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Wnt signaling pathways in urological cancers:
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Abstract

The Wnt signaling pathway is involved in a wide range of embryonic patterning events and maintenance of
homeostasis in adult tissues. The pathological role of the Wnt pathway has emerged from studies showing a high
frequency of specific human cancers associated with mutations that constitutively activate the transcriptional
response of these pathways. Constitutive activation of the Wnt signaling pathway is a common feature of solid
tumors and contributes to tumor development, progression and metastasis in various cancers. In this review, the
Wnt pathway will be covered from the perspective of urological cancers with emphasis placed on the recent
published literature. Regulation of the Wnt signaling pathway by microRNAs (miRNA), small RNA sequences that
modify gene expression profiles will also be discussed. An improved understanding of the basic genetics and
biology of Wnt signaling pathway will provide insights into the development of novel chemopreventive and
therapeutic strategies for urological cancers.
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Background
During embryogenesis, cells often acquire new identities
as they migrate to new locations. Many of these mor-
phogenetic changes are induced by extracellular ligands
and their receptors [1-3]. Signaling events outside the
cell act as positive or negative regulators of signaling
pathways. This is particularly true for proteins with key
functions in development, such as bone morphogenetic
protein (BMPs) Hedgehog and Wnt. Various factors can
interact with these proteins outside the cell, modulating
their activity or altering their structure [4-10]. Wnt pro-
teins, which are found in animals from hydra to insects,
worms and vertebrates, are involved in a wide range of
embryonic patterning events and maintenance of home-
ostasis in adult tissues [8,9,11-13]. One of the most
striking effects of Wnt proteins is their ability to induce
formation of a new embryonic axis in metazoans ran-
ging from Hydra to Xenopus [14,15]. Defects in this
pathway have been shown to cause various embryonic
abnormalities in Drosophila and animal models and
have been implicated in human cancers. Other signaling

pathways important in embryonic pattern formation
include the Nothch pathway and the tyrosine kinase
receptor/Ras pathways [16] and those headed by mem-
bers of the transforming growth factor (TGF)-b super-
family [17,18]. Instances of crosstalk between the
embryonic signaling pathways notch, wnt, or Hh and
other signaling pathways have been reported in a variety
of cell types [19-21]. Although aberrant activation of an
individual pathway may result in tissue specific carcino-
genesis, these pathways rarely operate in isolation.
Crosstalk between signaling pathways has the potential
to profoundly add to the complexity of cellular
responses to external stimuli. Various reports indicate
crosstalk between Wnt signaling and other key cancer
pathways regulating apoptosis, angiogenesis, prolifera-
tion, migration, invasion and metastasis [12,22-25].
Wnt-1, the first member of Wnt family protein was

initially identified independently as a Drosophila seg-
ment polarity gene Wingless (Wg) and the murine pro-
tooncogene Int-1 [26]. The term Wnt was derived from
a combination of Wingless and Int-1. Since the discov-
ery of Wnt-1, multiple Wnt members have been found
throughout the animal kingdom and the human genome
encodes 19 Wnt genes [9]. For a wealth of information
on Wnt signaling in general and a comprehensive list of
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Wnt target genes in particular, we direct the readers to
the Wnt Home Page posted by the Nusse lab (http://
www.stanford.edu/~rnusse/wntwindow.html). Intensive
studies from past decades have identified essential com-
ponents of signaling pathways by which Wnt proteins
relay their signals into intracellular responses [9,27].
Wnt proteins can transduce their signaling through dis-
tinct intracellular routes which can be divided into two
pathways as either ‘canonical or ‘non-canonical” Wnt
pathways. The best understood canonical pathway uti-
lizes nuclear b-catenin as an ultimate effector, leading to
changes in gene expression that regulates cell prolifera-
tion, differentiation and survival, etc. In contrast, non-
canonical pathways signal via a b-catenin -independent
mechanism, generally resulting in changes in cell polar-
ity and movement [28-30].
Early evidence of involvement of the Wnt pathway in

cancer came from isolation of Wnt-1 as Int-1, a gene
activated by nearby integration of the mouse mammary
tumor virus in a mammary tumor model [31]. Onco-
genic potential was also assessed in cultured mammalian
cells, such as C57MG and CH310T1/2, where expres-
sion of the proto-oncogenic Wnts resulted in morpholo-
gical transformation [32,33]. These cells are transformed
by Wnt-1, Wnt-2, Wnt3a but not by Wnt-4, Wnt-5a,
and Wnt-6. The transforming Wnt genes also promote
the accumulation of b-catenin in some cultured mam-
malian cells [34]. Many mutations that promote consti-
tutive activation of the Wnt signaling pathway lead to
cancer. Individuals with Axin2 mutations display a pre-
disposition to colon cancer [35]. Moreover, the best-
known example of a disease involving a Wnt pathway
mutation that produces tumors is familial adenomatous
polyposis (FAP), an autosomal, dominantly inherited dis-
ease in which patients display hundreds or thousands of
polyps in the colon and rectum. This disease is caused
most frequently by truncations in APC, which promote
aberrant activation of the Wnt pathway leading to ade-
nomatous lesions owing to increased cell proliferation
[36,37]. Mutational loss of APC function activates the
Wnt transcriptional response by stabilizing b-catenin.
Most sporadic colorectal tumors also involve constitu-
tive activation of the Tcf-mediated Wnt transcriptional
response, due to either loss of APC or stabilizing onco-
genic mutations in b-catenin [13,38]. Loss-of-function
mutations in Axin have been found in hepatocellular
carcinomas [39]. These examples demonstrate that the
uncoupling of normal b-catenin regulation from Wnt
signaling control is an important event in the genesis of
cancers. In renal cancer Wnt signaling has been found
to contribute to disease development by influencing
apoptosis [40]. These properties of the Wnt pathway
were found to be mediated in part by splicing isoforms
of TCF, since the lack of exon 15 in one human TCF is

associated with reduced levels of expression of the anti-
apoptotic factors Bcl2 and Bcl-XL and the pro-apoptotic
factor Bak [40]. To further illustrate the role of Wnt sig-
naling pathway in cancers, we will review this pathway
below in the context of urological cancers.

Wnt signaling in renal cancer
Canonical Wnt/b-catenin signaling
Renal cell carcinoma (RCC) is the most common type of
kidney cancer, accounting for 90% of all kidney cancers.
It can be further classified into clear cell (ccRCC,80%),
papillary (10-15%), chromophobe (5%), collecting duct
(very rare) and a remaining unclassified group (5%) [41].
The ultimate effector of canonical Wnt signaling is the
transcriptional coactivator b-catenin, which is emerging
as a key molecule in the pathogenesis of renal cancer.
Under normal conditions b-catenin levels in the cell
cytoplasm are kept low as it is continuously degraded by
the ubiquitin-proteasome pathway. b-catenin is marked
for degradation by a multi protein degradation destruc-
tion complex that directly interacts with other compo-
nents, like adenomatous polyposis coli (APC), glycogen
synthase kinase3-B (GSK3-B) and casein kinase 1a
(CK1-a) [9,42]. Prior to degradation, the NH2-terminus
of cytosolic b-catenin is constitutively phosphorylated by
a dual kinase mechanism. CK1-a phosphorylates b-cate-
nin at Ser45, and this priming phosphorylation results
in subsequent phosphorylaion by GSK3-B at residues
Thr41, Ser37, and Ser33 [43,44]. b-catenin that is phos-
phorylated at residues 37 and 33 is ultimately recog-
nized by the B-TrCP (B-transducing repeat containing
protein), a component of a dedicated E3 ubquitin ligase
complex [45]. Thus b-catenin gets ubiquitinated and
subsequently undergoes rapid degradation by the 26S
proteasome complex [46]. Wnt positively regulates b-
catenin, inhibiting its phosphorylation, ubiquitination
and degradation. Stabilized b-catenin enters the nucleus
and together with a member of the LEF-TCF (lymphoid
enhancer-binding factor 1-T cell specific transcription
factor 7) family of transcription factors, activates target
genes such as the Myc oncogene [47] (Figure 1). Myc
also shows copy number amplification in a subset of pri-
mary ccRCC [48] and papillary RCC [49]. Though b-
catenin -activating point mutations are rare in RCC
[50], APC deficiency caused renal tumors in mice, pre-
sumably via the resulting elevated levels of b-catenin in
mice [51]. Wnt is also thought to mediate its effect on
cell growth and tumor promotion by activating the
mTOR pathway [52]. TSC2 is sequentially phosphory-
lated by AMPK and GSK3 for its activation and subse-
quent inhibition of mTOR. Wnt activates the mTOR
pathway by inhibiting GSK3 [52] (Figure 1). Altered
expression of certain frizzled receptor (Fzd) family
members and their downstream targets were found in
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renal carcinogenesis [53]. Increased expression of Fzd5
and Fzd8 both at mRNA and protein levels in renal car-
cinoma samples compared to normal samples. Kidney
tumor tissue arrays showed Fzd5 membrane staining in
30% of clear cell carcinoma, with nuclear cyclin D1
showing a strong correlation with the Fzd5 membrane
labeling. Wnt/b-catenin pathway activation was investi-
gated by looking at the expression of various target
genes, cMyc, cyclin D1 and peroxisome proliferator-acti-
vated receptor δ (PPAR δ), that have been reported to
be upregulated in active pathway. The authors conclude
that increased expression of Fzd receptors may have a
role in active Wnt pathway in renal carcinogenesis [53].
Chakraborty et al. reported that Wnt receptors Frizzled
(Fzd 1/2/4, 5, 7-10) and co-receptors low-density lipo-
protein receptor-related proteins 5/6 (LRP5/6) were
upregulated by chronic in vivo cadmium exposure in
mice. Upregulation of Wnt signaling components
induced by cadmium was corroborated by increased
expression of Wnt target genes c-Myc and cyclin D1
that are involved in cell proliferation and survival, and
the multidrug transporter P-glycoprotein Abcd1b, which
promotes malignancy. Epithelial-mesenchymal-transi-
tional markers Twist, fibronectin and collagen I were

also upregulated suggesting that cadmium induced acti-
vation of the Wnt signaling pathway in renal epithelial
tissues may lead to cancer [54].
The genetic basis of RCC is associated with the von

Hippel-Lindau (VHL) tumor suppressor gene, identified
in 1993 [55]. This gene is found to be mutated in most
RCC cases and is highly related to clear cell renal carci-
noma [56]. Furthermore aberrant VHL is found in 75%
of patients with sporadic RCC [57]. The product of
VHL (pVHL), in the presence of oxygen, recognizes and
interacts with members of the hypoxia-inducible factor
(HIF) a family. VHL polyubiquitinates HIFa subunits in
normoxic conditions. Once HIF1a is hydroxylated and
ubiquitinated, it gets destroyed by the proteasome [58].
HIF regulates the expression of genes that respond to
hypoxia, such as glucose transporter (Glut)1, transform-
ing growth factor (TGF) a, erythropoietin and the
proangiogenic genes, vascular endothelial growth factor
(VEGF), platelet-derived growth factor (PDGF)
(reviewed in ref. 53) [59-63]. The expression of these
genes creates an environment that favors cell prolifera-
tion and angiogenesis. The significance of the VHL-
HIFa interaction has been confirmed by a study which
showed that transfection of wild type VHL in renal car-
cinoma cell lines lacking expression of the VHL gene
was sufficient to suppress tumor growth [64]. Similarly
another study showed that HIF was the principal media-
tor of hypoxia-inducible gene deregulation in the
VHL-/- renal cells and attenuation of HIF was sufficient
to suppress the tumor forming capacity of these cells in
nude mice [65]. Peruzzi et al. discovered that b-catenin
is degraded by the E3-ubiquitin ligase activity of VHL
and loss of VHL enables HGF-driven oncogenic b-cate-
nin signaling as a novel target for VHL, thus implicating
Wnt signaling in the pathogenesis of renal cancer [66].
Linehan et al. suggested that loss of VHL could lead to
combined de-repression of HIFs and b-catenin, which in
turn might contribute to malignancy in ccRCC [67]. In
a recent study it was shown that like HIF1a, HIF-2a
also interacts with b-catenin but at a different site. HIF-
2a was found to assemble with b-catenin/TCF and facil-
itate gene transcription. HIF-2a was found to be
required for b-catenin activation in RCC cells and for
their proliferation. The interaction between HIF-2a and
b-catenin contributes to the unrestrained growth of
tumor cells containing coactivated HIF-2a and b-cate-
nin. The authors further show that the interaction of
HIF-2 a and b-catenin oppose those of HIF1-a on b-
catenin and cell growth, which suggests that the ratio of
HIF-1a/HIF2a may determine cell growth when hypoxia
and Wnt stimulation coexist [68]. Another VHL-inter-
acting protein Jade-1 (gene for apoptosis and differentia-
tion in epithelia) has been shown to be a novel E3
ubiquitin ligase that ubiquitinates b-catenin leading to

Figure 1 Schematic representation of the Wnt signaling
pathway in cancer cells. In the presence of active Wnt, b-catenin
accumulates in the cytoplasm, then localizes to the nucleus, and
activates transcription together with TCF/LEF transcription factors.
Negative regulators are depicted in red and positive regulators in
green. Activation of the mTOR pathway is also directly regulated by
Wnt-dependent downregulation of GSK3 kinase activity which is
depicted in yellow.
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its degradation. Jade-1 is positively regulated by VHL
and is thought to function as a renal tumor suppressor
[69,70]. Loss of VHL results in reduced levels of Jade-1
and increased levels of b-catenin, providing yet another
mechanism by which VHL loss promotes renal tumori-
genesis. The link between the Wnt pathway and kidney
cancer can be established from the observation that the
hypoxia-inducible protein-2 (HIG2) binds to the Wnt
receptor Fz10 at its extracellular domain and induces
transcription of Wnt signaling target genes. The HIG2
functions as a cell proliferation inducer and has been
identified as a marker of RCC. HIG2 is also a target of
the b-catenin/Tcf4 complex [71]. Further evidence for
the activation of Wnt signaling pathway in RCC comes
from the article of Kojima et al. which describes the
homozygous deletion of CXXC4, a gene coding for Idax
(an inhibitor of the Wnt signaling pathway) in aggressive
RCC [72]. Wnt has a dual role in pathogenesis of RCC.
It not only induces transcription through activation of
b-catenin, but also stimulates translation and cell
growth through activation of the mTOR pathway. In a
recent study, Koji et al. reported that IGFBP4 activated
the Wnt/b-catenin signaling pathway in RCC. Over-
expression of IGFBP-4 promoted cell growth, invasion
and motility in renal cancer cells along with the induc-
tion of MT-MMP and M-CAM which is a marker for
tumor progression [73]. The tumor suppressor or pro-
moter activity of the various components of the Wnt
signaling pathway has been summarized in Table 1.
Non-canonical Wnt signaling pathways
The Wnt/Ca2+ and Wnt/polarity, also known as Planar
Cell Polarity (PCP) pathways are known as the “non-
canonical pathways”. Other non-canonical pathways
include Wnt/Jnk and Wnt/Rho signaling [28,30]. The
intracellular signal transduction cascades that have been
identified in either canonical or non-canonical pathways
are very different from each other, but the common
initial step is the binding of a Wnt ligand to the cognate
Fzd receptor. Depending on the pathway which is acti-
vated, the initiation signal will be transduced differently.
This decision most likely depends on which Wnt ligand
and Fzd receptor are present, as well as the cellular con-
text [74]. The Wnt/Ca2+ pathway regulates cell adhesion
and motility, and is mediated through release of intra-
cellular Ca2+ upon Wnt stimulation [28,75]. Wnt-5a was
the first identified Wnt ligand identified to signal down
this pathway and was shown to require coupling to G-
proteins [76]. Interestingly, the Wnt/Ca2+ pathway acti-
vated by Wnt-5a, antagonizes the Wnt/b-catenin path-
way [77-80]. In the Wnt/polarity pathway, Fzd functions
to establish asymmetric cell polarities and coordinate
cell shape changes and cellular movement [28,30,74].
Fzd regulates the activity of the small GTPases Rho and
Rac through different domains of Dv1. Rho and Rac, in

turn, regulate the activity of Rock and Jun N-terminal
Kinase (JNK) respectively [81]. Aberrant activation of
the Wnt/PCP signaling pathway in human cancer leads
to malignant phenotypes such as abnormal tissue polar-
ity, invasion and metastasis [82].
Wnt Antagonist and their epigenetic modulation
The Wnt signaling pathway antagonists have been stu-
died extensively in development and their involvement
in oncogenesis has been demonstrated. There are four
families of Wnt antagonists that can be divided into two
sub-groups according to their mode of action. The first
group includes the secreted-Frizzled related protein
(sFRP) family, Wnt-inhibitory factor (WIF-1), and Cer-
berus. They inhibit Wnt signaling by direct binding to
Wnt molecules. The second group, consisting of the
Dickkopf (DKK) family, inhibits Wnt signaling by bind-
ing to the LRP5/LRP6 component of the Wnt receptor
complex [83-85]. In mammalian cells, sFRP1 has been
found to specifically bind to Wnt-1 protein, but not
Wnt-5a protein, and it modulated the Wnt-1 signaling.

Table 1 Cancer suppressor or promoter activity of Wnt
pathway components and microRNAs involved in
urological cancers

Gene Cancer suppressor activity Cancer promoter
activity

Wnt
components

b-catenin - 36,68, 71, 123, 140

GSK3-b 12, 36 -

Frizzled
receptors

- 53, 54, 71

sFRP1 86, 89, 90, 91, 103, 106, 137,
138

110

sFRP2 138 111

sFRP3 - 112

sFRP4 138 -

sFRP5 107, 138 -

WIF1 108, 118, 138, 139, 140 -

DKK1 23 129, 130

DKK2 109 -

DKK3 22, 138 -

DKK4 - 24

Wnt3a - 144

Wnt5a - 116, 119

Wnt7b - 136

Wnt11 - 117

MicroRNAs

miR-15a 144 -

miR-16a 144 -

miR-200 family 145 -

Numbers indicate references.
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sFRP-1 efficiently inhibited the Wnt-1 mediated increase
in cytoplasmic b-catenin levels as well as the Wnt-1
induction of transcription from a Lef/Tcf reporter gene
[86]. However binding specificity may not relate to func-
tional specificity, as SFRP-3 associated with Wnt-5a but
was unable to inhibit its activity [87]. Even the signifi-
cance of specific functional interactions might be sus-
pect based on titration experiments with purified
soluble sFRP-1. At low concentrations sFRP-1 enhanced
signaling activity by soluble wingless protein, whereas at
higher concentrations it was inhibitory [88]. The authors
proposed high and low states of binding affinity that
involved the carboxy-terminal heparin binding domain
and the amino-terminal cysteine-rich domain of sFRP-1,
respectively. Binding to the cysteine-rich domain might
confer inhibition while binding to the carboxy-terminal
region could facilitate presentation of active ligand to
receptor. Thus sFRP-1 exerts a biphasic effect on Wing-
less (Wg) activity [88]. Reports from other investigators
and recent publications from our laboratory show the
biphasic role of sFRPs in renal cancer. Gumz et al.
showed that stable re-expression of sFRP-1 in clear cell
RCC cells resulted in decreased expression of Wnt tar-
get genes, decreased growth in cell culture, inhibition of
anchorage-independent growth, and decreased tumor
growth in athymic nude mice. Thus sFRP-1 acts as a
tumor suppressor and its restoration attenuated the
clear cell renal cancer tumor phenotype [89]. Other stu-
dies reported that sFRP-1 expression loss is a common
event in renal cancer [90,91].
Abnormal promoter methylation of tumor suppressor

genes contributes to tightly heritable gene silencing and
can cause loss of gene function, which thereby contri-
butes to tumorigenesis. Various Wnt pathway compo-
nents that regulate proper WNT/b-catenin signaling are
frequently disrupted in human cancers through either
genetic or epigenetic alterations [92,93]. Constitutive
activation of WNT/b-catenin signaling as a result of
mutations in APC and b-catenin was first documented
in both inherited familial adenomatous polyposis (FAP)
[37,94] and sporadic colon cancers [38,95]. Mutations of
pathway components including APC, AXIN1/2 and b-
catenin are well established in colorectal [35,38,96,97],
gastric [98], hepatocellular [39] as well as other tumors
[99]. Most of the human cancers show elevated levels of
nuclear b-catenin, a hallmark of active WNT/b-catenin
signaling, although mutations of APC, AXIN or b-cate-
nin are substantially less frequent. In renal cell carci-
noma APC and b-catenin mutations are uncommon
events [100,101]. Whereas, CpG island hypermethylation
at the promoter of a gene is a common and early event
in kidney tumorigenesis [90,102-105]. Independent stu-
dies have reported hypermethylation of atleast one of a
set of different genes (VHL, p16/INK4a, p14ARF, APC,

RASSF-1A, TIMp-3, MGMT, GSTP1, CDH1, and ARF
RARbeta2) in over 95% of tumor samples representing
all major biological and histological types, grades and
stages compared to no methylation in corresponding
normal renal or urethral tissues. Results have been
found to correlate DNA sediment from pre-operative
urine samples, serum and tissue [102-104] highlighting
their biomarker potential. Functional loss of negative
WNT regulators by epigenetic gene silencing [92] has
been frequently reported to contribute to the activation
or amplification of aberrant WNT/b-catenin signaling in
tumors. CpG promoter hypermethylation has been often
found in antagonists of the Wnt pathway, the SFRP
family, WNT inhibitory factor-1 and DICKKOPF family
members after comparing primary renal cancer samples
to the corresponding normal renal tissues. The methyla-
tion levels of six Wnt antagonist genes (sFRP-1, sFRP-2,
sFRP-4, sFRP-5, Wif-1, and Dkk-3) were significantly
higher in renal cancer compared to normal renal tissues.
sFRP-1 methylation was found to be a significant inde-
pendent predictor of RCC. In RCC patients, the methy-
lation results were identical in samples of tumor and
serum DNA. In addition, the methylation status of Wnt
antagonist genes in serum DNA was significantly corre-
lated with tumor grade and stage showing their poten-
tial as useful epigenetic biomarkers [106]. Loss of sFRP-
1 due to hypermethylation is common in renal carci-
noma [103] than other cancers [90]. The expression of
sFRP-1 was decreased 89% at the mRNA level and 75%
at the protein level while the promoter was found to be
methylated in 68% of RCC samples [90]. sFRP-5 was
epigenetically suppressed in RCC and its overexpression
induced apoptosis in renal cancer cell lines [107]. The
Wnt inhibitory factor-1 (WIF-1) promoter was found to
be hypermethylated in RCC and its over-expression
inhibited Wnt activity and induces apoptosis in renal
cancer cells [108]. The Dickkopf class of Wnt antago-
nists including DKK1, DKK2 and DKK3 are also epigen-
etically silenced in renal cancer and their over-
expression induced apoptosis and inhibited renal cell
growth in-vitro and in-vivo [22,23,109], whereas DKK4
was found higher in renal cancer compared to normal
tissue samples and it activated the non-canonical Wnt
pathway in renal cancer thereby promoting the invasive
and migratory capability of renal cancer cells [24]. The
biphasic effects of some Wnt antagonists and their
potential to activate Wnt signaling have been demon-
strated in some recent reports from our lab. Saini et al.
reported that sFRP1 is related to invasiveness and meta-
static behavior in RCC [110]. The authors showed that
the invasive capability of a metastatic renal cancer cell
line was decreased by attenuating sFRP1 with a conco-
mitant decrease in the levels of metastasis related gene
MMP10 [110]. sFRP-2 activated the Wnt pathway and
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promoted renal cancer growth [111] whereas sFRP-3
expression induced the MMP-3 and ANGPT1 genes in
renal cancer and thus contributed to the invasive cap-
ability of RCC [112]. Uren et al. observed that sFRP-1
exerted a biphasic effect on Wnt activity increasing
armadillo level at low concentrations but reducing it at
higher concentrations. Depending on the expression
levels and molecular, cellular and tissue context, the
SFRPs may promote Wnt signaling by protecting Wnts
from degradation or by facilitating Wnt secretion or
transport [88]. Rubin et al. have reviewed some possible
mechanisms to the contradictory behavior of Wnt
antagonists [113]. The functional consequences of over-
expression patterns of Wnt antagonists with regard to
tomorigenesis are largely unknown and much work will
be required to define the specific relationships that gov-
ern the interactions of the Wnts, sFRPs, Dickkopfs and
Fdzs.

Wnt signaling in prostate cancer
There is mounting evidence that aberrant activation of
the Wnt pathway is frequently associated with tumor
development, progression and metastasis in prostate can-
cer [114,115]. This review will mainly focus on the work
that has been done after publication of these previous
reviews. Increased levels of various Wnts and other mole-
cules involved in regulation of Wnt signaling have been
detected in prostate cancer. A recent study showed that
Wnt-5a promotes the aggressiveness of prostate cancer
[116]. The positive detection of Wnt-5a was correlated
with high Gleason scores and biochemical relapse.
Knockdown and over-expression of Wnt-5a reduced and
stimulated, respectively, the invasion and migration activ-
ities of prostate cancer cells. Wnt-5a activated Jun-N-
terminal kinase through protein kinase D (PKD) and the
inhibition of PKD suppressed Wnt-5a-dependent cell
migration and invasion. Wnt-5a induced the expression
of metalloproteinase-1 through the recruitment of JunD
and thus contributed to the more aggressiveness of pros-
tate cancer [116]. These studies suggest that in prostate
cancer, Wnt-5a may be a useful target for small molecule
inhibitors. Deliberate, well-designed screening campaigns
will be integral to this effort, using either in vitro, cell-
based, or in vivo models. As was undertaken to discover
synthetic Wnt-3a inhibitors, high-throughput screens
that utilize cell lines containing pathway-specific repor-
ters will likely be the primary means of identifying such
compounds. Wnt-11 protein levels were found to be ele-
vated in human prostate tumors compared to benign
prostatic hypertrophy specimens and it induced neuroen-
docrine-like differentiation in prostate cancer cells. Wnt-
11 promoted prostate cancer cell invasion and migration
and it was required for prostate cancer cell survival [117].
Yee et al. reported that Wnt inhibitor WIF1 gene is

down-regulated in prostate cancer cell lines through pro-
moter hypermethylation. Restoration of WIF1 expression
resulted in decreased motility and invasiveness of pros-
tate cancer cells [118]. In a recent study, Takahashi et al.
showed that the non-canonical Wnt signal stimulates
development of prostatic tumors with AR hyperfunction.
In a prostate cancer model using transgenic mice, the
onset of prostatic tumorigenesis as well as tumor growth
was significantly potentiated by introduction of an AR
point mutation (AR T877A) into the prostate and genetic
screening of mice identified Wnt-5a as an activator [119].
Zhao et al., [120] reported over-expression of hypoxia
inducible factor-1 (HIF-1 a) stimulates the invasion
potency of human prostate carcinoma cells through EMT
pathway and inhibition of Wnt signal activity through b-
catenin shRNA caused a reversal of the EMT induced by
HIF-1a [120]. Another study showed that Wnt/b-catenin
signaling has an important role in the progression of
mouse prostatic intraepithelial neoplasia (mPIN) to pros-
tate adenocarcinoma. Prostates of mice expressing SV40-
large T-antigen (LPB-Tag) and the Wnt/b-catenin path-
way resulted in invasive prostate adenocarcinoma. Active
Wnt/b-catenin signaling induced Foxa2, a forkhead tran-
scription factor, that was associated with the invasive
phenotype in primary prostate cancer [121].
A number of previous studies have reported that b-

catenin is a biomarker in prostate cancer. Although b-
catenin stability is regulated by a multi-component
destruction complex, mutational alterations of b-catenin
or other components of the destruction complexes are
rare in prostate tumors. Therefore, b-catenin may be
regulated by another protein in prostate cancer. Somatic
deletion analysis in prostate cancers revealed a 1.4-Mb
candidate tumor suppressor locus on 8p23.1, which
includes the Sox7 gene [122]. Sox7 protein expression
was down-regulated in 47% of prostate adenocarcinomas
whereas mRNA was down-regulated in 60% of snap-fro-
zen tumors. The silencing of this gene was due to pro-
moter hypermethylation in prostate cancer. Sox7
suppressed b-catenin mediated transcription by deplet-
ing active b-catenin [122]. Another study showed that
combinatorial oncogenic mutations of K-ras and b-cate-
nin drive rapid progression of prostate tumorigenesis to
invasive carcinoma, characterized by the synergistic ele-
vation of androgen receptor, cyclooxygenase-2 and c-
Myc [123]. Yardy et al. [124] studied mutations in genes
encoding Wnt pathway in prostate cancer clinical sam-
ples and cell lines. Abnormal patterns of b-catenin
expression were observed in 71% of specimens suggest-
ing Wnt pathway dysregulation. One APC mutation,
two b-catenin gene mutations and 7 DNA sequence var-
iations in the Axin gene were detected. Four different
Axin polymorphisms were also found in cell lines [124].
Although this study does not provide definite evidence
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that the observed sequence changes alter protein func-
tion, it does discuss the potential functional relevance of
these variants in prostate cancer progression. More than
50% of human prostate cancers overexpress ERG (v-ets
avaian erythroblastosis virus E26 oncogene related
gene). Activation of AR has been shown to induce ERG
through AR/TMPRSS2-ERG fusion. ERG induction and
nuclear translocation resulted in the activation of the
Wnt signaling pathway and promoted invasive capacity
of prostate cancer cells [125].
Wnt signaling and prostate cancer metastasis to bone
In addition to roles in the initiation and progression of
the primary tumor, the Wnt pathway may also play key
roles in the metastasis of prostate tumors, particularly to
the bone [115,126,127]. Prostate cancer primarily metas-
tasizes to bone, and the interaction of cancer cells with
bone cells results in a local activation of bone formation
(osteoblastic lesions). Bone morphogenetic proteins
(BMP) and Wnts are mediators of prostate cancer
induced osteoblastic activity (Figure 2). Wnt-3a and
Wnt-5a administration or knockdown of DKK-1

induced BMP-4 and 6 expression and promoter activa-
tion in prostate cancer cells. Transfection of C4-2B cells
with axin, an inhibitor of canonical Wnt signaling,
blocked Wnt-3a but not Wnt-5a induction of BMP pro-
moters. In contrast, Jnk inhibitor 1 blocked Wnt-5a but
not Wnt-3a induction of the BMP promoters. Wnt-3a,
Wnt-5a and conditioned medium from prostate cancer
cells induced osteoblast differentiation in-vitro and pre-
treatment of prostate cancer cells with DKK1 dimin-
ished osteoblast differentiation. The authors concluded
that prostate cancer promotes osteoblast differentiation
through canonical and noncanonical Wnt signaling
pathways that stimulate both BMP-dependent and
BMP-independent osteoblast differentiation [128]. In the
context of the bone micro-environment, Wnt antagonist
DKK1 promotes the development of osteolytic lesions.
Hall et al. [129] proposed that elevated DKK1 expres-
sion is an early event in prostate cancer and it may be
involved in an initial osteolytic phase of prostate cancer
metastasis to the bone. As prostate cancer progresses
DKK1 expression declines, particularly in advanced bone
metastases. This decline of DKK1 unmasks Wnt’s osteo-
blastic activity and thus a shift to an osteoblastic phase
occurs [129] (Figure 2). In a recent study, Thudi et al.
[130] reported that DKK1 significantly increased Ace-1
subcutaneous tumor mass and the incidence of bone
metastases after intracardiac injection of Ace-1 prostate
cancer cells. The increase in tumor growth was asso-
ciated with increased phopho46 c-Jun amino-terminal
kinase by the Wnt noncanonical pathway. DKK1
decreased the Ace-1 osteoblastic phenotype of bone
metastases via the Wnt canonical pathway evidenced by
an inhibition of T-cell factor activity in murine osteo-
blast precursor ST2 cells [130]. Much work needs to be
done to understand the role of Wnt signaling pathway
activation and inhibition in both the metastatic prostate
cancer cells and the osteoblasts in the surrounding
lesions. Still, the Wnt pathway is now a promising target
for the development of therapeutics that may interfere
with prostate cancer metastasis to the bone.

Wnt signaling in bladder cancer
While the role of Wnt signaling in bladder cancer has
not been extensively studied, the studies done so far
demonstrate that it plays a significant role in bladder
oncogenesis. A recent study by Ahmad et al. showed
that activation of Wnt signaling plays a critical role in
driving baldder cancer and suggests that human bladder
cancers which have high levels of Wnt and PI3 kinase
signaling may be responsive to mTOR inhibition [131].
Another study from the same group reported that the
Wnt signaling pathway is deregulated in approximately
25% of bladder cancer and a combined Ras mutation
with an activating b-catenin mutation within the mouse

Figure 2 Role of the Wnt signaling pathway in prostate cancer
bone metastasis. Prostate cancer cells have both osteolytic and
osteoblastic potential. Early in skeletal metastasis, prostate cancer
cells produce pro-osteolytic factors such as receptor activator of
NFkB ligand (RANKL), interleukin-6 (IL-6) and parathyroid hormone-
related protein (PTHrP) that stimulate osteoclastogenesis and also
produce an inhibitor of osteoblastic activity, dickkopf-1 (DKK1). The
resulting osteolytic activity releases growth factors from the bone
and alters the bone microenvironment, which in turn alters the
phenotype of prostate cancer cells. The prostate cancer cells start to
produce osteoblastic factors such as bone morphogenetic proteins
(BMP), PTHrP (which can act as an anabolic factor) and factors that
inhibit osteclastogenic activity, such as, osteoprotegerin (OPG),
which blocks RANKL. Additionally, DKK-1 expression is decreased
resulting in the osteoblastic phase.
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bladder rapidly developed bladder cancers [132]. Evi-
dence of activation of Wnt signaling in urothelial carci-
noma also comes from other studies that identified
frequent gene silencing of endogenous Wnt inhibitors
[133] and less frequent APC mutations in bladder can-
cer [134,135]. Wnt-7b was found to be upregulated in
papillary noninvasive carcinomas [136]. Stoehr et al.
reported that in primary urothelial bladder tumors and
cell lines, LOH at the APC gene locus was found in 10%
of the informative cases. No mutations were found in
either CTNNB1 or APC. All bladder cancer cell lines
showed normal membranous b-catenin staining without
evidence for nuclear or cytoplasmic accumulation. The
authors concluded that alteration of APC and b-catenin
are rare events in urothelial carcinomas [134]. The same
group however found that 38% of bladder cancer sam-
ples showed loss of sFRP1 expression at the mRNA
level whereas at the protein level loss or strong reduc-
tion of sFRP1 was observed in 66% of samples. The loss
of sFRP1 was associated with higher tumor stage and
grade and shorter overall survival. They reported that
loss of sFRP1 was an independent indicator of poor sur-
vival in patients with papillary bladder cancer but not
with muscle invasive bladder cancer [137]. Another
study demonstrated higher promoter CpG hypermethy-
lation and lower expression of mRNA transcripts for
sFRP-1, sFRP-2, sFRP-4, and sFRP-5, Dkk-3, and Wif-1
genes in bladder tumor compared with normal bladder
mucosa showing an inverse correlation. The methylation
levels of sFRP-2 and Dkk-3 were found to be significant
independent predictors of bladder tumors, whereas with
sFRP-1, sFRP-5, and Wif-1, a trend towards significance
was found as independent predictors [138]. Thus Wnt
signaling appears to promote bladder cancer growth
potentially in both noninvasive and invasive bladder
cancer.
Gene silencing by DNA methylation downregulates

expression of several secreted Wnt antagonists, includ-
ing WIF-1 and DKK1. Wissmann et al. reported that
26% of bladder cancers showed reduction of Wnt inhibi-
tory factor-1 (WIF-1) expression that correlated with
higher tumor stage in bladder tumors [139]. Another
group reported that the WIF-1 promoter was hyper-
methylated in bladder cancer that may contribute to the
pathogenesis of bladder cancer through aberrant canoni-
cal Wnt/b-catenin signaling. Higher nuclear accumula-
tion of b-catenin was observed that inversely correlated
with the WIF-1 expression and the LOH close to the
WIF-1 gene loci was found to be a rare event in bladder
cancer [140].

Wnt signaling and microRNA
MicroRNAs (miRNAs) are small, non-coding RNAs that
have been found to regulate expression of 60% of all

human genes through targeted repression of gene tran-
scription and translation. They play important roles in a
wide spectrum of biological processes, including devel-
opment, proliferation, and apoptosis [141-143]. Investi-
gations into the role of microRNA with regard to the
Wnt pathway in urological cancers are in their infancy
and only a few studies are available. MicroRNA-15a and
miR-16-1 were reported to be tumor suppressors in
prostate cancer. Both microRNAs form a cluster in
chromosome region 13q14, which is frequently deleted
in cancers. In advanced prostate cancer tumors, miR-
15a and miR-16-1 levels were found to be significantly
decreased with an increased expression of WNT-3a,
Bcl2 and CCND1. Reconstitution of these microRNAs
resulted in growth arrest, apoptosis and marked regres-
sion of prostate tumor xenografts through the down-
regulation of WNT-3a, Bcl2 and CCND1 [144]. Another
study demonstrated that the expression of miR-200
family members- miR-200a, miR-200b, and miR-200c
was significantly downregulated in PC3 PDGF-D cells
compared with PC3 Neo cells. Re-expression of the
miR-200 family in prostate cancer cells led to the rever-
sal of the epithelial-mesenchymal transtition (EMT)
phenotype, which was associated with the down-regula-
tion of ZEB1 and ZEB2 and concomitant increased
expression of epithelial markers like E-cadherin,
EpCAM and CRB3 [145].
Despite great advances in other cancers, miRNAs

related to Wnt signaling remain largely uncharted with
regard to urological cancers. Signaling complexes are
highly dynamic, ephemeral and non-stoichiometric
molecular ensembles and emerging evidence suggests
that miRNAs translate into dose-dependent responsive-
ness of cells to signaling molecules such as Wnt, Notch
etc. As such, signaling molecules are the ideal targets
for the degree of quantitative fluctuations imposed by
miRNAs. This might enable the multi-gene regulatory
capacity of miRNAs to remodel the signaling landscape,
facilitating or opposing the transmission of information
to downstream effectors in an effective and timely man-
ner. Much work needs to be done to decipher miRNA
function with regard to Wnt signaling molecules in uro-
logical cancers.

Wnt signaling inhibitors
Given the critical roles of Wnt pathway activation in the
pathophysiology of many human diseases including can-
cer, interest in the development of Wnt signaling inhibi-
tors has increased substantially. Several groups have
identified various therapies and phytochemicals that
either directly or indirectly disrupt b-catenin-mediated
Wnt signaling. These agents include non-steroidal anti-
inflammatory drugs, exisulind, vitamin A derivatives,
endostatin etc. and phytochemicals such as flavanoids
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(genistein), curcumin, epigallocatechin-3-gallate (EGCG),
resveratrol, lupeol, retinoids, lycopene and deguelin etc.
(reviewed in ref. [74,146]). Different components of Wnt
signaling pathway can be regarded as useful targets in
preventing and treating cancer and the pharmacological
modulation of Wnt target genes expression might
require small molecules that can perturb multiple iso-
forms of a given Wnt pathway component. The identifi-
cation of such small molecules is indeed a challenging
endeavor. The first unbiased screen for Wnt pathway
inhibitors was reported using a cell line stably trans-
fected with a Wnt3a expression construct and TCF/
LER-dependent firefly luciferase reporter [147]. Almost
200 000 compounds were surveyed and molecules that
inhibit Wnt ligand production or responsiveness were
discovered in this screen. The authors discovered two
classes of small molecules that disrupt Wnt pathway
responses; one class of molecules, benzothiazole-based
inhibitors of Wnt production (IWPs), target the activity
of Porcupine, a membrane-bound acyltransferase that is
essential to the production of Wnt proteins, the other
class is inhibitor of Wnt response (IWRs) that abrogates
destruction of Axin proteins, which are suppressors of
Wnt/beta-catenin pathway activity. Another group used
a similar highthroughput chemical genetic screen to
identify a small molecule, trifluoromethylphenylpyrimi-
dine derivative called XAV939, which selectively inhibits
b-catenin-mediated transcription [148]. XAV939 stimu-
lates b-catenin degradation by stabilizing axin, the con-
centration-limiting component of the destruction
complex. Using a quantitative chemical proteomic
approach, authors discovered that XAV939 stabilizes
axin by inhibiting the poly-ADP-ribosylating enzymes
tankyrase 1 and tankyrase 2. Both tankyrase isoforms
interact with a highly conserved domain of axin and sti-
mulate its degradation through the ubiquitin-protea-
some pathway [148]. These studies show the promise of
small-molecules as next-generation chemotherapies. The
clinical use of these agents is associated with certain
risks and challenges. It is possible that chemical modula-
tors of these developmental pathways will have unin-
tended effects on tissue homeostasis and regeneration
since these processes frequently recapitulate develop-
mental mechanisms, for example, Wnt signaling is
required for renewal of the intestinal epithelium. The
effects of these inhibitors on normal adult physiology
are likely to be reversible, and it is possible that dysre-
gulated cells associated with human disease will be
more sensitive to these compounds than healthy adult
tissues. Technologies that help target these therapies to
diseased cells could also help mitigate any adverse
responses. However, extra caution should be exercised
with treatments as they can lead to life-long develop-
mental deficits. Despite these risks, small-molecule

inhibitors of developmental signaling pathways provide
new, long-awaited hope for many patients afflicted with
diseases that currently lack effective treatments.

Conclusion and perspectives
Given the similarities between embryonic growth control,
dysregulated cell proliferation in development of cancer
and the findings that Wnt signaling regulates kidney
organogenesis, the Wnts were candidates for involvement
in the development of kidney cancers and thus it has
been widely studied in relation to kidney cancers so far.
Intense efforts have also been made recently to examine
the role of the Wnt pathway in prostate cancer. The Wnt
signaling pathway and its key component b-catenin have
also recently emerged as important players in bladder
tumorigenesis. However, very few studies have been car-
ried out to understand the biological role of this pathway
in the pathogenesis of bladder cancer. The intent of this
review was to highlight the studies performed around the
Wnt signaling pathway in urological cancers and to pro-
mote its unexploited potential for drug design and bio-
marker use.
Recent data have shown that perturbations in Wnt

signaling are involved in urological cancers. Tumor pro-
motion by this pathway can proceed through a number
of different genetic and epigenetic defects. In particular,
a wealth of evidence implicates that chronic activation
of b-catenin signaling is common in many tumor types.
There is a clear need for new lead compounds targeting
the Wnt/b-catenin pathway. These inhibitors may pro-
vide significant therapeutic benefit against a variety of
human diseases in which the Wnt signaling pathway
plays an important pathological role. Due to the emer-
ging role of miRNAs in signal transduction, it also
becomes apparent how the highly dose-sensitive nature
of developmental signaling pathways like Wnt renders
them prime candidates for miRNA regulation. Merging
activity-based or expression-based screens with new
RNA-based therapeutics may offer opportunities for tar-
geting Wnt signaling pathways in cancer.
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