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Abstract

Background: Metastasis in medulloblastoma (MB) is associated with poor survival. Recent genetic studies revealed
MB to comprise distinct molecular subgroups, including the sonic hedgehog (SHH) subgroup that exhibits a
relatively high rate of progression. To identify targeted therapeutics against metastasis, a better understanding of
the regulation of MB cell migration is needed. G protein-coupled receptor kinases (GRKs) have been implicated in
cancer metastasis through their regulation of G-protein coupled receptors (GPCRs) involved in growth factor
(GF)-mediated cell migration. However, the specific roles and regulation of GRKs in MB have not been investigated.

Methods: Microarray mRNA analysis was performed for GRKs, GPCRs, and GFs in 29 human MB, and real time
RT-PCR was used to detect GRK6 expression in MB cells. Lenti- or retro-virus infection, and siRNA or shRNA
transfection, of MB cells was used to overexpress and knockdown target genes, respectively. Western blot was used
to confirm altered expression of proteins. The effect of altered target protein on cell migration was determined by
Boyden chamber assay and xCELLigence migration assays.

Results: We observed co-overexpression of PDGFRA, CXCR4, and CXCL12 in the SHH MB subtype compared to non-
SHH MB (5, 7, and 5-fold higher, respectively). GRK6, which typically acts as a negative regulator of CXCR4 signaling,
is downregulated in MB, relative to other GRKs, while the percentage of GRK6 expression is lower in MB tumors
with metastasis (22%), compared to those without metastasis (43%). In SHH-responsive MB cells, functional blockade
of PDGFR abolished CXCR4-mediated signaling. shPDGFR transfected MB cells demonstrated increased GRK6
expression, while PDGF or 10% FBS treatment of native MB cells reduced the stability of GRK6 by inducing its
proteosomal degradation. Overexpression or downregulation of Src, a key mediator of GF receptor/PDGFR
signaling, similarly inhibited or induced GRK6 expression, respectively. siRNA downregulation of GRK6 enhanced
CXCR4 signaling and promoted MB migration, while lentiviral-GRK6 overexpression suppressed CXCR4 signaling,
potentiated the effect of AMD3100, a CXCR4 antagonist, and impaired migration.

Conclusions: Our findings demonstrate a novel mechanism of GF receptor/PDGFR-Src-mediated dysregulation of
CXCR4 signaling that promotes MB cell migration, which could potentially be exploited for therapeutic targeting in
SHH MB.
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Background

Medulloblastoma (MB) is the most common malignant
brain tumor of childhood, and for those with metasta-
sis the prognosis is typically poor [1]. The molecular
sub-types of MB have different rates of metastasis, but
to date, no clearly defined genetic alteration has been
linked to the initiation of metastasis [2-4]. As such, all
children with MB receive craniospinal irradiation to
treat or protect against the development of metastasis.
This treatment is suboptimal and results in excessive
neurocognitive morbidity [1]. Thus, identifying the
mechanisms of MB migration will provide invaluable
insight into MB progression, which ultimately should
lead to more effective and less toxic therapeutics for its
prevention.

Activation of growth factor (GF) receptor signaling
has been implicated in promoting cancer metastasis.
Our previous studies described overexpression of the
platelet-derived growth factor receptor (PDGFR) in
association with metastatic MB, and demonstrated that
PDGFR promotes migration through ERK-dependent acti-
vation of p21 protein (Cdc42/Rac)-activated kinase 1 (Pakl)
signaling [5,6]. More recently, PDGFR overexpression
was detected in both the primary and matched meta-
static tumors derived from mouse models of MB [7].
Given the prominent association of PDGFR with MB
metastasis, we hypothesized that GF receptor signaling,
such as that by PDGFR, may also dysregulate other
GF-mediated pathways as a mechanism to potentiate
cell migration. One such candidate is the chemokine
receptor CXCR4, a member of the G protein-coupled
receptor (GPCR) family that is closely associated with
PDGFR-expressing progenitor cells [8-11]. CXCR4 plays
critical roles in the proliferation and migration of granule
cell neuron precursors during development, and is
involved in cancer metastasis [12-14]. Human stromal
cell-derived factor-1a (SDF-1a, also known as CXCL12),
binds CXCR4 and activates Gai-mediated signaling [15].
Upon CXCL12 binding, CXCR4 dimerizes, and is in
turn phosphorylated, which induces its internalization
and lysosomal degradation resulting in signal termin-
ation [15]. Increased CXCR4 expression is associated
with aggressive cancer behavior [16]. Cho et al. reported
that the MB subgroups molecularly defined as c1 and
c3/sonic hedgehog (SHH) are responsible for the major-
ity of relapses and death due to MB progression and
that CXCR4 is a marker for the ¢3/SHH subgroup [17].
A recent study confirmed that SHH signaling is
required for CXCR4 activation [18]. The desmoplastic
variant of medulloblastoma, characterized by the pres-
ence of abundant connective tissue, belongs almost
exclusively to the SHH subgroup and makes up about
50% of SHH MB, but predominantly occurs in children
less than 3 years of age. Interestingly, SHH MB with
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desmoplastic histology has a favorable prognosis,
whereas non-desmoplastic SHH MB has higher rates of
metastasis and an intermediate prognosis [4]. This
dichotomy suggests that additional modulators of SHH-
CXCR4 activity may determine MB clinical behavior.

G protein-coupled receptor kinases (GRKs) mediate
phosphorylation-dependent GPCR internalization and
desensitization controlling GPCR activity [19,20]. GRKs
selectively phosphorylate activated receptors, promoting
high affinity binding of arrestins, which precludes G
protein coupling [21,22]. GRKs are divided into three
subfamilies: GRK1 (GRK 1 and 7), GRK2 (GRK 2 and 3),
and GRK4 (GRK 4, 5 and 6) [23]. Regulation of GPCRs
is cell-and GRK-specific. For example, in HEK293 cells,
GRK3 and GRK6 promote CXCR4-mediated ERK1/2
activation [15]. However, in HeLa cells, GRK6 induces
CXCR4 internalization and inhibits ERK1/2 activation
[24]. Similarly, T cells from GRK6-deficient animals are
unable to migrate in response to CXCL12 [25], while
GRK6 loss in neutrophils enhances CXCL12-induced
migration [26]. Evidence indicates that GRK activity is
tightly regulated through protein interactions (e.g. Akt
or MAPK) that modulate GRK stability [27]. We thus
hypothesized that similar mechanisms exist in MB, and
report here that GRK-dependent CXCR4 activity is
dysregulated by GF receptor/PDGFR-Src signaling
resulting in the promotion of MB cell migration.

Results

Overexpression of CXCL12 and CXCR4 correlates with
SHH MB and PDGFR activity is required for optimal

CXCR4 signaling in SHH MB cells

Because of the dichotomy of clinical outcomes observed
for SHH MB, we first investigated whether the expression
profiles of CXCL12 and CXCR4 in SHH and non-SHH
MB is associated with tumor histology (desmoplastic vs.
non-desmoplastic) and clinical outcome. We performed
microarray RNA analysis on 29 primary human MB
specimens and analyzed the gene expression of mem-
bers of the SHH pathway (to determine SHH from non-
SHH MB), CXCLI2 and CXCR4. In our cohort, 11/29
(38%) MB analyzed are SHH-active, and the mean age
in SHH and non-SHH tumors is 3.7 and 6.4 vyears,
respectively, which are consistent with the frequency
and age distributions observed in historical MB popula-
tions [1-4]. The percentage of desmoplastic tumors in
our cohort (10%) is also consistent with the distribution
observed in childhood MB. Consistent with reports by
others [2], all of the desmoplastic tumors in our cohort
are SHH MB, with desmoplastic tumors representing
27% of the SHH MB (Table 1). All SHH tumors demon-
strate co-overexpression of CXCLI2 and CXCR4, with
the exception of one tumor that was obtained after
treatment with high-dose chemotherapy. None of the
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Table 1 mRNA Expression Profile of CXCR4 and CXCL12 in SHH vs. non-SHH MB

Page 3 of 14

Tumor Collection of Patient age at time of Patient SHH or Non-SHH CXCR4 relative CXCL12 relative
histology specimen specimen collection status mRNA level mRNA level
Desmoplastic Diagnostic 1 year DECEASED SHH 5422 1631
Desmoplastic Diagnostic 2 years ALIVE SHH 1745 217
Desmoplastic Diagnostic 5 years ALIVE SHH 6036 1707
Anaplastic Post-Rx 3 years DECEASED  SHH 1216 10
Classic Diagnostic 9 months ALIVE SHH 6225 356
Clssic Diagnostic 1 year DECEASED SHH 2050 567
Classic, Diagnostic 2 years DECEASED SHH 3175 909
Classic Post-Rx 2 years DECEASED  SHH 4529 623
Classic Diagnostic 4 years ALIVE SHH 3864 463
Classic Diagnostic 5 years ALIVE SHH 4408 149
Classic, M+ Post-Rx 7 years DECEASED SHH 9 2222
Mean + SD 3598 + 1915 805+ 730
MBEN Diagnostic 3 years ALIVE Non-SHH 138 291
Anaplastic Diagnostic 2 years ALIVE Non-SHH 43 48
Anaplastic Diagnostic 6 years ALIVE Non-SHH 1717 76
Classic Diagnostic 6 months ALIVE Non-SHH 4367 20
Classic Diagnostic 1 year ALIVE Non-SHH 339 200
Classic Diagnostic 2 years ALIVE Non-SHH 107 1144
Classic Diagnostic 2 years ALIVE Non-SHH 240 615
Classic Diagnostic 2 years ALIVE Non-SHH 582 13
Classic Diagnostic 3 years ALIVE Non-SHH 193 92
Classic Diagnostic 5 years DECEASED Non-SHH 185 75
Classic Diagnostic 6 years DECEASED Non-SHH 125 62
Classic Diagnostic 6 years ALIVE Non-SHH 28 43
Classic, M+ Diagnostic 8 years DECEASED Non-SHH 198 116
Classic Diagnostic 11 years ALIVE Non-SHH 73 47
Classic Diagnostic 11 years ALIVE Non-SHH 51 59
Classic Diagnostic 11 years ALIVE Non-SHH 374 55
Classic Diagnostic 12 years ALIVE Non-SHH 69 149
Classic Diagnostic 16 years ALIVE Non-SHH 80 73
Mean + SD 495 + 1041 177 £ 280
Fold change SHH/  + 7X + 5X
Non-SHH
SHH MB desmoplastic vs. Non-desmpplastic
Desmoplastic Diagnostic 1 year DECEASED SHH 5422 1631
Desmoplastic  Diagnostic 2 years ALIVE SHH 1745 217
Desmoplastic Diagnostic 5 years ALIVE SHH 6036 1707
Mean * SD 4401 + 2321 1185 +839
Anaplastic Post-Rx 3 years DECEASED SHH 1216 10
Classic Diagnostic 9 months ALIVE SHH 6225 356
Classic Diagnostic 1 year DECEASED SHH 2050 567
Classic Diagnostic 2 years DECEASED SHH 3175 909
Classic Diagnostic 2 years DECEASED SHH 4529 623
Classic Diagnostic 4 years ALIVE SHH 3864 463



Yuan et al. Molecular Cancer 2013, 12:18
http://www.molecular-cancer.com/content/12/1/18

Page 4 of 14

Table 1 mRNA Expression Profile of CXCR4 and CXCL12 in SHH vs. non-SHH MB (Continued)

Classic Diagnostic 5 years ALIVE SHH 4408 149
Classic, M+ Post-Rx 7 years DECEASED SHH 911 2222
Mean + SD 3297 £1822 662 + 689

SHH MB, sonic-hedgehog medulloblastoma; MBEN, medulloblastoma with extensive nodularity; M+, metastatic; Post-Rx, post-treatment.

non-SHH MB display co-overexpression, and only two
non-SHH MB demonstrate relative overexpression of
CXCR4 (Table 1). Compared to non-SHH MB, the rela-
tive mean expression of CXCR4 and CXL12 in SHH MB
is 7- and 5-fold higher, respectively (Table 1) (P <0.01
and P <0.05), respectively). We also examined the
expression of PDGFR pathway members for correlations
with SHH MB and found that although PDGFRA
overexpression is observed in ~50% of the non-SHH
MB, the relative mean expression level for PDGFRA is
5-fold higher in SHH MB (P < 0.01), and PDGF-A, which
only binds to PDGFRA, is 4-fold higher (P < 0.01), while
that of PDGF-D, which only binds PDGERB, is 3-fold
higher (P<0.01) (Table 2), suggesting that both
PDGFRA and PDGEFRB are preferentially activated in
SHH MB.

Consistent with the report by Cho et al. [17], we ob-
served that a disproportionate number of patients with
SHH tumors died of disease. Only 5/11 (45%) patients
with SHH MB are survivors beyond 5 years from diagno-
sis compared to 15/18 (83%) long-term survivors in the
non-SHH group (P <0.05, two-tailed Fisher’s exact test),
(Table 1). In our cohort, there is no significant difference
in MYC expression between the SHH and non-SHH MB
(SHH MB, 645 + 1678 vs. non-SHH MB, 1032 + 1756,
P > 0.05). With the exception of one case, all the deaths
in the SHH MB group were of patients with tumors
having non-desmoplastic histology. In the SHH MB,
there are no obvious differences in the expression levels
of CXCR4 or CXCLI12 between desmoplastic and non-
desmoplastic histology, or between those alive and
deceased, although the number of desmoplastic tumors
is too small to determine statistical significance. This
suggests that if CXCR4 signaling does promote aggressive
MB behavior, then post-transcriptional factors regulating
CXCR4 activity, rather than CXCR4 or CXCLI2 expres-
sion alone, must dictate this clinical phenotype.

Since we found both PDGFR and CXCR4 overexpression
in association with SHH MB, and it has been shown that
PDGF-D overexpression induces CXCR4 and promotes
metastasis in breast cancer cells [14], we postulated that
there may be a functional relationship between PDGFR
and CXCR4. To test this hypothesis, we used specific anti-
PDGER function blocking antibody to treat Daoy SHH
MB cells for 24 h, then stimulated cells with PDGF and
CXCL12. Upon CXCLI12 ligand binding, CXCR4 activates
ERK1/2, thus, CXCL12-induced phosphorylation of ERK

(P-ERK) is employed as a downstream marker of CXCR4
activation [24]. Our results show that PDGFR blocking
antibody abolished not only PDGF-induced P-ERK, as
expected, but also CXCL12-induced P-ERK (Figure 1A)
[P <0.05, lane 3, 1.53 + 0.12 vs. lane 6, 1.09 + 0.15 by com-
paring the densitometry of CXCL12-induced P-ERK/ERK
between Daoy cells with or without PDGER blocking anti-
body treatment, the ratio of P-ERK/ERK in lane 1 is equal
to 1.00 (100%), and the relative changes of ratio of P-ERK/
ERK in other lanes were calculated by dividing by the
ratio in lanel], indicating that PDGFR activity is required
for activation of CXCL12-CXCR4 signaling in SHH-
responsive MB cells.

GRK6 is downregulated and differentially expressed in MB

G protein-coupled receptor kinases (GRKs) initiate
GPCR (CXCR4) desensitization by recruiting the bind-
ing of B-arrestins to the complex and regulate CXCR4
signaling by mediating the phosphorylation and subse-
quent internalization of the agonist-occupied receptor
[8]. Since we demonstrated that PDGFR activation is
required for CXCL12-mediated CXCR4 signaling, we
questioned whether PDGFR signaling functions to
suppress specific GRK expression and/or activity that
would normally act to inhibit CXCR4. To identify the
best candidate GRK to test, we first interrogated our
microarray dataset of 29 MB and found that GRKI and 7
are not expressed by MB; however, among the structurally
related GRK4 group consisting of GRK4, 5 and 6,
GRK6 was observed to have the lowest relative expression
(P <0.01, Figure 1B and Table 2). Since our current MB
database has too few metastatic MB to make correlations
with progression, we re-investigated our previously pub-
lished MB microarray database of 9 metastatic and 14
non-metastatic MB [5] and found that the percentage of
tumors with detectable GRK6 expression is distinctly
lower in those patients with metastatic MB (22%), com-
pared to those with non-metastatic MB (43%), while by
comparison, the percentage of tumors with detectable
GRKS5 mRNA does not appear different between these
groups, suggesting that GRK6 may be differentially regu-
lated in metastatic MB (Figure 1C). However, because of
the small sample size only a trend rather than statistical
significance could be observed. GRK4 was not analyzed in
our previous data set. GRK6 expression is not significantly
different between SHH and non-SHH MB, or between
histology type, or those alive or deceased in the SHH
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Table 2 mRNA profiles of GRKs and PDGFR/PDGF in SHH vs. Non-SHH MB
SHH MB
Pathological diagnosis Patient status GRK4 GRK5 GRK6 PDGFRA PDGFD PDGFA
Desmoplastic DECEASED 122 215 65 941 300 666
Desmoplastic ALIVE 140 154 56 1071 392 236
Desmoplastic ALIVE 80 77 60 91 417 192
Anaplastic DECEASED 49 355 117 48 454 226
Classic ALIVE 108 78 82 723 65 237
Classic DECEASED 118 184 86 469 139 391
Classic DECEASED 134 235 59 2166 231 114
Classic DECEASED 162 1253 75 926 98 471
Classic ALIVE 60 265 84 405 80 87
Classic ALIVE 72 148 93 773 310 91
Classic, M+ DECEASED 101 343 71 767 122 182
Mean + SD 104 +36 301+329 77 +18 836 + 530 237 +145 263+179
Non-SHH MB
MBEN ALIVE 171 245 72 73 155 67
Anaplastic ALIVE 251 344 69 58 116 102
Anaplastic ALIVE 272 186 110 21 63 84
Classic ALIVE 142 624 74 190 10 32
Classic ALIVE 186 253 76 322 63 m
Classic ALIVE 192 235 64 406 49 36
Classic ALIVE 144 666 58 187 52 41
Classic ALIVE 139 217 71 25 67 125
Classic ALIVE 143 217 58 43 78 40
Classic DECEASED 141 293 29 388 100 64
Classic DECEASED 150 278 51 102 29 16
Classic ALIVE 252 370 120 145 23 31
Classic, M+ DECEASED 142 454 69 727 79 172
Classic ALIVE 242 173 70 57 245 35
Classic ALIVE 207 435 70 49 54 44
Classic ALIVE 220 731 81 191 58 41
Classic ALIVE 239 142 42 61 92 84
Classic ALIVE 285 615 88 7 68 69
Mean + SD 195+ 51 360 + 186 71+£21 170+ 186 78+54 66 + 40
SHH:non-SHH MB +5X +3X +4X
SHH desmoplastic vs. desmoplastic MB
Desmoplastic DECEASED 122 215 65 941 300 666
Desmoplastic ALIVE 140 154 56 1071 65 237
Desmoplastic ALIVE 80 77 60 9 122 182
Mean + SD 114+31 149 = 69 60+5 974 £ 85 162+123 362 + 265
Anaplastic DECEASED 49 355 17 48 392 236
Classic ALIVE 108 78 82 723 417 192
Classic DECEASED 118 184 86 469 454 226
Classic DECEASED 134 235 59 2166 139 391
Classic DECEASED 162 1253 75 926 231 114
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Table 2 mRNA profiles of GRKs and PDGFR/PDGF in SHH vs. Non-SHH MB (Continued)
Classic ALIVE 60 265 84 405 98 471
Classic ALIVE 72 148 93 773 80 87
Classic, M+ DECEASED 101 343 71 767 310 91

Mean + SD 101 +38 358 +374 8317 785+623 265+ 149 226 + 141

SHH MB, sonic-hedgehog medulloblastoma; MBEN, medulloblastoma with extensive nodularity; M+, metastatic.

tumor group. We thus focused on GRK6 in subsequent
studies as a candidate GRK that could be involved in GF/
PDGFR-mediated regulation of CXCR4 signaling.

GRK6 expression is negatively regulated by GF receptor/

PDGFR at the transcriptional and post-translational level

Since we were unable to detect GRK6 protein by IHC in
MB (negative staining, compared to positive control in
other tissues, data not shown), we investigated MB cells
to determine whether GRK6 expression can be induced,
and if so, whether expression is dependent on GF recep-
tor/PDGEFR. To address this question, we utilized previ-
ously generated MB cells with stable knock-down of
PDGEFR [6], and then investigated the level of GRK6
mRNA expression by quantitative real-time RT-PCR.
As shown in Figure 2A, GRK6 mRNA level was signifi-
cantly higher in the cells with down-regulation of
PDGEFR (1.5-fold increase in D556 B9 and Daoy A4

PDGEFR knock-down cells, compared to the control cells
NC1; P < 0.05), indicating that GRK6 mRNA expression
is normally suppressed by PDGFR. To confirm that
PDGER signaling regulates GRK6 protein expression,
we used Western blot to evaluate the level of GRK6 in
the PDGEFR knock-down cells. As shown in Figure 2B,
the GRK6 protein level was markedly increased with or
without CXCL12 treatment (15 min) in the PDGFR
knock-down cells. Although PDGER is reported to play
a role in medulloblastoma, other GF receptors are
involved in MB progression. We thus examined whether
generalized GF signaling is involved in the regulation of
GRK6 expression. Consistently, inhibition of GF recep-
tor activation by GF withdrawal (starvation) similarly
increased GRK6 protein levels in MB cells, which could
be reversed back to undetectable levels by GF add-back
over 48-72 h (Figure 2C, left and middle panels). This
indicates that under normal growth conditions, MB
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Figure 1 PDGFR activity is required for optimal CXCR4 signaling in SHH MB cells and GRK6 is downregulated and differentially
expressed in MB. (A) Left panel: Daoy cells were starved and treated with or without 1 ug/ml anti-PDGFR@ blocking antibody for 24 h, then
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used for microarray analysis. Average expression level of GRK6 mRNA is lowest among the detectable GRKs, (P < 0.01). (C) Microarray database of 9
human metastatic and 14 non-metastatic MB showed that the percentage of tumors with detectable GRK6 mRNA was notably decreased in
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Cell lysates were harvested for Western Blot. GF withdrawal results in robust increase of GRK6 in D556 and Daoy (left and middle panels). In right
panel, Daoy cells were starved for 24 h and then treated with 10 ng/ml PDGF-BB for 24 h. GRK6 level determined by Western blot shows marked
decrease with PDGF treatment.
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Figure 3 Growth factor treatment of medulloblastoma cells induces degradation of GRK6 via the proteasomal pathway. (A) D556 or

(B) Daoy was cultured in EMEM medium with GF + or serum-free EMEM (GF-), treated with100ug/ml CHX or without CHX at indicated time
points. GRK6 level was determined by Western blot. Growth factor withdrawal increases stability of GRK6 (C) Daoy or D556 was treated with CHX
alone or CHX plus 10 uM MG132 for 8 h, then GRK6 protein level was examined by Western blot. GRK6 stability is maintained in the presence of
proteasomal inhibitor MG132.
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GRK6 is suppressed to near undetectable levels. Fur-
thermore, treatment of Daoy cells with PDGF alone for
24 h was sufficient to induce near ablation of GRK6
(Figure 2C, right panel). These data indicate that GRK6
expression is negatively regulated by GF receptor/
PDGEFR.

Although PDGFR suppresses GRK6 mRNA expression,
the marked changes in protein expression seemed to indi-
cate that PDGFR induces additional post-translational
regulation of GRK6. To examine whether GF activation
altered the protein stability of GRK6, we treated MB cells
with 100 pg/ml cycloheximide (CHX) at the indicated
time points under normal growth conditions or without
GF (starved for 24 h prior to CHX treatment). Robust
degradation of GRK6 to a near undetectable level was
observed in cells growing in normal growth medium at
6 h after CHX treatment; however, GRK6 protein
appeared to be relatively stable in the cells grown in the
absence of GF at 6-8 h after CHX treatment (Figure 3A,
left panel and 3B). No significant difference of GRK6
protein expression was observed between cells growing in
normal growth medium and cells in medium without GF
at the indicated time points when cells were not treated
with CHX to inhibit protein synthesis (Figure 3A, right
panel). Similarly, increased GRK6 stability was observed
following CHX treatment in the PDGFR knock-down MB
cells (not shown). To test whether GRK6 undergoes
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proteasomal pathway degradation, we treated the cells
with and without the proteasome inhibitor, MG132, prior
to CHX treatment. As shown in Figure 3C, proteasomal
inhibition prevented GRK6 degradation. These data indi-
cate that GRK6 protein stability is negatively regulated
under normal growth conditions by GFs, including PDGER,
at the post-translational level through proteasomal
degradation.

GRK6 expression is negatively regulated in a Src-dependent
manner

Src is an important downstream effector of GF recep-
tor/PDGEFR signaling and plays a critical role in tumori-
genesis [28]. To determine whether Src is involved in
the regulation of GRK6 expression at the transcriptional
level, we performed real-time RT-PCR of GRK6 mRNA
in MB cells transfected with control or Src siRNA. As
shown in Figure 4A, down-regulation of Src results in a
significant increase of GRK6 mRNA (1.5-fold increase
in D556 48 h after transfection, 3-fold increase in Daoy
96 h after transfection). At the protein level by Western
blot (Figure 4B), Src downregulation resulted in in-
creased GRK6 levels (48 h in D556 or 96 h in Daoy after
transfection). To confirm Src’s role in regulating GRK6
expression, we generated stable MB cells for Doxycyc-
line (Dox)-inducible overexpression of Src. Treatment
of stable MB cells with 500 ng/ml Dox for 48 h showed
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that Src overexpression resulted in decreased GRK®,
compared to the same cells without Dox treatment
(Figure 4C). Dox treatment had no effect on Src or
GRK6 expression in non-transfected parental cells (not
shown). Using the Src inhibitor, dasatinib, our data indi-
cate that pharmacologic Src blockade can also induce
GRK6 expression (not shown). These data demonstrate
that Src, a major downsteam effector of PDGFR and
other GF-activated pathways, is sufficient to mediate
negative regulation of GRK6 expression.

CXCR4 signaling and MB cell migration is inhibited by
GRK6
To test the function of GRK6 in MB cells, we first used
specific GRK6 siRNA to down-regulate GRK6 expression
in MB cells and examined the impact of altered GRK6 ex-
pression on CXCL12/CXCR4 signaling and cell migration.
As shown in Figure 5A, GRK6 down-regulation enhanced
CXCL12-mediated phosphorylation of ERK (P-ERK)
compared to cells transfected with control siRNA, indi-
cating that GRK6 normally acts to suppress CXCR4
signaling in MB cells. Expression of GRK5, which shares
a sequence similar to GRK6, was not affected by GRK6
siRNA transfection. We subsequently demonstrated
using Boyden chamber migration assays that serum-
mediated cell migration was significantly enhanced in the
GRK6 down-regulated MB cells (Figure 5B). Consistent
with these results, we found that Src overexpression,
which we showed reduces GRK6 expression, similarly pro-
motes cell migration in a scratch assay (data not shown).
To confirm the role of GRK6 in MB cells, we used
lentiviral FUW-mCherry (control) and FUW-C-GRK6
to generate stable MB cells overexpressing GRK6. As
shown in Figure 6A, CXCL12-mediated P-ERK was de-
creased in cells with GRK6 overexpression, compared to
control cells. Furthermore, treatment of cells with
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AMD3100, an antagonist of CXCR4, at 2.5 pg/ml
completely abolished CXCL12-induced P-ERK in FUW-
GRKS6, but not in FUW-Cherry cells (Figure 6A, right
panel) [P <0.05, lane 3, 0.59 + 0.1 vs. lane 6, 0.31 +0.03
by comparing the densitometry of CXCL12-induced P-
ERK/ERK in Daoy cells with or without overexpression
of GRK6. The ratio of P-ERK/ERK in lane 1 is equal to
1.00 (100%)], indicating that GRK6 overexpression
potentiates the effect of AMD3100. In Boyden chamber
migration assays, we found that MB cell migration was
significantly inhibited by overexpression of GRK6
(Figure 6B). Similar results were observed in scratch
assays (data not shown). To further validate the role of
GRK6 in MB cells, we conducted cell migration and
proliferation assays using xCELLigence [29], which al-
lows for monitoring cell activity in real-time. As shown
in Figure 6C (left panel), migration in serum-free condi-
tions is similar between FUW-Cherry and FUW-GRK6
cells; however, in the presence of serum, migration is
significantly decreased in FUW-GRKG6 cells compared
to control FUW-Cherry cells. At approximately 16.5 h,
the average cell index (number of migratory cells) in
FUW-Cherry is 1.7-fold higher than in FUW-GRK6
cells (P <0.01). To assess whether the difference in mi-
gration was the result of differences in cell viability and
proliferation, we simultaneously performed a prolifera-
tion assay at the beginning of the migration assay. The
results showed no significant difference in the prolifera-
tive capacity of the control and GRK6 overexpressing
cells at either high (2 x 10*/well) or low (5 x 10%/well)
cell density (Figure 6C, right panel). Together, these
data indicate that in these MB cells GRK6 functions to
suppress CXCR4 signaling and inhibit cell migration,
and thus optimal signaling and migration is maintained
through ongoing suppression of GRK6 levels and
activity.
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regulation of GRK6 causes increased CXCL12-induced P-ERK in both cell lines. (B) Daoy was transfected with control siRNA or GRK6 siRNA and
then starved for 24 h prior to examination by Boyden chamber migration assay. Results show serum-mediated migration is significantly increased
in the cells transfected with GRK6 siRNA (P < 0.01).
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cell density (2 x 10*well, 20 K) or low cell density (5 x 10*/well, 5 K).

Discussion

Children diagnosed with sonic hedgehog-activated MB
(SHH MB) displaying desmoplastic histology have a
good prognosis, while those with non-desmoplastic
histology have higher rates of metastasis and an inter-
mediate prognosis, indicating that additional factors
to SHH activation account for the clinical dichotomy
observed [2-4,17]. Recent evidence shows that CXCR4
signaling, which is critical to the proliferation and
migration of granule neuron precursors during devel-
opment, is dependent on SHH for its activation in
MB [13,18,30,31]. This finding, coupled to CXCR4’s
reported role in tumor progression [14,16,32,33],
point towards dysregulated CXCR4 signaling as a

possible key determinant of SHH MB clinical behav-
ior. We observe high co-expression levels of CXCR4
and CXCL12, as well as PDGFRA, distinctly associated
with SHH MB. Herein, we demonstrate that GF re-
ceptor/PDGFR and Src, a major GF/PDGFR down-
stream effector, act to suppress the expression and
stability of the G protein-coupled receptor kinase
GRK6 in MB cells, which in turn functions to main-
tain CXCR4 signaling and promote cell migration,
thereby identifying a new mechanism for the
dysregulation of this signaling axis in MB. This find-
ing has important implications for our understanding
of SHH MB clinical behavior and potential translation
to therapeutic targeting.
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GPCRs are desensitized by agonist-induced GRK-
mediated phosphorylation, whereby the receptors are
uncoupled from heterotrimeric G-protein signaling.
Suppression of GRKs, and loss of GRK-mediated de-
sensitization, can result in the prolonged activation of
GPCRs. The involvement of CXCR4 in cancer metastasis
appears to be due to dysregulation of the receptor leading
to enhanced CXCR4 signaling [14,24]. In breast cancer
cells, a similar functional relationship between the PDGFR
pathway and CXCR4 has been reported, whereby over-
expression of PDGF-D, which specifically binds to and ac-
tivates PDGFRB, was shown to induce CXCR4 expression
and promote lymph node metastasis [34]. GRKs can also
regulate EGFR and PDGER activity, and in turn, GRKs
may be regulated at the mRNA and protein level by
altered oncogenic receptor signaling [35].

The description of GRK6 expression and its functional
role in cancer is very limited, and until now, has not
been reported in MB. In this study, we found that the
percentage of GRK6 expression is lower in MB tumors
with metastasis (22%), compared to those without me-
tastasis (43%); however, these data revealed only a trend
in MB, with the difference not being statistically signifi-
cant due to the small sample size. GRK6 typically has a
negative regulatory role in CXCR4 activation and
CXCL12-induced cell migration [24,26]. For example,
GRK6 deficiency is associated with impaired desensi-
tization and enhanced CXCR4-mediated neutrophil mi-
gration and has been implicated in the pro-inflammatory
response seen in rheumatoid arthritis [26,36]. However, in
HeLa cells, siRNA-based functional screening identified
GRK6 as a critical positive regulator of integrin-mediated
cell adhesion and migration [37]. Similarly, GRK6 silen-
cing in myeloma cells induced a tumor suppressor effect
by inhibiting STAT3 phosphorylation and decreasing
tumor cell survival [38].

To date, we have little knowledge regarding the regula-
tion of GRK6. Herein, we demonstrate that GF/PDGFR-
Src activation results in decreased expression of GRK6 at
the transcriptional and post-translational level to maintain
optimal CXCR4 signaling. In fact, we found that Src, a key
mediator of PDGER signaling and other GF-induced path-
ways [28], can independently regulate GRK6 expression,
indicating that Src could be a critical therapeutic target in
MB, especially given its additional role as a central node
in other pro-migratory and pro-survival signals. This
therapeutic potential is further illustrated in our study,
which shows that targeting CXCR4 with the inhibitor
AMD3100, can be potentiated by the overexpression of
GRK6. Since we show that Src suppresses GRK6, Src
inhibitors could potentially be used to elevate levels of
suppressive GRK6. Given that we have previously shown
that PDGFR can regulate Racl-Pakl signaling important
for cytoskeletal rearrangements required for MB cell
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migration [6], it remains to be seen whether the combined
inhibition of PDGFR-Src-CXCR4 may act synergistically
to suppress SHH MB growth and progression. In our
study, the observation that specific alteration of GRK6 did
not itself impact MB cell growth indicates that GRK®6 is a
critical mediator of GF receptor/PDGFR-Src oncogenic
signaling for CXCR4-mediated migration, but is not
essential for maintaining CXCR4-mediated growth. Ra-
ther, other mechanisms, and perhaps other GRKs may be
necessary to regulate growth. Although we focused on
GRK6 in this study because of its apparent dysregulated
expression in metastatic MB, it is possible that other
GRKs that we found expressed by MB (i.e. GRK4
and 5) may also play a role in MB growth and pro-
gression. For example, PDGFR/Src has been shown
to regulate GRK2 activity in other cell types and the
suppression of GRK3 appears necessary for maximal
glioblastoma cell growth [35,39]. Further studies will
be necessary to investigate the potential functional
role and regulation of GRK4 and GRK5 in MB as
well as the effect of targeting GRKs and PDGFR-Src
dysregulation of the CXCR4 signaling axis on MB
progression in vivo.

Conclusion

In summary, we found that GF receptor/PDGFR-Src-
mediated suppression of GRK6 acts to promote CXCR4
signaling and cell migration irrespective of CXCL12 lig-
and and demonstrate a novel mechanism of GF receptor/
PDGFR-Src-mediated dysregulation of CXCR4 signaling
that promotes MB cell migration, and thus targeting this
axis in SHH MB could represent a potent new therapeutic
strategy for MB.

Methods

Cell culture and reagents

Daoy and D556 human medulloblastoma cells were
cultured in EMEM with 10% fetal bovine serum (FBS).
CXCL12 and anti-human PDGFRp antibody (blocking
antibody, cat# AF385) were purchased from R & D
Systems (Minneapolis, MN).

Patient samples

MB frozen tumor specimens were consented for and
obtained from the Children’s Healthcare of Atlanta
(CHOA) (n=29) tumor tissue repository. The research
protocols and amendments were approved by the insti-
tutional review boards of CHOA, Emory University, and
the CHOA tumor bank committee. All tumor specimens
were studied as deidentified tissue samples and reviewed
as part of this study by board certified neuropathologist
(MS) according to WHO criteria (2007).
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Expression profiling

RNA was extracted from 29 frozen MB tumor samples
using the Trizol reagent (Invitrogen, Carlsbad, CA) and
was profiled by AROS Biosciences on the Affymetrix hu-
man genome U133 Plus 2.0 array with the 3’ IVT Express
Labeling Kit (Affymetrix, Santa Clara, CA). CEL files were
preprocessed using RMA [40] and probesets collapsed to
genes using the Genepattern software suite (http://www.
broadinstitute.org/cancer/software/genepattern/). Sample
were then assigned to a molecular subgroups as previously
described, using a classifier based on support-vector
machines [17]. In addition, the database from previously
published microarray expression profiling of medullo-
blastoma [5] was used to supplement mRNA profiling
data analysis of metastatic vs. non-metastatic medullo-
blastoma. The relative mean expression level listed for
each gene is calculated by the Affymetrix software.

Western blot

Western blot of whole cell lysates harvested in lysis buffer
(Cell Signaling Technology, Danvers, MA) was performed
with the following primary antibodies: GRK5, GRK6 and
PDGEFRP (Santa Cruz, CA); phospho-PDGERp (Tyr751),
phospho-ERK and ERK1/2 (Cell Signaling Technology).
Goat anti-mouse or rabbit horseradish peroxidase second-
ary antibodies (Santa Cruz) were used and the immunore-
active bands were detected by ECL. Densitometric
analysis of the visualized bands was used to quantitate and
compare the relative changes in levels of target proteins.

Real time RT-PCR

Total RNA was prepared from human MB cell lines
(Daoy or D556). Random-primed single-stranded cDNA
was made from total RNA by using the Superscript III
kit (Cat# 18080-051, Invitrogen, Carlsbad, CA). The
following oligonucleotides as primers were used for real
time PCR: Glyceraldehyde-3-phosphate dehydrogenase
(GAPDH), 5'- CGTGCCGCCTGGAGAAACC-3’ (for-
ward), 5'TGGAAGAGTGGGAGTTGCTGTTG-3’ (re-
verse). Human GRK6 primers were purchased from
Qiagen (cat# QT00043295). GRK6 cDNA was amplified
by real-time PCR (35 cycles: 95°C for 10 min, 94°C for
1 min, 55°C for 1 min, 72°C for 1 min, extension 72°C
for 8 min) in real-time cycler from Applied Biosystems
(Foster City, CA). Each sample was set at least in tripli-
cate for each PCR. Data analysis was performed
according to the absolute standard curve method. Data
are presented in relation to the respective housekeeping
gene and normalized the fold change of control cells to
1, then calculated the relative fold changes.

SiRNA and shRNA transfection
Human GRK6 ON-TARGETplus SMARTpool siRNA
(L-004627-00-0005), Src ON-TARGETplus SMARTpool
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siRNA (L-003175-00-0005) and negative control non-
targeting siRNA (D-001810-01-05) were purchased
from Dharmacon (Chicago, IL). Each SMARTpool is a
mixture of 4 siRNA sequences with advantages in both
efficacy and specificity. For siRNA transfections, 1.5 x 10°
cells were seeded in each well of a six-well plate and
grown to 50-60% confluency prior to transfection. Cells
were transfected with siRNA using Lipofectamine 2000
(Invitrogen, Carisbad, CA) for 48-96 h according to the
manufacturer’s instruction and then cells were treated
and harvested for further experiments. The stable
shPDGFR and control shRNA cells (Daoy and D556)
used in these experiments were previously generated by
us as described [6].

GRK overexpressing cells

The lentiviral FUW-mCherry and FUW-C-GRK6 were
kindly provided by Dr. Joshua Rubin (Washington
University in St Louis, MO). To make stable medulloblas-
toma cell lines with overexpression of GRK6, 4 x 10> cells
were seeded in 60 mm dishes before infection and then,
lentiviral FUW-mCherry and FUW-C-GRK6 were added
into each dish for 6 h. Media was changed and cells grown
for 2 or 3 days before cell-sorting per the flow cytometry
core facility protocols to separate sort-positive and sort-
negative cells. Western Blots were performed at least three
times to verify the stable cells.

Src overexpressing inducible cells

The plasmid pRetro HA-Src A was kindly provided by
Dr. Hui Kuo Shu (Emory University, Atlanta, GA). Briefly,
pCSrc A HA14 plasmid was first digested with Xhol,
filled in with T4 polymerase and finally digested with
BamH1. The excised HA-Src A cDNA was inserted into
the cloning sites between BamH1 and Nrul of pRetroX-
Tight-Pur (Clontech, Mountain View, CA, USA). The
regulatory vector and the pRetro HA-Src A were
transfected into phoenix-ampho package cells and then
the supernatant was harvested to infect MB cell lines. The
cells were selected by G418 plus puromycin after infec-
tion. 500 ng/ml doxycycline (Dox) was added to induce
expression of Src. The overexpression of Src was identified
by Western Blot.

Boyden chamber migration assay

Fibronectin-mediated cell adhesion and migration was
assessed using the QCM-FN Quantitative Cell Migration
Assay (cat# ECM580, Millipore). Briefly, cells were cul-
tured to 80% confluency and harvested with trypsin/
EDTA and resuspended in serum-free EMEM. 1.0 x 10°
cells in 200 puL serum-free EMEM were seeded into the
pre-coated (fibronectin or BSA) upper chambers. The
lower well contained 500 uL. EMEM with 10% FBS. Each
chamber was set in triplicate. The cells were incubated for
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4-5 h at 37°C, stained with cell staining solution and then
washed in distilled water. Cells were eluted with extraction
solution and 100 pL transfered to a 96-well microtiter
plate for absorbance reading (570 nm).

xCELLigence migration and proliferation assays
xCELLigence instrumentation and protocols for the meas-
urement of real-time migration and proliferation were
provided by Roche Diagnostics Corporation. xCELLigence
is an electrical impedance-based system that allows for the
measurement of real-time cell migration and proliferation
[29]. We used CIM plate (Cat# 05665817001, Roche) for
migration assay and the E-plate (Cat# 05469830001,
Roche) for proliferation assay. Briefly, for migration assay,
we seeded 4 x 10* cells into each chamber and set 4 cham-
bers for each cell type. After all chambers were set up, the
CIM plate was put into xCELLigence instrument at 37°C,
5% CO2 incubator for migration assay. Similarly, we
seeded 2 x 10* cells or 5 x 10? cells into each well and set
up 4 wells for each cell type, then ran proliferation assay
in xCELLigence instrument at 37°C, 5% CO2 incubator.
The impedance was recorded in 15 min intervals.

Statistical analysis

Group differences and p-values were calculated using
Student’s t-test. Difference of group percentage was
calculated using Fisher’s exact test. P values < 0.05 were
considered as statistically significant.
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