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Abstract

Background: The biomarker identification of human esophageal cancer is critical for its early diagnosis and
therapeutic approaches that will significantly improve patient survival. Specially, those that involves in progression
of disease would be helpful to mechanism research.

Methods: In the present study, we investigated the distinguishing metabolites in human esophageal cancer tissues
(n = 89) and normal esophageal mucosae (n = 26) using a 1H nuclear magnetic resonance (1H-NMR) based assay,
which is a highly sensitive and non-destructive method for biomarker identification in biological systems. Principal
component analysis (PCA), partial least squares-discriminant analysis (PLS-DA) and orthogonal partial least-squares
-discriminant anlaysis (OPLS-DA) were applied to analyse 1H-NMR profiling data to identify potential biomarkers.

Results: The constructed OPLS-DA model achieved an excellent separation of the esophageal cancer tissues and
normal mucosae. Excellent separation was obtained between the different stages of esophageal cancer tissues
(stage II = 28; stage III = 45 and stage IV = 16) and normal mucosae. A total of 45 metabolites were identified, and
12 of them were closely correlated with the stage of esophageal cancer. The downregulation of glucose, AMP and
NAD, upregulation of formate indicated the large energy requirement due to accelerated cell proliferation in
esophageal cancer. The increases in acetate, short-chain fatty acid and GABA in esophageal cancer tissue revealed
the activation of fatty acids metabolism, which could satisfy the need for cellular membrane formation. Other
modified metabolites were involved in choline metabolic pathway, including creatinine, creatine, DMG, DMA and
TMA. These 12 metabolites, which are involved in energy, fatty acids and choline metabolism, may be associated
with the progression of human esophageal cancer.

Conclusion: Our findings firstly identify the distinguishing metabolites in different stages of esophageal cancer
tissues, indicating the attribution of metabolites disturbance to the progression of esophageal cancer. The potential
biomarkers provide a promising molecular diagnostic approach for clinical diagnosis of human esophageal cancer
and a new direction for the mechanism study.
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Background
Esophageal cancer is one of the most common newly diag-
nosed cancers and the fourth cause of digestive system
cancer mortality in the United States in 2012 [1].
1Esophagectomy is the mainstay of curative treatment for
localized esophageal cancer [2]. However, the treatment
outcome is far from satisfactory [3-5]. The patients with
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low-stage cancer have a 45% to 73% chance of survival,
and the patients with high-stage tumors of larger size and
higher metastatic potential have only a 18% chance of sur-
vival within 3 years [6]. The underlying reasons for this
disappointingly low survival rate are multifold, including
ineffective screening tools and guidelines; cancer detection
at an advanced stage, with over 50% of patients with
unresectable disease or distant metastasis at the time of
presentation; unreliable noninvasive tools to measure
complete response to chemoradiotherapy; and limited sur-
vival achieved with palliative chemotherapy alone for
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patients with metastatic or unresectable disease. There-
fore, early and accurate diagnosis of esophageal cancer is
important for patient survival and improving therapeutic
options for different stage of esophageal cancer.
Over the past decades the methods, such as on-

endoscopy-based balloon cytology and upper gastrointes-
tinal (GI) endoscopy, have been widely used to improve
the diagnosis. However, they have certain limitations in-
cluding the poor specificity and sensitivity, resulting in de-
tection of the disease at an advanced stage [7]. At the
molecular level, numerous studies reporting specific alter-
ations in proteins and genes in esophageal cancer might
be useful for the diagnosis, prognosis and treatment of
esophageal cancer [8-10]. However, reliable markers, espe-
cially at an early and potentially curative stage, are still
unknown.
Metabonomics is a systematic approach focusing on the

profile of low molecular weight metabolites in cells, tis-
sues, and biofluids [11,12]. It is a powerful tool for analyz-
ing the chemical composition and providing important
information on disease process, biochemical functions and
drug toxicity [13]. Thus, it has been widely used in disease
diagnosis [14,15], biomarker screening [16,17] and safety
assessment of chemical [18,19]. Two most powerful and
commonly used analytical methods for metabolic finger-
printing are mass spectrometry (MS) and nuclear mag-
netic resonance (NMR) spectrometry [20,21]. NMR is a
non-destructive and non-invasive technique that can pro-
vide complete structural analysis of a wide range of or-
ganic molecules in complex mixtures [22]. Although a
growing number of NMR-based metabonomics aim at
finding possible biomarkers of presence and/or grade of
different cancers such as prostate cancer [23,24], colorec-
tal cancer [25], brain cancer [26] and breast cancer
[27,28], there are only few researches on esophageal can-
cer [29-31]. Only one report used NMR method to inves-
tigate the difference of metabolites in esophageal cancer
tissue. Moreover, the number of cancer samples was only
20 ~ 35 in these studies, which may be difficult to provide
accurate and comprehensive information of metabolites.
Especially, none of these reports systematically investi-
gated the discriminating metabolites involved in the differ-
ent pathological stages of esophageal cancer.
Multivariate statistical analysis is commonly applied to

metabonomic data including the unsupervised (principal
component analysis, PCA) and supervised (partial least-
squares-discriminant analysis, PLS-DA) methods [32]. In
addition, to optimize the separation, thus improving the
performance of subsequent multivariate pattern recognition
analysis and enhancing the predictive power of the model
in NMR-based metabonomic studies [33], orthogonal par-
tial least-squares-discriminant anlaysis, OPLS-DA is carry
out to visualize the metabolic alterations between the
esophageal cancer tissues and normal esophageal mucosae.
In the present study, we applied 1H-NMR to study
metabonomic profiling of human esophageal cancer tis-
sues. We identified a total of 45 distinguishing metabolites,
12 of which were modified along with the aggressive
process of esophageal cancer. These metabolites are closely
associated with the energy supplies, fatty acids and choline
metabolic pathways. Our results provide the potential bio-
markers for clinical diagnosis for different stages of human
esophageal cancer and new insights for the mechanism re-
search. Moreover, this study demonstrates that a NMR–
based metabolomics approach is a reliable and sensitive
method to study the biochemical mechanism underlying
human esophageal cancer.

Results
Clinical population
We investigated a total of 115 samples, 89 of which were
from primary esophageal cancer and 26 from normal
esophageal mucosae. For 26 cases paired samples of can-
cer tissue and normal tissue were available from the
same patient. The clinical information of patients was
summarized in Table 1. As listed in Table 1, the patients
aged 39–79 years old. The stage of all tissue specimens
was determined according with the American Joint
Committee on Cancer (AJCC) for esophageal tumors:
stage II, 28 patients; stage III, 45 patients; stage IV, 16
patients. Though the tissue specimens of stage I patient
was absent because of the limited specimens, it is still
worth investigating. 85 cases of cancer samples were
esophageal squamous cell carcinoma. All patients were
subjected to surgical resection of the primary tumor and
lymph nodes. Tumor size, location, lymph node num-
bers, differentiation status and lymphovascular invasion
were also evaluated.

Metabonomic profiling of samples
Normal mucosae and esophageal cancer tissue samples
underwent extraction, and the aqueous fractions were
investigated using NMR. The representative 1H-NMR
spectra of aqueous phase extracts of normal mucosae
and esophageal cancer tissues were showed in Figure 1.
The spectra were processed and converted into 419 inte-
gral regions of 0.02 ppm width as described in Materials
and Methods. The major metabolites in the integrate re-
gions were identified by a comparison with literature
data and spectra of standards acquired in Human
Metabolome Database. As a result, a series of changes of
endogenous metabolite levels were observed in esopha-
geal cancer when compared with the normal mucosa
(Figure 1A and 1B). The majority of metabolites were
assigned to amino acid, lipid, carbohydrate, organic acid
and nucleotide, which are known to be involved in mul-
tiple biochemical processes, especially in energy and
lipid metabolism [34].



Figure 1 600.13 MHz CPMG 1H-NMR spectra of tissue specimens from
mucosae, B: esophageal cancer. The grey region represents the detailed sp
cancer.

Table 1 Clinical information of esophageal cancer
patients and normal mucosae

Clinical features Esophageal cancer Normal control

Number 89 26

Sex

Male 82 22

Female 7 4

Age at diagnosis

Median(years) 61 59.5

Range 39-79 43-70

Histology

ESCC 85

Adenocarcinoma 4

Pathologic grade

PD 22

MD 62

HD 5

Disease stage

I 0

II 28

III 45

IV 16

Lymph node metastasis

NO 34

N1 55

MD: poorly differentiated; PD: moderately differentiated; HD:
highly differentiated.
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PR analysis of normal mucosae and esophageal cancers
To optimize the separation of the two groups, we then
utilized OPLS-DA to visualize the metabolic difference
between the esophageal cancer tissues and normal
esophageal mucosae. As the results shown, two groups
achieved distinct separation in the scores plot of PC1
and PC2 of OPLS-DA analysis (Figure 2B). Moreover,
the corresponding PLS-DA model parameters for the
explained variation, R2 = 0.75, and the predictive capabil-
ity, Q2 = 0.64, were significantly high, indicating that it is
an excellent model suitable for data analysis (Figure 2C).
According to the chemical shifts between the two groups
(VIP > 1 and p < 0.05), the significantly distinguishing
metabolites were identified (Table 2). These metabolites
are involved in key metabolic pathways including gly-
colysis, TCA cycle, urea cycle, pyrimidine metabolism,
gut flora metabolism and fatty acids metabolism.
To study the predictive power of the model to unknown

samples, we randomly selected 80% of samples (normal
mucosae = 20, esophageal cancer = 71) as training set to
construct OPLS-DA model, which was used to predict the
class membership of the remaining 20% of samples (the
‘testing set’, normal mucosae = 5, esophageal cancer = 18).
As shown in Figure 2D, normal mucosae of testing set
were correctly located in the region of normal mucosae of
training set, and the same results were obtained in
esophageal cancers of testing set (R2Xcum = 0.17, R2Ycum =
0.531, Q2 Ycum = 0.322). These results show that OPLS-
DA model can not only distinguish normal mucosae from
esophageal cancers, but also achieve excellent predictive
power to the unknown samples.
esophageal cancer patients and normal mucosae. A: normal
ectra between 2 and 4.5 ppm of normal mucosae and esophageal



Figure 2 PR of 1H-NMR spectra of tissue specimens. A, scores plot of PCA model based on 26 cases normal mucosae (black triangles) and 89
cases esophageal cancers (red dots). B, scores plot of OPLS-DA model processing based on same samples. C, statistical validation of the
corresponding PLS-DA model by permutation analysis (200 times). R2 is the explained variance, and Q2 is the predictive ability of the model.
D, scores plot of OPLS-DA prediction model. 80% of samples (training set, normal mucosae =20, esophageal cancer = 71) were applied to
construct the model, and then used it to predict the remaining 20% of samples (testing set, normal mucosae =5, esophageal cancer = 18). Green
diamonds represent normal mucosae and yellow inverted triangles represent esophageal cancers.

Wang et al. Molecular Cancer 2013, 12:25 Page 4 of 14
http://www.molecular-cancer.com/content/12/1/25
PR analysis of normal mucosae and different stages of
esophageal cancer
The differences of metabolites profiling among various
stages of esophageal cancer are important for biomarker
identification for accurate diagnosis and therapy. The PR
analysis showed the metabolites modified, and we then
used the OPLS-DA model to investigate the metabolites
differentially regulated. As shown in Figure 3A, the scores
plot of PC1 and PC2 indicated that all stages (II, III and
IV) of esophageal cancer could be clearly separated from
normal mucosae. The statistical validations of the corre-
sponding PLS-DA model by permutation analysis were
shown in Figure 3B. The parameters for different stages
were as follows: stage II: R2 = 0.92, Q2 = 0.76; stage III:
R2 = 0.82, Q2 = 0.71 and stage IV: R2 = 0.88, Q2 = 0.76.
The panel of 45 metabolites with VIP > 1 and p < 0.05 of
these three groups were listed in Table 3. The majority
metabolites were similar to those of metabolites between
normal mucosae and esophagus cancers. Interestingly, we
identified dimethylamine (DMA), dimethylglycine (DMG),
polyunsaturated fatty acids and histidine, which are associ-
ated with the stage of esophageal cancer. DMG signifi-
cantly decreased in stage III, and the changes of DMA and
histidine were significant only in stage IV in comparison to
normal mucosae. In addition, polyunsaturated fatty acids
were altered significantly in stage II.
Finally, we randomly used 80% of samples to construct

OPLS-DA model, and then detected the predictive
power to the remaining 20% of samples. As shown in
Figure 3C, the majority samples of testing set were cor-
rectly classified as esophageal cancer and normal mu-
cosae. In the scores plot of stage II and normal mucosae
(R2Xcum = 0.287, R2Ycum = 0.895, Q2Ycum = 0.725), the
green diamond which represented normal mucosae of
testing set were correctly located in the region of normal
mucosae, and most of the stage II samples of testing set
located in the region of stage II. These results indicate that
esophageal cancer of stage II are correctly discriminated



Table 2 Summary of different metabolites between
esophageal cancers and normal mucosae

Metabolite Chemical
shift(ppm)

Esophageal cancer vs
Normal control

VIPa p-valueb FCc

Amino acid

Creatine 3.04 2.18 <0.0001 −1.76

3.94 2.24 <0.0001 −1.78

NAA 2.02 2.07 <0.0001 1.68

2.6 1.13 <0.0001 1.71

Glycine 3.56 2.07 <0.0001 −1.64

Glutamine 2.14 1.21 <0.0001 −1.34

2.45 1.93 <0.0001 −1.56

Glutamate 2.05 1.71 <0.0001 1.33

2.36 1.17 <0.0001 1.23

Valine 0.98 1.70 <0.0001 1.49

Leucine/Isoleucine 0.96 1.61 <0.0001 1.44

4-HPPA 2.45 1.53 <0.0001 −1.60

L-tyrosine 6.93 1.44 <0.0001 1.63

7.22 1.29 <0.0001 1.51

Phenylacetylglycine 3.68 1.43 <0.0001 −1.86

7.35 1.06 <0.0001 1.31

7.42 1.19 <0.0001 1.45

Methionine 2.11 1.21 <0.0001 1.26

2.16 1.37 <0.0001 1.54

2.6 1.13 <0.0001 1.71

Creatinine 3.04 2.18 <0.0001 −1.76

4.05 1.98 <0.0001 −1.57

Phenylalanine 3.12 1.37 <0.0001 1.42

7.42 1.19 <0.0001 1.45

GABA 1.91 1.23 <0.0001 3.09

3.01

Phenylacetyglutamine 7.42 1.19 <0.0001 1.45

Glutamate γ-H 2.36 1.17 <0.0001 1.23

Taurine 3.43 1.02 <0.0001 1.32

L-aspartate 3.92 1.01 0.0451 −1.15

Lipid

Myo-inositol 3.55 2.11 <0.0001 −1.97

3.63 2.07 <0.0001 −1.97

4.07 1.98 <0.0001 −1.57

Unsaturated lipids 2.27 2.08 <0.0001 1.70

Cho 4.05 1.98 <0.0001 −1.57

Short-chain fatty acids 1.04 1.58 <0.0001 1.49

Choline 4.05 1.98 <0.0001 −1.57

3.51 1.39 <0.0001 −1.45

Phosphocholine 3.22 1.16 <0.0001 1.24

Table 2 Summary of different metabolites between
esophageal cancers and normal mucosae (Continued)

Carbohydrate

Glucose 3.25 0.026 −1.16

3.53 2.11 <0.0001 −1.97

Glycoprotein 2 2.08 <0.0001 1.70

Polyol

Ethanol 3.65 2.07 <0.0001 −1.97

Acetone 2.22 1.28 <0.0001 1.56

Organic acid

α-ketogultaric acid oxime 2.44 1.53 <0.0001 −1.60

2.48 1.93 <0.0001 −1.56

Malonate 3.16 1.34 <0.0001 1.46

Acetoacetic acid 2.27 1.27 <0.0001 1.25

3.43 1.02 <0.0001 1.32

Acetate 1.92 1.23 <0.0001 3.09

Trimethylamine 2.88 1.19 <0.0001 2.19

Formate 8.45 1.01 0.0005 8.79

Nucleotide

Uracil 5.81 1.82 <0.0001 39.93

7.54 1.26 <0.0001 2.13

AMP 6.15 1.76 <0.0001 −2.05

8.67 1.19 <0.0001 −3.10

NAC1 2.1 1.15 <0.0001 1.49

Adenine in ATP/ADP
and NAD/NADH

8.25 1.56 <0.0001 1.41

8.27 1.58 <0.0001 1.75

8.36 1.45 <0.0001 1.97

NAC2 2.04 1.69 <0.0001 1.68

Cofactors and vitamins

NAD 8.83 1.65 <0.0001 −2.81

9.15 1.49 <0.0001 −2.44

9.35 1.53 <0.0001 −2.43

Inorganic acid

Acetyl hydrazine 1.96 1.63 <0.0001 2.14

Xenobiotics

Hippurate 7.55 1.00 0.0005 1.77

7.64
aVariable importance in the projection (VIP > 1) was obtained from
OPLS-DA analysis.
bp-value determined from Student's t-test.
cFC: fold change between esophageal cancers and normal mucosae. Positive
sign indicates a higher level in esophageal cancer and a negative value
indicates a lower level.
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from normal mucosae. However, there were 2 samples of
stage II located in the edge of the two training set clusters.
One possible reason might be that the changes of the me-
tabolites were not significant in the earlier stage. For ex-
ample, DMA was only remarkably increased in stage IV.



Figure 3 PR analysis of 1H-NMR spectra between different stages of esophageal cancer and normal mucosae. A, scores plot of OPLS-DA
model processing based on each stage and normal mucosae, red dots represent stage II (n = 28); blue boxes represent stage III (n = 45); purple
diamonds represent stage IV (n = 16) and black triangles represent normal mucosae (n = 26). B, statistical validation of the corresponding PLS-DA
model by permutation analysis (200 times). R2 and Q2 represent the predictive ability to the model. C, scores plot of OPLS-DA prediction model.
80% of samples were applied to construct the model, and then used it to predict the remaining 20% of samples (normal mucosae = 5; stage II:
n = 5; stage III: n = 9; stage IV: n = 3). Green diamonds represent normal mucosae and yellow inverted triangles represent esophageal cancers.
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The scores plot of stage III, IV (stage III: R2Xcum = 0.276,
R2Ycum = 0.798, Q2Ycum = 0.671; stage IV: R2Xcum = 0.296,
R2Ycum = 0.912, Q2Ycum = 0.765) were illustrated in
Figure 3C Almost all testing set were correctly located in
the corresponding region except for one testing set of
stage IV. These results indicate that metabonomics differ-
ence could be used for the grading of esophageal cancer.

Trending markers
To further study which biomarkers are mainly respon-
sible for the pathological process of esophageal cancer
disease, we used box-and-whisker plots to clarify the
relative altered levels of those identified 45 metabolites,
and obtained 12 representative metabolites among nor-
mal control mucosae and esophageal cancer at differ-
ent stages (Figure 4). Interestingly, these metabolites
included glucose, formate, AMP, NAD, creatine, cre-
atinine, DMG, DMA, trimethylamine (TMA), short-
chain fatty acids, acetate and GABA, which are mainly
involved in energy, fatty acids and choline metabolic
pathways.
Glucose, the main source of energy metabolism and pre-

cursors for biosynthesis of macromolecules in cells [35], was
decreased along with the progression of esophageal cancers
when compared with normal mucosae. Formate, the prod-
uct of sugar utilization of Enterococcus casseliflavus [36],
was significantly increased along with the progression;
moreover, it upregulated 21.48 folds in stage IV compared to
normal mucosae. The AMP, which can be transformed to
ATP as energy donor, and NAD, an important coenzyme,
were downregulated in esophageal cancer tissues, suggesting
a great quantity of energy consumption due to accelerated



Table 3 Summary of different metabolites between each stage of esophageal cancers and normal mucosae

Metabolite Chemical
shift (ppm)

Normal vs II Normal vs III Normal vs IV

VIPa p-valueb FCc VIPa p-valueb FCc VIPa p-valueb FCc

Amino acid

Creatine 3.04 1.97 <0.0001 -1.71 1.97 <0.0001 -1.70 1.89 <0.0001 -1.91

3.94 1.92 <0.0001 -1.71 1.90 <0.0001 -1.73 1.89 <0.0001 -1.92

NAA 2.6 2.06 0.001 1.59 1.25 <0.0001 1.84 1.17 0.0003 1.58

2.02 1.39 <0.0001 1.63 1.90 <0.0001 1.61 1.95 <0.0001 1.81

Glutamate 2.05 1.77 <0.0001 1.34 1.50 <0.0001 1.28 1.77 <0.0001 1.39

2.36 1.38 <0.0001 1.27 1.11 <0.0001 1.19 1.29 <0.0001 1.26

Glutamine 2.14

2.45 1.73 <0.0001 -1.66 1.74 <0.0001 -1.52 1.74 <0.0001 -1.52

Glycine 3.56 1.58 0.0003 -1.48 1.96 <0.0001 -1.66 1.66 <0.0001 -1.71

Creatinine 3.04 1.97 <0.0001 -1.71 1.97 <0.0001 -1.70 1.89 <0.0001 -1.91

4.05 1.56 0.0005 -1.45 1.85 <0.0001 -1.55 1.74 <0.0001 -1.69

Glutamate γ-H 2.36 1.38 <0.0001 1.27 1.11 <0.0001 1.19 1.29 <0.0001 1.26

Valine 0.98 1.46 0.0008 1.45 1.61 0.0009 1.51 1.45 <0.0001 1.49

Taurine 3.43 1.18 0.0005 1.39 1.39 0.03 1.24

Leucine/Isoleucine 0.96 1.43 <0.001 1.40 1.55 <0.0001 1.45 1.36 <0.0001 1.44

L-tyrosine 6.93 1.22 0.005 1.61 1.41 <0.0001 1.62 1.21 <0.0001 1.66

7.22 1.11 0.013 1.49 1.27 <0.0001 1.49 1.11 <0.0001 1.54

L-aspartate 3.92 1.16 0.0004 -1.19 1.08 0.0216 -1.15

GABA 1.91 1.58 <0.0003 2.74 1.21 <0.0001 2.88 1.50 <0.0001 3.65

3.01 0.049 1.15 0.012 1.19 1.11 0.0005 1.29

Methionine 2.11 0.04 1.26 1.11 0.0122 1.22 1.06 0.001 1.34

2.16 1.56 <0.0001 1.47 1.46 <0.0001 1.57 1.25 <0.0001 1.53

2.6 1.39 <0.0001 1.59 1.25 <0.0001 1.84 1.17 <0.0001 1.58

Phenylacetyglutamine 7.42 1.01 0.024 1.38 1.16 0.0006 1.43 1.12 0.0005 1.52

Histidine 7.09 1.03 0.027 -2.22 1.30 <0.0001 -3.48 1.99 <0.0001 -2.03

7.79 0.032 -2.82 0.038 -2.01 1.48 0.0003 -3.93

4-HPPA 2.45 1.16 0.0116 -1.61 1.37 <0.0001 -1.65 1.01 0.0026 -1.53

Dimethylglycine 3.72 1.03 0.0016 -1.50

Phenylacetylglycine 3.68

7.42 1.01 0.024 1.38 1.16 0.0006 1.43 1.12 0.0005 1.52

7.35 1.3 0.0381 1.28 1.28 0.0038 1.2 1.23 0.0024 1.35

Lipid

Polyunsaturated fatty acids 2.84 0.0113 1.25 1.02 0.0023 1.29 1.03 0.033 1.24

Unsaturated lipids 2.27 1.04 0.01 2.23 1.17 0.0002 2.24 1.19 0.0002 2.09

Short-chain fatty acids 1.04 1.39 0.001 1.41 1.49 <0.0001 1.48 1.53 <0.0001 1.55

Phosphocholine 3.22 1.56 0.0002 1.29 1.07 0.03 1.11 1.25 <0.0001 1.05

Myo-Inositol 3.55 1.81 <0.0001 -1.76 2.10 <0.0001 -2.01 1.71 <0.0001 -2.04

3.63 1.71 <0.0001 -1.62 2.01 <0.0001 -1.81 1.68 <0.0001 -1.86

4.07 1.56 0.0005 -1.45 1.85 <0.0001 -1.55 1.74 <0.0001 -1.69

Cho 4.05 1.56 0.0005 -1.45 1.85 <0.0001 -1.55 1.74 <0.0001 -1.69

Choline 3.51 1.47 0.001 -1.43 1.63 <0.0001 -1.53 0.006 -1.34

4.05 1.56 0.0005 -1.45 1.85 <0.0001 -1.55 1.74 <0.0001 -1.69
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Table 3 Summary of different metabolites between each stage of esophageal cancers and normal mucosae (Continued)

Carbohydrate

Glycoprotein 2 2.00 <0.0001 1.64 1.89 <0.0001 1.66 1.95 <0.0001 1.81

Glucose 3.25 1.16 0.0005 -1.34

3.53 1.81 <0.0001 -1.76 2.10 <0.0001 -2.01 1.71 <0.0001 -2.04

Polyol

Acetone 2.22 1.47 0.0007 1.38 1.32 <0.0001 1.49 1.47 <0.0001 1.79

Ethanol 3.65 1.71 <0.0001 -1.62 2.01 <0.0001 -1.81 1.68 <0.0001 -1.86

Organic acid

α-ketogultaric acid oxime 2.44 1.16 0.01 -1.61 1.37 <0.0001 -1.65 1.01 0.002 -1.53

2.48 1.74 <0.0001 -1.52 1.74 <0.0001 -1.52 1.73 <0.0001 -1.66

Malonate 3.16 1.11 0.013 1.35 1.31 <0.0001 1.45 1.38 <0.0001 1.53

Acetate 1.92 1.58 <0.0003 2.74 1.21 <0.0001 2.88 1.50 <0.0001 3.65

Acetoacetic acid 2.27 1.04 0.01 1.22 1.17 0.0002 1.25 1.19 0.0002 1.28

3.43 1.18 0.0005 1.39 1.39 0.03 1.24

Formate 8.45 1.44 <0.001 13.51 1.11 <0.001 14.84 1.31 <0.0001 21.48

Trimethylamine 2.88 1.23 <0.0001 2.09 1.41 <0.0001 2.24 1.28 0.005 2.23

Dimethylamine 2.73 1.31 0.0057 1.67

Nucleotide

NAC2 2.04 1.69 <0.0001 1.35 1.50 <0.0001 1.31 1.65 <0.0001 1.44

NAC1 2.1 0.0495 1.26 1.11 0.0122 1.22 1.06 0.0011 1.34

AMP 6.15 1.50 <0.0001 -1.76 1.72 <0.0001 -2.10 1.60 <0.0001 -2.16

8.67 1.20 <0.0001 -3.18 1.12 0.0007 -3.84

Adenine in ATP/ADP and
NAD/NADH

8.36 1.33 <0.0001 2.02 1.45 <0.0001 2.00 1.14 0.011 1.78

8.27 1.52 <0.0001 1.44 1.51 <0.0001 1.41 1.59 <0.0002 1.38

8.25 1.46 <0.0001 1.44 1.51 <0.0001 1.41 1.59 <0.0002 1.38

Uracil 5.81 1.75 <0.0001 43.30 1.83 <0.0001 37.49 1.84 <0.0001 41.03

7.54 1.31 0.003 2.12 1.28 <0.0001 2.06 1.26 <0.0001 2.24

Cofactors and vitamins

NAD 8.83 1.56 0.0004 -2.28 1.53 <0.0001 -2.44 1.81 <0.0001 -4.55

9.15 1.54 0.0005 -2.09 1.41 <0.0001 -2.22 1.65 <0.0001 -3.28

9.35 1.52 0.0005 -2.12 1.39 <0.0001 -2.09 1.78 <0.0001 -3.65

Inorganic acid

Acetyl hydrazine 1.96 1.99 <0.0001 2.02 1.62 <0.0001 2.03 1.75 <0.0001 2.40

Xenobiotics

Hippurate 7.55 1.08 0.0171 1.78 0.0027 1.75 1.13 0.0019 1.81

7.64 1.21 0.0079 1.12 1.28 0.0351 1.38 1.03 0.0006 1.16
aVariable importance in the projection (VIP > 1) was obtained from OPLS-DA analysis.
bp-value determined from Student's t-test.
cFC: fold change between esophageal cancers and normal mucosae. Positive sign indicates a higher level in esophageal cancer and a negative value indicates a
lower level.
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cell proliferation in esophageal cancer. The downregulation
of creatine, creatinine and DMG, and the elevation of DMA
and TMA along with the stages of esophageal cancer indi-
cate the disturbance of choline metabolism. Acetate and
GABA, two intermediates in the synthesis of fatty acids,
were significantly elevated along with the progression, and
both of them upregulated 3.65 folds in stage IV compared to
normal mucosae. In addition, the upregulation of short-
chain fatty acids, a kind of fatty acid materials, indicated a
highly activated fatty acids metabolism in esophageal cancer.



Figure 4 Box-and-whisker plots illustrated progressive changes of the metabolites among different stages of esophageal cancer
relative to normal mucosae. Horizontal line in the middle portion of the box, median; bottom and top boundaries of boxes, lower and upper
quartile; whiskers, 5th and 95th percentiles; open circles, outliers.
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Discussion
In the present study, we discriminated 89 esophageal can-
cer tissues from 26 normal mucosae using an OPLS-DA
model, and analyzed the metabolites difference between
each stage of esophageal cancer and normal mucosae to
identify the potential biomarkers involved in the develop-
ment of esophageal cancer. Forty-five of distinguishing
metabolites were identified and 12 of them, including glu-
cose, formate, AMP, NAD, creatine, creatinine, DMG,
DMA, TMA, short-chain fatty acids, acetate and GABA,
were significantly changed along with the progression of
esophageal cancer. Though there are several reports show-
ing the metabolic profiling of esophageal cancer, to the
best of our knowledge, the present study is the first to
show that some specific metabolites are modified along
with the stage of esophageal cancer. Remarkably, the
highly activated fatty acids metabolism, increased energy
supplies and disturbance of choline metabolism are mainly
responsible for the process of pathological development of
esophageal cancer.
Identifying the related metabolic pathways of distinguishing

metabolites is very important for understanding the
biochemical alterations during neoplastic occurrence and
development. In order to enhance the information
obtained from global metabonomic profiling of esophageal
cancer, the human metabolome database and the Kyoto
encyclopedia of genes and genomes (KEGG) were utilized
to map the marker metabolites with regards to the human
metabolic pathways. The findings about the key sets of
marker metabolites, related metabolic pathways are sum-
marized in Figure 5. These distinguishing metabolites are
involved in detailed metabolic pathway, including fatty
acids metabolism (polyunsaturated lipids, short-chain fatty
acids, phospholipid, NAA and acetate, GABA), choline
metabolism (choline, DMA, DMG, TMA creatine and cre-
atinine), amino acid metabolism (glycine, L-aspartate, glu-
tamine, valine, leucine/isoleucine, methionine and tyrosine),
glycolysis (glucose), glutaminolysis (glutamine and glutam-
ate) and tricarboxylic acid cycle (2-oxoglutarate). These re-
sults indicate that several specific metabolic pathways are
disturbed in esophageal cancer tissue and, particularly, fatty
acids metabolism, energy supplies and choline metabolic
pathways are involved in the progression of esophageal
cancer.



Figure 5 Altered metabolic pathways for the most relevant distinguishing metabolites between esophageal cancers and normal
mucosae. Blue boxes indicated metabolites that were up-regulated in esophageal cancers, while red boxes indicated metabolites that
were down-regulated.
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In the process of cancer development, cancer cells in-
crease and alter the metabolism of major nutrient, glucose
via glycolysis to meet the high-energy demand under hyp-
oxic conditions [37,38]. In 1920s, Otto Warburg first dis-
covered that cancer cells prefer to metabolize glucose
through glycolysis to generate ATP instead of oxidative
phosphorylation even in presence of ample oxygen [39].
One molecule of glucose only generates 2 molecules of
ATP through glucolysis. This process is a less efficient
pathway compared with oxidative phosphorylation which
generated ~36 molecules of ATP [40]. Therefore, plently
of glucose was consumpted, resulting in glucose reduc-
tion. Our results showed that the level of glucose was de-
creased in esophageal cancer tissue, which is similar to the
previous studies that decreased glucose is detected in hu-
man colorectal cancer, cervical cancer and hepatoma
[41-43]. Moreover, formate, the product of glucose
utilization, was significantly increased along with the pro-
gression. Remarkably, it reached to the 21 fold in the stage
IV in comparison to normal mucosae. Thus, it should be
considered as a potential biomarker involved in the pro-
gression of human esophageal cancer. Besides glycolysis,
increased glutaminolysis is recognized as a vital metabol-
ism pathway of cancer cells to meet the high-energy de-
mand under hypoxic conditions. In cancer cells,
glutamine is converted to glutamate by mitochondrial glu-
taminase. Glutamate is an important energy sourse via
anaplerotic input into the the tricarboxylic acid (TCA)
cycle after conversion to α-ketoglutarate. The decrease of
glutamine observed in esophageal cancer could satisfy the
production of energy. After conversion to glutamate and
ketoglutarate, the final major fate of glutamine is the oxi-
dation of its carbon backbone in the mitochondria, lead-
ing to energy production. Glutaminolysis contributes to
production of mitochondrial NADH, which is used to
support ATP production by oxidative phosphorylation. In
the present study, the decreased AMP in esophageal can-
cer tissue suggests a rapid energy transformation due to a
great demand of ATP synthesis.
Besides supporting ATP production, glutamine also

contributes to the biosynthesis of lipids and nucleic
acids, and regulation of redox homeostasis [44,45]. The
catabolism of glutamine is initiated by glutaminolysis
[46]. In glutaminolysis, malate is convered into pyruvate
or carboxylation is reduced to produce acetyl-CoA. Both
catabolism could be useful for maintaining lipogenesis
[47,48]. In proliferating cancer cells, the lipogenesis is
especially needed for the formation of cellular membranes
[39,49]. Therefore, another reasonable explanation for the
decreased glutamine observed in present study might be
that glutamine is used for maintaining the formation of
cellular membranes in esophageal cancer tissues. In the
cancer cell proliferation, besides glutamine, the fatty acids
are required for the membrane lipids synthesis due to
accelerated cell proliferation. In present study, the
family of fatty acid materials, short-chain fatty acids,
phospholipid, and polyunsaturated fatty acids were
upregulated, indicating the activation of fatty acids me-
tabolism. In addition, previous studies reported that
cancer tissue can ultilize GABA to produce propylene
glycol, a precursor of pyruvate derived from glycine
[50]. Therefore, GABA upregulation in esophageal cancer
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tissue could be used as building blocks for biosynthesis of cel-
lular membranes. Importantly, GABA increased dramatically
along with the progression of esophageal cancer. There-
fore, GABA might play a role in the deterioration or
matastasis of esophageal cancer. NAA, a free amino acid,
synthesized from L-asparate and acetyl-CoA, serves as a
source of acetate for lipid and myelin synthesis [51]. We
found that both NAA and acetate were significantly in-
creased in esophageal cancer tissue, but L-asparate was
decreased. These results are consistent with other find-
ings in ovarian cancer [52]. However, in the previous
metabonomics research on esophageal cancer, none of
the paper reported the identification of NAA and acet-
ate. The possible reason is that NMR spectroscopy is a
method that no selection to metabolites and thus all
possible variables could be detected in which no prior
information about metabolites is known or the higher
sensitivity compared to 1H MAS-NMR [53].
Choline and its derivatives represent important con-

stituents in phospholipid metabolism of cell membranes
and have been previously identified as markers of cellu-
lar proliferation. Choline is degraded through two path-
ways. The one is to form creatinine via DMG, and the
other is converted to methylamine [54]. In the present
study, the levels of creatinine, creatine, glycine, DMG
and choline significantly decreased in esophageal cancer
tissues. Meanwhile, DMA and TMA, the products of
choline metabolism, remarkable increased [55]. Though
these two products are widely regarded as nontoxic sub-
stance, their potential to form the carcinogen NDMA at-
taches great clinical interest [56]. Our results indicate
the disturbance of choline metabolism in esophageal
cancer tissue, which is supported by previous findings
that choline and its metabolites allow a distinct differen-
tiation in human oral cancer [32]. The elevation of cho-
line metabolites in esophageal caner may be resulted
from the metabolism of membrane phospholipids due to
accelerated cell proliferation. The levels of DMG, cre-
atinine, creatine, DMA and TMA were altered along
with development of esophageal cancer, indicating that
they might be the potential biomarkers for diagnosis of
esophageal cancer.

Conclusions
Overall, our findings confirm a distinct tissue metabolic
profile of esophageal cancer patients characterized by al-
tered levels of 45 metabolites mainly involved in fatty
acids metabolism, energy supplies and choline metabol-
ism. Particularly, a panel of 12 metabolite biomarkers was
changed along with the development of esophageal cancer
and might be related to the occurrence and aggression
of this cancer. Our study highlights the significance of
the distinct tissue metabolic profile of esophageal can-
cer. These 12 gradient biomarkers provide not only a
new insight for the establishment of improved clinical bio-
markers for esophageal cancer detection, but also poten-
tial information for mechanism study of esophageal
cancer progression. Further investigation is needed to val-
idate these initial findings in much larger samples and the
related mechanism underlying the progression of esopha-
geal cancer.

Methods
Chemicals
Deuterium oxide (99.8% D) was purchased from NORELL
(Landisville, USA). Trimethylsilylpropionic acid-d4 sodium
salt (TSP) was purchased from Sigma Aldrich (St. Louis,
MO). HPLC-grade methanol and chloroform were pur-
chased from Fisher Scientific (Fairlawn, NJ, USA). Deion-
ized water was obtained from an EASYpure II UV water
purification system (Barnstead International, Dubuque,
IA). All of the chemicals employed in this study were of
analytic pure and culture grade.

Sample collection
The protocol of the present study was approved by the
Ethics Committee of West China Hospital of Sichuan
University. The informed consents were obtained from
all patients.
In total, 115 case of surgical specimen came from

eighty-nine esophageal cancer patients treated during
2010 to 2011 at West China Hospital of Sichuan Univer-
sity. Among them, 52 cases belonged to the matched
tumor and normal mucosae, which were taken at least
5–10 cm away from the edges of a tumor from the same
patient (n = 26). The patients enrolled in this research
did not receive any neoadjuvant chemotherapy or radi-
ation therapy prior to esophagectomy. Fresh tumor tis-
sues or corresponding normal esophageal mucosae were
immediately frozen in liquid nitrogen after dissection,
then stored at −80 °C until processing. Tumor speci-
mens were carefully microdissected to ensure at least
90% of the analyzed tissue contained cancer cells. The
clinical diagnosis, tumor stage, histology differentiation
and resection margin were determined by routine histo-
pathological examination of H & E stained specimens by
a blinded pathologist.

Sample Preparation
The 200–500 mg of frozen tissue samples were weighed
and suspended in bidistilled water containing methanol
(4 ml per gram of tissue). The samples were homoge-
nized with 20 strokes at 800 rpm, and 2 ml/g chloroform
was added and homogenization was repeated. Then, the
suspension was mixed with 2 ml/g chloroform and
2 ml/g bidistilled water, and leaved on ice for 30 min,
followed by centrifugation at 4000 g for 30 min. This pro-
cedure separated suspension to three phases, including a
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water phase containing methanol at the top, a denatured
proteins phase in the middle, and a lipid phase at the bot-
tom. The upper phase (aqueous phase) of each sample
were collected and evaporated to dryness under a nitrogen
gas stream. The residue was reconstituted with 580 μl of
D2O containing 0.01 mg/ml sodium (3-trimethylsilyl)-
2,2,3, 3-tetradeuteriopropionate (TSP) and 30 μmol/L
phosphate buffer solution (PBS, pH = 7.4). The D2O
and TSP provided the deuterium lock signal for the
NMR spectrometer and the chemical shift reference
(δ0.0), respectively. After centrifuged at 12,000 g for
5 min, the supernatant was transferred into a 5-mm
NMR tube for NMR spectroscopy [53].

1H-NMR Measurements
All samples were detected by 1H-NMR spectroscopy at
600.13 MHz using a Bruker Avance II 600 spectrometer
operating (Bruker Biospin, Germany) at 300 K. A one-
dimensional spectrum was acquired by using a standard
(1D) Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence
to suppress the water signal with a relaxation delay of
5 sec. Sixty-four free induction decays (FIDs) were col-
lected into 64 K data points with a spectral width of
12,335.5-Hz spectral, an acquisition time of 2.66 sec, and
a total pulse recycle delay of 7.66 sec. The FIDs were
weighted by a Gaussian function with line-broadening fac-
tor 20.3 Hz, Gaussian maximum position 0.1, prior to
Fourier transformation [57].

1H-NMR spectral data processing
The raw NMR data (FIDs) was been manually Fourier
transformed for obtaining NMR spectroscopy in MestRe-
c2.3 software to reduce the complexity of the NMR data
and facilitate the pattern recognition (http://mestre-c-lite.
findmysoft.com/download/). After phase adjustment and
baseline correction, the spectrum was divided into 419
segments ranging from 9.5 to 0.5 ppm, with equal width
of each region (0.02 ppm). The region 5.2–4.6 ppm was
removed for excluding the effect of imperfect water sup-
pression. Moreover, the integrated data were normalized
before pattern recognition analysis to eliminate the dilu-
tion or bulk mass differences among samples due to the
different weight of tissue.

Pattern recognition (PR) analysis
For pattern recognition, the reduced and normalized
NMR spectral data were imported into SIMCA-P (ver-
sion 11, Umetrics AB) for analysis. PCA, the unsuper-
vised PR method, was initially applied to analyze the
NMR spectral data to separate the tumor samples from
the normal samples. PLS-DA and OPLS-DA, the super-
vised PR method, were subsequently used to improve
the separation and the data filtering method. The PLS-
DA models were validated by a permutation analysis
(200 times). The default 7-round cross-validation was
applied with 1/seventh of the samples being excluded
from the mathematical model in each round, in order to
guard against overfitting. The variable importance in the
projection (VIP) values of all peaks from OPLS-DA
models was taken as a coefficient for peak selection, and
these variables with VIP > 1 was considered relevant for
group discrimination [58]. In addition to the multivariate
statistical analysis method, unpaired Student’s t-test
(p < 0.05) to the chemical shifts was also used to the
significance of each metabolite. Only both VIP > 1 of
multivariate and p < 0.05 of univariate statistical sig-
nificance were identified distinguishing metabolites.
Metabolites of corresponding chemical shift were
identified according to the previous literatures and
the Human Metabolome Database (http://www.hmdb.
ca/), a web-based bioinformatic/cheminformatic re-
source with detailed information about metabolites
and metabolic enzymes.
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