of
cigarette smoke. Our results show that nicotine-induced
MUC4 can promote the proliferation and invasion of
pancreatic cancer cells, whereas, RA-induced MUC4 can
promote invasion but not proliferation.

Conclusions

These studies demonstrate that E2F1 and STAT1 tran-
scription factors play an important role in the regulation
of MUC4 gene transcription in pancreatic cancer cells.
Our findings will lead to a better understanding of the
mechanisms leading to the aberrant expression of MUC4
in pancreatic cancer cell lines. Additionally, this study
reveals the complexity involved in the regulation of
MUC4 promoter and shows that this process may in-
volve many signaling pathways and transcription factors
that might mediate the over expression of MUC4 in pan-
creatic cancer.

Methods

Cell culture

CD18, CAPAN-2 and SW1990 pancreatic cancer cell lines
were cultured in DMEM (Mediatech Cellgro, Manassas,
VA) containing 10 % FBS (HyClone, Logan, UT) and
ASPC-1 was cultured in RPMI1640 containing 10 % FBS.
All reagents for cell culture were purchased from Invitro-
gen (Carlsbad, CA, USA). IEN- y (50 ng) was obtained
from Peprotech (Rocky Hill, NJ, USA). RA (10 nM) was
obtained from (Sigma Chemical Company, St. Louis, MO).
The studies involving signal transduction inhibitors were
done on cells that were rendered quiescent by serum star-
vation for 24 h, following which cells were treated with
indicated concentrations of the inhibitors for 30 min.
Thereafter, cells were stimulated with 1 pM nicotine
(Sigma Chemical Company, St. Louis, MO) in the presence
or absence of the inhibitors for 48 h. The concentrations of
inhibitors used for the various experiments were 1 uM
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Retinoic acid

Figure 7 Schematic representation of signaling involved in MUC4 expression upon Nicotine, IFN-y and Retinoic acid stimulation.
Nicotine-mediated recruitment of E2F1 and STAT1 requires signaling through all the three pathways tested. In contrast, IFN-y stimulation did not
require PI3 kinase/Akt pathway to recruit E2F1 or STATT, but ERK and Src seemed to contribute. In the case of RA stimulation, Akt and ERK
pathways appeared to be important in upregulation of MUC4 expression.

Transcription Invasion

-\ Proliferation

J

PP2, 1 M atropine, 1 pM DhPE, 1 mM a-bungarotoxin
and 20 pM hexamethonium bromide.

Western Blot analysis

Cell lysates were prepared as described previously [13].
Protein concentrations were determined using a BIO-
RADD/C protein estimation kit. For MUC4, the proteins
(30 pg) were resolved by electrophoresis on a 2 % SDS-
agarose gel under reducing conditions. Resolved proteins
were transferred onto the nitrocellulose membrane and
blocked in 5 % non-fat milk in phosphate buffered saline
(PBS) for 1 h and subjected to the standard immunode-
tection procedure using specific antibodies. MUC4
immunodetection, anti-MUC4 mouse monoclonal anti-
body (8 G7, generated in our laboratory) in dilution of
1:1000 was used. Further, the membranes were incubated
in Horseradish peroxidase-conjugated secondary anti-
bodies (Thermoscientific, Rockford, IL) (diluted at
1:2000 in PBST) for 1 h at room temperature, followed
by three washes in PBST. The blots were processed with
ECL Chemiluminescence kit (GE Healthcare) and the sig-
nal was detected by exposing the processed blots to X-ray
films (Biomax Films, Kodak, NY). Lysates from CD18 cells
stimulated with nicotine, IFN-g and retinoic acid for differ-
ent time points were prepared by Nonidet P-40 lysis as
described in [44] 60 ug of total Lysates were run on 8 %
SDS-polyacrylamide gel and transferred on nitrocellulose

membrane by semidry method to assess the levels of Statl
and Jak kinases by Western blotting. Actin (Sigma) was
used as loading control for total lysates.

Chromatin Immunoprecipitation (ChIP) analysis

Quiescent pancreatic cancer cell lines were stimulated
with 1 uM nicotine for 24 h. A total of 2.5x 10" cells
were used per immunoprecipitation (IP) reaction. Cells
were crosslinked with 1 % formaldehyde for 20 min at
room temperature. The crosslinking was terminated by
addition of 0.125 pM glycine. Subsequently, cells were
harvested and lysates were prepared [44,45]. The lysates
were immunoprecipitated with polyclonal E2F1 and
polyclonal STAT1 antibodies (Santa Cruz Biotechnology,
Inc.). The differential binding of E2F1 and STAT1 to the
region -131 to +46 (containing putative E2F1 and
STAT1 binding sites) of the MUC4 promoter was analyzed
by PCR. The sequences of the PCR primers used are as
follows: E2F1 (region -131 to +46) forward primer, 5'-
CGCCTCTACTCCCAGAAG-3'; E2F1 (region -131 to
+46) reverse primer, 5° -TGTAGAGATGCGGTGGTC-3';
STAT1 (region -920 to -773) forward primer, 5'-
CCAAAGCAGAGGACACAC-3'.

Real-time PCR analysis
Real-time PCR was performed in a total volume of 25 pl
using qPCR-Master-Mix-plus-dNTP kit (BioRad, USA)
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and analyzed on a BioRad Real-Time PCR system (BioRad,
USA). A 1 pl of cDNA per sample was used as template.
All amplifications were performed in triplicates. The ther-
mal cycling conditions included 50°C for 2 min and 95°C
for 10 min, followed by 40 cycles of 95°C for 15 s and 60°C
for 1 min.

Primers and probes

Primers and probe sets for MUC4 were sourced from pub-
lished reports [46] and synthesized by IDT DNA Tech-
nologies. A short 82 bp fragment of MUC4 at its 3’ end
was amplified using a forward primer (5-TGGA
CATGCGGGCCTTT-3') binding in exon 22 and a reverse
primer (5-GGCGGTGCTGCAGAA-3) binding in exon
23 of full-length MUC4. The endogenous human glyceral-
dehyde-3-phosphate dehydrogenase (GAPDH) was used as
control.

Matrigel invasion assay

The invasive ability of CD18 cells was assayed according
to the method reported before [2] . Briefly, the upper
surface of the filters was precoated with collagen (100 pg
/ filter). Matrigel was applied to the upper surface of the
filters (50 pg/ filter) and dried in a hood. These filters
were placed in Boyden chambers. Cells were grown to
70 % confluency in respective media and were rendered
quiescent by serum starvation, then treated with 1 pM
nicotine in the presence or absence of indicated inhibi-
tors for 18 h. Following treatment, cells were trypsinized
and 10,000 cells were plated in the upper chamber of the
filter in media containing 0.1 % bovine serum albumin
(Sigma Chemical Company, St. Louis, MO), inhibitors
and nicotine. Media containing 20 % fetal bovine serum
was placed in the lower well as a chemo-attractant, and
the chambers were incubated at 37°C. After 36-48 h,
nonmigrating cells on the upper surface of the filters
were removed by wiping with cotton swabs. The filters
were processed first by fixing in methanol followed by
staining with crystal violet. The cells migrating on the
other side of the filters were quantitated by counting 3
different fields under 40X magnification. Data presented
is a mean of 3 independent experiments.

Proliferation assays

Bromodeoxyuridine (BrdU) labeling kits were obtained
from Roche Biochemicals, Indianapolis, IN and prolifera-
tion assay was performed as described earlier [47].
Briefly, cells were plated in poly-D-lysine coated cham-
ber slides at a density of 10,000 cells per well and ren-
dered quiescent by serum starvation for 24 h. Cells were
then stimulated with 1 M nicotine, IFN-y or RA for 18 h.
S-phase cells were visualized by microscopy and quanti-
tated by counting 3 fields of 100 cells in quadruplicate.
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Data is presented as the percentage of BrdU positive cells
out of the 100 cells counted.

Statistical analysis

Statistical analysis was conducted using Student t test.
Values were considered significant when p was less than
0.05
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