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Abstract

Background: Lapatinib, a tyrosine kinase inhibitor of HER2 and EGFR and is approved, in combination with
capecitabine, for the treatment of trastuzumab-refractory metastatic breast cancer. In order to establish a possible
gene expression response to lapatinib, a panel of breast cancer cell lines with varying sensitivity to lapatinib were
analysed using a combination of microarray and gPCR profiling.

Methods: Co-inertia analysis (CIA), a data integration technique, was used to identify transcription factors
associated with the lapatinib response on a previously published dataset of 96 microarrays. RNA was extracted from
BT474, SKBR3, EFM192A, HCC1954, MDAMB453 and MDAMB231 breast cancer cell lines displaying a range of
lapatinib sensitivities and HER2 expression treated with 1 uM of lapatinib for 12 hours and quantified using Tagman
RT-PCR. A fold change =+ 2 was considered significant.

Results: A list of 421 differentially-expressed genes and 8 transcription factors (TFs) whose potential regulatory
impact was inferred in silico, were identified as associated with lapatinib response. From this group, a panel
of 27 genes (including the 8 TFs) were selected for gPCR validation. 5 genes were determined to be
significantly differentially expressed following the 12 hr treatment of 1 uM lapatinib across all six cell lines.
Furthermore, the expression of 4 of these genes (RB1CC1, FOXO3A, NR3C1 and ERBB3) was directly correlated
with the degree of sensitivity of the cell line to lapatinib and their expression was observed to “switch” from
up-regulated to down-regulated when the cell lines were arranged in a lapatinib-sensitive to insensitive order.
These included the novel lapatinib response-associated genes RB1CC1 and NR3C1. Additionally, Cyclin D1
(CCND1), a common regulator of the other four proteins, was also demonstrated to observe a proportional
response to lapatinib exposure.

Conclusions: A panel of 5 genes were determined to be differentially expressed in response to lapatinib at
the 12 hour time point examined. The expression of these 5 genes correlated directly with lapatinib
sensitivity. We propose that the gene expression profile may represent both an early measure of the
likelihood of sensitivity and the level of response to lapatinib and may therefore have application in early
response detection.
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Introduction

Breast cancer is the second most common malignancy
in the world to date [1]. Classification of this cancer is
based on a number of aspects such as tumour progres-
sion and pathology, estrogen receptor status and Human
Epidermal growth factor Receptor 2 (HER2) status. All
of these clinical parameters dictate the most suitable pa-
tient treatment.

HER2-positive breast cancer, in which the HER2 re-
ceptor is either overexpressed or amplified, is repre-
sented in approximately 20-30% of human breast
cancers [2] and has been associated with poorer progno-
sis [3,4]. As with many cancers, there are a number of
treatment options available to treat HER2 positive breast
cancer. Radiation, surgery and chemotherapy have long
been the standard for treatment. However, in recent
years a more targeted approach has been taken in
regards to treatment. Current targeted therapies avail-
able for this breast cancer subtype include the monoclo-
nal antibody trastuzumab and the dual tyrosine kinase
inhibitor lapatinib. The adverse effects associated with
these types of therapies are less severe than those of
traditional chemotherapies as they target cancer cells
more specifically [5]. Tyrosine kinases are a group of
enzymes that play a critical role in the signalling cas-
cades of the cell. The tyrosine kinase functionality of
these enzymes is typically coupled to and moderated by
ligand binding (receptor) components and receptor-
coupled tyrosine kinases are involved in the phosphoryl-
ation of tyrosine receptors in targeted proteins. Many
important receptor-coupled tyrosine kinases are located
in the cell membrane and proteins are activated by the
binding of ligands to their extracellular domain. HER2
and EGFR (epidermal growth factor receptor) are two
such examples of growth factor receptors which can
homodimerise or dimerise with other members of the
Human Epidermal Growth Factor Receptor family,
which in turn activates their tyrosine kinase moiety. The
activated tyrosine kinases have critical roles in cell sig-
nalling processes such as cell proliferation and growth
[6,7]. Tyrosine kinase inhibitors (TKIs) prevent the acti-
vation of these tyrosine kinases thus inhibiting the acti-
vation of the pathways that would promote tumour cell
growth and proliferation.

In this study, we focused on lapatinib, a dual kinase in-
hibitor developed by GlaxoSmithKline, which targets
both HER2 and EGFR [8]. By binding to both HER2 and
EGER receptors, lapatinib prevents activation of import-
ant pro-cancer pathways such as Erk/MAPK (extracellu-
lar-signal-regulated  kinase/mitogen-activated protein
kinase) and PI3K (Phosphatidylinositol 3-kinases) which
have vital roles in cell proliferation and survival [8,9].
Lapatinib is currently approved for treatment of meta-
static breast cancer in combination with capecitabine
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[10]. It has also been used in combination with trastuzu-
mab in patients suffering from advanced HER2 positive
breast cancer [11].

Despite the wide application of HER2 testing in breast
cancer, a significant proportion of HER2-positive
patients do not respond to HER2-targeted therapy. In
recent studies performed using lapatinib as a monother-
apy, in combination with capecitabine and also with
trastuzumab, clinical benefit response rates were found
to range from 12.4% with lapatinib alone, 22% in com-
bination with capecitabine and 24.7% in combination
with trastuzumab [10,12,13].We have therefore sought
to use cellular models to examine and identify the gene
expression changes which might be characteristic of re-
sponse to treatment with lapatinib.

In this paper, we used a multivariate statistical tech-
nique called co-inertia analysis (CIA) to link transcrip-
tion factor binding site (TFBS) target predictions and
gene expression data to identify transcription factors
(TFs) associated with the cellular response to lapatinib
[14,15]. This is the first time this data integration tech-
nique has been applied to a data set of breast cancer
cells responding to drug treatment. The TFBS target pre-
dictions have been previously published [14]. In total
this analysis contained TFBS information for 1236
known and predicted TFBSs across the conserved prox-
imal promoters for ~17,000 genes. The gene expression
dataset has been described previously [16] and incorpo-
rates time series data post treatment with high and low
dose lapatinib in BT474 and SKBR3 cell lines.

From the original analysis [16] of this time series data,
a number of gene expression changes were identified fol-
lowing treatment with lapatinib. These included a num-
ber of differentially expressed genes associated with the
AKT pathway. This pathway is highly associated with
cell proliferation, apoptosis and cell migration. The dif-
ferentially regulated genes included, FOXO3A,
CDKN1B, CCND1, AKT1 and E2F3. Of these genes, the
authors focused on the expression of FOXO3A and
some of its associated targets and regulators such as
CDKN1B and CCND1 [16].

CIA is used to combine two linked datasets (two sets
of measurements on the same objects) and perform two
simultaneous non-symmetric correspondence analyses
(NSC) and identify the axes that are maximally co-
variant [15,17]. The use of an ordination method such as
NSC or principle components analysis (PCA) allows us
to summarise the data in a low dimensional space. In
this case, the two linked datasets are normalised gene
expression data from the lapatinib-treated cell lines and
TFEBS information for the same genes. We have previ-
ously used this method to compare gene expression data
with miRNA target information [18] and proteomics
data [19]. This is the first time that this approach has
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been used to analyse data derived from breast cancer
cells responding to targeted therapy treatment.

CIA allows us to identify commonality between the ex-
pression of the genes and the TFs that are predicted to
target these genes. It can be performed both unsuper-
vised and supervised. The unsupervised step allows for
data exploration and the identification of interesting
trends or splits in the data and the supervised step
allows us to identify which TFs are responsible for these
splits. The supervised step incorporates the between
group analysis (BGA) classification method [20,21]
which is used in combination with the ordination
method, forcing the ordination to be carried out on
groups of samples rather than individual samples. First,
a normal NSC is performed; BGA then finds the linear
combination of the NSC axes that maximizes between-
group variance and minimizes within-group variance, for
specified groups. The output from this analysis is a
ranked list of TFs predicted to be associated with the
cellular response to lapatinib.

Using this approach, we were able to identify 8 TFs
associated with the cellular response to lapatinib. This
information was then used to generate a shortlist of 19
genes based on; the magnitude of their response to lapa-
tinib, whether they were predicted targets of the 8 TFs
and the involvement of the gene in important oncogenic
processes. Genes were manually selected on the basis of
meeting two or more of these criteria and as representa-
tives to validate the typically less quantitative array data
analyses. This cohort of 27 genes was examined using
Tagman RT-PCR in a panel of 6 cell lines that had vary-
ing sensitivities to lapatinib. 5 genes were significantly
differentially expressed across all 6 cell lines (RB1CC1,
FOXO3A, NR3C1, ERBB3 and CCND1) and the expres-
sion of these 5 genes was directly correlated with the de-
gree of sensitivity of each cell line to lapatinib.

Materials and methods

Gene expression data

The lapatinib-treated cell line dataset and experimental
design has been described previously [16] and was
obtained from the corresponding author in the form of
raw data files (.cel files). The normalised data file can be
downloaded from http://www.ebi.ac.uk/arrayexpress (ac-
cession number: E-MEXP-440). Gene expression values
were called using the robust multichip average method
[22] and data were quantile normalized using the Bio-
conductor package, affy. Affymetrix human genome HG-
U133A arrays containing >22,000 probesets were used
in this experiment. Briefly, the experimental design was
as follows; four cell lines (BT474, SKBR3, T47D and
MDAMB468) were analysed at 2, 6 and 12 hours post
treatment with 0.1% DMSO (the control), 0.1 uM lapati-
nib and 1.0 uM lapatinib, with four replicates for each
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time point/treatment. In addition, 0.1% DMSO-treated
cells were arrayed at 0 and 24 hours and 0.1 pM lapati-
nib treated cells were arrayed at 24 hours. Again these
were arrayed in quadruplicate. In total, there were 48
arrays for each cell line. Our analysis focused on the two
lapatinib sensitive cell lines, BT474 and SKBR3, com-
prising a total of 96 arrays (including controls).

Differential gene expression lists were generated using
the ebayes function of the limma [23] package from Bio-
conductor. A fold change of>1.3 and an adjusted p-
value of <0.05 were considered significant. The p-values
are adjusted using the Benjamini and Hochberg method
[24]. The choices of comparisons within the datasets
were guided by the unsupervised CIA. In total there
were 6 comparisons and these are summarised in Table 1.
The final gene list was determined by consistent overlap
between these 6 comparisons.

The validity of choosing these six comparisons was
confirmed by differentially expression analysis to show
that early response in both BT474 and SKBR3 cells and
low dose lapatinib in BT474 cells results in little or no
lapatinib responsive genes. As above the Bioconductor
package, Limma was used, and a fold change of > 1.3 and
an adjusted p-value of <0.05 were considered significant.

Co-inertia analysis

CIA, a multivariate coupling technique, was used in an
unsupervised manner to combine the two linked data-
sets; gene expression data from lapatinib-treated BT474
and SKBR3 cell lines and predicted TFBS information
for the same genes. This initial step was used for data
exploration and uses NSC. The analysis was then rerun
in a supervised manner using BGA [14]. The output
from this analysis is a ranked list of TFs predicted to be
associated with the cellular response to lapatinib. The
same 6 comparisons used to generate the differentially
expressed gene list were used to generate 6 ranked lists
of TFs. The final TF list was determined by overlap be-
tween these 6 ranked lists. All calculations were carried
out using the MADE4 library [25] of the open source R
package. MADE4 can be downloaded freely from the
Bioconductor web site http://www.bioconductor.org. All
the scripts and datasets used are available upon request
from the authors.

Transcription factor binding site information

The TFBS data has been previously published and con-
tains information for 1236 known and predicted TFBSs
across the conserved proximal promoters for ~17,000
genes at four different position specific scoring matrix
(PSSM) thresholds, 0.7, 0.75, 0.8 and 0.85, giving 4 gene/
TEBS frequency tables [14]. Using BGA with CIA, we
were able to combine this information with gene expres-
sion data to gives 4 ranked lists of TFBS associated with
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Table 1 A breakdown of the 6 comparisons for BT474 and SKBR3

Comparison Cell Line Groups Treatment Time Point Sample Number
1 BT474 Group 1 1 UM lapatinib 6 hr& 12 hr 8
Group 2 0.1 uM lapatinib 2hr&6hr&12hr&24 hr 16
1 UM lapatinib 2 hr 4
0.1% DMSO Ohr&2hr&6hr&12hr&24hr 20
Total 48
2 BT474 Group 1 1 UM lapatinib 6 hr&12hr 8
Group 2 0.1 uM lapatinib 6 hr& 12 hr 8
Total 16
3 SKBR3 Group 1 1 UM lapatinib 6 hr& 12 hr 8
0.1 uM lapatinib 6 hr& 12 hr 8
Group 2 0.1 pM lapatinib 2 hr & 24 hr 8
1 UM lapatinib 2 hr 4
0.1% DMSO Ohr&2hr&6hr&12hr&24hr 20
Total 48
4 SKBR3 Group 1 1 UM lapatinib 6 hr& 12 hr 8
0.1 uM lapatinib 6 hr& 12 hr 8
Group 2 0.1 uM lapatinib 2 hr 4
1 UM lapatinib 2 hr 4
0.1% DMSO Ohr&2hr&6hr&12hr&24hr 20
Total 44
5 SKBR3 Group 1 1 UM lapatinib 12 hr 4
0.1 uM lapatinib 12 hr
Group 2 0.1 uM lapatinib 2hr&6hr&24hr 12
1 UM lapatinib 2hr&6hr 8
0.1% DMSO Ohr&2hr&6hr&12hr&24hr 20
Total 48
[§ SKBR3 Group 1 1 UM lapatinib 12 hr
0.1 uM lapatinib 12 hr 4
Group 2 0.1 pM lapatinib 2 hr&6 hr
1 UM lapatinib 2 hr&6 hr 8
0.1% DMSO Ohr&2hr&6hr&12hr&?24hr 20
Total 44

a particular split of interest within the data; in this case,
TFBS associated with the cellular response to lapatinib,
for which we can infer the TFs linked with this response.
The four lists were combined using the Rank Products
method [26] which was initially developed for combining
lists of differentially expressed genes. This gives one final
list of ranked TFs.

Statistical overrepresentation of TFBS

The TFs identified from the supervised CIA were vali-
dated using statistical overrepresentation of their pre-
dicted target genes within the differentially expressed
gene list. A one-tailed fisher exact test was used as we

are specifically interest in overrepresentation only
[27,28]. The 421 consistently differentially expressed
genes and the 8252 genes for which promoter informa-
tion was available and were present on the U133A
arrays, acted as the foreground and background for the
fisher exact test respectively. The TFBS information is
described in the previous section.

Cell culture

SKBR3, HCC1954, EFMI192A, MDAMB453 and
MDAMB231 breast cancer cell lines were maintained in
RPMI 1640 medium supplemented with 10% fetal bovine
serum (PAA Labs, Austria). BT474 cells were maintained
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in Dulbeccos Modified Eagles medium (DMEM) supple-
mented with 10% fetal bovine serum, 2% L-Glutamine
(Sigma, St Louis, MO, USA) and 1% Sodium Pyruvate
(Sigma). All cell lines were kept at 37 °C in a 5% CO,/
95% air humidified incubator.

Lapatinib treatment and RNA extraction

Triplicate samples were grown to approximately 75%
confluency. Treated samples were conditioned with
1 uM lapatinib for 12 hours. Control samples remained
untreated. After the 12 hour incubation, the control and
treated samples underwent RNA isolation using a Qia-
gen RNeasy mini Kit (Qiagen, Hilden, Germany) accord-
ing to the manufacturer’s protocol and treated with
Qiagen RNase-free DNase. ¢cDNA template was then
prepared from 2 pg of total RNA using an Applied Bio-
systems high capacity RNA to cDNA kit (Applied Bio-
systems, Foster City, CA, USA).

Tagman RT PCR
TagMan gene expression experiments were performed
in 10 pl reactions in Tagman Array 96 well fast plates
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which had been pre-seeded with assays for the genes of
interest. 40 ng of ¢cDNA template and 5 pl of Tagman
fast Universal Master Mix (2x), no AmpErase UNG (Ap-
plied Biosystems, Foster City, CA, USA) were dispensed
into each well. The following thermal cycling specifica-
tions were performed on the ABI 7900 Fast Real-Time
PCR system (Applied Biosystems, Foster City, CA,
USA); 20 s at 95 °C and 40 cycles each for 3 s at 95 °C
and 30 s at 60 °C. Expression values were calculated
using the comparative threshold cycle (C;) method [29].
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
was selected as the endogenous control. The threshold
cycle (C,) indicates the cycle number by which the
amount of amplified target reaches a fixed threshold.
The C, data for GAPDH was used to create AC; values
[AC,=C, (target gene)-C; (GAPDH)]. AAC, values were
calculated by subtracting AC; of the calibrator (untreated
controls) from the AC, value of each target. Relative
quantification (RQ) values were calculated using the
equation 24, Genes with a fold change+2 in the
BT474 and SKBR3 cell lines were deemed to be differen-
tially expressed.
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Figure 1 Axes 1 (horizontal) and 3 (vertical) of the unsupervised CIA for BT474 cell line data. A gene/TFBS frequency table produced with
a PSSM threshold of 0.8 was used. (a) shows the projection of the cell line samples. The 0.1% DMSO treated samples (black 0 hr, red 2 hr, light
blue 6 hr, light green 12 hr and orange 24 hr) and the 0.1 uM lapatinib treated samples (magenta 2 hr, dark blue 6 hr, cyan 12 hr and dark green
24 hr) are split from the 1 uM lapatinib treated samples (purple 6 hr and pale blue 12 hr). The exception being the four 1 uM lapatinib treated
samples at 2 hours post treatment (grey). (B) Shows the projection of the TFBS motifs. Motifs that are in the same orientation (direction from the
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Proliferation assay in vitro

Cells were cultured in 96 well flat bottomed plates for
24 h before they were exposed to a range of concentra-
tions of lapatinib for 6 days (0—20 puM for the insensitive
cell lines and 0-1.5 pM for the sensitive cell lines). The
% cell survival was then determined using an Acid Phos-
phatase assay. Media was removed from plates, the wells
were washed twice with PBS and the cells were exposed
to 10 mM PNP substrate in 0.1 M sodium acetate for
approximately 1 hour. The reaction was stopped using
1 M NaOH and the plates were read at 405 nm and
620 nm on the plate reader (Synergy HT, Bio-Tek). The
% cell survival was calculated as a percentage of non-
treated controls.

Results

Unsupervised co-inertia analysis identifies prominent
trends in the BT474 and SKBR3 cell lines

For each cell line (BT474 and SKBR3) we used CIA to
simultaneously analyse mRNA expression levels and
TEBS information in the promoters of the same genes.
Unsupervised CIA was applied to the 48 microarrays for
each of the BT474 and SKBR3 cell lines and the asso-
ciated gene/TFBS frequency tables to identify underlying
trends in the data in each of the cell lines. The ultimate
goal was to identify the TFs responsible for these trends
and the differentially regulated genes they were pre-
dicted to target. The unsupervised CIA of the BT474
and SKBR3 cell lines are shown in Figures 1 and 2 re-
spectively and are described in the following sections.

Unsupervised co-inertia analysis of the BT474 cell line
identifies a separation of 6- and 12-hour 1 pum lapatinib
treatment samples

Axes one and three of the CIA for BT474 are plotted in
Figure 1a, for data exploration purposes. This allows us
to estimate the response to lapatinib in the BT474 cell
line. Axes one and three were chosen as they represent
the dominant split within the data. The samples are la-
belled based on time and treatment. The samples at 6
hours and 12 hours post treatment with 1 pM lapatinib
(purple 6 hr and pale blue 12 hr) clearly separated from
those treated with 0.1% DMSO (black O hr, red 2 hr,
light blue 6 hr, light green 12 hr and orange 24 hr), with
0.1 pM lapatinib (magenta 2 hr, dark blue 6 hr, cyan
12 hr and dark green 24 hr) and 2 hours post treatment
with 1 pM lapatinib (grey), demonstrating a clear separ-
ation in the data between 1 pM lapatinib treated cells
and the other samples. However, there was no difference
between 0.1 pM lapatinib-treated and 0.1% DMSO-
treated cells, suggesting that this is a dosage-dependent
response in that a separation only occurred between the
control samples and the high dose lapatinib samples,
with the exception of one outlier on the far right of the
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Figure 2 Axes 1 (horizontal) and 2 (vertical) of the
unsupervised CIA for SKBR3 cell line data. A gene/TFBS
frequency table produced with a PSSM threshold of 0.8 was used.
Figure 2 (a) shows the projection of the cell line samples. The 0.1%
DMSO treated samples (black O hr, red 2 hr, light blue 6 hr, light
green 12 hr and orange 24 hr), are split from the 0.1 uM lapatinib
treated samples (dark blue 6 hr, cyan 12 hr and dark green 24 hr)
and the 1 puM lapatinib treated samples (purple 6 hr and pale blue
12 hr). The exception being the eight 0.1 uM lapatinib and 1 uM
lapatinib treated samples at 2 hours post treatment coloured
magenta and grey respectively. Figure,2 (b) Shows the projection of
the TFBS motifs. Motifs that are in the same orientation (direction
from the origin) as a group of samples are associated with those
samples.

plot. The lack of separation at 2 hours post treatment
with 1 pM lapatinib suggests that the gene expression
effects of the drug are not yet apparent at this time
point. These observations guided our choice of compari-
sons for both the supervised CIA and the differential
gene expression analysis which are summarised in
Table 1.

Figure 1b shows the motifs associated with this trend.
The most extreme motifs along each axis are labelled and
named. Those motifs furthest from the origin in the same
orientation as the split of interest are most associated with
that split. In this case V. AHRARNT.02 was the motif
most associated with the separation of 1 puM lapatinib
treated cells from the other samples and therefore is the
motif most associated with the response to lapatinib. This
is the motif for the agonist-activated heterodimer AHR/
ARNT (Aryl hydrocarbon receptor/Arnt (hypoxia indu-
cible factor 1 beta)) which directly associates with the es-
trogen receptors ER-alpha and ER-beta in ER-positive
breast cancer, although its function in HER2-positive
breast cancers is not well characterised [30].
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Unsupervised co-inertia analysis of the SKBR3 cell line
identifies a separation of 6- and 12-hour 0.1 pM and 1 pm
lapatinib treatment samples

Figure 2a shows axes one and two of the CIA for SKBR3.
The samples are labelled as before based on time and
treatment. There was a clear split between the 0.1 uM
(dark blue 6 hr and cyan 12 hr) and 1 uM (purple 6 hr
and pale blue 12 hr) lapatinib-treated cells at 6 and 12
hours post treatment from the 0.1% DMSO treated con-
trols (black O hr, red 2 hr, light blue 6 hr, light green
12 hr and orange 24 hr), with the exception of one out-
lier. As with the BT474 cell line there was no separation
at 2 hours post treatment with 0.1 pM and 1 pM lapati-
nib coloured magenta and grey respectively, suggesting
that the affects of the drug are not yet apparent at this
time point in both cell lines. However, in this cell line
the split occurred at both lapatinib dosages. Again, as
with the BT474 data, these analyses were used to guide
our comparisons for the supervised CIA and the expres-
sion analysis (Table 1).

The motifs associated with this split in the data are in
the same orientation relative to the origin to our split of
interest in Figure 2b. These include the VDR/RXR hetero-
dimer (V.VDR_RXR.06, vitamin D receptor/retinoid X re-
ceptor). This heterodimer has been previously associated
with numerous cancers, including breast cancer [31].

Validation of the 6 comparisons chosen for supervised
CIA

The results from unsupervised CIA suggests that there
was no difference between control and treated cells at
both the high and low dose lapatinib at the 2 hour time
point in both cell lines, and that there was no difference
between treated and untreated BT474 cells at the 6 hr
and 12 hr time point when low dose lapatinib was used.
If this is the case there should be few differentially regu-
lated genes at the early time point in both cell lines and
at the low dose in the BT474 cell line. The results from
these comparisons are shown in Additional file 1. On
average there are ~60 differentially regulated genes in
these comparisons compared to over ~2,500 differen-
tially regulated genes when using the comparisons out-
lined in Table 1 (data not shown). This marked
difference is a strong validation of our approach.

Supervised CIA identifies 8 putative transcription factors
associated with the response to lapatinib

In order to systematically identify the TFBSs specifically
associated with the response to lapatinib in these cell
lines (6 hr & 12 hr 1 uM lapatinib-treated samples vs.
the other samples), we performed a supervised analysis
of the data, combining CIA and BGA, as described. CIA
was performed twice in the BT474 dataset and four
times in the SKBR3 dataset (Table 1). This resulted in
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Table 2 A ranked list of TFs associated with the response
of BT474 and SKBR3 to lapatinib

TF Motif ID Description

RAR V. RAR_RXR.02 Retinoic acid receptor

RXR V.RAR_RXR.02 Retinoid X receptor

ARNT V.AHRARNT.02 hypoxia inducible factor 1 beta
AHR V.AHRARNT.02 Aryl hydrocarbon receptor
ZNF143 V.STAF.02 Zinc finger protein 143

PAX9 V.PAX9.01 Paired box gene 9

OLF1 V.OLF1.01 Olfactory neuron-specific factor
PAX3 V.PAX3.01 Paired box gene 3

six ranked lists of TFBS associated with a response to
lapatinib treatment (Additional file 2). The 6 transcrip-
tion factor motifs (representing 8 individual transcrip-
tion factors) which were consistently ranked highly
across the six comparisons are displayed in Table 2. The
individual ranking for each of the 6 comparisons are
available in Additional file 2. From these motifs we can
infer the 8 transcription factors which are driving the re-
sponse to lapatinib in these cell lines.

Differential gene expression analysis of the BT474 and
SKBR3 cell lines identifies a list of 421 genes associated
with response to lapatinib

The same six comparisons outlined in Table 1 were used
to determine the genes which consistently respond to
lapatinib treatment in both cell lines. In total, there were
421 distinct genes (274 probes upregulated and 244
probes downregulated) consistently dysregulated across
the six comparisons. The full list of dysregulated genes,
with associated fold-changes and p-values, is available in
Additional file 3. A panel of 19 genes, in addition to the
identified TFs, were selected for further analyses using
qPCR based on varying combinations of the following
criteria; (i) the magnitude of response to lapatinib, (ii)
whether the selected genes were predicted targets of the
8 TFs, (iii) the involvement of the gene in important
oncogenic processes (determined from functional anno-
tation using the literature mining analysis software Path-
way Studio Enterprise (Ariadne Genomics). Genes were
manually selected on the basis of meeting two or more
of these criteria and as representatives to validate the
typically less quantitative array data analyses. These 19
genes are listed in Table 3 along with the TFs that are
predicted to target them.

The predicted targets of the majority of the TFs identified
by CIA are statistically overrepresented in the 421 genes
associated with the response to lapatinib

In order to validate the results obtained by CIA we used
a fisher exact test to determine if the predicted targets of
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Table 3 Genes Selected for Tagman RT-PCR
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Gene Symbol Gene Name Key Targeted by

CCND1 Cyclin D1 3 AHR/ARNT, PAX9, RAR/RXR
ERBB3 v-erb-b2 erythroblastic leukemia viral oncogene homolog 3 23 OLF-1

FOXO3 Forkhead box protein 03 13 RAR/RXR

NR3C1 nuclear receptor sub family 3 group C member 1 23 AHR/ARNT, PAX3

RB1CC1 RB1 inducible coiled coil protein 1 3 ZNF143

ALDH3A2 aldehyde dehydrogenase 3 family member 2a 2

CDKN1B cyclin dependent kindase inhibitor 18 2

PIK3C3 phosphoinositide 3 kinase class 3 2y

AKT1 v-akt murine thymoma viral oncogene homolog 1 3 RAR/RXR

BID BH3 interacting domain 2

E2F3 E2F transctription factor 3 13 AHR/ARNT, OLF-1, PAX9, ZNF143
elF4E eukaryotic translation initiation factor 4e 3 PAX3, RAR/RXR

FKBP4 Fk506 binding protein 4 23 ZNF143

MAPK9 mitogne-activated protein kinase 9 2

PARP2 poly (ADP-ribose) polymerase 2 2

PSMD13 proteasome 26 S subunit non-ATPase 13 2

SLC29A1 solute carrier family 29 member 1 2

TFPT TCF3 (E2A) fusion partner 23 ZNF143

CBFA2T2 core-binding factor, runt domain, alpha subunit 2; translocated to, 2 2

! denotes a highly differentially regulated gene (2 fold across all 6 comparisons) ? denotes a gene that was known to be associated with cancer, > denotes a
gene was predicted to be targeted by one or more of the transcription factors. Those in bold were found to be consistently dysregulated in response to lapatinib
in all 6 of the cell lines. + denotes that the gene was found to be differentially expressed in BT474 and SKBR3 cell lines but not in the additional four cell lines

also tested

the 8 TFs identified, were enriched in the 421 genes
associated with the response to lapatinib. The results are
shown in Additional file 4. The 8 TFs are represented by
6 motifs (Ahr/ARNT and RAR/RXR bind as heterodi-
mers). Of these 6 motifs, 4 are significantly overrepre-
sented in the promoters of the 421 lapatinib responsive
genes (PAX9, p-value =0.04, PAX3, p-value =0.05, Ahr/
ARNT, p-value=0.002 and ZNF143, p-value=0.0003),
while two are not (OLF-1, p-value = 0.38, and RAR/RXR,
p-value =1). While none of these transcription factors
are present in the 421 gene list their predicted targets
are modulated in response to lapatinib for the majority
of the TFs identified.

Lapatinib toxicological analysis in a panel of cell lines
using acid-phosphatase proliferation assay identifies a
range of drug-responses in breast cancer

The IC50 values determined using the described methods
were found to correlate with previous published data for 5
of the 6 cell lines (BT474, SKBR3, EFM192A, HCC1954
and MDAMB453) [2]. There are currently no publically
available IC50 values for lapatinib response in MDAMB231
cells. The values determined were 0.036+0.0151 pm for
BT474, 0.080+0.0173 pM for SKBR3, 0.193 + 0.0665 uM

for EFM192A, 04166+0.18 uM for HCC1954,
6.08 £0.825 uM for MDAMB453 and 7.46 + 0.102 pM for
MDAMB231 (Table 4).

Tagman PCR analysis confirms dysregulation of the 8
transcription factors following lapatinib exposure

The initial Tagman RT PCR analysis was carried out in
lapatinib-treated BT474 and SKBR3 breast cancer cell
lines. The drug concentration and treatment duration
were also evaluated using the CIA. The combination of
1 uM lapatinib and 12 hours post treatment are the opti-
mal conditions for treating the cells based on the separa-
tions seen in Figures 1 and 2. In addition, 1 uM of
lapatinib is a clinically relevant concentration [8]. These

Table 4 IC50 values of selected cell lines

Cell Line Name IC50£SD (UM)

Lapatinib Sensitive Cell Lines BT474 0.036+0.0151
SKBR3 0.080+0.0173
EFM 192A 0.193 £0.0665
HCC1954 0416+£0.180

Lapatinib Insensitive Cell Line MDA MB 453 6.08 £0.825

Triple Negative Cell Line MDA MB 231 746+0.102
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Transcription Factor expression in 6 cell lines

Fold Change (RQ)
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Figure 3 Expression of Transcription Factors. The transcription factor expression was calculated using AAC; values of the control and treated
cell line samples. N=3.
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Figure 4 Differential expression of 5 significant genes. Analysis across the 6 cell lines showed that 5 genes were differentially regulated in
response to lapatinib and the degree of dysregulation was proportional to the response to lapatinib. The cell lines are represented in order of
sensitivity to lapatinib, with BT474 being the most sensitive and MDAMB231 being the least. N=3.
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two cell lines are highly sensitive to lapatinib with IC50
values of 0.036 uM +0.0151 UM and
0.080 uM +£0.0173 puM respectively (Table 4) [2]. Four
additional cell lines were also chosen based on their sensi-
tivity to lapatinib (EFM192A, HCC1954, MDAMBA453 and
MDAMB231). Their IC50 values are shown in Table 4.

76 of the 8 transcription factors were found to be
present following 1 uM 12 hr lapatinib treatment relative
to untreated controls (Figure 3). Although these genes
were not identified from the differential gene expression
analysis, they are clearly dysregulated in these cell lines, as
predicted by CIA. 2 of the predicted transcription factors
(PAX3 and OLF1) were not expressed (data not shown).
While the expression of the transcription factors does not
follow a set pattern, there are some distinct trends. For ex-
ample, all the TFs were up-regulated in the most
lapatinib-sensitive cell line (BT474) and nearly all down-
regulated in the most lapatinib-insensitive cell line (MDA
MB 453). In addition ARNT was up-regulated in all lines,
apart from MDAMB231, the triple negative cell line.

Tagman PCR analysis confirms a consistent dysregulation
of 5 of the 19 additional genes selected for validation,
following lapatinib exposure
A panel of 19 genes was selected from the list of 421
candidate genes as described (Table 3). As with the TFs,
the 19 genes were first analysed for differential expres-
sion in BT474 and SKBR3 cells that had been treated
with 1 uM lapatinib for 12 hours using untreated cells as
a control. Of the 19 genes 5 were found to be differen-
tially expressed with an RQ value of>+2 in both the
BT474 and SKBR3 cell lines (RB1CC1, FOXO3, NR3C1,
ERBB3 and CCND1) (RQ values for all genes are avail-
able in Additional file 5. Basal gene expression is avail-
able for these 5 genes in Additional file 6, Figure S2). Of
the remaining 14 genes (AKT1, ALDH3A2, BID,
CDKN1B E2F3, elFAE, FKBP4, MAPK9, PARP2, PIK3C3,
PSMD13, SLC29A1, TFPT and CBFA2T2), some were
found to be differentially expressed, however, this alter-
ation in expression did not occur in both of the cell lines
and they were therefore excluded from further analysis.
For further validation expression of, CCND1, ERBB3,
FOXO03, NR3C1 and RB1CC1, was analysed in two add-
itional lapatinib-sensitive cell lines EFM192A and
HCC1954. Both of these cell lines are HER2-positive and
have varying sensitivities to lapatinib, with IC50 values
of 0.193 pM +0.0665 pM and 0.4166 pM +0.18 pM, re-
spectively. Two lapatinib-insensitive cell lines were also
analysed, MDAMB453 and MDAMB231. MDAMB453 is
a HER2-positive breast cancer cell line that is innately
insensitive to lapatinib and MDAMB231 is a triple nega-
tive breast cancer cell line that has an IC50 value of
7.46 £0.102 pM
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In the lapatinib sensitive cell lines (BT474, SKBR3,
EFM192A and HCC1954), the 5 genes showed differen-
tial gene expression levels proportional to the degree of
sensitivity of the cells to lapatinib and are highlighted in
bold in Table 3.

Figure 4 shows the expression profiles of RB1CCl,
FOXO3A, NR3C1 and ERBB3 in the four lapatinib-
sensitive cell lines and clearly demonstrates a correlation
between the degree of sensitivity of the cell line to lapa-
tinib and the magnitude of differential gene expression.
BT474 was the most lapatinib-sensitive cell line and dis-
played the highest differential expression values for the
four upregulated genes. As the cell lines became less
sensitive to lapatinib, the magnitude of differential gene
expression decreases. In the lapatinib-insensitive cell
lines, MDAMB453 and MDAMB231, the expression of
these genes “switched” from up-regulation following
lapatinib exposure to down-regulation.

In the case of CCNDI, the differential gene expression
pattern followed a largely proportional response and not
a “switching” response which was evident with the other
genes. In the lapatinib-sensitive cell lines the gene was
found to be strongly down-regulated following the 12 hr
treatment. The magnitude of this down-regulation was
reduced as the cells became more lapatinib-insensitive
(Figure 4).

Discussion

In this paper, we describe the application of a method
(CIA) for inferring the action of TFs by integrating the
information provided by TEFBS target prediction with
mRNA gene expression data [14] to identify possible
markers for early lapatinib response. This is the first
time this approach has been used to analyse an array
data set derived from breast cancer cells treated with a
targeted therapeutic. This multivariate statistical tech-
nique was applied to gene expression data incorporating
time series data post treatment with high and low dose
lapatinib in lapatinib-sensitive, HER2-positive cell lines
(48 microarrays on both BT474 and SKBR3 cell lines).
This method was initially used for data exploration to
determine the gene expression response to lapatinib.
This response appears to require a high dose of lapatinib
in BT474 cells (1 uM lapatinib) and require low to high
dose in SKBR3 cells (0.1 uM or 1 uM lapatinib). Differ-
ential gene expression analysis at early times or lose dose
lapatinib confirmed this, as we were unable to identify a
substantial gene list at low dose lapatinib in BT474 cells
and at the 2 hr time point in either cell line, providing a
strong validation of our approach. Once the lapatinib re-
sponse was determined, CIA was used in a supervised
manner to identify 8 TFs associated with response to
lapatinib. It is important to note that none of these TFs
were associated with the lapatinib response through
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standard differential expression analysis and their priori-
tisation here was only achieved via the novel use of the
CIA method in this breast cancer dataset. Statistical
overrepresentation of these TFs in the promoters of the
421 differentially regulated genes was used to further
confirm of the validity of the approach we used here. 4
of the 6 motifs (representing the 8TFs) were statistically
overrepresented in the lapatinib responsive gene list
(PAX9, PAX3, Ahr/ARNT and ZNF143). While OLF-1
and RAR/RXR expression levels were not statistically
significant within this gene list, it is not unexpected, as
CIA is not restricted to a specific gene list but rather
uses the entire microarray data as input. CIA is therefore
not limited by arbitrary cut-offs which may exclude im-
portant TFs of interest. Overall the target genes of the
TFs identified by CIA show higher than expected modu-
lation by lapatinib, even though the TFs themselves are
not differentially regulated.

These 8 TFs and an additional 19 putative markers
were then validated using qPCR in a panel of breast can-
cer cell lines following treatment with 1 pM lapatinib for
12hours. The results suggest that the 5 genes RB1CC1,
NR3C1, FOXO3A, ERBB3 and CCND1, which had been
found to be differentially regulated in response to lapati-
nib treatment could be utilised as potential markers for
early lapatinib response as their expression correlates
with the sensitivity of the cell lines to lapatinib.

The expression of 6 TFs, AHR, ARNT, RXR, RAR,
PAX9 and ZNF143 were found to be altered across all
the cell lines in response to lapatinib treatment. These
TFs are putative regulators of the cellular response to
lapatinib and are predicted to target a number of the sig-
nificantly differentially regulated genes. The expression
of these TFs does not follow a set pattern but do follow
some distinct trends as mentioned above, however, the
regulation of gene expression by TFs is difficult to dis-
cern directly from the expression pattern of the TF genes
themselves. All of these TFs have been previously
demonstrated to play important roles in cancer, although
their function in HER2-positive breast cancer is unclear.
The AHR/ARNT heterodimer has been implicated as
having importance in ER positive breast cancer and has
been shown to directly associate with estrogen receptors
ER-alpha and ER-beta [30,32,33]. Retinoids targeting the
RXR/RAR heterodimer have marked affects on cellular
processes such as proliferation and apoptosis and this
has been shown both iz vivo and in vitro in breast can-
cer models [34]. The RARA receptor has also been re-
cently identified as being co-amplified with HER2 in
some breast cancers [35]. While being known onco-
genes, PAX9 and ZNF143 have not been extensively
studied in breast cancer [36,37] and none of these TFs
have previously been implicated in the response to
lapatinib.
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From the panel of 5 genes, 4 were upregulated in re-
sponse to lapatinib, RBICC1, NR3C1l, FOXO3A and
ERBB3. The expression of these genes correlated with
the sensitivity of each cell line to lapatinib. The results
show that the more sensitive that the cell line is to lapa-
tinib, which was determined using proliferation assays,
the greater the magnitude of up-regulation of the 4
genes. The genes then “switch” to down-regulation in
the remaining two lapatinib insensitive cell lines
(MDAMB453 and MDAMB231). In the case of CCNDI,
this switching phenomenon is not evident; rather the ex-
pression of CCND1 becomes less down-regulated as the
level of lapatinib sensitivity decreases.

All 5 of the genes have been previously demonstrated
to have importance in cancer. RB1 inducible coiled-coil
1 (RB1CC1) expression has been shown to be associated
with long term survival of breast cancer patients and has
been found to have a role in the inhibition G1-S pro-
gression and proliferation in breast cancer cell lines
[38,39]. NR3C1, a glucocorticoid receptor, has been
associated with poor response to treatment in multiple
myeloma samples [40]. Up-regulation of ERBB3 (HER3)
has been connected with invasive breast carcinomas and
also drug resistance in some HER2-overexpressing can-
cers [41].

FOXO3A and CCND1 have been demonstrated to be
important in both breast cancer and the lapatinib re-
sponse [16,42]. FOXO3A and CCND1 were both shown
by [16] to be differently expressed following treatment
with lapatinib. This group reported up-regulation of
FOXO3A in both BT474 and SKBR3 and also a down-
regulation of CCND1 in the same cell lines. These
results are consistent with the results obtained by our
study. It should be noted that CDKN1B was also differ-
entially expressed in response to lapatinib in our study,
[16] although its dysregulation did not correlate with
lapatinib sensitivity (Additional file 6 figure S1). The
authors identified that these three genes all played roles
in the regulation of the AKT pathway, both positive and
negative. They noted that the down regulation of
CCND1 and that the upregulation of CDKN1B in re-
sponse to lapatinib could be as a result of a FOXO3A-
dependent mechanism, which promotes lapatinib-
induced apoptosis. However, they did not examine the
expression of these genes in other lapatinib sensitive
cells lines nor did they observe that the expression of
these genes correlated with the sensitivity of the cell
lines to lapatinib. They also observed additional changes
in response to genes associated with a number of cellu-
lar processes such as glycolysis and cell cycle regulation.

Interestingly, CCND1 links all of these genes together
both at the TF level (it is predicted to be targeted by
AHR/ARNT, RXR/RAR and PAX9) and at the gene level
via several interactions. CCND1 was downregulated in
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response to lapatinib in our panel of cell lines which is
consistent with previous studies [43-45] and which may
also be related to its known interactions with our other
genes of interest. FOXO3A has been shown to down-
regulate CCND1 during cell cycle inhibition [46], while
Erbb3 receptors are thought to be required to reduce
transcription of E2F mediated transcription factors,
which include CCND1 [47]. NR3C1 has been noted to
inhibit CCND1 activation, through the TCEF/{3-catenin
complex [48,49] and RB1CC1 has been found to de-
crease the expression of CCND1 by promoting its deg-
radation [39]. Also, AHR/ARNT has been shown to
regulate cell cycle progression via a functional inter-
action with CDK4/CCND1 [32] and retinoids (RXR/
RAR receptor ligands) are known to inhibit CCND1 ex-
pression [50].

Of the 5 lapatinib-responsive genes, FOXO3A and
CCND1 were previously described in lapatinib-treated
BT474 and SKBR3 cell lines by the group that generated
the original microarray dataset [16]. However, the inclu-
sion of the additional 4 cell lines allowed us to examine
the 5 differentially expressed genes in the context of cell
lines with varying sensitivities to lapatinib. The upregula-
tion of RB1ICC1 and NR3C1 in response to lapatinib has
not been previously observed, while only limited work
has been performed on ERBB3, FOXO3A and CCND1
in this setting. While the analysis described in this work
is of a descriptive nature, a number of these genes in-
cluding, FOXO3a (Mickey C.-T Hu et al.) and ERBB3
(Liu, B et al.) have been successfully functionally vali-
dated as being important in breast cancer response
[51,52] .

The methods we have employed represent an attract-
ive approach to dissection of the underlying gene ex-
pression changes associated with the response of cellular
models of breast cancer (with differing inherent sensitiv-
ity) to lapatinib treatment. Our experimental design gen-
erated a list of gene changes that directly correlate with
response to lapatinib in breast cancer. Since the list is
highly enriched for genes likely to be of importance in
lapatinib response, our findings therefore represent
interesting candidates as biomarkers of response or
functional targets for therapeutic intervention to im-
prove response/overcome resistance.

Conclusions

In summary, we used CIA to identify a number of
genes and TFs associated with the cellular response
to lapatinib. This is the first time that this technique
has been applied to a dataset derived from drug-
treated breast cancer cells. This panel included both
known and novel markers of the lapatinib response
and represents an ideal cohort of markers both for
the response to lapatinib and the cellular sensitivity
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to lapatinib. The expression of 5 of these genes corre-
lated directly with lapatinib sensitivity. We identified
known lapatinib response genes such as FOXO3A,
CDKN1B and CCNDI, as well as novel responders to
lapatinib, RBICC1 and NR3C1. In addition, we have
identified putative candidate regulators of this lapati-
nib response, none of which have been previously
studied in lapatinib-treated cells. Since our methods
highly enrich for genes likely to be of importance in
the drug response, they represent a novel route to
identification of putative response biomarkers or tar-
gets for therapeutic intervention to increase treatment
efficacy.

Additional file

N
Additional File 1 Lapatinib modulated genes responding early or at low
dosage.

Additional File 2 A ranked list of TFBS associated with a response to
lapatinib treatment for each of the 6 comparisons in 0 Table 1.
Highlighted in bold are those TFBS consistent across the 6 comparisons.
Additional File 3 A full list of the differentially regulated genes and the
TFs that are predicted to target them. This file also contains the fold
change and the adjusted p-value for each of the six comparisons.

Additional File 4 Statistical Overrepresentation of the TFs identified by
CIA.

Additional File 5 RQ values for all genes tested, including the TFs.

Additional File 6 Figure S1. Expression of PIK3C3, ALDH3A2 and
CDKN1B across the six cell lines. Figure S2. Basal gene expression (AC,)
of RB1CC1, FOXO3A, NR3C1, ERBB3 and CCND1 across the six cell lines.
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