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Abstract

Background: Mitochondria are suggested to be important organelles for cancer initiation and promotion.
This study was designed to evaluate the prognostic value of MTC02, a marker for mitochondrial content,
in prostate cancer.

Methods: Immunohistochemistry of using an antibody against MTC02 was performed on a tissue microarray
(TMA) containing 11,152 prostate cancer specimens. Results were compared to histological phenotype, biochemical
recurrence, ERG status and other genomic deletions by using our TMA attached molecular information.

Results: Tumor cells showed stronger MTC02 expression than normal prostate epithelium. MTC02 immunostaining
was found in 96.5% of 8,412 analyzable prostate cancers, including 15.4% tumors with weak, 34.6% with moderate,
and 46.5% with strong expression. MTC02 expression was associated with advanced pathological tumor stage, high
Gleason score, nodal metastases (p < 0.0001 each), positive surgical margins (p = 0.0005), and early PSA recurrence
(p < 0.0001) if all cancers were jointly analyzed. Tumors harboring ERG fusion showed higher expression levels than
those without (p < 0.0001). In ERG negative prostate cancers, strong MTC02 immunostaining was linked to deletions
of PTEN, 6q15, 5q21, and early biochemical recurrence (p < 0.0001 each). Moreover, multiple scenarios of
multivariate analyses suggested an independent association of MTC02 with prognosis in preoperative settings.

Conclusions: Our study demonstrates high-level MTC02 expression in ERG negative prostate cancers harboring
deletions of PTEN, 6q15, and 5q21. Additionally, increased MTC02 expression is a strong predictor of poor clinical
outcome in ERG negative cancers, highlighting a potentially important role of elevated mitochondrial content for
prostate cancer cell biology.
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Background
Prostate cancer is a major cause of cancer-related mor-
tality and morbidity in males [1]. Although the majority
of prostate cancers present as low malignant, indolent
tumors, there is also an aggressive subset. For example
in Germany, about 60,000 new cases of prostate cancer
are diagnosed every year, and still about 11,000 patients
die from their disease [2]. The common pre-operative
parameters including Gleason grade, tumor extent in
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biopsies, and preoperative prostate specific antigen (PSA)
levels are statistically powerful prognosticators, however
insufficient to allow for optimal treatment decisions in
individual patients. Accordingly, there is a considerable
need for improved diagnostic tools to early distinguish
these patients requiring aggressive therapy with all its
associated side effects from the majority of patients who
will not. It is hoped, that advances in basic prostate cancer
research will eventually lead to novel prognostic biomar-
kers and better therapeutic options.
The growing interest in mitochondrial function and

dysfunction reflects the potential role of mitochondria
for cancer development [3]. Loss of proliferation control
in cancer cells eventually results in cellular bulks that
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extend beyond the capacity of their vasculature, result-
ing in oxygen and nutrient deprivation. Accordingly,
tumor growth is accompanied by cellular adaptations to
overcome these limitations. Mitochondria are key organ-
elles for energy production including glucose metabol-
ism and oxidative phosphorylation with a critical role in
cell survival and apoptosis. Amount and activity of
mitochondria may hence play a critical role in tumor
initiation and progression [4], and it is not surprising
that mutations of mitochondrial genes or alterations of
the mitochondrial content have been suggested to play
an important role in various cancer types [5-8]. As a
consequence, an increasing number of anti-cancer drugs
is under development [9-11] targeting mitochondria and
associated structures. Some studies have even suggested
that intracellular accumulation of mitochondria (the so-
called mitochondrion-rich phenotype) might represent
an important adaptive mechanism in rectal and breast
cancer [12,13].
Mutations of mitochondrial DNA were also identified

in prostate cancer [14-22] and deregulated mitochon-
drial metabolism has been suggested to play a relevant
role in prostate carcinogenesis [23-25]. Based on these
reports, we hypothesized that also the quantity of mito-
chondria present in prostate cancer cells might be of
clinical relevance, and that the cellular mitochondria
content might vary between prostate cancer subgroups
harboring different key molecular alterations that might
influence cell metabolism.
The antibody MTC02 (mouse monoclonal to mito-

chondria) recognizes a 60 kDa non glycosylated protein
component of mitochondria found in human cells, and
has been used to determine the mitochondrial content
of tumor cells in a variety of previous studies. For
example, earlier studies used MTC02 to determine the
molecular genetic alterations [13] and the frequency,
morphology and clinical features of mitochondrion-rich
breast cancers [26]. A tissue microarray (TMA) contain-
ing 11,152 prostate cancer specimens with clinical
follow-up information and an attached molecular data-
base was analyzed in order to evaluate the clinical
significance of mitochondria content, and to search for
possible associations with molecularly defined cancer
subgroups. Our study demonstrates that “mitochondrion-
rich phenotype” is strongly associated with molecular
cancer features and strongly linked to poor prognosis in
ERG negative prostate cancers.

Materials and methods
Patients
Radical prostatectomy specimens were available from
11,152 patients, undergoing surgery between 1992 and
2011 at the Department of Urology, and the Martini Clinics
at the University Medical Center Hamburg-Eppendorf.
Research using pseudomized human left-over tissue sam-
ples from routine diagnosis was performed in compliance
with the Helsinki Declaration, and is covered by §12 of the
Hamburgisches Krankenhausgesetz (HmbKHG). Manu-
facturing and usage of tissue microarrays for research
purposes has been has been approved by the Institutional
Review Board of the Aerztekammer Hamburg (Chair:
Prof. T. Weber, Ref. WF-049/09). Follow-up data were
available of 9,695 patients with a median follow-up of
36.8 months (range: 1 to 228 months; Table 1). Prostate
specific antigen values were measured following surgery
and recurrence was defined as a postoperative PSA of
0.2 ng/ml and increasing at first of appearance. All
prostate specimens were analyzed according to a standard
procedure, including complete embedding of the entire
prostate for histological analysis [27]. The TMA manufac-
turing process was described earlier in detail [28]. In short,
one 0.6 mm core was taken from a representative tissue
block from each patient. The tissues were distributed
among 24 TMA blocks, each containing 144 to 522 tumor
samples. Presence or absence of cancer tissue was vali-
dated by immunohistochemical AMACR and 34BE12
analysis on adjacent TMA sections. For internal controls,
each TMA block also contained various control tissues,
including normal prostate tissue. The molecular database
attached to this TMA contained results on ERG expres-
sion in 9,628, ERG break apart fluorescence in-situ
hybridization (FISH) analysis in 6,106 (expanded from
[29]), and deletion status of 5q21 in 3,037 [30], 6q15 in
3,528 (extended from [31]), PTEN in 6,130 [32] and 3p13
in 1,290 tumors (unpublished data) tumors.

Immunohistochemistry
Freshly cut TMA sections were analyzed in one day and
in one experiment. Slides were deparaffinized and ex-
posed to heat-induced antigen retrieval for 5 minutes in
an autoclave at 121°C in pH 7.8 Tris-EDTA-Citrate buf-
fer prior to incubation with antibody MTC02 (Abcam;
1/450 dilution) detecting a nonglycolizated mitochon-
drial protein of 60 KD. Bound antibody was visualized
using the EnVision Kit (Dako). MTC02 staining was
homogenous in the analyzed tissue samples and staining
intensity of all cases was semiquantitatively assessed in
four categories: negative, weak, moderate and strong
immunostaining.

Statistics
Statistical calculations were performed with JPM 9 soft-
ware (SAS Institute Inc., NC, USA). Contingency tables
and the chi2-test were performed to search for associations
between molecular parameters and tumor phenotype.
Survival curves were calculated according to Kaplan-
Meier. The Log-Rank test was applied to detect significant
differences between groups. COX proportional hazards



Table 1 Composition of the prognostic tissue microarray
containing 11,152 prostate cancer specimens

No. of patients

Study cohort
on tissue microarray

(n = 11,152)

Biochemical
relapse among

categories (n = 1,824)

Follow-up (mo)

Mean 53.4

Median 36.8

Age (y)

<50 318 49

50-60 2.77 460

60-70 6.55 1.08

>70 1.44 232

Pretreatment
PSA (ng/ml)

<4 1.41 142

4-10 6,735 827

10-20 2,159 521

>20 720 309

pT category
(AJCC 2002)

pT2 7.370 570

pT3a 2.41 587

pT3b 1.26 618

pT4 63 49

Gleason grade

≤3 + 3 2.86 193

3 + 4 1.57 573

4 + 3 6.18 849

≥4 + 4 482 208

pN category

pN0 6.12 1.13

pN+ 561 291

Surgical margin

Negative 8.98 1.15

Positive 1.970 642

NOTE: Numbers do not always add up to 11,152 in the different categories
because of cases with missing data. Abbreviation: AJCC American Joint
Committee on Cancer.
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regression analysis was performed to test the statistical
independence and significance between pathological,
molecular and clinical variables.

Results
Technical issues
A total of 2,744 of 11,152 (24.6%) tissue spots were non-
informative for MTC02 immunohistochemistry due to
the complete lack of tissue or absence of unequivocal
cancer cells on the respective TMA spots.
MTC02 immunohistochemistry
MTC02 immunostaining was located in the cytoplasm
of prostate cells. Cancer cells showed higher staining
intensities as compared to normal prostate glands. No
differences in the staining patter of the different prostate
cancer subtypes were observed. In prostate cancer,
MTC02 immunostaining was found in 96.5% of the
8,412 analyzable prostate cancers and was considered
strong in 46.5%, moderate in 34.6% and weak in 15.4%
of tumors. Representative images demonstrating MTC02
expression in prostate cancer tissue are given in Figure 1.
Strong MTC02 staining was associated with advanced
pathological tumor stage, high Gleason grade, positive
nodal involvement (p < 0.0001 each), positive surgical
margin (p = 0.0005), and early PSA recurrence if all can-
cers were jointly analyzed (p < 0.0001).

Association to cell proliferation
In order to study the impact of mitochondrial content
on cell proliferation, we compared MTC02 data with
immunohistochemical Ki67 expression that was available
from a previous study [33]. We found a strong positive
association of MTC02 with Ki67 label index (p < 0.0001).

Association with fusion type prostate cancer
To determine whether the mitochondrial content is
linked to fusion type prostate cancer, we compared
MTC02 staining with the ERG-fusion status (obtained
by FISH and IHC in 4,818 and 7,500 tumors with MTC02
data) available from our database. Strong MTC02 immu-
nostaining was slightly more prevalent in ERG fusion
positive prostate cancers, regardless if the ERG status was
obtained by IHC or FISH analysis (p < 0.0001 each;
Figure 2). Based on these data, associations with tumor
phenotype and clinical cancer features were separately
analyzed in the subsets of ERG positive and negative pros-
tate cancers (Tables 2/3). In 4,151 ERG negative cancers,
strong MTC02 staining was significantly associated with
high preoperative PSA-levels (p = 0.0372), advanced
pathological tumor stage, high Gleason grade, positive
nodal involvement and positive surgical margin status
(p < 0.0001 each; Table 2). In 3,349 ERG positive pros-
tate cancers, these associations were largely inexistent,
although there was still a weak association between
MTC02 staining and high Gleason grade (p = 0.008;
Table 3).

Relationship with key genomic deletions associated with
distinct subgroups of prostate cancers
Earlier studies had provided evidence for distinct mo-
lecular subgroups of prostate cancers defined by fusion
status and several genomic deletions. Others and us
had described strong associations between deletions
of PTEN and 3p13 and ERG positive cancers and between



Figure 1 Representative pictures of (A) negative, (B) weak, (C) moderate, and (D) strong MTC02 immunostaining in prostate cancer.

Figure 2 Relationship of MTC02 expression with ERG-fusion
status probed by IHC and FISH. Strong MTC02 immunostaining
was slightly more prevalent in ERG fusion positive prostate cancers,
regardless if the ERG status was obtained by IHC or FISH analysis
(p < 0.0001 each).
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deletions of 5q21 and 6q15 and ERG negative tumors
[30-32,34-36]. To study, whether or not some of these
subgroups may have a particularly high mitochondrial
content, MTC02 immunostaining was compared with pre-
existing deletion results. Interestingly, mitochondrial con-
tent was largely unrelated to all analyzed chromosomal
deletions if all tumors were analyzed (Figure 3A) while
there were reciprocal statistically significant findings in
the subgroups of ERG positive and ERG negative cancers.
In ERG negative cancers, most deletions (PTEN, 5q, 6q;
p < 0.0001 each; Figure 3B) were significantly associated
with high mitochondrial content, while there was a
tendency towards lower mitochondrial content in ERG
positive cancers harboring deletions (Figure 3C). This
tendency did, however, reach significance only for dele-
tions of PTEN (p = 0.0004) and 5q (p = 0.0408).

Prognostic impact
Follow-up data were available from 7,402 patients with
data on mitochondrial content. The prognostic role of



Table 2 Associations between MTC02 expression results and ERG negative prostate cancer phenotype

MCT02 IHC result

Parameter n evaluable Negative (%) Weak (%) Moderate (%) Strong (%) p value

All cancers 4.15 4.2 17.1 34.2 44.5

PSA preoperative

<4 423 4.02 18.2 33.57 44.21 0.0372

4-10 2.43 3.88 17.94 35.42 42.76

10-20 925 5.08 16.11 32.76 46.05

>20 337 3.56 12.76 31.16 52.52

Tumor stage

pT2 2.74 4.42 20.02 36.24 39.31 < 0.0001

pT3a 859 4.07 13.62 32.83 49.48

pT3b 515 3.3 8.16 25.83 62.72

pT4 26 0 7.69 30.77 61.54

Gleason grade

≤3 + 3 906 6.62 25.17 38.19 30.0 < 0.0001

3 + 4 2.32 3.67 17.02 36.29 43.02

4 + 3 685 3.5 11.09 26.86 58.54

≥4 + 4 226 1.77 3.98 19.91 74.34

Lymph node metastasis

N0 2.41 4.28 16.09 33.85 45.78 < 0.0001

N+ 230 3.04 6.52 23.04 67.39

Surgical margin

Negative 3.29 4.01 18.09 35.2 42.71 < 0.0001

Positive 783 4.34 13.28 29.89 52.49
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Gleason grade was plotted for this patient cohort in
order to demonstrate the overall validity of our follow-
up data (p < 0.0001; Figure 4A). High MTC02 immuno-
staining was related to early biochemical recurrence if
all cancers were analyzed (p < 0.0001; Figure 4B). A sub-
set analysis revealed, that this association was purely
driven by ERG negative cancers (p < 0.0001; Figure 4C)
while the mitochondrial content was unrelated to PSA
recurrence in ERG positive cancers (p = 0.7598, Figure 4D).
A refined analysis further revealed that the prognostic
relevance of MTC02 was limited the 1,852 ERG-negative
cancers lacking PTEN deletion (p < 0.0001; Figure 4E),
while there was no effect in 249 ERG negative cancers
harboring PTEN deletions (p = 0.2367; Figure 4F).

Multivariate analysis
Four multivariate analyses were performed evaluating
the clinical relevance of MTC02 immunostaining in
different scenarios (Table 4A-C). Analysis #1 employed
all post-operatively available parameters including pT,
pN, margin status, pre-operative PSA value and Gleason
grade obtained on the resected prostate. Scenario #2
included all postoperatively available parameters with the
exception of nodal status. The rational for this approach
was that lymphadenectomy is not a routine procedure in
the surgical therapy of prostate cancer and that excluding
pN in multivariate analysis increases case numbers. The
remaining two scenarios tried to better model the pre-
operative situation. Scenario #3 included the mitochon-
drial content, pre-operative PSA, clinical stage (cT) and
the Gleason grade obtained on the prostatectomy speci-
men. Because the post-operative Gleason grade varies
from the pre-operative Gleason grade, another multi-
variate analysis (#4) was added. In scenario #4, the pre-
operative Gleason grade obtained on the original biopsy
was combined with pre-operative PSA, clinical stage and
MTC02 staining. The diverse multivariate analyses suggest
a possible independent prognostic impact of MTC02
immunostaining in a preoperative setting, especially in
ERG negative cancers (Table 4).
Discussion
The results of our study show, that the mitochondria
content is tightly linked to various pathological, molecu-
lar features of prostate cancer. This data highlight the
prominent importance of mitochondrial function for
prostate cancer development and progression.



Table 3 Associations between MTC02 expression results and ERG positive prostate cancer phenotype

MCT02 IHC result

Parameter n evaluable Negative (%) Weak (%) Moderate (%) Strong (%) p value

All cancers 3.35 1.8 12.2 33.8 52.2

PSA preoperative

<4 451 2.66 11.97 32.59 52.77 0.9613

4-10 2.03 1.73 12.03 34.12 52.12

10-20 604 1.66 12.75 33.44 52.15

>20 218 1.83 13.3 35.78 49.08

Tumor stage

pT2 1.980 1.92 11.31 34.55 52.22 0.5463

pT3a 902 1.77 13.86 33.81 50.55

pT3b 427 1.64 12.41 30.68 55.27

pT4 22 0 18.18 36.36 45.45

Gleason grade

≤3 + 3 745 3.36 10.07 36.64 49.93 0.008

3 + 4 1.98 1.26 12.32 33.01 53.41

4 + 3 485 2.06 14.85 33.81 49.28

≥4 + 4 114 0.88 13.16 32.46 53.51

Lymph node metastasis

N0 1.9 1.63 12.2 34.56 51.6 0.7185

N+ 192 1.04 14.58 32.81 51.56

Surgical margin

Negative 2.62 1.83 12.48 33.73 51.96 0.825

Positive 670 1.94 11.19 34.63 52.24

Figure 3 Relationship between MTC02 expression and deletions of PTEN, 3p13, 6q15 and 5q21 probed by FISH analysis. (A) Association
between MTC02 expression and deletions of PTEN (p = 0.0596), 3p13 (p = 0.0989), 6q15 (p = 0.0867) and 5q21 (*p = 0.0253) in all prostate
cancers. Relationship of MTC02 expression with (B) deletions of PTEN (***p < 0.0001), 3p13 (p = 0.641), 6q15 (***p < 0.0001) and 5q21 (***p < 0.0001)
in the subset of ERG negative prostate cancers and with (C) deletions of PTEN (**p = 0.0004), 3p13 (p = 0.9491), 6q15 (p = 0.7544) and 5q21
(*p = 0.0408) in the subset of ERG positive cancers.
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Figure 4 The prognostic impact of MTC02 expression in prostate cancer. The prognostic role of Gleason grade is given for this patient
subset in order to demonstrate the overall validity of our follow-up data (***p < 0.0001) (A). Association of MTC02 immunostaining with biochemical
recurrence in (B) all prostate cancers (***p < 0.0001; n = 7,402), (C) in the subset of ERG negative cancers (***p < 0.0001; n = 3,616), (D) in the subset
of ERG positive cancers (p = 0.7598; n = 2,952), (E) ERG negative prostate cancers lacking PTEN deletions (***p < 0.0001; n = 1,852), and (F) ERG negative
prostate cancers harboring PTEN deletion (p = 0.2367; n = 249).
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Immunohistochemical detection of a 60 KDa non-
glycosylated protein component of mitochondria was
utilized in this project to quantitate mitochondria in
cancer cells on TMAs. The TMA approach is optimal
for the identification of subtle staining differences of
proteins that are abundantly present in cancer, such as
mitochondrial components, because TMAs enable max-
imal experimental standardization. In this study, more



Table 4 Multivariate analysis including MTC02 expression status in (A) all cancers, (B) ERG negative and (C) ERG
positive prostate cancers

A

Scenario (n) preoperative
PSA-level

pT stage cT stage Gleason grade
prostatectomy

Biopsy
gleason grade

N status R status MTC02
expression

1 (4,433) < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 0.656

2 (7,226) < 0.0001 < 0.0001 < 0.0001 < 0.0001 0.8726

3 (7,078) < 0.0001 < 0.0001 < 0.0001 0.1282

4 (6,974) < 0.0001 < 0.0001 < 0.0001 0.0007

B

1 (2,220) 0.0026 < 0.0001 < 0.0001 < 0.0001 0.0063 0.7664

2 (3,528) < 0.0001 < 0.0001 < 0.0001 0.0002 0.8366

3 (3,489) < 0.0001 < 0.0001 < 0.0001 0.7614

4 (3,442) < 0.0001 < 0.0001 < 0.0001 0.0384

C

1 (1,791) 0.0117 < 0.0001 < 0.0001 0.0118 0.003 0.7873

2 (2,884) 0.0002 < 0.0001 < 0.0001 < 0.0001 0.8902

3 (2,798) < 0.0001 < 0.0001 < 0.0001 0.2321

4 (2,752) < 0.0001 < 0.0001 < 0.0001 0.3955
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than 10,000 prostate cancer specimens were analyzed in
one day in one experiment using one set of reagents at
identical concentrations, temperatures and exposure
times. Moreover, all TMA sections were cut on one day
immediately before staining in order to avoid unequal
decay of a tissues reactivity to antibody binding [37].
Finally, one pathologist interpreted all immunostainings
at one day to enable maximal standardization of staining
interpretation. In earlier studies, our TMA enabled us to
validate several biomarkers with importance for prostate
cancer, such as p53 expression [38], PTEN inactivation
[32], CRISP3 overexpression [39] or deletions at 6q15
[31] and 5q21 [30].
The data derived from this approach demonstrate a

marked increase of mitochondria content from normal
prostate epithelial cells to cancer cells. A further increase
was observed with increasing tumor grade and stage,
suggesting that higher numbers of mitochondria are
necessary or supportive for cancer development and
progression. This is also supported by the observation
that the mitochondrial content was linked to increased
cell proliferation. Our findings are consistent with recent
studies suggesting a prominent role of mitochondria
content in cancer. For example, Ambrosini-Apaltro et al.
[12] detected oncocytic, mitochondrion-rich modifica-
tions in adenocarcinoma cells after radiochemotherapy
and Ragazzi et al. [26] described a link between mitochon-
drion-rich and undifferentiated breast cancers. Despite the
early belief that cancer metabolism is primitive and ineffi-
cient, it has now become evident that cancer cells actively
reprogram their metabolism activity [40]. Adaptation of
cellular metabolism towards macromolecular synthesis is
critical to supplying sufficient amounts of nucleotides,
proteins, and lipids for cell growth and proliferation,
which are fundamental to cell growth and proliferation
[40]. Accordingly, previous studies described interactions
between the mitochondrial metabolism and the activ-
ity of growth signaling pathways involving key human
oncogenes such as Myc, Ras, Akt and phosphoinosi-
tide 3-kinase (Pi3K) [41-43]. Activated PI3K/Akt leads
to enhanced glucose uptake and glycolysis [44,45] by
induction of glucose transporters, mitochondrial enzymes
involved in the glycolytic metabolism and glucose carbon
flux into biosynthetic pathways [46-49]. Downstream of
PI3K/Akt, the well-characterized cell growth regulator
mTORC1 also has many effects intertwined with mi-
tochondrial metabolism [50-52]. Taken together, these
findings demonstrate that the reprogramming of mito-
chondrial metabolism is a central aspect of PI3K/Akt
associated oncogenic activity.
The large number of tumors analyzed in this study

enabled us to separately analyze cancer subgroups
defined by molecular features, the most common of
which is the TMPRSS2:ERG gene fusion. Gene fusions
involving the androgen-regulated gene TMPRSS2 and
ERG, a member of the ETS family of transcription fac-
tors, occur in about 50% of prostate cancers, especially
in young patients, and result in strong ERG protein
overexpression [53-55]. Our data demonstrate that high
mitochondrial content is significantly linked to fusion type
prostate cancer. Finding this association by two independ-
ent approaches for ERG fusion detection (IHC/FISH)
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largely excludes a false positive association due to ineffi-
cient immunostaining for both MTC02 and ERG in a
subset of damaged non-reactive tissues. This finding
strongly argues for generally increased energy demands
of ERG positive as compared to ERG negative cells.
ERG expression causes massive deregulation of the glo-
bal expression patterns in prostate cells. Several studies
analyzing the transcriptomes of ERG positive and ERG
negative tumors revealed that multiple energy-consump-
tive signaling pathways are activated as a result of ERG
expression, including ER-, TGF-ß, WNT, PI3K/Akt and
Myc signaling [56-60] all of which involve multiple
ATPases and ATP-dependent kinases. Particularly PI3K/
Akt and Myc signaling also directly activates glycolysis [43]
and induces transcription of numerous glycolytic enzymes
[4] in cancer cells.
That mitochondrial content has a different role and

function in ERG positive and ERG negative cancers is
further supported by our ERG-stratified analysis of
disease outcome. Mitochondrial content had a prognos-
tic role in ERG negative but not in ERG positive cancers.
This striking difference may be caused by the substantial
increase of cellular mitochondrial content by ERG
rearrangements, which by themselves do not have any
prognostic impact on prostate cancers. The magnitude
of ERG-induced molecular and cellular changes, at least
most of which are unrelated to cancer progression, may
lead to an increased mitochondrial content in “fusion-
type” prostate cancers, that masks demand for higher
mitochondria content caused by specific molecular “pro-
gression events” requiring more mitochondrial function.
The strong prognostic impact of mitochondria content
in ERG negative prostate cancers fits well with models
suggesting, that in a surrounding with low mitochondria
content, “progression events” requiring more mitochon-
drial function would rather lead to a detectable increase
of the mitochondria count, than in an environment with
high mitochondria content.
Deletions of PTEN, 5q21 and 6q15 represent such

“progression events” in prostate cancer as all of them
are strongly linked to tumor growths and adverse clinical
features. It seems likely that a shortage of nutrients and
oxygen typically occurring during tumor expansion will
eventually trigger additional adaptation steps, and increase
of the mitochondrial content might be one of these. That
such an increase of the mitochondrial content was not
observed for 3p13 deletions may be due to the low
number of analyzed ERG negative tumors for this dele-
tion. Alternatively, it might be due to the small number of
genes affected by these small 3p13 deletions, none of
which may lead to additional “energy demand” in case of
inactivation. A role of PTEN inactivation as a “progression
event” associated with higher requirements for mitochon-
drial function is further supported by the observation that
high mitochondrial content loses its prognostic relevance
in PTEN deleted ERG negative cancers.
It is of note that the relationship between all analyzed

deletions (PTEN, 3p13, 5q21, 6q15) and the mito-
chondria content tended to invert within ERG-positive
cancers. The causes for this observation cannot be
deducted from our data. It might be speculated, that
non-vital ERG induced mitochondria production is re-
strained under a different cellular environment driving
towards tumor progression including more rapid tumor
cell growth. More specifically, it may be possible that
specific molecular events caused by chromosomal dele-
tions interfere with ERG induced general upregulation of
number of mitochondria. It has indeed been shown, that
PTEN inactivation can directly trigger both glycolysis
[61] and mitochondrial respiratory capacity [62] through
AKT/mTOR signaling activation.
The marked prognostic relevance of mitochondrial

abundance found in the subset of ERG negative cancers
may suggest “mitochondria content” as a biomarker with
potential clinical utility. This notion is further supported
by the fact that the prognostic impact of mitochondria
content was found on a TMA containing just one
0.6 mm cancer sample per patient. This approach of
analyzing molecular features closely models the molecu-
lar analyses of core needle biopsies where comparable
amounts of tissues are evaluated. Various models of
multivariate analyses applied in this project indeed sug-
gested an independent predictive role of mitochondria
content for prognosis if only parameters were utilized
that are available before radical prostatectomy. These
data must be interpreted with caution, however, because
the MTC02 immunostaining was done on tissue from
radical prostatectomies and not on the core needle
biopsies that were used to determine the preoperative
Gleason grading. It is obvious, that potential prognostic
biomarkers should be evaluated on preoperative needle
biopsies but from a practical point of view such analyses
are hardly feasible. This is because needle biopsies are
usually done at many different facilities and not access-
ible for studies. Moreover, if such precious core needle
biopsies were available, they would be exhausted after
only few studies. Independent of this, it might be rewar-
ding to further consider mitochondria content as a po-
tential feature in multiparametric prognostic prostate
cancer tests.
In summary, the results of our study highlight a differ-

ent role of mitochondrial content in ERG fusion-positive
and -negative cancers and identify “mitochondrial abun-
dance” as a potential prognostic feature in ERG-negative
cancers. Strong associations between chromosomal dele-
tions and the cellular mitochondrial content further
highlight the important role of mitochondria content as
an adaptation process during cancer progression.
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