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noncoding RNAs are on the stage
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Abstract

The mammalian genome encodes thousands of long noncoding RNAs (IncRNAs) and it is increasingly clear that
INcRNAs are key regulators of cellular function and development. Gain and/or loss of function studies in cell culture
indicate that IncRNAs can regulate gene transcription indirectly through the targeting and recruitment of
chromatin-modifying complexes as well as directly at the transcriptional or posttranscriptional levels. LncRNA
biology is attracting great attention in cancer research because dysregulated IncRNAs occur in a variety of cancers,
placing INcRNAs on the stage of cancer genome research. We briefly describe the latest INcRNA biology and discuss
the oncogenic IncRNAs involved in core pathways in bladder cancer and the application of IncRNAs to its diagnosis

complexity of bladder cancer.

and targeted treatment. LncRNAs are becoming essential components of the gene regulatory circuitry in the
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Introduction
Bladder cancer is the tenth most common malignancy in
women and it is the fourth most common in men [1]. It
comprises at least two major groups: low grade papillary
tumors and high grade invasive tumors. The majority of
malignant bladder tumors are urothelial cell carcinomas
that evolve from the epithelial lining of the bladder wall
and non-invasive papillary tumors of urothelial carcin-
omas that commonly recur but rarely progress. However,
invasive bladder tumors are more aggressive, presenting
with penetration of the basement membrane or invasion
into muscle [2]. Patients with invasive disease have a
much worse prognosis, with only a 50% 5-year survival
[3]. Two altered molecular pathways appear to genetically
explain most cases of bladder cancer: the one harbors
gene mutations that constitutively activate the receptor
tyrosine kinase-Ras pathway, the other involves deficits in
TP53 and/or RB tumor-suppressors [2]. Mutations in
these two molecular pathways of tumor development
usually predict outcome of the malignancy.

Genome-wide studies of expression profiling and dis-
covery of small non-coding RNA affecting gene expression
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have dramatically changed what was a simple classification
of bladder cancer pathogenesis into two alternative mo-
lecular pathways. Altered gene expression in bladder can-
cer, with both up- and down-regulation, may involve up to
500 protein coding sequences for low-grade non-invasive
tumors and up to 2300 genes for high-grade invasive tu-
mors [4]. Moreover, in many clinical cases, mutations were
not found inside the coding sequences of genes in the two
molecular pathways, but the expressions of these genes
were changed, indicating that epigenetic modifications
may play an important role in tumor development. In-
deed, several genome-wide methylation assessments in
these neoplastic tissues have been published, and an in-
creasing number of small non-coding RNAs are either up-
regulated or down-regulated in bladder cancer, indicating
that impaired gene expression may also occur in these
molecular pathways [5]. Recent studies have demonstrated
that long non-coding RNAs (IncRNAs) play important
roles in carcinogenesis and cancer metastasis [6-8] and ab-
errant expression of IncRNAs has been identified in blad-
der cancer. LncRNAs may function as oncogenes or
tumor suppressors in the cancer initiatome [9] and, there-
fore, bladder cancer can no longer be considered as a sim-
ple model of malignancy.

In the present review, we summarize recent progress in
the genome-wide analysis of IncRNAs in bladder cancer
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and the dysregulation of IncRNAs in bladder cancer tis-
sues or cells. We delineate the regulatory network medi-
ated by IncRNAs and the implication of IncRNAs for
diagnosis, assessment and treatment of bladder cancer.
We suggest that IncNRAs add a new, but informative layer
to our understanding of the complexity of bladder cancer
development.

LncRNAs and their functions

LncRNAs are non-protein coding transcripts longer than
200 nucleotides. This arbitrary limit of length distin-
guishes IncRNAs from small regulatory RNAs such as
microRNAs, Piwi-interacting RNAs, small nucleolar RNAs
and short interfering RNAs. LncRNAs can be classified
into five broad categories, according to their genomic lo-
cations relative to protein coding genes: (1) sense, or (2)
antisense, when overlapping one or more exons of another
transcript on the same or opposite DNA strand, respect-
ively; (3) bidirectional, when the sequence is located on
the opposite strand from a neighboring coding transcript
whose transcription is initiated less than 1000 base pairs
away, (4) intronic, when it is derived wholly from within
an intron of a second transcript, or (5) intergenic, when it
lies within the genomic interval between two genes [10]
(Figure 1A). So far, LNCipedia database has collected
32,183 human annotated IncRNAs [11] and NONCODE
contains 73,327 published human andmouse IncRNAs [12].

New IncRNAs will continue to be discovered with the
advent of the high-throughput transcriptome sequencing.
A majority of IncRNAs are transcribed by RNA polymer-
ase II, spliced and polyadenylated, while a few IncRNAs
are transcribed by RNA polymerase III [11]. In general,
IncRNAs are less conserved than protein coding genes
and exhibit tissue-specific and cell-specific expression fea-
tures [13,14]. Additionally, most IncRNAs are located in
either the cytoplasm or the nucleus, although some are
found in both cytoplasm and nucleus [14].

LncRNAs have diverse functions in different physiological
and pathological states. They may participate in global cel-
lular behaviors by controlling apoptosis, cell death and cell
growth [15]. They may also be key regulators of biological
processes, including stem cell pluripotency and neurogen-
esis [16,17] and cell differentiation [18]. LncRNAs regulate
gene expression at various levels, including chromatin
modification [8], transcription, and posttranscriptional pro-
cessing [19] and these are illustrated conceptually in
Figure 1B.

LncRNAs play classic roles in imprinted gene expression.
Diploid organisms carry two alleles of genes, one from
each parent’s autosomes. In most cases, both alleles are
expressed equally, except when a subset of genes shows
imprinting and, in that case, expression is restricted by an
epigenetic mechanism to either the maternal or paternal
allele. H19 and Xist (X inactivated specific transcript) are
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imprinted IncRNAs that were identified in the early 1990s
[20,21]. H19 is an autosomal IncRNA that is expressed on
the maternally derived autosomal chromosome and it
maintains silencing of the /GF2 gene on that chromosome,
thereby allowing expression of only the paternally derived
IGF2 gene [20]. X-chromosome inactivation (XCI) is effect-
ively a dosage-compensation process that equalizes expres-
sion of X-chromosomal genes between males and females
by inactivating one of the two X chromosomes in female
cells. The process of XCI is regulated by the Xist IncRNA
that interacts with polycomb repressive complex 2 (PRC2)
and propagates epigenetic silencing of an individual X
chromosome [22]. The core of PRC2 comprises EZH2 (en-
hancer of zeste homolog 2), SUZ12 (suppressor of zeste 12)
and EED (embryonic ectoderm development). EZH2 func-
tions as a histone H3 Lys 27 (H3K27) methyltransferase.
Trimethylation of H3K27 (H3K27me3) correlates with a
transcriptionally-repressed chromatin state. Indeed, many
human IncRNAs associate with chromatin-modifying com-
plexes that include PRC2 and lysine specific demethylase 1/
REST co-repressor 1/RE1-silencing transcription factor
(LSD1/CoREST/REST) protein complexes, and the result is
a suppression of gene expression by the complexity of epi-
genetic regulation. This mechanism of action of IncRNAs is
seen in several examples.

Biochemical experiments showed that the 5° domain of
HOTAIR (HOX antisense intergenic RNA) IncRNA binds
to EZH2, whereas the 3" domain of HOTAIR binds to
LSD1/Co-REST/REST complex. Thus, HOTAIR serves
as a scaffold to assemble and target PRC2 and LSD1/
CoREST/REST complexes to the HOXD locus and coordi-
nates H3K27 methylation and H3K4 demethylation for
transcription repression [23]. Other IncRNAs, like ANRIL
(antisense non-coding RNA in the INK4 locus), may be re-
quired to recruit PRC2 to specific genomic loci, resulting
in suppression of CDKN2A expression [24].

The mode of action of some IncRNAs is by an inter-
action with their intracellular steroid receptors, such as
GAS5 (growth arrest specific 5), to regulate downstream
target gene expression [25]. Other IncRNAs regulate tran-
scription through a variety of mechanisms, including inter-
action with RNA-binding proteins, acting as a co-activator
of transcription factors (e.g., Evf2) [26] or repressing a
major promoter of their target gene [27]. In addition,
IncRNAs can regulate gene expression at the posttranscrip-
tional level such as stabilizing of specific mRNAs (e.g.,
BACE1-AS) [28].

Aberrant IncRNA expression in bladder cancer

Recent studies demonstrated that IncRNAs play important
roles in carcinogenesis and cancer metastasis [6,7]. We
speculate that IncRNAs may also be involved in bladder
cancer initiation, development and metastasis. The general
strategy to find cancer-associated IncRNAs is to compare
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Figure 1 Genomic structures and functions of long noncoding RNAs (IncRNAs). (A) Classification of IncRNAs according to their genomic
locations relative to nearby protein coding genes: Antisense INCRNA— transcribed in the opposite direction of coding genes, and overlapped
with a coding exon(s); Bidirectional IncRNA—transcribed from the promoter of a protein-coding gene and in opposite direction and, in general,
within a few hundred base pairs; Intronic IncRNA—transcribed from inside of an intron of a protein-coding gene; Intergenic IncRNA—transcribed
from between two protein-coding genes separated by a distance of five kilo base pairs. (B) Mechanisms of INcRNA function: IncRNAs regulate
gene expression in a cis or trans manner via recruitment of proteins or molecular complexes to specific loci, scaffolding of protein complexes,
titration of RNA-binding factors or as decoys, allowing other RNAs to start posttranslational regulation.

IncRNA expression profiles in bladder cancer tissue with
adjacent non-neoplastic tissue, using conventional mo-
lecular biology techniques (e.g., subtractive hybridization,
c¢DNA microarrays, and polymerase chain reaction-based
methods). These “guilty by association” studies have found
numerous bladder-cancer associated IncRNAs (see Table 1).

Gain- or loss-of-function studies suggested that IncRNAs
can be functionally categorized as either oncogenic Inc-
RNAs or tumor-suppressor IncRNAs, when their expres-
sion levels changed in the cancer initiatome [9]. For
example, the IncRNA Urothelial Cancer Associated-1
(UCA1) has been screened and cloned from the human
bladder (transitional cell carcinoma, TCC) cell line
BLZ-211 [29]. UCAL is highly expressed in embryonic
tissues, bladder cancers and other cancers, but not in
adult tissues or adjacent non-neoplastic tissues, which
indicates that UCA1 may be involved in both embryonic
development and carcinogenesis. Furthermore, proliferation,
migration, invasion, and drug resistance were increased after
UCA1 was ectopically expressed in BLZ-211 bladder cell
lines. When BLZ-211 cells, expressing UCA1, were inocu-
lated into nude mice, their capacity for tumor formation
was increased [29] and strongly suggested that UCAI has
oncogenic function in bladder cancer development.

The IncRNA H19 is one of the earliest-discovered non-
coding RNAs in the mammalian genome. The imprinted
H19 gene is highly expressed in human embryos and fetal
tissues, but its expression is almost completely shut off in
adults [30]. Nevertheless, H19 is re-expressed in a number
of tumors, including bladder carcinoma, demonstrating
that it is an onco-fetal RNA [30]. H19 expression levels
were remarkably increased in bladder cancer tissue as
compared with adjacent normal control tissue [31-33]. Ec-
topic expression of H19 promotes bladder cancer cell pro-
liferation in vitro [31] and enhances bladder cancer cell

migration, both in vitro and in vivo [32]. Therefore, H19
appears to be an onco-IncRNA and serves as a tumor
marker in bladder cancer. More recently, a new IncRNA,
linc-UBC1 (Up-regulated in Bladder Cancer 1), was found
to be over expressed in ~60% of invasive bladder cancer
tissues and it was correlated with lymph node metastasis
and poor survival [34]. MALATI (Metastasis Associated
Lung Adenocarcinoma Transcript 1) was originally identi-
fied to be highly expressed in metastatic small cell lung
cancer [35], but recent studies showed that MALATI is
upregulated in bladder cancer and its expression level cor-
responds to the tumor grade and metastatic stage [36,37].
When they are taken together, most, if not all highly
expressed IncRNAs in bladder cancer appear to be
oncogenic.

On the other hand, Maternally Expressed Gene 3
(MEG3) is an imprinted gene that encodes a IncRNA and
it is negatively associated with tumorigenesis. Various lines
of evidence support a tumor suppressor function for
MEG3 IncRNA. For example, MEG3 is expressed in many
normal tissues, but its expression is lost in primary human
pituitary tumors and cell lines [38,39] as well as in bladder
cancer [40]. Multiple mechanisms contribute to the loss of
MEG3 expression in tumors, including gene deletion,
promoter hypermethylation, and hypermethylation of
the intergenic, differentially methylated region [32]. Re-
expression of MEG3 inhibits tumor cell proliferation in
culture and colony formation in soft agar and the
underlying mechanism of growth inhibition is partly the
result of MEG3-induced apoptosis [39].

With the advent of next generation sequencing tech-
nologies, RNA-seq has been widely used to discover novel
noncoding RNA transcripts including IncRNAs in cancer
[13,34,41]. Therefore, we can anticipate that more novel
IncRNAs will be discovered in bladder cancer using RNA-

Table 1 List of aberrant long noncoding RNAs in bladder cancer

IncRNA Location Expression Methods References
H19 Chr11p15.5 Up PCR based screening [30,31]
MALAT-1 Chr11g13.1 Up PCR-based [32,33]
TUG1 Chri12 Up gRT-PCR [34]

UCA1 UCAla Chr19p13.12 Up Subtractive Hybridization, and PCR [35,36]
Linc-UBC1 Chr1g32.1 Up Microarray screening and gRT-PCR [37]

MEG3 Chr14g32.3 Down gRT-PCR [38]
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seq technology, even though genome-wide transcriptome
study of bladder cancer with this technology has not yet
been reported in the literature.

LncRNA-mediated regulatory network in bladder cancer

Alterations in the Ras-MAPK and PI3BK-AKT-mTOR path-
ways are largely responsible for promoting cell growth in
urothelial neoplasia [2]. Since IncRNAs are essential ele-
ments of the regulatory circuits and play important roles
in cancer development [6], we would ask whether the
dysregulated IncRNAs, as described above, regulate the key
pathways in bladder cancer. Several groups have begun to
address this question with compelling experiments. Yang
et al. [42] knocked down UCA1 in BLZ-211 cells and
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found that the expressions of several cell cycle-related
genes (e.g, CDKN2B, EP300 and TGF[3-2) decreased and
both the encoded p300 and its coactivator, CAMP response
element-binding protein (CREB), levels were significantly
down regulated. Activation of CREB and AKT is positively
correlated with the expression level of UCA1. Furthermore,
UCAL1 regulated the cell cycle through CREB in the PI3K-
AKT dependent pathway in bladder cancer [42].

H19 is essential for human tumor growth and metas-
tasis through its interaction with several proteins.
Over-expression of H19 resulted in a significant in-
crease in expression of ID2 (inhibitor of DNA binding/
differentiation 2), whereas a knockdown of H19 expression
decreased ID2 expression [31], suggesting that up-regulated

(IR}

(B) LncRNA UCAT as a biomarker for noninvasive detection in urine.

Figure 2 Long noncoding RNA (IncRNA)-mediated signaling pathways in bladder cancer and its applications. (A) Oncogenic IncRNAs
activate proliferative pathways, such as PI3K-AKT and Wnt/B-catenin pathways; INcRNAs such as UCA1, H19, MALAT1 and linc-UBCT1 are
overexpressed in bladder cancer and epigenetically regulate gene expression in concert with core cancer pathways during tumorigenesis.

UCA1

’ %v 4 bladder cancer
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H19 increases bladder cancer growth by regulating ID2
expression. However, it is unclear whether H19 regulates
ID2 expression or it is solely a correlation. Up-regulated
H19 not only promotes bladder cancer cell proliferation,
but it also promotes cell migration in vitro and in vivo
[32]. The underlying mechanisms of H19-mediated metas-
tasis appear to be associated with EZH2 and this associ-
ation results in Wnt/B-catenin activation and subsequent
down-regulation of E-cadherin. A significant negative cor-
relation is also observed in vivo between levels of H19 and
E-cadherin [32]. More experimental evidence is needed to
pinpoint the detailed mechanisms of H19 mediated Wnt/
[-catenin pathways. Interestingly, the Wnt signaling path-
way is activated when MALATI overexpression promoted
epithelial-mesenchymal transition (EMT) in bladder can-
cer [37]. siRNA-mediated silencing of MALAT-1 resulted
in a decrease of the EMT-associated ZEB1, ZEB2 and Slug
levels, and an increase of E-cadherin levels [37]. Wnt sig-
naling appears to be a core pathway targeted by IncRNAs
leading to tumorigenesis (Figure 2A).

Autophagy is activated in cancer cells and contributes to
tumor cell survival. Interestingly, MEG3 IncRNA likely
regulates autophagy because there is a significant negative
correlation between MEG3 levels and the level of an
autophagy marker LC3-II in vivo. Moreover, the over-
expression of MEG3 markedly suppressed the activation
of autophagy and increased apoptosis, whereas knock-
down of MEG3 activated autophagy and increased cell
proliferation in human bladder cancer cell lines [38]. More
importantly, inhibition of autophagy abrogated MEG3
knockdown-induced cell proliferation [38]. Therefore, ac-
tivation of autophagy and an increase in cell proliferation
is the underlying mechanism of aberrant MEG3 expres-
sion in bladder cancer.

Application of IncRNA in bladder cancer

When they are taken together, IncRNAs promote urothelial
cell proliferation and suppress cellular apoptosis along with
well-defined, hallmark signaling pathways leading to malig-
nant transformation (Figure 2A). As our understanding of
the molecular pathways in urothelial oncogenesis expands,
reliable biomarkers of bladder cancer are urgently needed.
Dysregulated IncRNAs in bladder cancer could become the
biomarkers for both diagnosis and prognosis of bladder
cancer. NcRNAs are relative stable in cells present in urine
and the differential expression of mitochondrial non-
coding RNAs (sense and antisense) in cells isolated from
voided urine of patients with bladder cancer was recently
used as a noninvasive diagnostic assay [43]. A pilot study
took advantage of this to evaluate the potential application
of UCAL in urinary sediments from patients with bladder
cancer. It turned out to be especially valuable for superfi-
cial G(2)-G(3) patients at a high risk for muscular invasion
and the sensitivity was 86.4% and 92.3%, respectively,
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indicating UCAL1 is an another new promising urinary
marker for the diagnosis of bladder cancer [44]. A IncRNA
H19 with oncogenic properties is upregulated in a wide
range of tumors including bladder cancer and it is an
interesting target of alternative cancer treatment. To
utilize the uniqueness of H19 sequence, a plasmid com-
posed of the H19 gene regulatory element that drives
the expression of diphtheria toxin (DT-A) gene has
been developed and it is undergoing clinical testing as a
treatment for superficial bladder cancer and other can-
cers [45-47]. Direct targeting of dysregulated IncRNAs
in bladder cancer is an attractive strategy for alternative
treatment, although it is in an infant stage.

Prospect

Bladder cancer is a common malignant tumor world-wide
and survival rate of the invasive subtype remains poor, des-
pite therapeutic advances. Understanding the defect in the
gene regulatory network at the genomic level is urgently
needed. Recently, thousands of IncRNAs have been identi-
fied and disease-associated IncRNA profiles, obtained with
a variety of molecular approaches, have placed IncRNAs
on the stage of integrated cancer biology. Functional stud-
ies have indicated that some IncRNAs are involved in
human cancer pathogenesis, acting as either oncogenes or
tumor suppressors. A handful of bladder-cancer-related
IncRNAs play essential biological roles in tumor devel-
opment and metastasis, and they provide an opportun-
ity to develop novel biomarkers for bladder cancer
diagnosis and a potential for targeted therapy. The biol-
ogy of IncRNAs is opening a new avenue to unravel
causes and develop treatments of bladder cancer, which
may yet place IncRNAs at center stage in bladder cancer
biology.
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