Garcia-Regalado et al. Molecular Cancer 2013, 12:44
http://www.molecular-cancer.com/content/12/1/44 ® MOLECULAR
P CANCER

RESEARCH Open Access

Activation of Akt pathway by
transcription-independent mechanisms of retinoic
acid promotes survival and invasion in lung
cancer cells

Alejandro Garcia-Regalado’, Miguel Vargas?, Alejandro Garcia-Carranca®, Elena Aréchaga-Ocampo®
and Claudia Haydée Gonzalez-De la Rosa'

Abstract

Background: All-trans retinoic acid (ATRA) is currently being used in clinical trials for cancer treatment. The use of
ATRA is limited because some cancers, such as lung cancer, show resistance to treatment. However, little is known
about the molecular mechanisms that regulate resistance to ATRA treatment. Akt is a kinase that plays a key role in
cell survival and cell invasion. Akt is often activated in lung cancer, suggesting its participation in resistance to
chemotherapy. In this study, we explored the hypothesis that activation of the Akt pathway promotes resistance to
ATRA treatment at the inhibition of cell survival and invasion in lung cancer. We aimed to provide guidelines for
the proper use of ATRA in clinical trials and to elucidate basic biological mechanisms of resistance.

Results: We performed experiments using the A549 human lung adenocarcinoma cell line. We found that ATRA
treatment promotes PI3k-Akt pathway activation through transcription-independent mechanisms. Interestingly,
ATRA treatment induces the translocation of RARa to the plasma membrane, where it colocalizes with Akt.
Immunoprecipitation assays showed that ATRA promotes Akt activation mediated by RARa-Akt interaction.
Activation of the PI3k-Akt pathway by ATRA promotes invasion through Rac-GTPase, whereas pretreatment with
15e (PI3k inhibitor) or over-expression of the inactive form of Akt blocks ATRA-induced invasion. We also found that
treatment with ATRA induces cell survival, which is inhibited by 15e or over-expression of an inactive form of Akt,
through a subsequent increase in the levels of the active form of caspase-3. Finally, we showed that
over-expression of the active form of Akt significantly decreases expression levels of the tumor suppressors RARB2
and p53. In contrast, over-expression of the inactive form of Akt restores RARB2 expression in cells treated with
ATRA, indicating that activation of the PI3k-Akt pathway inhibits the expression of ATRA target genes.

Conclusion: Our results demonstrate that rapid activation of Akt blocks transcription-dependent mechanism of
ATRA, promotes invasion and cell survival and confers resistance to retinoic acid treatment in lung cancer cells.
These findings provide an incentive for the design and clinical testing of treatment regimens that combine ATRA
and P13k inhibitors for lung cancer treatment.
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Background

Lung cancer is the leading cause of deaths due to cancer
worldwide [1]. Sixty percent of cases are diagnosed in ad-
vanced stages, with a life expectancy of less than one year
[2]. Chemotherapy treatment is typically administered in
these stages; however, the response rate is only about 9%
[3]. Clinical trials have shown potential for chemical com-
pounds in cancer treatment such as all-trans retinoic acid
(ATRA), which shows anti-proliferative and apoptotic ef-
fects and a role in modulating cellular invasion [4]. ATRA
exerts its cellular effects by inducing changes in gene
expression and is now also thought to be a rapid modu-
lator of signaling pathways involved in cancer. However,
the mechanisms mediating these rapid effects are not
yet well understood.

ATRA is a biologically active metabolite of vitamin A
that regulates diverse cellular functions such as differen-
tiation, proliferation and apoptosis [5-7]. The functions
of ATRA are mediated by nuclear receptors, specifically
the retinoic acid receptors (RAR «, B, and y) and the retin-
oic X receptors (RXR «, B, and y). RARs act as retinoid-
inducible transcriptional factors and can form heterodimers
with RXRs, which regulate the expression of genes involved
in cell cycle arrest, cell differentiation and cell death [8].
The RARP2 gene is one of the genes whose expression in-
creases upon ATRA treatment. RARB2 is a tumor suppres-
sor whose expression is regulated by RARa in response to
ATRA [9] and several reports indicate that the expression
of RARP2 is significantly decreased in human cancers [10].

Recent studies have demonstrated that ATRA induces
rapid, transcription-independent activation of the PI3k/
Akt pathway in neuroblastoma cells [11]. However, the
molecular mechanisms by which ATRA promotes acti-
vation of the PI3k/Akt pathway are still unknown. The
PI3k/Akt pathway is deregulated in most human can-
cers, including non-small cell lung cancer (NSCLC)
[12-14]. Phosphoinositide 3-kinase (PI3k) is activated by
stimulation of multiple receptor tyrosine kinases and G
protein-coupled receptors. Active PI3k catalyzes the
production of phosphatidylinositol-3,4,5-triphosphate
(PIP(3)) at the plasma membrane, which in turn pro-
motes the recruitment and activation of Akt at the
membrane [15]. Akt is a serine/threonine kinase that
plays a key role in multiple cellular processes, such as
proliferation, survival and cell invasion [16]. Over-
activation of Akt influences multiple downstream effec-
tors, including inactivation of proapoptotic factors such
as Bad and caspase-9 [17,18].

ATRA is currently being used in clinical trials for lung
cancer treatment; however, its use is limited because
lung cancers show resistance to treatment with ATRA
[19-22]. Little is known about the molecular mecha-
nisms that regulate resistance to ATRA treatment in
lung cancer. In this report, we tested the hypothesis that
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Akt mediates resistance to ATRA treatment by treating
A549 cells with ATRA and assessed the functional
relevance of Akt inactivation in apoptosis and invasion.
The A549 cell line is highly invasive, metastatic and re-
sistant to proliferative and survival inhibitory effects of
ATRA [23-25].

Results

ATRA promotes activation of the PI3k/Akt pathway by
inducing the association of RARa with Akt via
transcription-independent mechanisms

To investigate the molecular mechanisms of ATRA re-
sistance in lung cancer cells, we investigated the effects
of ATRA in regulating the PI3k/Akt pathway in the
ATRA-resistant A549 cell line [26,27]. The results re-
vealed a rapid activation of the PI3k/Akt pathway,
measured by Akt phosphorylation at its serine 473, within
5 min of ATRA treatment and until 60 min after treat-
ment (Figure 1A). Similar results were obtained for
H1944, another lung adenocarcinoma cell line, whereas in
NL-20, a normal lung cell line, Akt phosphorylation was
only detected at 15 min of treatment (Additional file 1:
Figure S1). To examine the transcription-dependent ac-
tion of ATRA on Akt activation, we used BMS493, a pan-
retinoic acid receptor antagonist (Figure 1A). Interestingly,
treatment with BMS493 did not prevent Akt activation.
The effectiveness of BMS493 treatment was evaluated
by testing its ability to counteract the transcription-
dependent effect of ATRA on p53 expression [28]. As
expected, BMS493 inhibited the ATRA-induced in-
crease in p53 expression levels (Figure 1B).

Since ATRA promotes Akt activation, we decided to
test whether Akt interacts with components of ATRA
signaling. RARa is a major mediator of non-genomic
ATRA effects and is widely expressed in all tissue types
[29,30]. To determine whether Akt interacts with RARa,
we immunoprecipitated RARa from non-treated or
ATRA treated cells. As show in Figure 2A and B, ATRA
treatment promoted a significant increase in the inter-
action between Akt and RARa, with RARa showing a
higher binding affinity to the phosphorylated form of
Akt. We next determined whether the activation of Akt
depends on its interaction with RARa. For this, we tested
whether the interaction between RARa and Akt could be
competed with APPL1, a protein that interacts directly
with Akt [31-33]. Figure 2B shows that over-expression of
APPL1 blocks the interaction between RARa with Akt,
and inhibits ATRA-mediated Akt activation.

ATRA stimulates the translocation of RARa to the plasma

membrane, activates Rac and increases membrane ruffles
To determine the influence of ATRA on the subcellular
distribution of RARx and Akt, A549 cells were treated
with ATRA for different amounts of time and localization



Garcia-Regalado et al. Molecular Cancer 2013, 12:44
http://www.molecular-cancer.com/content/12/1/44

Page 3 of 12

A BMS 493 B
ATRA ATRA
NT 5 15’ 60’ NT 5 15’ 60’ min 48 h of treatment
WB: E ———
ATRA -
anti-pAkt | T e e e e Busaes -+ o
e el it i [
o anti-actin
anti-actin |

500+ *

4004 1 [
300+

2004

Akt-phosphorylation
(% control)

1004

NT 5' 15' 60' NT 5'

15' 60'

ATRA

ATRA
BMS 493

Figure 1 ATRA activates the Akt pathway through non-genomic mechanisms in A549 cells. (A) Left, A549 cells were serum-starved for

18 h, treated or non-treated (NT) with 5 uM of ATRA, for the times indicated. Right, A549 cells were preincubated for 1 h with 3 pM of BMS493
before ATRA treatment and total extracts were prepared. The phosphorylated form of Akt and total proteins were detected by western blot using
specific antibodies. The bottom graph represents the densitometric values of Akt phosphorylation of three independent experiments (means +
SEM, *P < 0.05; **P < 0.001 compared with non-treated cells (NT) (analysis of variance and Newman-Keuls test). (B) A549 cells were serum-starved
and treated with ATRA with or without BMS493 for 48 h. Total proteins were detected by western blot.

of these proteins was examined by immunofluorescence
(Figure 3). In non-treated cells, RARa was predominantly
found in the nucleus and Akt was located in the plasma
membrane and cytoplasm. In contrast, cells treated with
ATRA showed RARa recruitment to the plasma mem-
brane from the 5th min to the 15th min of treatment and
RARa was co-localized with Akt in newly formed ruffles
(white arrows in Figure 3).

Activation of Rac-GTPase is a critical step leading to
membrane protrusion and ruffle formation [34,35]. To
assess whether ATRA stimulates Rac activation, we
evaluated the interaction of recombinant PAK (p21-acti-
vated kinase) with GTP-Rac by pull-down. As shown in
Figure 4A, the amount of GTP-bound Rac increased in a
time-dependent manner in cells treated with ATRA,
whereas the pretreatment of cells for 1 h with PI3k in-
hibitor (15e) prevented Rac activation.

ATRA promotes cell invasion

The Akt signaling pathway has been previously impli-
cated in cell invasion. To determine the functional con-
sequences of Akt activation by ATRA, we transiently
transfected A549 cells with a constitutively active form
of Akt (Myr-Akt) and an inactive form of Akt (K179M)
and evaluated invasion. As shown in Figure 4B, ATRA
promoted invasion in cells expressing empty vector and
over-expression of Myr-Akt increased invasion in cells
regardless of treatment with ATRA. However, over-

expression of Akt-K179M blocked the effect of ATRA
on invasion.

Inhibition of the PI3k/Akt pathway blocks the ATRA-
dependent survival effect by activating caspase-3

We investigated the effects of ATRA on cell apoptosis
by TUNEL assays. As shown in Figure 5A and B, ATRA
protected A549 cells against apoptosis under stress con-
ditions, such as ultraviolet (UV) radiation exposition and
serum starvation, whereas treatment with PI3k inhibitor
(15e) strongly promoted apoptosis (Figure 5B). The
combined treatment with ATRA and 15e did not exert
additive effects on apoptosis. To investigate the molecu-
lar mechanism of PI3k inhibitor-induced apoptosis in
A549 cells, the expression of activated caspase-3 was de-
termined by immunofluorescence microscopy. As shown
in the bottom panel of Figure 5C, PI3k inhibitor (15e)
treatment induced caspase-3 activation, whereas ATRA
treatment alone did not affect caspase-3 activation.

To investigate the direct effect of Akt on apoptosis in
cells treated with ATRA, we transfected A549 cells
with an active and inactive form of Akt. Figure 6 shows
that over-expression of Myr-Akt increase the protect-
ive effects of ATRA on apoptosis, whereas over-
expression of Akt-K179M promoted apoptosis in cells
treated with ATRA. These results demonstrate that
PI3k/Akt activation mediates the protective effect of
ATRA on apoptosis.
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Figure 2 ATRA promotes Akt activation mediated by RARa-Akt interaction. (A) RARa was immunoprecipitated from A549 cells treated or
non-treated with 5 uM of ATRA for 15 min. Immunoprecipitated RARa and associated protein were detected by western blot. Control refers to
immunoprecipitation performed with an Erk1 antibody. The bottom graph shows the results of densitometric analyses of Akt bound to RARa
obtained from three independent experiments (means + SEM, *P < 0.05 compared with non-treated cells (NT) assessed by t test analysis). (B) RARa
was immunoprecipitated from A549 cells transfected with EGFP-APPL1 or empty vector and treated with 5 uM of ATRA for 15 min. Association of
RARa with Akt was detected by western blot using specific antibodies. Image shows one representative experiment of three independent.
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Activation of Akt blocks the ATRA-dependent
transcription

To determine the effects of Akt on expression of target
genes of ATRA such as RARB2 and p53, we assessed the
effect of ATRA in A549 cells transfected with an active
and inactive form of Akt. Figure 7A shows that ATRA
treatment significantly increased RARP2 expression in
cells transfected with the empty vector, whereas over-
expression of Myr-Akt blocked ATRA-induced expres-
sion of RARP2. However, over-expression of Akt-K179M
enhanced the effect of ATRA on RARP2 expression and
similar results were obtained in cells treated with PI3k
inhibitor (Additional file 2: Figure S2). Figure 7B shows
that over-expression of Myr-Akt blocks the expression
of p53 in cells treated with ATRA, whereas pretreatment
with proteasome inhibitor (MG132) did not prevent
Akt-induced decrease in p53 expression. Taken together,
these results demonstrate that Akt activation promotes

the down-regulation of RARP2 and p53 at transcrip-
tional level.

Combined treatment of ATRA and PI3k inhibitor exerted

a modest anti-proliferative effect

To examine the effect of ATRA on cell proliferation, A549
cells were treated for 24 h with ATRA or 15e. As shown in
Figure 7C, neither ATRA nor 15e treatment affected prolif-
eration when compared with the control (non-treated
cells). Nevertheless, the combination of ATRA with 15e
showed a modest anti-proliferative effect. Similar results
were obtained when treatment was until 48 and 72 h (data
not shown). These results suggest that the PI3k/Akt path-
way partially regulates A549 cell proliferation.

Discussion
ATRA is used in clinical trials to suppress the develop-
ment of different types of cancer [26]. However, its
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Figure 3 ATRA promotes recruitment of RARa to the plasma membrane. A549 cells were serum-starved and treated with 5 uM of ATRA for
the times indicated. Then cells were fixed and incubated with anti-RARa and anti-Akt followed by incubation with anti-mouse Alexa Fluor 532
and Alexa Fluor 647, respectively, as described in Materials and Methods. Finally, the cells were analyzed by confocal microscopy.

effectiveness is limited in some cancers, such as lung
cancer [20,21,36]. In this work, we demonstrate that re-
sistance to ATRA-induced apoptosis and suppression of
invasion of A549 lung cancer cells is mediated by
activation of the PI3k/Akt pathway. Our results show
that ATRA promotes phosphorylation of Akt through
transcription-independent mechanisms. These data are
consistent with reports showing that ATRA induces
phosphorylation of Akt via transcription-independent
mechanisms in neuroblastoma cells [11]. These results are
supported by the use of pan-RAR antagonist (BMS493),
which prevent expression of ATRA target genes, but not
prevent Akt activation by ATRA. Such results suggest that
the structural changes in retinoic acid receptors promoted
by BMS493 increase its affinity for co-repressors in the
nucleus, whereas in plasma membrane, these structural
changes not prevent assembly of Akt-RAR complex. In
agreement with this possibility, recent reports indicate
that selective receptor modulators can display agonistic
or antagonistic function influenced by the subcellular
localization [37,38]. ATRA exerts its transcriptional
actions by binding to nuclear receptors. Since Akt acti-
vation is independent of transcriptional mechanisms
and RARa is the major mediator of transcription-
independent ATRA effects [30], we explored the pos-
sible association between RARa and Akt. Our results
show that RARa interacted with and activated Akt in re-
sponse to ATRA treatment, which is consistent with the
finding that over-expression of RARa increases Akt

phosphorylation in COS-7 cells [11]. In addition, RAR«
is recruited to the plasma membrane, where it became
co-localized with Akt in response to ATRA treatment.
These results suggest that ATRA promotes the forma-
tion of a signaling complex at the plasma membrane in
a RARa-dependent manner. Consistent with these data,
a pool of RARa« is located in lipid rafts forming com-
plexes with signaling proteins as Gaq in response to ret-
inoic acid [39]. RARa has been shown to interact with
PI3k at the plasma membrane [11]. The formation of
this signaling complex at the plasma membrane regu-
lates Rac activation through the PI3k/Akt pathway to
promote cellular invasion, a result that is consistent
with the finding that ATRA promotes activation of Rac
in neuroblastoma cells [40] and increases the invasion
of pancreatic cancer cells [7,41] and promotes MMP-9
expression through RARa [42]. In addition, we evalu-
ated the effect of ATRA treatment on apoptosis. The
results showed that ATRA exerts a protective effect
against apoptosis. However, PI3k/Akt pathway inhib-
ition promoted apoptosis via activation of caspase-3.
Studies in acute promyelocytic leukemia cells have
shown that treatment with the PI3k inhibitor reverses
the protective effect of ATRA against apoptosis [43].
Additionally, recent reports have shown that Akt activa-
tion suppresses the transactivation of RARa in lung
cancer cells [44]. This suggests that Akt negatively mod-
ulates the transcriptional actions of ATRA by inhibiting
the expression of tumor suppressor genes such as
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Figure 4 ATRA stimulates Rac activation and promotes invasion. (A) Left, A549 cells were serum-starved for 18 h and treated with 5 uM of
ATRA for the times indicated. Other cells were preincubated for 1 h with 5 uM of 15e. Activated Rac was detected with the Rac1 Activation assay
kit according to the manufacturer’s instructions. Right, the graph shows the results of densitometric analysis of relative increase of Rac activation
obtained in three independent experiments. (B) Cell invasion was analyzed by QCM™ 24-well Invasion Assay Kit. A549 cells were transfected with
Myr-Akt, Akt-K179M or empty vector and seeded at 2.5 x 10° cells/well into the upper chamber. DMEM/F12 was added to the lower chamber
with or without 5 uM ATRA for 48 h. The invasive cells were detected according to the manufacturer’s instructions. The graphs shows the results

of three independent experiments (means + SEM, *P < 0.05 compared with non-treated cells (NT) (analysis of variance and Newman-Keuls test).

RARP2 and p53. To address this issue, we evaluated the
expression of RARB2, one of the target genes of ATRA.
Our results showed that the over-expression of an active
form of Akt (Myr-Akt) blocks the expression of RARP2,
whereas the inactive form of Akt (Akt-K179M) or PI3k
inhibitor treatment increases the expression of RARP2.
In addition, over-expression of Myr-Akt substantially
reduces p53 expression, other target gene of ATRA
[28,45], whereas treatment with proteasome inhibitor
(MG132) not restores p53 expression, indicating that
Akt regulates p53 expression to transcriptional level.
Consistent with these results, the PI3k/Akt pathway
induces the down-regulation of RARB2 mRNA and pro-
tein levels [27,46]. Finally, we tested the role of the
PI3k/Akt pathway in cell proliferation. The results
showed that treatment with PI3k inhibitor (15e) exerts a
modest anti-proliferative effect. These results indicate
that another kinase, such as ERK, regulates proliferation
in lung cancer cells.

Taken together, our results suggest that targeting the
PI3k-Akt signaling pathway is a potential therapeutic
strategy against ATRA-resistance in lung cancer. Follow-
up experiments, such as proteomic analyses using mass

spectrometry to identify scaffold proteins that regulate
the complex assembly of the PI3k-Akt pathway, will be
worthwhile for improving our understanding of this pro-
posed mechanism. In agreement with this proposal, re-
cent reports show that cellular retinol-binding protein-I
(CRBP-I) decreases the heterodimerization of the cata-
lytic subunit of PI3k with its regulatory subunit in
transformed breast cell lines [47]. Based on the results
in this study, we propose a model depicting the mechan-
ism of ATRA resistance in lung cancer, as shown in
Figure 8. In our model, ATRA binds to RARa to pro-
mote its localization at the plasma membrane (step 1).
RARa subsequently promotes the recruitment and acti-
vation of the PI3k-Akt pathway. The formation of this
signaling complex suggests the involvement of scaffold
proteins in its assembly (step 2). Akt activation promotes
cellular survival and cellular invasion through Rac-
GTPase (step 3). Akt suppresses the transactivation of
RARa and decreases the expression of RARP2 (step 4).
PI3k-Akt inhibition with 15e or over-expression of an
inactive form of Akt (K179M) blocks survival and inva-
sion, restoring the expression of tumor suppressors
RARP2 and p53 (step 5).
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Figure 7 Akt activation promotes the down-regulation of RARB2 and p53. (A) Left, A549 cells were transfected with Myr-Akt, Akt-K179M or
empty vector and subsequently treated or non-treated with 5 uM of ATRA for 48 h. Total extracts were prepared and levels of protein were
detected by western blot. Right, the graph shows the results of densitometric analysis of relative RARB2 protein expression levels, obtained in
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the last 24 h of the 48 h treatment period, the cells were incubated with 20 uM of MG132. Total extracts were prepared and levels of protein
were detected by western blot using specific antibodies. The image shows one representative experiment of three independent. (C) A549 cells
were serum-starved and treated or non-treated (control) with 5 uM of ATRA alone or in combination with 5 uM of 15e for 24 h. The proliferative
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Conclusions

In this study, we provide information on new molecular
mechanisms by which lung cancer cells become resistant to
ATRA treatment. Our results demonstrate that ATRA pro-
motes PI3k-Akt activation via transcription-independent
mechanisms mediated by the RARa-Akt interaction. PI3k-
Akt activation by ATRA promotes invasion through Rac-
GTPase activation and cell survival, whereas treatment
combining ATRA and a PI3k inhibitor or over-expression
of an inactive form of Akt suppresses invasion and cell sur-
vival, increasing the levels of active caspase-3 and the
tumor suppressor RARB2. In conclusion, activation of Akt
blocks the transcriptional effects of ATRA, promotes inva-
sion and cell survival, and confers resistance to retinoic acid
treatment in lung cancer cells. These findings provide strat-
egies for the design of drugs that combine ATRA and PI3k
inhibitors for lung cancer treatment, a treatment modality
that should be clinically evaluated.

Materials and methods

Cell lines and treatments

A549 cells were routinely grown in DMEM/F12
medium supplemented with 10% fetal bovine serum

(FBS), 100 IU/ml penicillin, 100 pg/ml streptomycin at
37°C in a 5% CO, atmosphere. All-trans retinoic acid
(ATRA) was purchased from Sigma-Aldrich. The PI3k
kinase inhibitor, 15e (3-[4-(4-morpholinyl) thieno [3,2-d]
pyrimidin-2-yl]-phenol), was purchased from Enzo Life
Science and the pan-retinoic acid receptor inverse
agonist BMS 493 (4-[(1E)-2-[5,6-dihydro-5,5-dimethyl-
8-(2-phenylethynyl)-2-naphthalenyl]ethenyl]benzoic acid),
was purchased from Tocris Bioscience. The proteasome
inhibitor MG132, was purchased from Sigma-Aldrich.
The different compounds were dissolved in dimethyl-
sulfoxide and added to the culture medium at the indi-
cated concentrations.

Western blot and immunoprecipitation

Whole-cell extracts were obtained by lysis of A549 cells
in lysis buffer [20 mM Tris—HCl (pH 7.5), 1 mM EDTA,
150 mM NaCl, 1% Triton X-100, 1 mM sodium vanad-
ate, 1 mM NaF, 10 mM f-glycerophosphate, 1 mM
phenylmethylsulfonyl fluoride, and 1.2 mg/ml complete
protease inhibitor cocktail; Roche]. The protein extracts
were forced through a 22-gauge needle 10 times and
centrifuged for 10 min at 14,000 rpm at 4°C and protein
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Figure 8 Model depicting the molecular mechanism of ATRA resistance in lung cancer. ATRA promotes RARa recruitment to the
membrane, where it activates the PI3k-Akt pathway (1-2). Akt activation promotes cellular survival and cellular invasion (3). Akt represses RARB2
and p53 expression (4). PI3k-Akt inhibition restores sensitivity to ATRA treatment and blocks survival and invasion (5).
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concentration was determined by the bicinchoninic acid
BCA Protein Assay (Pierce). Approximately 25 pg of
protein were separated on 10% SDS-PAGE and trans-
ferred to PVDF membranes and then incubated with
primary antibodies: anti-phospho-Akt (sc-7985-R; Santa
Cruz), anti-Akt (P-2482; Sigma-Aldrich), anti-p53 (sc-
126; Santa Cruz) and anti-actin (sc-1616; Santa Cruz).
Immunodetection was performed using a fluorescent
substrate system (Millipore). Densitometry analysis of
western blots was performed using the public domain
NIH Image] software.

The interactions between endogenous RARa receptors
and Akt was assessed in A549 cells that were serum-
starved for 18 h and stimulated with 5 pM ATRA, as in-
dicated in the figures. Confluent cultures were washed
with PBS, followed by lysis at 4°C. The protein extracts
were forced through a 22-gauge needle 10 times and
centrifuged for 10 min at 14,000 rpm at 4°C. The super-
natants were incubated for 12 h at 4°C with 5 pg/ml
anti-RARa (MCA4135Z; Serotec). The immune com-
plexes were recovered by incubation for 2 h at 4°C with
protein G-sepharose (25 pl, 10-1241; Invitrogen). Beads
were washed three times with lysis buffer and boiled in
1x Laemmli sample buffer. Immunoprecipitated proteins
were fractionated on 10% SDS-PAGE and transferred to
a PVDF membrane (Millipore). Expression of proteins
and putative interactions were detected by western blot
using an anti-Akt antibody (P-2482; Sigma-Aldrich). The
mouse monoclonal anti-rabbit IgG, light chain specific

antibody (211-032-171; Jackson Immuno Research) was
used to detect primary antibody.

Immunofluorescence

A549 cells were grown on coverslips precoated with poly-
L-lysine and the cells were serum-starved for 18 h and
stimulated with 5 pM ATRA for the indicated times.
Then, cells were fixed with 4% paraformaldehyde in PBS
for 20 min at room temperature, washed three times with
PBS, permeabilized with methanol for 6 min at -20°C and
blocked with 1% BSA in PBS for 30 min. The cells were
then incubated with the primary antibodies. In some
experiments, cells were incubated with anti-RAR«a
(MCA4135Z; Serotec) and anti-Akt (P-2482; Sigma-
Aldrich) or anti-cleaved caspase-3 (sc-22171; Santa Cruz)
followed by incubation with anti-mouse Alexa Fluor 532,
anti-mouse Alexa fluor 647 or anti-goat FITC (sc-2024;
Santa Cruz), respectively. The cells on coverslips were
mounted on glass slides using Vectashield (Vector Labora-
tories). To visualize the subcellular distribution of RAR«
and Akt, the images were acquired with a FV1000 con-
focal laser-scanning microscope (Olympus) using a 63x
objective, and for caspase-3 activation, the images were ac-
quired with an Axiovert 40 CFL fluorescence microscope
(Carl Zeiss) using a 100x objective.

Rac activation assay
Activation of Rac-GTPase was assessed using the Rac acti-
vation assay kit (Millipore) according to the manufacturer’s
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indications. Briefly, cells were preincubated with 5 uM of
15e for 1 h and stimulated with 5 uM of ATRA, as indi-
cated in the figure legends. Cell lysates were incubated with
p21-activated kinase (PAK) binding domain-tagged agarose
(10 pg) at 4°C for 2 h. The agarose beads were washed
three times with lysis buffer (Millipore) supplemented with
phosphatase inhibitors and boiled for 5 min in 1x Laemmli
sample buffer. Activated Rac was detected by western blot
with Rac antibody (Millipore).

Transfection

For transient transfection, cells were transfected using
Lipofectamine™ LTX plus reagent (Invitrogen) according to
the manufacturer’s indications. The total amount of DNA
in transfections was 4 pg/plate; the assay was performed
48 h after transfection. Expression of transfected constructs
was determined by western blot using anti-HA monoclonal
antibodies (Covance) and anti-GFP (MMS-118R; Covance).
DNA constructs pcDNA3-Myr-HA-Akt, pEGFPC1-human
APPL1 and pCMV5-HA-Akt-DN (K179M) were obtained
from Addgene, a non-profit plasmid repository (http://
www.addgene.org/).

Invasion assay

Cell invasion was carried out using QCM 24-Well Cell
Invasion Assay (Millipore) according to the manufac-
turer’s instructions. Briefly, the extracellular matrix of
the insert (8 pm pore size) was rehydrated with serum-
free medium, which was subsequently replaced with 250
ul of prepared serum-free suspension of cells transfected
with empty vector, Myr-Akt or Akt K179M (1.0 x 10°
cells/ml). Then, 500 pl of medium containing 5 uM of
ATRA was added to the lower chamber of the insert.
Cells were incubated at 37°C in a 5% CO, atmosphere
for 24 h. Finally, cells were dissociated from the mem-
brane according to the manufacturer’s instructions and
then detected with CyQuant GR Fluorescent Dye. Fluor-
escence was measured at 480/520 nm in a Tecan Infinite
M1000 plate reader.

TUNEL assay

Detection of apoptosis was performed using the DeadEnd
colorimetric TUNEL assay kit (Promega) according to the
manufacturer’s instructions. Briefly, A549 cells were grown
on coverslips precoated with poly-L-lysine and treated for
48 h with 5 uM of ATRA with or without 5 pM of 15e.
After treatment, the cells were fixed with 4% paraformalde-
hyde in PBS and permeabilized with 0.2% Triton X-100 in
PBS. Cells were incubated with recombinant terminal
deoxynucleotidyl transferase (rTdT) and biotinylated nu-
cleotides. Endogenous peroxidases were blocked with 0.3%
hydrogen peroxide in PBS. The cells were incubated with
Streptavidin-HRP, which binds to biotinylated nucleotides
incorporated at the 3'-OH DNA ends present in apoptotic
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cells. Streptavidin-HRP labeled cells were detected by
hydrogen peroxide and diaminobenzidine (DAB).

Proliferation assay

A549 cells were seeded in a 96-well plate at a concentra-
tion of 10,000 cells/well in 100 ul of DMEM/F12. The
cells were treated for 24 h with 5 pM of ATRA with or
without 5 uM of 15e. Cell proliferation was measured
using the 5-bromo-2'-deoxyuridine (BrdU) enzyme-
linked immunosorbent assay (Roche) according to the
manufacturer’s instructions. For the last 6 h of the 24 h
treatment period, the cells were pulsed with BrdU. Ab-
sorbance at 370 and 492 nm was measured in a Tecan
Infinite M1000 plate reader.

Statistical analysis

Statistical significances of the differences among data
were determined by analysis of variance and Newman-
Keuls test or ¢ test, when appropriate, using GraphPad
Prism 5.0 software. P<0.05 was considered as statisti-
cally significant. Values are presented as means + SEM.

Additional files

Additional file 1: Figure S1. ATRA activates the Akt pathway in H1944
and NL-20 cells. (A) Left, H1944 cells were serum-starved for 18 h and
treated or non-treated (NT) with 5 uM of ATRA for the times indicated.
Right, NL20 cells were serum-starved for 18 h and treated or non-treated
(NT) with 5 uM of ATRA for the times indicated and total extracts were
prepared. The phosphorylated form of Akt and total proteins levels were
detected by western blot using specific antibodies.

Additional file 2: Figure S2. Inhibition of the PI3k/Akt pathway
increased RARB2 expression. A549 cells were serum-starved for 18 h and
preincubated for 1 h with 5 uM of 15e before ATRA treatment. The cells
were subsequently treated or non-treated with 5 uM of ATRA for 48 h,
total extracts were prepared and levels of protein were detected by
western blot.
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