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Abstract

Background: Rectal cancer is one of the most prevalent tumor types. Understanding the metabolic profile of rectal
cancer is important for developing therapeutic approaches and molecular diagnosis.

Methods: Here, we report a metabonomics profiling of tissue samples on a large cohort of human rectal cancer
subjects (n = 127) and normal controls (n = 43) using 1H nuclear magnetic resonance (1H NMR) based
metabonomics assay, which is a highly sensitive and non-destructive method for the biomarker identification in
biological systems. Principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA) and
orthogonal projection to latent structure with discriminant analysis (OPLS-DA) were applied to analyze the 1H-NMR
profiling data to identify the distinguishing metabolites of rectal cancer.

Results: Excellent separation was obtained and distinguishing metabolites were observed among the different
stages of rectal cancer tissues (stage I = 35; stage II = 37; stage III = 37 and stage IV = 18) and normal controls. A total
of 38 differential metabolites were identified, 16 of which were closely correlated with the stage of rectal cancer.
The up-regulation of 10 metabolites, including lactate, threonine, acetate, glutathione, uracil, succinate, serine,
formate, lysine and tyrosine, were detected in the cancer tissues. On the other hand, 6 metabolites, including myo-
inositol, taurine, phosphocreatine, creatine, betaine and dimethylglycine were decreased in cancer tissues. These
modified metabolites revealed disturbance of energy, amino acids, ketone body and choline metabolism, which
may be correlated with the progression of human rectal cancer.

Conclusion: Our findings firstly identify the distinguishing metabolites in different stages of rectal cancer tissues,
indicating possibility of the attribution of metabolites disturbance to the progression of rectal cancer. The altered
metabolites may be as potential biomarkers, which would provide a promising molecular diagnostic approach for
clinical diagnosis of human rectal cancer. The role and underlying mechanism of metabolites in rectal cancer
progression are worth being further investigated.
Introduction
Colorectal cancer (CRC) is the third most frequent ma-
lignancy and the fourth most common cause of cancer
mortality worldwide [1]. Among CRC, 65% of CRC are
rectal cancer, which is located in the lower end of the
colon. Although advanced methods of diagnosis such as
computed tomography (CT), ultrasonography (US), mag-
netic resonance imaging (MRI), and treatments such as
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surgery, neoadjuvant chemotherapy and radiation therapy,
have been employed over the last few decades, the overall
survival rate of patients with rectal cancer has not im-
proved markedly. Tumor stage has a great influence on
survival and is defined by UICC TNM (International
Union against Cancer, Tumor Node Metastases) classifica-
tion. Five-year survival rate of rectal cancer patients is
93.5% for stage I, 87.4% for stage II, 58.2% for stage III,
and 8.1% for stage IV [2]. The reasons that result in late
diagnosis and therapy as well as disappointingly low sur-
vival rate include ineffective screening tools and guide-
lines, cancer detection at an advanced stage, limited
survival achieved with palliative chemotherapy alone for
patients with metastatic or unresectable disease. Therefore,
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early and accurate diagnosis of rectal cancer is critical for
patients’ survival and improving therapeutic options for
different stages of rectal cancer.
Metabolomics is an emerging field of research down-

stream of transcriptomics, genomics, and proteomics,
which mainly involves the multicomponent analysis of
biological fluids, tissues and cell extracts. It is currently
used as a model of research in many disciplines of medi-
cine, including disease diagnosis [3,4], biomarker screening
[5,6], nutritional intervention [7] and safety assessment of
chemical [8,9]. Three powerful analytical techniques are
commonly applied to assay and quantify metabolites, in-
cluding liquid chromatography (LC) coupled with mass
spectrometry (MS), gas chromatography MS (GC/MS) and
nuclear magnetic resonance (NMR) [10]. NMR has been
used extensively since 1970s. It has some advantages over
MS in metabolic application, including non-destructive
analysis, the relative ease of sample preparation, the poten-
tial to identify a broad range of compounds and the cap-
acity for the supply of structural information for unknown
compounds [11,12]. Until now, only several NMR-based
studies using patient colorectal cancer tissues have been
reported [1,13]. However, the number of patient tissues in
these studies was limited, which cannot provide accurate
and comprehensive information of CRC metabolites.
Moreover, discriminating metabolites involved in the dif-
ferent pathological stages of rectal cancer have not been in-
vestigated. Therefore, it will be valuable to perform
metabolic profiling of human rectal cancer tissues in aiding
Figure 1 600 MHz representative 1H NMR spectra (δ9.5–δ0.5) of tissu
rectal cancer, D stage III of rectal cancer, E stage IV of rectal cancer.
molecular diagnosis and providing novel insights into rec-
tal cancer.
In the present study, we applied 1H-NMR to study

metabolic profiling of human rectal cancer tissues and
found the metabolic alterations between rectal cancer
tissues and normal controls. We identified a total of 38
differential metabolites, 16 of which were closely corre-
lated with the stages of rectal cancer. These modified
metabolites potentially revealed disturbance of energy,
amino acids, ketone body and choline metabolism in hu-
man rectal cancer. Our findings indicate the metabolites
disturbance may be associated with the progression of
rectal cancer. The altered metabolites may be as potential
biomarkers, which would provide a promising molecular
diagnostic approach for clinical diagnosis of human rectal
cancer. The role and underlying mechanism of metabo-
lites in rectal cancer progression are worth being further
investigated.

Results
Metabolic profiling of samples
Typical 1H NMR spectra of aqueous phase extracts of rec-
tal cancer tissues of different stages and normal mucosae
were shown in Figure 1. The standard one-dimension
spectrum gave an overview of all metabolites. The major
metabolites in the spectra were identified according to lit-
erature data and the Human Metabolome Database
(http://www.hmdb.ca/). As a result, a series of changes in
endogenous metabolite levels were observed in rectal
e samples. A normal control, B stage I of rectal cancer, C stage II of
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cancer when compared with the normal mucosa. These
metabolites included lactate, threonine, acetate, glutathi-
one, uracil, succinate, serine, formate, lysine, tyrosine,
myo-inositol, taurine, phosphocreatine, creatine, betaine,
dimethylglycine, which are known to be involved in mul-
tiple metabolic processes, especially in energy and amino
acid metabolism [14,15].

PR analysis of normal mucosae and rectal cancer tissues
To determine the differences between the normal con-
trols and rectal cancer tissues, we initially utilized the
PCA to analyze 1H NMR data after data normalization.
The results showed an apparent separation between rec-
tal cancer tissues and normal controls on the scores plot
of first two principal components (PC) (Figure 2A). The
majority of samples were located in 95% confidence
interval. Therefore, all of samples were used in the fol-
lowing analysis to ensure the maximum information.
To optimize the separation between the rectal cancer

tissues and normal controls, of the two groups, we then
utilized the OPLS-DA to visualize the metabolic differ-
ence. As shown in Figure 2B, good separation in the
scores plot of PC1 and PC2 of OPLS-DA analysis was
obtained between rectal cancer tissues and normal con-
trols. Moreover, model parameters in the permutation
Figure 2 Metabolite profiles between rectal cancer tissues and norma
rectal cancer tissues and normal controls using 1H NMR. B OPLS-DA scores
of metabolite variations between the two classes. Peaks in the positive dire
comparison to normal control. Deceased metabolites in rectal cancer tissue
validation of the corresponding PLS-DA model using permutation analysis
of the model.
test for the explained variation (R2 = 0.89) and the pre-
dictive capability (Q2 = 0.83) were significantly high, in-
dicating a satisfactory predictive ability (Figure 2D). To
identify the main metabolites responsible for the separ-
ation between cancer tissues and normal controls, their
scores and loadings plots with correlation coefficients
were obtained from OPLS-DA analysis based on the
NMR data of tissue samples (Figure 2C). The loadings
were colored according to the UV model variable weights
and showed the significant class-discriminating metabo-
lites responsible for the clustering patterns. The positive
signals indicated the up-regulated metabolites in the can-
cer tissues in comparison with normal controls, including
lactate, threonine, acetate, glutathione, uracil, succinate,
serine, formate, lysine and tyrosine. On the other hand,
the signals in the negative direction indicated the down-
regulated metabolites in rectal cancer tissues, including
myo-inositol, taurine, phosphocreatine, creatine, betaine
and dimethylglycine. The significantly distinguishing
metabolites were summarized according to VIP > 1 and
p < 0.05 (Table 1). According to metabolic pathway on
the Kyoto Encyclopedia of Genes and Genomes
(KEGG) database (http://www.genome.jp/kegg/), we
outlined the main metabolic pathways, which are
closely related to rectal cancer morbidity. These metabolic
l controls. A PCA scores plot discriminates metabolites from the
plot based on same samples. C The color map shows the significance
ction indicated the increased metabolites in rectal cancer tissues in
s were presented as peaks in the negative direction. D Statistical
(200 times). R2 is the explained variance, and Q2 is the predictive ability
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Table 1 Differential Metabolites derived from OPLS-DA
model of 1H NMR analysis between rectal cancer patients
and normal controls

Metabolites chemical
shift

Mutiplicitya Rectal cancer vs.
normal control

(ppm) VIPb P-valuec FCd

1 Myo-inositol 4.06 t 4.32 <0.001 −2.00

3.55 dd 4.21 <0.001 −2.05

3.63 t 3.91 <0.001 −2.16

2 Taurine 3.27 t 4.25 <0.001 −2.10

3 α-Glucose 3.55 dd 4.21 <0.001 −2.05

5.23 dd 3.42 <0.001 −4.94

4 Phosphocreatine 3.93 s 3.56 <0.001 −2.13

3.04 s 3.30 <0.001 −2.11

5 Creatine 3.94 s 3.56 <0.001 −2.13

3.04 s 3.30 <0.001 −2.11

6 Betaine 3.89 s 2.70 <0.001 −1.89

7 Dimethylglycine 3.71 s 2.64 <0.001 −2.38

8 Glyceryl 4.3 m 2.51 <0.001 −1.45

9 Lactate 1.33 d 2.34 <0.001 1.24

4.11 q 1.55 <0.001 1.80

10 Threonine 1.33 d 2.34 <0.001 1.24

4.24 m 0.77 0.296 1.04

11 Acetate 1.93 s 2.27 0.004 2.97

12 Glutathione 2.56 m 2.19 <0.001 1.60

2.96 m 1.79 0.012 1.23

13 Uracil 7.54 d 2.16 <0.001 3.12

5.8 d 2.09 <0.001 3.27

14 Succinate 2.41 s 2.14 <0.001 1.84

15 O-acetyl
glycoprotein

2.07 s 1.96 <0.001 1.77

16 Dimethylamine 2.73 s 1.94 0.029 1.28

17 Leucine 0.96 t 1.73 <0.001 1.17

18 Valine 1.05 d 1.72 0.166 1.48

0.99 d 1.66 0.016 1.36

19 β-hydroxybutyrate 1.2 d 1.69 <0.001 2.05

4.16 m 0.57 0.565 1.04

20 Formate 8.45 s 1.67 0.001 1.43

21 Glutamine 2.14 m 1.63 0.001 1.45

3.77 m 1.09 <0.001 1.35

22 Acetoacetate 2.28 s 1.55 0.008 1.21

23 Sarcosine 2.75 s 1.48 <0.001 1.02

24 Tyrosine 7.2 d 1.42 <0.001 −1.42

6.9 d 1.32 0.029 −1.30

25 Alanine 1.48 d 1.38 0.054 1.70

26 Acetoacetic acid 2.31 s 1.36 0.051 1.19

27 Serine 3.98 m 1.29 <0.001 1.45

Table 1 Differential Metabolites derived from OPLS-DA
model of 1H NMR analysis between rectal cancer patients
and normal controls (Continued)

28 Isoleucine 1.01 d 1.22 0.301 1.13

0.95 t 1.20 0.002 1.16

29 Methylamine 2.59 s 1.19 0.001 1.30

30 Trimethylamine-
N-oxide

3.27 s 1.11 <0.001 2.96

31 Lysine 3.77 m 1.09 <0.001 1.35

32 Acetone 2.23 s 1.06 0.445 1.08

33 PC(phosphochline) 3.21 s 1.05 <0.001 1.22
aMultiplicity: s singlet, d doublet, t triplet, q quartet, dd doublet of doublets,
m multiplet.
bVariable importance in the projection was obtained from OPLS-DA model with a
threshold of 1.0.
cp-value obtained from Student’s t-test.
dFold change(FC) between rectal cancers and normal controls. Fold change with
a positive value indicates a relatively higher concentration present in rectal
cancer patients while a negative value means a relatively lower concentration as
compared to the normal controls.
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pathways consisted of glycolysis, serine synthesis pathway,
TCA cycle, amino acid metabolism, pyrimidine metabol-
ism and gut flora metabolism.
PR analysis of between normal mucosae and stage-related
rectal cancer tissues
The differences of metabolic profiling among various
stages of rectal cancer are important for biomarker iden-
tification and for accurate molecular diagnosis and ther-
apy. OPLS-DA analysis was applied to distinguish the
metabolites difference between normal controls and each
stage of rectal cancer tissues. The scores plots of PC1 and
PC2 showed that all stages (I, II, III and IV) of rectal can-
cer tissues could be clearly distinguished from normal
controls (Figure 3A). A panel of 40 metabolites with
VIP > 1 from the training set and p < 0.05 from Student’s t-
test were identified and summarized (Table 2). As shown in
Table 2, creatine, uracil, succinate and β-hydroxybutyrate
changed along with the process of the rectal cancer.
Valine, lactate, glutamine, alanine, trimethylamine-n-
oxide (TMAO), lysine and PC (phosphocholine) were
increased in all rectal cancer patients except stage I. Inter-
estingly, acetate, o-acetyl glycoprotein, dimethylamine and
leucine became significantly different form stage III to
stage IV. Moreover, NAD, formic acid, acetone, isoleucine,
acetoacetic acid, sarcosine and acetoacetate were signifi-
cantly up-regulated only in stage IV in comparison with
normal controls. The corresponding loading plots based
on OPLS-DA models were presented in Figure 3B. The
color scale corresponded to the UV model variable
weights. The relative changes in metabolites with signifi-
cant correlation coefficients were a major discriminating



Figure 3 Metabolite profiles between different stages of rectal cancer tissues and normal controls. A OPLS-DA scores plots based on
each stages of rectal cancer tissues and normal controls; black triangles represent normal controls (n = 43); red diamonds represent stage I
(n = 35); blue diamond’s represent stage II (n = 37); green diamonds represent stage III (n = 37); yellow diamonds represent stage IV (n = 18).
B Color map showed the significance of metabolite variations between the classes. Peaks in the positive direction indicated the increased
metabolites in rectal cancer tissues. Decreased metabolites in rectal cancer tissues were presented as peaks in the negative direction. C Statistical
validation of the corresponding PLS-DA models using permutation analysis (200 times). R2 is the explained variance, and Q2 is the predictive ability of
the model. D Scores plots of OPLS-DA prediction model. 80% of samples were applied to construct the model, and then used it to predict the
remaining 20% of samples.
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factor among different populations, implying the bio-
chemical alterations in different morbidity.
Model parameters of permutation analysis for differ-

ent stages were as follows: stage I: R2 = 0.93, Q2 = 0.87;
stage II: R2 = 0.93, Q2 = 0.86; stage III: R2 = 0.93, Q2 =
0.83 and stage IV: R2 = 0.95, Q2 = 0.83. These parame-
ters indicated the excellence of the model (Figure 3C).
To further confirm the performance of these models,
80% of samples were randomly selected as training
samples. Prediction parameters of the remaining 20%
of samples using OPLS-DA model established with the
training samples: Normal vs stage I: R2Xcum = 0.179,
R2Ycum = 0.928, Q2Ycum = 0.828; Normal vs stage II:
R2Xcum = 0.19, R2Ycum = 0.92, Q2Ycum = 0.829; Normal
vs stage III: R2Xcum = 0.16, R2Ycum = 0.946, Q2Ycum =
0.81; Normal vs stage IV: R2Xcum = 0.16, R2Ycum =
0.941, Q2Ycum = 0.754) (Figure 3D).
Trending biomarkers
Biomarker identification is important for detecting
the rectal cancer formation, invasion, and metastasis.
The representative metabolites with significant differ-
ence between controls and rectal cancer tissues were
represented in box-and-whisker plots (Figure 4), which
showed the concentration ranges, median quartiles and
extremes.
The decrease of glucose and increase of lactate in

tumor tissues was not surprising because of the War-
burg effect. The results of changes in myo-inositol and
glucose in our work were consistent with a previous re-
search on breast cancer [16]. Myo-inositol, a precursor
in the phosphatidylinositol cycle and a source of several
second messengers, was decreased along with the pro-
gression of rectal cancers compared with normal con-
trols. The function of myo-inositol as an osmoregulator



Table 2 Metabolite changes between each stage of rectal cancers and normal controls

Metabolites chemical
shift

Mutiplicitya Normal control vs. I Normal control vs. II Normal
control vs. III

Normal
control vs. IV

(ppm) VIPb P-valuec FCd VIPb P-valuec FCd VIPb P-valuec FCd VIPb P-valuec FCd

Myo-inositol 4.06 t 3.04 <0.001 −1.90 3.35 <0.001 −1.93 3.99 <0.001 −2.17 3.16 <0.001 −2.07

3.55 dd 2.92 <0.001 −1.95 3.27 <0.001 −1.99 3.89 <0.001 −2.20 3.09 <0.001 −2.08

3.63 t 2.35 <0.001 −2.00 2.71 <0.001 −2.04 3.42 <0.001 −2.36 2.80 <0.001 −2.42

Taurine 3.27 t 3.10 <0.001 −2.01 3.37 <0.001 −2.03 3.99 <0.001 −2.28 3.18 <0.001 −2.10

α-Glucose 3.55 dd 2.92 <0.001 −1.95 3.27 <0.001 −1.99 3.89 <0.001 −2.20 3.09 <0.001 −2.08

5.23 dd 2.60 <0.001 −4.75 2.81 <0.001 −5.58 3.07 <0.001 −4.57 2.44 <0.001 −4.97

Phosphocreatine 3.93 s 3.02 <0.001 −2.34 3.10 <0.001 −2.07 3.50 <0.001 −2.09 2.91 <0.001 −2.02

3.04 s 2.74 <0.001 −2.29 2.94 <0.001 −2.15 3.36 <0.001 −2.16 2.66 <0.001 −1.71

Creatine 3.94 s 3.02 <0.001 −2.34 3.10 <0.001 −2.07 3.50 <0.001 −2.09 2.91 <0.001 −2.02

3.04 s 2.74 <0.001 −2.29 2.94 <0.001 −2.15 3.36 <0.001 −2.16 2.66 <0.001 −1.71

Glycolate 3.93 s 3.02 <0.001 −2.34 3.10 <0.001 −2.07 3.50 <0.001 −2.09 2.91 <0.001 −2.02

Betaine 3.89 s 1.97 <0.001 −1.85 2.56 <0.001 −2.10 2.57 <0.001 −1.88 1.88 <0.001 −1.62

Dimethylglycine 3.71 s 2.21 <0.001 −2.58 2.33 <0.001 −2.60 2.39 <0.001 −2.13 1.98 <0.001 −2.22

Glyceryl 4.3 m 2.32 <0.001 −1.48 2.40 <0.001 −1.46 2.59 <0.001 −1.45 1.98 <0.001 −1.38

Lactate 1.33 d 1.23 <0.001 1.27 1.84 <0.001 1.26 2.26 <0.001 1.22

4.11 q 1.13 0.004 1.73 1.52 0.001 1.88 1.52 0.001 2.22

Threonine 1.33 d 0.08 <0.001 1.21 1.23 <0.001 1.27 1.84 <0.001 1.26 2.26 <0.001 1.22

Acetate 1.93 s 2.65 <0.001 6.95 1.61 <0.001 2.96

Glutathione 2.56 m 2.49 <0.001 1.62 2.41 <0.001 1.60 2.30 <0.001 1.46 2.35 <0.001 1.81

2.96 m 1.84 <0.001 1.42 1.50 <0.001 1.39

Uracil 7.54 d 1.99 <0.001 3.04 2.58 <0.001 3.69 2.33 <0.001 2.94 2.33 <0.001 2.46

5.8 d 0.91 <0.001 3.06 1.84 <0.001 3.60 2.12 <0.001 3.45 2.19 <0.001 2.67

Succinate 2.41 s 1.05 0.004 1.48 1.15 0.005 1.68 1.93 <0.001 1.75 2.08 <0.001 3.03

O-acetyl glycoprotein 2.07 s 2.30 <0.001 2.65 1.30 0.033 1.35

Mannitol 3.69 m 1.31 0.015 −1.20 1.79 <0.001 −1.32 1.53 0.005 −1.23 1.48 <0.001 −1.46

3.88 m 1.44 <0.001 −1.31 1.68 <0.001 −1.36 1.37 0.004 −1.25 1.04 0.026 −1.24

Dimethylamine 2.73 s 1.24 0.069 1.16 1.97 <0.001 2.32

Leucine 0.96 t 1.22 0.004 1.19 1.73 <0.001 1.30

Valine 1.05 d 1.47 <0.001 3.29

0.99 d 1.84 0.011 1.31 1.59 0.023 1.37 1.46 <0.001 1.93

β-hydroxybutyrate 1.2 d 1.10 0.613 −1.07 1.55 <0.001 2.75 2.49 <0.001 2.68 1.27 0.010 1.53

Glutamine 2.14 m 1.34 0.0011 1.50 1.43 0.003 1.75

3.77 m 1.91 <0.001 1.53 1.43 <0.001 1.31 0.87 0.097 1.18

Acetoacetate 2.28 s 1.90 <0.001 1.55

Sarcosine 2.75 s 1.58 <0.001 2.15

Tyrosine 7.2 d 1.74 0.016 −1.38 1.64 0.012 −1.43 1.42 0.051 −1.28 1.31 0.004 −1.95

6.9 d 1.61 0.277 −1.21 1.40 0.275 −1.20 1.29 0.269 −1.21 1.22 0.006 −2.55

Alanine 1.48 d 1.69 0.010 1.59 1.59 0.014 1.81 1.00 0.022 2.79

Acetoacetic acid 2.31 s 1.77 <0.001 1.60

Serine 3.98 m 1.31 <0.001 1.49 1.93 <0.001 1.56 1.58 <0.001 1.38 1.63 0.004 1.29

Isoleucine 1.01 d 1.16 0.006 1.54

0.95 t 1.46 0.019 1.21
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Table 2 Metabolite changes between each stage of rectal cancers and normal controls (Continued)

Trimethylamine-N-oxide 3.27 s 1.60 <0.001 3.59 1.23 <0.001 2.73 1.67 0.008 2.09

Lysine 3.77 m 1.91 <0.001 1.53 1.43 <0.001 1.31

Acetone 2.23 s 1.34 0.003 1.49

PC(phosphochline) 3.21 s 1.68 <0.001 1.31 1.13 0.017 1.19 1.40 0.003 1.22

GPC(glycerophosphochline) 3.23 s 2.00 <0.001 1.49 1.75 <0.001 1.51 1.14 0.002 1.26 1.92 <0.001 1.35

NAD 8.83 d 1.05 0.015 3.25

9.15 d 1.55 <0.001 1.97

2-Hydroxyisobutyric acid 1.44 s 1.00 0.018 −1.18 1.17 0.007 −1.22 1.23 0.012 −1.20

Trytophan 7.29 m 1.35 0.012 −1.32 1.75 <0.001 −1.50

Formic acid 8.44 s 1.53 <0.001 1.93
aMultiplicity: s singlet, d doublet, t triplet, q quartet, dd doublet of doublets, m multiplet.
bVariable importance in the projection was obtained from OPLS-DA model with a threshold of 1.0.
cp-value obtained from Student’s t-test.
dFold change(FC) between rectal cancers and normal controls. Fold change with a positive value indicates a relatively higher concentration present in rectal cancer
patients while a negative value means a relatively lower concentration as compared to the normal controls.
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in different stages of malignant transformation could be
a further explanation for our results.
Many studies have found free amino acids altered in

patients with different kinds of cancer [14,17]. In our
study, leucine, glutamine, threonine and serine were sig-
nificantly increased along with the progression of rectal
cancer, which can be explained as cellular needs for
higher turnover of structural proteins in cell prolifera-
tion. Sarcosine, an N-methyl derivative of the amino acid
glycine, was significantly up-regulated in stage IV. Uracil
Figure 4 Box-and-whisker plots illustrating discrimination between d
line in the middle portion of the box, median; bottom and top boundaries
whiskers, 5th and 95th percentiles, respectively.
is an indicator of transcription, whose increase suggests
cell proliferation up-speeded. Methylamine, DMA and
TMAO, the products of choline metabolism, were also
altered in our study,indicating the disturbance of choline
metabolism.
Based on the modified metabolites, we summarized a

related metabolic pathway of rectal cancer. As shown in
Figure 5, the disturbed metabolic pathway included gly-
colysis (glucose, lactate), tricarboxylic acid cycle (succin-
ate), choline metabolism (TMAO, DMA, methylamine,
ifferent stages of rectal cancers and normal controls. Horizontal
of boxes, 25th and 75th percentiles, respectively; lower and upper



Figure 5 Disturbed metabolic pathways of the most relevant metabolites between rectal cancers and normal controls. Green: lower
concentration in rectal cancer patients than in normal controls. Red: higher concentration in rectal cancer patients than in normal controls.
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betaine, dimethylgcine, sarcosine, creatine and phospho-
creatine), ketone body (acetoacetate, β-hydroxybutyrate
and acetone) and amino acid metabolism (serine and
glycine).

Discussion
In present study, we investigated the metabolic profiling
of human rectal cancer tissue based on 1H NMR. Forty
distinguishing metabolites were identified, 16 of which
significantly changed along with the progression of rectal
cancer. These modified metabolites consisted of lactate,
threonine, acetate, glutathione, uracil, succinate, serine,
formate, lysine, tyrosine, myo-inositol, taurine, phospho-
creatine, creatine, betaine and dimethylglycine. Though
there was one report showing the metabolic profiling of
colorectal cancer tissues [1], to the best of our know-
ledge, the present study is the first to show the
distinguishing metabolites in human rectal cancer tis-
sues. More importantly, we identified the specific metab-
olites changed along with process of rectal cancer.
Compared with Keun’s study in metabolic profiling of
human colorectal cancer tissues, 16 metabolites corre-
lated with the stage of rectal cancer were newly identi-
fied except lactate and taurine. The large cohort of
tissue samples and samples coming from same kind of
tissue might be the most important reason that we iden-
tified more new metabolites.
Metabolites identification is critically important to

understand the potential biological alterations associated
with rectal cancer morbidity and to facilitate this meta-
bolic approach into clinical use. Based on 1H NMR, glu-
cose was apparently lowered in rectal cancer tissues
whereas lactate and serine were consistently elevated.
The results were not unexpected because of Warburg ef-
fect. Cancer cells prefer to metabolize glucose through
glycolysis to generate ATP instead of oxidative phos-
phorylation even in presence of ample oxygen [18]. This
process is less efficient because one molecule of glucose
just generates 2 molecules ATP by glycolysis instead of
36 molecules through oxidative phosphorylation. Thus,
cancer cells enhance glucose uptake to meet the energy
requirement of maintaining their quick proliferation.
Along with the decrease of glucose, the end product of
glycolysis, lactate is found to accumulate in rectal can-
cer tissues. Lactate is able to make the extracellular pH
of the tumor consistently acidic which would stimulate
tumor cell invasion in vitro and metastasis in vivo
[15,19]. Our results were consistent with previous re-
ports that the decrease of glucose and increase of lac-
tate were also observed in stomach cancer, oral cancer
etc. [20,21].
In addition to increased glycolysis, a higher level of

serine in rectal cancer tissues was also observed. Re-
cently, Oliver et al. reported that human cancer cells
rapidly used exogenous serine and serine deprivation
triggered activation of serine synthesis pathway, resulting
in an increased flux to tricarboxylic acid cycle [22].
Serine is generated from the glycolytic intermediate
3-phosphoglycerate generated by 3-phosphoglycerate de-
hydrogenase (PHGDH). PHGDH is recurrently amplified
in a genomic region of focal copy number gain in melan-
oma based on an analysis of human cancers [23]. Redu-
cing PHGDH expression impairs the proliferation in
amplified cell, whereas overexpression of PHGDH in hu-
man breast cancer contributed to carcinogenesis by facili-
tating glycolytic pathway to serine biosynthetic pathway
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[24]. These observations together with our findings
strongly support a notion that altered serine metabol-
ism leads disturbance in human rectal cancer.
In our study, phosphocreatine, creatine, dimethylgcine

and betaine were down-regulated in rectal cancer tissues,
and the levels of methylamines (methylamine, DMA,
TMAO) and sarcosine were obviously increased. These
metabolites are all involved in choline metabolism path-
way. Choline and its derivatives are important constitu-
ents in phospholipid metabolism of cell membranes and
identified as markers of cell proliferation. Although me-
thylamines, products of choline metabolism, are usually
regarded as nontoxic substances, they could induce
hepatocarcinogenesis in rats and the similar mechan-
ism may exist in human [25]. Therefore, methylamines
may indicate the disturbance of liver homeostasis in
development of rectal cancer. The creatine/creatine
kinase (CK)/phosphocreatine system plays a key role in
cellular energy buffering and transport, especially in cells
with high and disturbed energy metabolism. Moreover,
creatine shows significant anticancer effect against brain
tumor, oral squamous cell carcinoma and childhood cere-
bellar tumour [20,26,27]. Sarcosine, a metabolite in cho-
line metabolism pathway, is generated from glycine by
glycine-N-methyl transferase. In the present study, sarco-
sine was significantly enhanced, especially in stage IV of
rectal cancer tissues.
Ketone bodies (KB), including acetoacetate (AcAc),

β-hydroxybutyrate (βOHB) and acetone, are important
metabolic substrates. They are produced by liver under
conditions of fasting and caloric restriction. KB eleva-
tion suggests that it can provide more energy for cell
proliferation and compensate the shortage of energy.
Our results showed that βOHB in rectal cancer tissues
increased 2 folds in comparison to normal controls,
which was consistent with a previous study that βOHB
was significantly increased in breast cancer and colo-
rectal cancer [28,29]. Moreover, we firstly found other
two KB, AcAc and acetone, were also up-regulated in
rectal cancer tissues, with increases of 1.2 and 1.1
folds, respectively. βOHB is a predominant KB, which
belongs to energy-rich compounds transporting energy
from the liver to other tissues. A previous study
showed that the concentration of βOHB in blood was
3-flod higher than AcAc during fasting [30]. Based on
our observation that βOHB changed more significantly
than other two KB, we speculated that βOHB may play a
central role in rectal cancer progression. Recently, βOHB
is considered to be associated with epigenetic regulation
except for energy carrier [31]. It acts as an endogenous
and specific inhibitor of class I histone deacetylases, par-
ticipating in regulating histone acetylation, gene expres-
sion, and eventually promoting stress resistance. Thus,
βOHB up-regulation may enhance resistance of tumor
tissue to damage and affect the survival of rectal cancer
patients.
Some amino acid levels are reported higher in cancer

tissues than in normal controls [14,21] Our results were
consistent with these studies that threonine, leucine, val-
ine, glutamine, alanine, serine, isoleucine and lysine were
markedly increased in rectal cancer tissues. The accu-
mulation of amino acids in cancer cell could be attrib-
uted to the uptake by cancer cells from normal organ
and blood through the up regulation of amino acid
transporters [32]. The disturbances of above amino acids
reflect cellular needs for higher turnover of structural
proteins in cancer cell proliferation. Uracil, an alternate
of thymine, is incorporated into ribonucleic acid in tran-
scription. We found that the level of uracil was appar-
ently higher in the initial stages of cancer (stage I and II)
and a little lower in later stages (stage III and IV),
suggesting that cell proliferation may be accelerated in
the process of tumor formation.
Myo-inositol is a precursor in the phosphatidylinositol

cycle and a source of several second messengers. Previ-
ous studies showed that myo-inositol acts as a cancer
chemoprevention agent [33,34]. In our study the de-
creased myo-inositol implies neoplasia in human rectal
tissue.

Conclusions
In this study, we analyzed the metabolic profiling of rec-
tal cancer tissues in comparison with normal controls
based on 1H NMR spectroscopy combined with multi-
variate statistical analysis. The metabolites distinguishing
rectal cancer tissues from normal controls may be in-
volved in monitoring the neoplasia, invasion and metas-
tasis of tumor, and be potential biomarkers in treatment
of cancer. This opened a window of opportunity to im-
prove diagnosis and treatment of malignant tumor for
surgeons and patients.

Methods
Study populations and sample collection
A total of 127 rectal cancer patients were recruited from
West China Hospital of Sichuan University during 2009
to 2010. The patients enrolled in this study did not re-
ceive any neoadjuvant chemotherapy or radiation ther-
apy before surgical treatment. The clinical information
of patients was summarized in Table 3. The rectal cancer
tissue histology, tumor grade, TNM, Duke Stages was
presented in Table 3. And the nutritional status of the
patients, body weight and weight loss were provided
(Additional file 1: Table S1). The survival rate of pa-
tients enrolled in this study was also provided (Additional
file 2: Figure S1). As shown in Table 3, the stage of all tis-
sue specimens was determined according with the Ameri-
can Joint Committee on Cancer (AJCC) for rectal tumors:



Table 3 Clinical information of rectal cancer patients used
in this study

Rectal cancer patients Normal controls

Number 127 43

Age (median,range) 55 28-86 56 35-85

Male/female ration 69/58 16/27

Histology Adenocarcinoma(127) ∕

Pathologic grade ∕

PD 36

MD 80

WD 7

NA 4

Cancer stage/Duke ∕

I/A(35) T1N0M0(10)

T2N0M0(25)

II/B(37) T3N0M0(37)

III/C(37) T2N1aM0(3)

T2N2aM0(2)

T3N1aM0(16)

T3N1bM0(8)

T3N2aM0(4)

T3N2bM0(4)

IV/D(18) T3N0M1a(1)

T3N1aM1a(1)

T3N1bM1a(5)

T3N2aM1a(5)

T3N2bM1a(5)

T4aN2bM1a(1)

Metastatic site ∕

I 35(0)

II 37(0)

III 37(lymph node)

IV 18(liver)

PD poorly differentiated.
MD moderately differentiated.
WD well-differentiated.
NA not applicable.
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stage I, 35 patients; stage II, 37 patients; stage III, 37 pa-
tients; stage IV, 18 patients. The protocols outlined in the
following text were approved by the Ethics Committee of
West China Hospital of Sichuan University. The informed
consents were obtained from all patients prior to sample
collection.
Tumor specimens and adjacent normal-appearing tis-

sues at least 5–10 cm away from the edges of a tumor
were collected from rectal cancer patients undergoing
colorectal resection according to procedure reported
previously [35]. In total, 170 tissue samples were obtained
from patients. The tissues dissected by a senior pathologist
in the operating room were immediately frozen in liquid
nitrogen and stored at −80°C. The clinical diagnosis, tumor
stage, histology differentiation and resection margin were
determined by routine histopathology examination of H &
E stained specimens by a blinded pathologist.

Sample preparation
The frozen tissue samples ranged from 150 to 400 mg were
weighed and suspended in methanol (4 ml per gram of tis-
sue) and double distilled water (0.85 ml per gram of tissue).
After vortex, chloroform (2 ml per gram of tissue) was
added, followed by addition of 50% chloroform (2 ml per
gram of tissue). The suspension was left on ice for 30 min,
and centrifugated at 1,000 g for 30 min at 4°C. This pro-
cedure separated suspension into three phases: a water
phase at the top, a denatured proteins phase in the middle,
and a lipid phase at the bottom. The upper phase (aqueous
phase) of each sample was collected and evaporated to
dryness under a stream of nitrogen. The residue was
reconstituted with 580 μl of D2O containing 30 μM
phosphate buffer solution (PBS, pH = 7.4) and 0.01 mg/ml
sodium (3-trimethylsilyl)-2, 2, 3, 3-tetradeuteriopropionate
(TSP) as a chemical shift reference (δ0.0). After centrifuged
at 12,000 g for 5 min, the 550 μl supernatant was trans-
ferred into a 5-mm NMR tube for NMR spectroscopy [36].

1H-NMR spectroscopic analysis
All tissue samples were analyzed by 1H-NMR spectros-
copy at 300 K using a Bruker Avance II 600 spectrometer
operating (Bruker Biospin, Germany) at 600.13 MHz. A
one-dimensional spectrum was acquired by using a stand-
ard (1D) Carr-Purcell-Meiboom-Gill (CPMG) pulse se-
quence to suppress the water signal with a relaxation
delay of 5 sec. Sixty-four free induction decays (FIDs) were
collected into 64 K data points with a spectral width of
12,335.5-Hz spectral, an acquisition time of 2.66 sec, and
a total pulse recycle delay of 7.66 sec. The FIDs were
weighted by a Gaussian function with line-broadening fac-
tor −0.3 Hz, Gaussian maximum position 0.1, prior to
Fourier transformation [37].

Pattern recognition (PR) analysis
The raw NMR data has been manually Fourier transformed
using MestReNova-6.1.1-6384 software before data pro-
cessing. All of the 1H NMR spectra were corrected for
phase and baseline distortions using MestReNova-
6.1.1-6384 software. 1H NMR spectra of tissue samples
were referenced to the TSP resonance at δ0.0. The spectrum
ranging from 9.5 to 0.5 ppm was divided into 4500 integral
segments of equal length (0.002 ppm). The area under the
spectrum was calculated for each segmented region and
expressed as an integral value. The region 4.9–4.6 ppm was
removed for excluding the effect of imperfect water signal.
Moreover, the integrated data were normalized before
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multivariate statistical analysis to eliminate the dilution
or bulk mass differences among samples due to the dif-
ferent weight of tissue, and to give the same total inte-
gration value for each spectrum.
For multivariate statistical analysis, the normalized

NMR data were imported into SIMCA-P + 11 (Umetrics,
AB). The principal component analysis (PCA) was ini-
tially applied to analyze the NMR spectral data to separ-
ate the tumor samples from the normal samples. The
data were visualized using the principal component (PC)
score plots to identify general trends and outliers. Or-
thogonal projection to latent structure with discriminant
analysis (OPLS-DA) was subsequently used to improve
the separation. R2 and Q2 values were used to assess the
amount of variation represented by the principal compo-
nents and robustness of the model, respectively. The
PLS-DA models were cross-validated by a permutation
analysis (200 times) [38,39]. The default 7-round cross-
validation was applied with 1/seventh of the samples be-
ing excluded from the mathematical model in each
round, in order to guard against over fitting. The model
coefficients locate the NMR variables associated with
specific interventions as y variables. The model coeffi-
cients were then back-calculated from the coefficients
incorporating the weight of the variables in order to en-
hance interpretability of the model: in the coefficient
plot, the intensity corresponds to the mean-centered
model (variance) and the color-scale derives from the
unit variance-scaled model (correlation). The coefficient
plots were generated with Matlab scripts with some in-
house modifications and were color-coded with the ab-
solute value of coefficients (r) [40,41].
To identify the variables contributed to the assignment

of spectra between tumor tissues and normal controls, the
variable importance in the projection (VIP) values of all
peaks from OPLS-DA models was analyzed, and variables
with VIP > 1 were considered relevant for group discrim-
ination. Moreover, unpaired Student’s t-test (p < 0.05) to
the chemical shifts was also used to assess the significance
of each metabolite. Only both VIP > 1 of multivariate and
p < 0.05 of univariate statistical significance were identified
as distinguishing metabolites. The corresponding chemical
shift and multiplicity of the metabolites were identified by
comparisons with the previous literatures and the Human
Metabolome Database (http://www.hmdb.ca/), a web-
based bioinformatics/cheminformatics resource with
detailed information about metabolites and metabolic
enzymes.

Additional files

Additional file 1: Table S1. The added clinical information for Rectal
cancer patients used in this study. Weight and height were then used to
calculate body mass index (BMI: weight [kg]/height [m2]), which was
further categorized according to the World Health Organization’s age-
and sex-adjusted criteria. BMI < 18.5: undernourished; 18.5 < BMI < 24.9:
normal weight; 25 < BMI < 29.9: overweight; BMI > 30: obese. Weight loss
was defined as loss of more than 5% pre-illness weigh.

Additional file 2: Figure S1. The survival rate of patients enrolled in
this study until Aug, 2013. Initial stages: stage I and II; later stages: stage
III and IV.
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