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Abstract

Background: Prolactin (PRL) is essential for normal mammary gland development. PRL promotes mammary tumor
formation in rodents and elevated serum prolactin is associated with increased risk of estrogen-receptor positive
breast cancer in women. On the other hand, PRL may also exert pro-differentiation effects and act to suppress
invasive features of established breast cancer. Previously published limited global transcript profiling analyses of
prolactin-regulated gene expression in human breast cancer cells have exclusively been performed in vitro. The
present study aimed to shed new light on how PRL modulates estrogen receptor (ER)-positive breast cancer
through global transcript profiling of a human breast cancer xenograft model in vivo.

Methods: The prolactin-responsive human T47D breast cancer cell line was xenotransplanted into nude mice and
global transcript profiling was carried out following treatment with or without human PRL for 48 h. A subset of
PRL-modulated transcripts was further validated using gRT-PCR and immunohistochemistry.

Results: The in vivo analyses identified 130 PRL-modulated transcripts, 75 upregulated and 55 downregulated,
based on fold change >1.6 and P-value <0.05. From this initial panel of transcripts, a subset of 18 transcripts with
established breast cancer-relevance were selected and validated by gRT-PCR. Some but not all of the transcripts
were also PRL-modulated in vitro. The selected PRL-modulated transcripts were tested for dependence on Stat5,
Jak1 or Jak2 activation, and for co-regulation by 17B-estradiol (E2). The protein encoded by one of the
PRL-regulated transcripts, PTHrP, was examined in a panel of 92 human breast cancers and found by in situ
quantitative immunofluorescence analysis to be highly positively correlated with nuclear localized and tyrosine
phosphorylated Stat5. Gene Ontology analysis revealed that PRL-upregulated genes were enriched in pathways
involved in differentiation. Finally, a gene signature based on PRL-upregulated genes was associated with
prolonged relapse-free and metastasis-free survival in breast cancer patients.

Conclusions: This global analysis identified and validated a panel of PRL-modulated transcripts in an ER-positive
human breast cancer xenotransplant model, which may have value as markers of relapse-free and metastasis-free
survival. Gene products identified in the present study may facilitate ongoing deciphering of the pleiotropic effects
of PRL on human breast cancer.
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Background

Prolactin (PRL) is a pituitary hormone that is critical for
normal mammary gland development by promoting pro-
liferative expansion of the secretory alveolar cell compart-
ment during pregnancy and for terminal differentiation of
these milk-producing cells during lactation. Prolactin is
also strongly implicated in breast cancer. On one hand, ac-
cumulating evidence suggests that PRL promotes breast
cancer initiation and growth. In vivo, PRL over-expressing
transgenic mice have an increased incidence of mammary
tumors [1], while PRL knock-out mice have a reduced in-
cidence of mammary tumors [2]. In women, elevated PRL
is associated with increased risk of ER-positive breast can-
cer [3,4]. Furthermore, 70-95% of human breast cancers
express PRL receptor (PRLR) [5,6], and many breast can-
cer cell lines express high levels of PRLR with evidence of
proliferative or survival responses to PRL in vitro [7,8].
PRL was also able to enhance 17f-Estradiol (E2) depen-
dent proliferation of breast cancer cells [9-11]. On the
other hand, evidence suggests that PRL acts to preserve
cellular differentiation of breast cancer. Stat5 transcription
factors, principal mediators of PRL effects [12,13], are fre-
quently inactivated during metastatic progression in clin-
ical breast cancer specimens, and loss of Stat5 signaling is
associated with unfavorable prognosis and increased risk
of anti-estrogen therapy failure [14-17]. In experimental
breast cancer models, activation of Stat5 increased cell
surface E-cadherin expression, induced homotypic cell
clustering, and reduced invasion through Matrigel [18,19].
Restoration of PRL-Stat5 signaling in the mesenchymal-
like MDA-MB-231 cells reverted their invasive phenotype,
while blocking autocrine PRL signaling in the epithelial
T47D cell line was associated with EMT and enhanced in-
vasive properties [20]. In T47D cells, PRL also blocked
progestin-induction of a tumor-initiating CK5-positive cell
population through a mechanism that involved PRL-
suppression of progestin-induced BCL6 [21].

Due to the importance of PRL in breast cancer growth
and differentiation, identifying genes regulated by the
PRL-Stat5 pathway may provide new insights into the
pleiotropic effects of PRL in breast cancer. Several stud-
ies have identified genes regulated by PRL in the normal
mouse mammary gland [22-26], but only a limited num-
ber of studies have been carried out in human breast
cancer cells. More importantly, global profiling for PRL-
modulated gene expression in human breast cancer
in vivo has not been reported. One in vitro study iden-
tified genes regulated by PRL, E2, and PRL+E2 in
cultured ER-positive T47D cells using genome-wide
transcript profiling [9], while a second in vitro study
used subtractive hybridization to identify PRL-regulated
genes in the ER-negative, Her2-overexpressing SKBR3
cell line [27]. However, neither study confirmed whether
the identified transcripts were regulated by Stat5 or
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remained PRL-modulated in vivo. Work from our la-
boratory used selective overexpression of either Stat5a
or Stat5b in the ER-positive MCF-7 human breast cancer
cell line in vitro followed by PRL exposure to explore
differences in Stat5a and Stat5b regulated transcripts on
the Affymetrix platform, but this study also failed to
confirm any of the modulated transcripts by qRT-PCR
or validate the data in vivo [17]. An additional very
recent study also examined the MCF-7 model and re-
ported PRL regulated genes, as well as genes uniquely
modulated through activation of the PRLR transactiva-
tion domain [28], but the investigators did not examine
whether the identified transcripts were regulated by
Stat5 or remained PRL-modulated in vivo.

Based on observed differences in hormone-modulated
transcriptional programs in human cancer cells in vitro
and in vivo [29], PRL-modified transcripts identified in
an in vivo environment are expected to be more clinic-
ally relevant than transcripts modulated in cells cultured
on plastic. The present study reports a panel of 130 PRL
regulated transcripts in the human T47D breast cancer
xenotransplant model in estrogenized nude mice. T47D
xenografts were established in nude mice and mice were
exposed to human PRL or saline for 48 h before RNA
isolation from tumor extracts. Of the 130 transcripts, 75
were up-regulated and 55 were down-regulated. Modu-
lated transcripts were identified based on fold change
(>1.6) and P-value (<0.05). From this initial transcript
set, 18 transcripts were selected based on known breast
cancer relevance for validation by qRT-PCR. Many but
not all of the in vivo validated transcripts were PRL-
modulated in vitro. We also determined the dependence
of PRL-modulated transcripts on Stat5, Jakl or Jak2, and
whether individual modulated genes are co-regulated by
PRL and E2. One of the PRL-modulated genes identified,
parathyroid hormone-related peptide (PTHrP), was found
by fluorescence-based quantitative immunohistochemistry
to positively correlate with levels of nuclear localized, tyro-
sine phosphorylated Stat5 (Nuc-pYStat5) at the protein
level in clinical human breast cancer specimens. Gene
Ontology (GO) analysis of PRL-upregulated genes demon-
strated enrichment in differentiation pathways. Finally, a
gene signature based on PRL-upregulated genes was asso-
ciated with prolonged relapse-free and metastasis-free sur-
vival in human breast cancer patients. Studies are ongoing
to determine how modulation of these genes, including
PTHrP, may mediate PRL effects in breast cancer.

Results

Global transcript profiling reveals novel PRL-modulated
genes in human T47D breast cancer xenotransplants
Global gene expression analysis was performed using the
hormone receptor positive T47D xenotransplant model.
Tumor-bearing nude mice received either human prolactin



Sato et al. Molecular Cancer 2013, 12:59
http://www.molecular-cancer.com/content/12/1/59

(N'=10) or vehicle (N =10) subcutaneously every 12 h for
48 h. Representative images of T47D xenograft tissues dis-
play robust tyrosine phosphorylated Stat5 (pY-Stat5) stain-
ing in response to PRL (Figure 1A). For the microarray
analyses, RNA isolated from individual tumors was pooled
into 3 groups from PRL injected mice and 3 groups from
control mice, with each group containing RNA from
tumors of 3 or 4 mice. Global profiling on the Affymetrix
U133 platform identified 75 upregulated transcripts
(Table 1) and 55 down-regulated transcripts (Table 2)
based on P-values (<0.05) and fold difference (>1.6). From
this panel, 18 transcripts were selected for further analysis
based on established breast cancer relevance (Table 3).
CISH was induced by PRL and included in subsequent
analyses as a positive control, since CISH is an established
STATS5 target gene [30]. Based on the microarray data of
this panel of 18 transcripts, 15 were upregulated and three
were down-regulated 1.6-fold.

gRT-PCR validation of 18 candidate prolactin modulated
genes

To validate the data from the global microarray analysis,
qRT-PCR analysis was carried out on the 18 selected genes
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using the same xenograft RNA samples that were used for
the microarray-based profiling. Of the upregulated tran-
scripts, 12 out of 15 transcripts were confirmed to be
upregulated by qRT-PCR >1.6-fold, whereas upregulation
of GADD45A, ERAP1, FGFR2 was not confirmed by qRT-
PCR. Among the selected three down-regulated tran-
scripts, BCL6 was confirmed down-regulated >1.6 fold by
qRT-PCR, whereas FLT4 and SOX4 were down-regulated
1.3-fold and 1.6-fold, respectively, by qRT-PCR analysis
(Figure 1B).

We then identified PRL-modulated transcripts in T47D
xenotransplants that were also modulated by PRL T47D
cells in vitro. Immunoblot analysis of T47D cells cultured
in vitro displayed robust pY-Stat5 in response to 10 nM
human PRL for 24 h (Figure 1C). qRT-PCR analysis of
mRNA extracted from T47D cells treated with or without
PRL for 24 h established that 9 of the 12 qRT-PCR vali-
dated upregulated transcripts also were upregulated over
1.6-fold in vitro, while three transcripts, CCR6, AMIGO2,
and DUSP4 were not modulated by PRL in vitro
(Figure 1D). Transcripts for GADD45A, ERAP1, FGFR2,
which were not confirmed by qRT-PCR analysis of tran-
scripts in vivo, remained unmodulated i vitro (Figure 1D).
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Figure 1 gRT-PCR validation of 18 candidate prolactin modulated transcripts. (A) Representative images of T47D xenografts treated with or
without PRL for 48 h and stained with tyrosine phosphorylated Stat5 (pY-Stat5)(red) or DAPI (blue) using immunofluorescence. (B) RNA isolated
from T47D xenografts were tested for 18 breast cancer relevant genes using gRT-PCR analysis. Bars represent an average of fold change from 3
independent xenograft RNA samples. (C) Immunoblot of pY-Stat5 and Stat5 in T47D cells grown in vitro and placed in serum starvation media for
24 h before treatment with vehicle or 10 nM PRL for 24 h. (D) RNA isolated from T47D cells grown in vitro were tested for the same 18 breast
cancer relevant genes using gRT-PCR analysis. Bars represent an average of fold change from 3 independent experiments.
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Table 1 Upregulated genes from microarray with fold change >1.6 and p < 0.05
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Unigene Symbol Gene descriptor Fold change

1 Hs.89626 PTHrP parathyroid hormone-like hormone 119

2 Hs.473539 BACH1 BTB and CNC homology 1, basic leucine zipper transcription factor 1 52

3 Hs.46468 CCR6 chemokine (C-C motif) receptor 6 49

4 Hs.314676 ITCH itchy homolog E3 ubiquitin protein ligase 42

5 Hs.150744 INVS inversin 38

6 Hs.387222 NEK6 NIMA (never in mitosis gene a)-related kinase 6 38

7 Hs.76095 IER3 immediate early response 3 34

8 Hs.121520 AMIGO2 amphoterin induced gene 2 33

9 Hs.115263 EREG epiregulin 32
10 Hs.436186 ERAP1 type 1 tumor necrosis factor receptor shedding aminopeptidase regulator 30
11 Hs.99037 CTEN C-terminal tensin-like 30
12 Hs.252855 MFI2 antigen p97 (melanoma associated) 29
13 Hs.439658 MGC4796 Ser/Thr-like kinase 28
14 Hs.417962 DUSP4 dual specificity phosphatase 4 2.7
15 Hs.8257 CISH cytokine inducible SH2-containing protein 26
16 Hs.660427 PAR5 Prader-Willi/Angelman syndrome-5 26
17 Hs.279887 AIPL1 aryl hydrocarbon receptor interacting protein-like 1 26
18 Hs.145807 TMC5 transmembrane channel-like 5 25
19 Hs.512708 TGM2 transglutaminase 2 24
20 Hs.270833 AREG amphiregulin (schwannoma-derived growth factor) 24
21 Hs.170623 FGD6 FYVE, RhoGEF and PH domain containing 6 23
22 Hs418138 FN1 fibronectin 1 23
23 Hs.102541 NTN4 netrin 4 22
24 Hs.354906 RAB39 RAB39, member RAS oncogene family 22
25 Hs.443906 EGLN3 egl nine homolog 3 (C. elegans) 22
26 Hs.149156 GLDC glycine dehydrogenase 22
27 Hs.1145 WT1 Wilms tumor 1 2.1
28 Hs.25220 LARGE like-glycosyltransferase 2.1
29 Hs.282557 cp ceruloplasmin (ferroxidase) 20
30 Hs.78909 ZFP36L2 zinc finger protein 36, C3H type-like 2 20
31 Hs.413297 RGS16 regulator of G-protein signalling 16 20
32 Hs.182454 NYREN18 NEDDS ultimate buster-1 20
33 Hs.96125 RCP Rab coupling protein 20
34 Hs.308028 TMEM17 transmembrane protein 17 20
35 Hs.21894 PPM1H protein phosphatase 1H (PP2C domain containing) 20
36 Hs.240395 KCNK6 potassium channel, subfamily K, member 6 19
37 Hs.36563 B7-H4 immune costimulatory protein B7-H4 1.9
38 Hs.27345 RNGTT RNA guanylyltransferase and 5'-phosphatase 19
39 Hs.144287 HEY2 hairy/enhancer-of-split related with YRPW motif 2 18
40 Hs.269857 HRB2 HIV-1 rev binding protein 2 18
41 Hs.387871 TNFSF10 tumor necrosis factor (ligand) superfamily, member 10 18
42 Hs.80409 GADD45A growth arrest and DNA-damage-inducible, alpha 1.8
43 Hs.134742 FAM20C family with sequence similarity 20, member C 18
44 Hs.274701 TK2 thymidine kinase 2, mitochondrial 18
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Table 1 Upregulated genes from microarray with fold change >1.6 and p < 0.05 (Continued)

45 Hs.55610 SLC30A1 solute carrier family 30 (zinc transporter), member 1 18
46 Hs.82173 TIEG TGFB inducible early growth response 18
47 Hs.404081 FGFR2 fibroblast growth factor receptor 2 18
48 Hs.31218 SCAMP1 secretory carrier membrane protein 1 1.8
49 Hs.350470 TFF1 trefoil factor 1 18
50 Hs.95655 SECTM1 secreted and transmembrane 1 1.8
51 Hs.902 NF2 neurofibromin 2 1.7
52 Hs.310640 T2BP TRAF2 binding protein 1.7
53 Hs.252550 TNIK TRAF2 and NCK interacting kinase 17
54 Hs.6838 ARHE ras homolog gene family, member E 1.7
55 Hs.418062 B3GALT3 betaGIcNAC beta 1,3-galactosyltransferase, polypeptide 3 1.7
56 Hs.270411 PLEKHC1 pleckstrin homology domain containing, family C member 1 1.7
57 Hs.647388 ARHGDIG Rho GDP dissociation inhibitor (GDI) gamma 17
58 Hs.202453 MYC v-myc myelocytomatosis viral oncogene homolog (avian) 16
59 Hs.110488 CHSY1 carbohydrate (chondroitin) synthase 1 16
60 Hs.9795 ACOX2 acyl-Coenzyme A oxidase 2, branched chain 16
61 Hs.158357 UNC5CL unc-5 homolog C (C. elegans)-like 16
62 Hs.441972 IFNT1 interferon tau-1 16
63 Hs.221889 CSDA cold shock domain protein A 1.6
64 Hs.333503 RNF38 ring finger protein 38 1.6
65 Hs.203581 DDX54 DEAD (Asp-Glu-Ala-Asp) box polypeptide 54 1.6
66 Hs.345226 ZNF563 zinc finger protein 563 1.6
67 Hs.30991 ANKRD6 ankyrin repeat domain 6 16
68 Hs4113 AHCYL1 S-adenosylhomocysteine hydrolase-like 1 1.6
69 Hs416077 SEMA4B sema domain 1.6
70 Hs.7378 PHLDB2 pleckstrin homology-like domain, family B, member 2 16
71 Hs.369063 7IC2 Zic family member 2 (odd-paired homolog, Drosophila) 16
72 Hs.515284 ZNF505 zinc finger protein 505 1.6
73 Hs.426511 MIPOL1 mirror-image polydactyly 1 16
74 Hs.108966 PIP5K2A phosphatidylinositol-4-phosphate 5-kinase, type I, alpha 1.6
75 Hs.432607 PSMB2 proteasome (prosome, macropain) subunit, beta type, 2 16

Out of the three selected down-regulated transcripts,
BCL6 maintained PRL induced down-regulation of >1.6-
fold in vitro, whereas FLT4 and SOX4 again were reprodu-
cibly down-regulated but only 1.5-fold and 1.4-fold re-
spectively (p <0.05) (Figure 1D). Since these values were
only marginally lower than 1.6, we elected to keep FLT4
and SOX4 in the subsequent analyses. In subsequent ex-
periments we focused on the set of 12 transcripts out of
original selected panel of 18 transcripts that were PRL-
responsive both in vivo and in vitro.

Stat5 regulates novel PRL-modulated transcripts

PRL activates multiple signaling pathways in breast cancer
cells [31], with Stat5 constituting a principal mediator of
PRL actions during development and differentiation of the

mammary gland [32]. To determine whether the observed
PRL-modulated transcripts were regulated through the
Stat5 pathway, we overexpressed Stat5a, Stat5b, or a
dominant-negative Stat5a/b (DNStat5) in T47D cells
using adenoviral gene delivery, and treated cells with or
without PRL for 24 h. Immunoblot analysis of total cell ly-
sates verified over-expression of the correct Stat5 variants
and robust PRL-induction of pY-Stat5 in cells following
adenoviral gene delivery (Figure 2A). The overexpression
was sufficiently high that basal levels of Stat5 were not de-
tectable without further exposure of the blots (not shown).
qRT-PCR analysis revealed that DNStat5 blocked PRL in-
duction of each of the 9 upregulated transcripts. PRL
induction of most of these 9 transcripts were further en-
hanced by overexpression of Stat5a or Stat5b, either basal
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Table 2 Downregulated genes from microarray with fold change >-1.6 and p < 0.05
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Unigene Symbol Gene descriptor Fold Change

1 Hs.275464 KLK10 kallikrein 10 -33

2 Hs.307030 KRTAP1-5 keratin associated protein 1-5 -33

3 Hs.282233 MLLT6 myeloid/lymphoid leukemia translocated to, 6 -32

4 Hs.78518 NPR2 natriuretic peptide receptor B/guanylate cyclase B -28

5 Hs.155024 BCL6 B-cell CLL/lymphoma 6 -28

6 Hs.90800 MMP16 matrix metalloproteinase 16 (membrane-inserted) -25

7 Hs.87539 ALDH3B2 aldehyde dehydrogenase 3 family, member B2 24

8 Hs.144906 METAP2 methionyl aminopeptidase 2 -23

9 Hs.440455 ALAS2 aminolevulinate, delta-, synthase 2 -2.2
10 Hs.266175 PAG phosphoprotein associated with glycosphingolipid-enriched microdomains =22
11 Hs.435947 RBM15 RNA binding motif protein 15 -22
12 Hs.233325 HFE hemochromatosis -2.1
13 Hs.443012 SEMABA sema domain,transmembrane domain(TM),and cytoplasmic domain,(semaphorin)6A =20
14 Hs.357901 SOX4 SRY (sex determining region Y)-box 4 -20
15 Hs.415048 FLT4 fms-related tyrosine kinase 4 -20
16 Hs.380833 IGFBPS insulin-like growth factor binding protein 5 -19
17 Hs.444881 CRAMP1L Crm, cramped-like (Drosophila) -19
18 Hs.398124 DNAH5 dynein, axonemal, heavy polypeptide 5 -19
19 Hs.79025 SNRK SNF-1 related kinase -19
20 Hs.432121 PRDX2 peroxiredoxin 2 -19
21 Hs.22370 NEXN nexilin (F actin binding protein) -19
22 Hs.144914 GNMT glycine N-methyltransferase -19
23 Hs.21446 CENTB5 centaurin, beta 5 -19
24 Hs.58103 AKAPS A kinase (PRKA) anchor protein (yotiao) 9 -18
25 Hs.387385 SMURF2 E3 ubiquitin ligase SMURF2 -18
26 Hs.324470 ADD3 adducin 3 (gamma) -18
27 Hs.348387 GSTM4 glutathione S-transferase M4 -1.8
28 Hs.58419 TARSH target of Nesh-SH3 -17
29 Hs.174051 SNRP70 small nuclear ribonucleoprotein 70 kDa polypeptide (RNP antigen) -17
30 Hs.211601 MAP3K12 mitogen-activated protein kinase kinase kinase 12 -1.7
31 Hs.23964 SAP18 sin3-associated polypeptide, 18 kDa -1.7
32 Hs.380929 LDHD lactate dehydrogenase D -17
33 Hs.390568 ZNF585A zinc finger protein 585A =17
34 Hs.241305 TRIM16 tripartite motif-containing 16 -1.7
35 Hs.403933 FBXO32 F-box only protein 32 -17
36 Hs.434756 AP2E adaptor-related protein complex 2, epsilon subunit -1.7
37 Hs.17389%4 CSF1 colony stimulating factor 1 (macrophage) -16
38 Hs.104555 NPFF neuropeptide FF-amide peptide precursor -16
39 Hs.307015 KRTAP4-14 keratin associated protein 4-14 -1.6
40 Hs.301961 GSTM1 glutathione S-transferase M1 -16
41 Hs.307915 ABCC4 ATP-binding cassette, sub-family C (CFTR/MRP), member 4 -16
42 Hs.512000 GP1BB glycoprotein Ib (platelet), beta polypeptide -1.6
43 Hs.446297 ZNF498 zinc finger protein 498 -1.6
44 Hs.120396 FRMD4 FERM domain containing 4 -16
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Table 2 Downregulated genes from microarray with fold change > -1.6 and p < 0.05 (Continued)

45 Hs.222901 GRIK4 glutamate receptor, ionotropic, kainate 4 -16
46 Hs.464896 ZNF397 zinc finger protein 397 -16
47 Hs.16232 CNKSR1 connector enhancer of kinase suppressor of Ras 1 -16
48 Hs.255526 DTNA dystrobrevin, alpha -16
49 Hs.107203 PLAC2 placenta-specific 2 -16
50 Hs.9029 KRT23 keratin 23 (histone deacetylase inducible) -16
51 Hs.91753 SMPD3 sphingomyelin phosphodiesterase 3, neutral membrane (neutral sphingomyelinase Il) -16
52 Hs.331555 SPINKS5 serine protease inhibitor, Kazal type 5 -16
53 Hs.391858 TIAT TIAT cytotoxic granule-associated RNA binding protein -16
54 Hs.109122 MPP5 membrane protein, palmitoylated 5 (MAGUK p55 subfamily member 5) -16
55 Hs.445072 ARGBP2 Arg/Abl-interacting protein ArgBP2 -16

or PRL-induced (Figure 2B). Although levels of PRL-
induced CISH and WT1 transcripts did not rise further
by Stat5 overexpression, PRL-induction of both tran-
scripts was effectively abrogated by DNStat5, thus
supporting Stat5-mediated regulation of these genes.
Stat5 overexpression also enhanced down-regulation of
both SOX4 and FLT4. The ERAP1 transcript was in-
cluded as a negative control since it was not regulated
by PRL as shown in Figure 1. Stat5a, Stat5b, or DN-
Stat5 overexpression had no effect on ERAPI transcript
levels, indicating that enhancement of PRL-induction
detected for the other transcripts is specific (Figure 2).
BCL6 was omitted from this analysis since we have
published this separately [33].

Jak2 and Jak1 are critical for PRL gene regulation in T47D
breast cancer cells

Conditional gene knock-out in mice demonstrated that
Jak2 is the key Stat5 tyrosine kinase in breast epithelial cells
during and outside of pregnancy and lactation [34]. How-
ever, we have reported that in human breast cancer cell
lines Jak1 is also recruited in a Jak2-dependent manner for
maximal PRL-activation of Stat5 and other signaling medi-
ators [31]. To determine whether PRL-recruitment of Jak1l
was required for maximal modulation of PRL-regulated
transcripts, T47D cells were infected with lentivirus carry-
ing shRNAs targeting either Jakl or Jak2 followed by
treatment with or without PRL for 24 h. Jakl shRNA
was effective and selective, as judged by marked down-

Table 3 18 genes chosen for further study based on breast cancer relevance

Unigene Symbol Gene descriptor Fold Change
1 Hs.89626 PTHrP parathyroid hormone-like hormone 11.9
2 Hs.46468 CCR6 chemokine (C-C motif) receptor 6 49
3 Hs.76095 IER3 immediate early response 3 34
4 Hs.121520 AMIGO2 amphoterin induced gene 2 33
5 Hs.115263 EREG epiregulin 32
6 Hs.436186 ERAP1 type 1 tumor necrosis factor receptor shedding aminopeptidase regulator 30
7 Hs.417962 DUSP4 dual specificity phosphatase 4 2.7
8 Hs.8257 CISH cytokine inducible SH2-containing protein 26
9 Hs.145807 TMC5 transmembrane channel-like 5 25
10 Hs.270833 AREG amphiregulin (schwannoma-derived growth factor) 24
11 Hs.418138 FN1 fibronectin 1 23
12 Hs.102541 NTN4 netrin 4 22
13 Hs.1145 WT1 Wilms tumor 1 2.1
14 Hs.80409 GADD45A growth arrest and DNA-damage-inducible, alpha 1.8
15 Hs.404081 FGFR2 fibroblast growth factor receptor 2 1.8
16 Hs.155024 BCL6 B-cell CLL/lymphoma 6 -28
17 Hs.357901 SOX4 SRY (sex determining region Y)-box 4 =20
18 Hs.415048 FLT4 fms-related tyrosine kinase 4 -20
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Figure 2 Stat5 regulates novel prolactin modulated transcripts. (A) Immunoblot of pY-Stat5 and Stat5 in cells treated with adenovirus
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regulation of Jakl mRNA but not Jak2 mRNA (Figure 3).
Conversely, Jak2 shRNA effectively suppressed Jak2 mRNA
but not Jakl mRNA (Figure 3). All nine PRL-upregulated
transcripts showed complete dependence on Jak2 (Figure 3).
Importantly, all nine PRL-induced transcripts were also
partially suppressed by Jakl knockdown, consistent with a
significant role for Jakl recruitment by PRL in breast cancer
cells to maximize downstream signals. Among the three

down-regulated transcripts, BCL6 down-regulation by PRL
was dependent on Jak2 but not on Jakl, whereas down-
regulation of FLT4 and SOX4 by PRL was not significant
under these experimental conditions, possibly due to cell
stress during lentiviral infection (Figure 3). Collectively,
these data are consistent with a general model in which
Jak2 is critical for PRL receptor signaling and Jakl recruit-
ment is needed for maximal signal.
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Synergistic enhancement by E2 of PRL-induced
proliferation and select PRL-modulated genes
Previous studies have indicated that PRL may enhance
E2-induced proliferation as well as additively or syner-
gistically increase transcription of certain PRL or E2 tar-
get genes [9-11]. To verify that the PRL-E2 interaction
occurred in T47D cells under our culture conditions, we
treated T47D cells with varying doses of PRL (0, 1, 10,
20, 37, and 100 nM) while keeping E2 constant (1 nM),
and determined cell number after 72 h. PRL concentra-
tions as low as 10 nM in the presence of E2 were associ-
ated with an increase in cell number compared to E2
alone, and this effect was maintained at higher PRL con-
centrations (Figure 4A). Next, we maintained constant
PRL concentration (20 nM) while varying the E2 dose
(0.001, 0.01, 0.1, 1, 10 nM), and counted cell numbers
after 72 h. At every concentration of E2, we observed a
PRL-induced increase in cell number (Figure 4B). We
also determined the effect of PRL on E2-driven growth
in soft agar and measured colony size after 2 weeks.
While PRL alone had limited effect on colony size, E2
increased colony size dramatically, and PRL further in-
creased E2-driven colony size (Figure 4C). Representa-
tive images of the colonies in soft agar are displayed in
Figure 4D. These data established under our culture
conditions that PRL positively interacts with E2 to in-
duce proliferation of luminal T47D breast cancer cells.
To determine whether the PRL-modulated transcript
panel was affected by co-treatment with E2, we treated
T47D cells with vehicle, PRL, E2, or PRL + E2 for 24 h and
performed qRT-PCR analysis of the 12 transcripts. Seven
out of the nine upregulated transcripts displayed further
induction with E2 present (NTN4 and TMC5 had no
further induction) (Figure 4E). None of the three PRL-
downregulated genes displayed further downregulation in
the presence of E2 (Figure 4E). This data indicates that E2
is selectively modulating some but not all PRL-Stat5 regu-
lated transcripts, and these specific transcripts may be

playing a role in PRL’s ability to increase E2-driven breast
cancer cell proliferation.

PTHrP protein levels correlate with levels of pYStat5 in
human breast cancer tissues

To begin to assess the clinical relevance of the newly
identified PRL-modulated transcripts, we selected the
gene product most strongly upregulated by PRL in the
in vivo xenotransplant tumors, PTHrP, for protein ex-
pression analysis in clinical breast cancer specimens. We
hypothesized that cellular PTHrP protein levels would
be positively correlated with levels of nuclear localized
and tyrosine phosphorylated Stat5 (Nuc-pYStat5). Nuc-
pYStat5 is an indirect measure of PRL receptor acti-
vation in breast epithelia, and we documented evidence
of Stat5-dependence of PRL-upregulation of PTHrP in
T47D cells. Levels of cellular PTHrP and Nuc-pYStat5
were analyzed using fluorescence-based quantitative im-
munohistochemistry on a breast cancer progression array
containing 40 normal and 140 malignant breast tissues.
Representative images of PTHrP and pY-Stat5 staining
are shown in Figure 5A, where Case 1 has high PTHrP
and Nuc-pYStat5 levels, while Case 2 has low PTHrP
and Nuc-pYStat5 levels. Evaluable levels of cellular
PTHrP and Nuc-pYStat5 were obtained in 92 breast
cancer specimens and in support of our hypothesis, a
statistically significant positive correlation was detected
(r=0.51, P <0.001) (Figure 5B).

Gene ontology (GO) terms are enriched in differentiation
markers

Analysis of GO biological process terms using the 75
PRL-upregulated transcripts identified in this study re-
vealed 24 GO terms that had a false discovery rate
(FDR) below 25% (Table 4). Many of the pathways that
were identified were homeostasis-related, correlating
with the ability of the PRL-Stat5 pathway to maintain
cellular differentiation, consistent with established pro-
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differentiation effects of PRL on normal and malignant
luminal breast epithelial cells. In addition, proliferation-
regulation and negative regulation of apoptosis were also
identified, which is consistent with the reported role of
PRL contributing to breast cancer initiation and growth.

Prolactin-upregulated gene signature is associated with
prolonged time to relapse and metastasis

We then determined whether the PRL-upregulated gene
signature was associated with clinical outcome, using an

available 49 of 75 PRL-upregulated genes (Table 5) in a co-
hort of 936 primary invasive breast cancer patients. We di-
vided the patients into three groups based on their degree
of expression of the PRL-gene signature (upper quartile,
interquartile range, and lower quartile). The patients in the
upper quartile had significantly prolonged time to metasta-
sis compared to patients associated with the lower quartile
(Figure 6A). In addition, patients that were in the upper
quartile also had significantly prolonged disease-free sur-
vival than patients in the lower quartile (Figure 6B).
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Discussion

The present study reports a novel panel of PRL-
modulated transcripts based on analysis of human breast
cancer xenograft tumors in vivo. We identified 75 up-
regulated and 55 down-regulated transcripts that were
significantly modulated based on at least a 1.6-fold
change with a P-value less than 0.05. From this panel of
130 PRL-modulated transcripts, a subset of 18 tran-
scripts with established breast cancer-relevance was se-
lected for further analysis and validation. Validation by
qRT-PCR documented significant modulation of 12 of
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18 transcripts in vitro. We further documented that the
majority of in vitro-modulated transcripts were Stat5-
and Jak2-dependent, and showed that Jakl was required
for maximal PRL-modulation. Consistent with PRL-
enhancement of E2-driven proliferation of breast cancer
cells, select PRL-modulated transcripts displayed positive
co-regulation by E2, including the growth factors EREG
and AREG. These molecular results are summarized in
Table 6. Furthermore, quantitative immunofluorescence
analyses of clinical breast cancer specimens from a co-
hort of 92 patients documented a significant positive
correlation between tumor levels of PTHrP protein, one
of the PRL-stimulated transcripts, and nuclear localized
and tyrosine phosphorylated Stat5, a marker of PRL sig-
naling. Gene ontology analysis revealed that prolactin-
upregulated genes were associated most frequently with
terms involved in homeostasis and differentiation. Fi-
nally, a gene signature generated with PRL-upregulated
genes was associated with prolonged relapse-free sur-
vival as well as metastasis-free survival in a cohort of
breast cancer patients. Collectively, the validation studies
support the value of the transcript data and are expected
to facilitate better understanding of PRL action in breast
cancer.

PRL activates both Stat5a and Stat5b, which have 92%
amino acid similarity [35], but are encoded by different
genes and may mediate overlapping and distinct effects in
breast cancer cells [17,33,36-38]. In the present study,
which focused on PRL-modulated transcripts in the
T47D breast cancer model, experimental overexpression
of Stat5a or Stat5b enhanced to a comparable extent PRL-
modulation of most transcripts tested. However, TMCS5,
NTN4, and AREG displayed greater degree of enhanced
PRL-modulation when Stat5a was overexpressed rather
than Stat5b, supporting the notion that certain genes are
more responsive to Stat5a than Stat5b. PRL-modulation of
all examined transcripts with the exception of PRL-
induced down-regulation of FLT4 mRNA was disrupted
by overexpression of a C-terminally truncated Stat5 vari-
ant that acts as a dominant-negative molecule for both
Statba and Stat5b. This exception is consistent with previ-
ous reports that repression of certain Stat5 target genes is
unaffected by alterations in the Stat5 transactivation do-
main [33,39]. We have recently reported that Stat5a but
not Stat5b expression was lost during progression of hu-
man breast cancer, and in cultured MCEF-7 cells there was
only a limited overlap in transcripts modulated by the two
PRL-activated transcription factors [17]. It is possible that
in T47D cells the higher basal levels of Stat5a and espe-
cially Statbb make it more difficult to ascertain differences
between the two transcription factors in overexpression
studies. Future transcript analyses will focus on further
characterizing the differences in gene regulation between
Statba and Stat5b in human breast cancer.
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Table 4 Gene Ontology (GO) analysis of PRL upregulated genes with false discovery rate (FDR) < 25

GO Term Description P value FDR
GO:0030005 cellular di-, tri-valent inorganic cation homeostasis 0.002 2452
GO:0042592 homeostatic process 0.002 2.848
GO:0055066 di-, tri-valent inorganic cation homeostasis 0.002 3.079
G0:0030003 cellular cation homeostasis 0.003 4015
GO:0055080 cation homeostasis 0.004 6.550
GO:0006879 cellular iron ion homeostasis 0.006 8210
GO:0043123 positive regulation of |-kappaB kinase/NF-kappaB cascade 0.006 9.136
GO:0060249 anatomical structure homeostasis 0.008 10.970
GO:0055072 iron ion homeostasis 0.008 11.045
GO:0019725 cellular homeostasis 0.008 11.791
GO:0043122 regulation of I-kappaB kinase/NF-kappaB cascade 0.008 11.809
GO:0048514 blood vessel morphogenesis 0.009 12.950
GO:0051052 regulation of DNA metabolic process 0.010 13.580
GO:0042127 regulation of cell proliferation 0.010 13.992
GO:0043066 negative regulation of apoptosis 0011 15.532
GO:0043069 negative regulation of programmed cell death 0.012 16.371
GO:0060548 negative regulation of cell death 0.012 16.542
G0:0048878 chemical homeostasis 0.013 17.642
G0:0006873 cellular ion homeostasis 0014 18.854
G0:0055082 cellular chemical homeostasis 0014 19.975
GO:0001568 blood vessel development 0015 20.556
GO:0010627 regulation of protein kinase cascade 0.015 20.807
GO:0001944 vasculature development 0.016 22.079

Jakl was reported to be activated by PRL signaling in
human breast cancer lines and cooperate with Jak2 to en-
hance signaling pathways downstream of PRL receptors,
including Stat5, Stat3 and Erk activation [31]. The present
study validates the notion that Jakl-coactivation enhances
PRL-Jak2 signaling by demonstrating that maximal PRL-
modulation of target transcripts required PRL-induced
co-activation of Jakl. Future studies to identify the mech-
anism of activation of Jakl by PRL receptors in breast can-
cer and the effect of Jakl-activation on PRL-modulated
biology of breast cancer are now warranted.

Furthermore, whereas PRL alone exerted limited pro-
liferative effect on T47D breast cancer cells in vitro, PRL
enhanced E2-driven cell proliferation both on plastic
and soft agar. PRL positively interacted with E2 to fur-
ther elevate several transcripts encoding growth and
progression factors for breast cancer, including AREG,
EREG, PTHrP and WTI1. Considering the established
role for AREG as a paracrine mediator of E2-induced
proliferation of luminal breast epithelial cells during pu-
bertal growth [40], AREG may be directly involved in
PRL stimulation of E2-driven growth of human breast
cancer. A recent study has implicated PRL receptors in
the maintenance of ER expression and responsiveness of

breast cancer cells to estrogen [28], which is consistent
with our findings which demonstrate significant cross-
talk between the two pathways. Since Stat5 has been
associated with response to anti-estrogen therapy in
clinical breast cancer specimens [16,17], this synergistic
stimulation of proliferation with estrogen may be a
mechanism behind increased responsiveness to anti-
estrogen treatments. In addition, PRL biological action
may vary depending on the hormonal environment, es-
pecially given our recent observation that PRL effectively
counteracts progestin-induction of the tumor-initiating
CK5-positive cell population [21].

We identified PRL-suppression of BCL6 transcript
and protein based on this global transcript analysis of
T47D xenotransplants tumors, and we reported a nega-
tive correlation between levels of BCL6 protein and
Nuc-pYStat5 in clinical breast cancer specimens [33].
The fact that the protein products of two of the PRL-
modulated genes identified in this global transcript
profiling, PTHrP and BCL6, both correlated with Nuc-
pYStat5 in human clinical breast cancer specimens in-
dicates that transcripts identified in the present study
are relevant in clinical specimens and may become use-
ful human breast tumor markers of PRL activation.
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Table 5 PRL-upregulated genes used to generate PRL
gene signature

Gene Correlation Gene Correlation
Symbol with signature symbol with signature

average average
AREG 06 TNIK 025
DUSP4 0.51 PPM1H 0.17
PTHLH 046 PARS 0.15
EREG 045 INVS 0.14
SCAMP1 043 CSDA 0.13
TMC5 042 MYC 0.12
GADD45A 042 WT1 0.09
CHSY1 041 CISH 0.08
TFF1 04 CcpP 0.07
FGD6 0.39 RGS16 0.07
BACH1 0.38 NF2 0.07
AHCYL1 037 FGFR2 0.04
EGLN3 034 RNGTT 0.03
AMIGO2 033 FN1 0.02
TNFSF10 033 [TCH -0.01
IER3 033 LARGE -0.1
ANKRD6 0.32 PSMB2 -0.12
ACOX2 031 SECTM1 -0.15
SLC30A1 0.31 GLDC -02
ERAP1 0.31 AIPL1 -0.21
RNF38 03 TGM2 -0.22
ZFP36L2 03 DDX54 -0.23
CCR6 0.28 MFI2 -027
HEY2 025 ARHGDIG -0.27
TK2 0.25

Supporting the validity of the identified panel of PRL-
modulated transcripts in T47D cells in vivo, 12 out of
the 57 transcripts identified as PRL-modulated tran-
scripts in a recent in vitro transcript profiling study of
T47D cells overlapped with our panel (AREG, WTI,
PTHrP, IER3, TMC5, CISH, BCL6, DUSP4, TNIK,
EGLNS3, FBX032, and AKAPY) [9]. Only WT1 and IER3
transcripts were tested and confirmed by qRT-PCR in
the previous report. In addition, select transcripts identi-
fied in the previous study such as WT1 and IER3 dem-
onstrated co-regulation by E2 [9], consistent with the
findings of the present study. In vitro transcript profiling
for PRL-modulated transcripts in another ER-positive
human breast cancer cell line, MCF7, using Stat5 over-
expression to enhance PRL effects, yielded 300 candidate
PRL-modulated transcripts among which 12 overlapped
with the panel identified in the present study of T47D
cells (CISH, EGLN3, KCNK6, PTHrP, FN1, CHSY],
BCL6, DUSP4, IGFBP5, TNIK, ABCC4, and MYC) [17].
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The limited overlap between our current study of T47D
cells and two recent studies of MCF-7 cells in vitro may
be due to lower expression levels of Stat5 in MCF-7 cells,
making it necessary to overexpress Stat5 [17] or PRL
receptor [28]. While previous studies were performed
in vitro and did not broadly validate identified candidate
PRL-modulated transcripts by qRT-PCR, the present study
also provides novel data by demonstrating PRL-regulation
of transcripts in vivo and through Jak-Stat5 dependent
mechanisms.

The established breast cancer relevance for AREG,
WT1, and IER3 is discussed in a previous transcript pro-
filing study [9]. NTN4 is a transmembrane protein
whose expression levels positively correlates with better
prognosis in breast cancer [41]. TMC5 is a transmem-
brane channel that was overexpressed in PIK3CA-
mutated breast cancer [42]. FN1 is a protein present in
the extracellular matrix that is a candidate serum bio-
marker for detecting breast cancer [43], and disrupting
the interaction between FN1 and integrins in breast can-
cer cells led to increased apoptosis and response to radi-
ation [44]. EREG is a ligand for EGFR and Her4, and
was reported to be part of a set of four genes that pro-
mote breast cancer intravasation and metastasis to the
lung [45]. PTHrP is a secreted protein critical for mam-
mary gland development [46], and extensive research
has been performed on its role in mediating breast can-
cer metastasis to bone [47-49]. SOX4 is a transcription
factor regulated by progesterone in breast cancer cells
[50], and was identified as an oncogene in prostate can-
cer [51]. FLT4 is a member of the VEGF receptor family,
and expression in vessels surrounding breast tumors was
correlated to lymph node positivity and poor clinical
outcome [52]. These genes clearly demonstrate the com-
plexity of PRL effects, since PRL has the ability to suppress
oncogenes (SOX4, FLT4, BCL6) and upregulate favorable
prognostic markers (NTN4), while also upregulating genes
involved in breast cancer growth and progression (AREG,
WT1, IER3, EREG, TMC5, FN1, PTHrP). These observa-
tions are consistent with the many reported conflicting and
likely context-dependent effects of PRL in breast cancer.

Furthermore, gene ontology (GO) analysis based on
PRL-upregulated genes demonstrated a concentration in
homeostasis pathways, consistent with the known pro-
differentiation role of PRL in breast cancer. However,
other terms such as cell proliferation and anti-apoptosis
were also enriched, most likely reflecting the duality of
PRL action. Consistent with the enrichment of differen-
tiation terms in the GO analysis, a PRL gene signature
generated on PRL-upregulated genes was associated with
prolonged time to relapse and metastasis-free survival
These associations are consistent with the multiple re-
ports that Stat5 is associated with favorable prognosis in
breast cancer patients [14-16]. In addition, we have
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recently reported that prolactin can suppress a therapy-
resistant, tumor-initiating CK5-positive population in-
duced by progestin [21]. Our results are consistent with
a role of PRL in reducing the tumor-initiating CK5-
positive cell population, which is implicated in breast
cancer metastasis and relapse.

Conclusions

The present study is the first to report a panel of PRL-
modulated transcripts based on global transcript profiling
of human breast cancer xenotransplant tumors in vivo.
Some but not all transcripts were also modulated by PRL

Table 6 Summary of transcript regulation

in vitro. PRL-enhancement of E2-driven proliferation of
T47D cells in vitro may be mediated by observed co-
regulation by PRL and E2 of growth-promoting genes in-
cluding AREG, EREG, WT1 and PTHrP. PRL-modulated
transcripts reported in this study are expected to facilitate
deciphering of the mechanisms underlying the pleotropic
effects of PRL on breast cancer. PRL-upregulated genes
were frequently associated with differentiation pathways.
Finally, select transcripts or their protein complement
identified in this study also may be useful as breast cancer
tumor marker signatures of PRL activation, which is
highly relevant considering our report that PRL gene

Gene Fold Change in vivo in vitro Stat5 Jak2 Jak1 E2
(microarray) Regulation Regulation Regulation Regulation Regulation Regulation
PTHrP 11.9 Y Y Y Y Y Y
CCR6 49 Y N Y Y Y Y
IER3 34 Y Y Y Y Y Y
AMIGO2 33 Y N NA NA NA NA
EREG 32 Y Y Y Y Y Y
ERAP1 30 N N NA NA NA NA
DUSP4 2.7 Y N NA NA NA NA
CISH 26 Y Y Y Y Y Y
TMC5 25 Y Y Y Y Y N
AREG 24 Y Y Y Y Y Y
FN1 23 Y Y Y Y Y Y
NTN4 2.2 Y Y Y Y Y N
WT1 2.1 Y Y Y Y Y Y
GADDA45A 1.8 N N NA NA NA NA
FGFR2 1.8 N N NA NA NA NA
BCL6 -2.8 Y Y Y Y N N
SOX4 -20 Y Y NA NA
FLT4 -20 Y Y Y NA NA N
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signature is associated with relapse-free survival and
metastasis-free survival, and the already documented asso-
ciation of Stat5 with breast cancer prognosis and hormone
therapy responsiveness.

Materials and methods

Tissue culture

T47D cells were cultured in RPMI (Cellgro) containing
10% fetal bovine serum (FBS) and 1 mM sodium pyru-
vate (Cellgro). For PRL induction, confluent T47D cells
were put in serum starvation media (RPMI without FBS)
for 24 h, and then stimulated with either PBS vehicle or
10 nM of recombinant human prolactin (AFP795, pro-
vided by Dr. AF. Parlow at National Hormone and
Pituitary Program) for 24 h. 24 h prior to experiments
involving B-Estradiol (Sigma), media was changed to
RPMI containing 5% Charcoal Stripped Serum (Thermo
Scientific) and 1 mM sodium pyruvate.

Xenotransplants

Nude mice (N =20) were implanted with 17p-estradiol
pellets (0.72 mg; Innovative Research of America) and
injected subcutaneously with T47D cells (5 x 10°
suspended in Matrigel into two dorsolateral sites. Tumors
were allowed to grow for 6 weeks and subsequently were
injected subcutaneously with either saline (N=10) or
5 pg/g body mass of human prolactin (N = 10) every 12 h

Table 7 Primer sequences
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for 48 h total. Tumors were harvested and processed for
immunohistochemistry and qRT-PCR. All research involv-
ing mice were approved by Thomas Jefferson IACUC
(protocol 789C to H.R.) in accordance with international
guidelines for ethical treatment of animals.

Microarray

RNA was pooled into 3 groups from PRL injected mice
and 3 groups from saline injected mice, with each group
containing RNA from 3—-4 mice. Microarray analysis was
performed for each group using the Affymetrix HG-
U133 GeneChip Set (Expression Analysis). Two group
comparison analyses were conducted on normalized ex-
pression values that were individually transformed using
base 2 logarithms. On the log-transformed scale, the
mean is calculated for every gene within each group and
a two-sample, two-sided t-test is conducted to test the
equality of those means. The P-value indicates the sig-
nificance level of this test.

Quantitative reverse transcription polymerase chain
reaction

Quantitative RT-PCR assays were performed with RNA
samples isolated from T47D cells using RNeasy kit
(Qiagen). cDNA was generated using Iscript (Bio-Rad)
according to the manufacturer’s protocol. cDNAs were
subjected to qPCR using corresponding primers (Table 7).

Gene Forward primer Reverse primer

PTHrP GTTCCTGGTGAGCTACGCG CTTGGATGGACTTCCCCTTG
CCR6 TGCTACCGCTGCCTGTGAGC AAAATAATCTTCACTGGAGTCG
IER3 CGTCCTCGAGCCCTTTAATCT AGGTCCAGAGCGTAGTCCGA
AMIGO?2 CCGGTGTCTTTTCCACCG GAGCCCACGAGGCTCC

EREG GCTCTGCCTGGGTTTCCATC CCACACGTGGATTGTCTTCTIGTC
ERAP1 GCCATTCTAGCTGCAGTGGG CAACTGTGTACGGGAGCCC
DUSP4 TACAAGTGCATCCCAGTGGA CCCGTTTCTTCATCATCAGG
CISH CTGCTGTGCATAGCCAAGAC GTGCCTTCTGGCATCTTCTG
TMC5 TATCCTTCAGCTCAATTGCTG AGAGGACGCTGGTTCCAAAC
AREG GGTGGTGCTGTCGCTCTTG TCAGCACTGTGGTCCCCAG

FN1 TTCTACTCCTGCACACAGAAG CCCTCAGAAGTGCAATCAGTG
NTN4 CATGGTGGGATACTGGGGC TCAGGAACTTCATGATACCAGTC
WT1 GAGAGCCAGCCCGCTATTC CATGGGATCCTCATGCTTG
GADD45A TCAGCGCACGATCACTGTC CCAGCAGGCACAACACCAC
FGFR2 CTCACTCTCACAACCAATGAGG AGGAAGGCATGGTTCGTAAG
BCL6 CTGCAGATGGAGCATGTTGT TCTTCACGAGGAGGCTTGAT
SOX4 GTGAGCGAGATGATCTCGGG CAGGTTGGAGATGCTGGACTC
FLT4 CAGGATGAAGACATTTGAGG AAGAAAATGCTGACGTAT
GAPDH AATCCATCACCATCTTCCA TGGACTCCACGACGTACTCA
ERAP1 GCCATTCTAGCTGCAGTGGG CAACTGTGTACGGGAGCCC
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Immunohistochemistry

Immunohistochemistry and AQUA analyses were per-
formed on a tissue array generated by cutting-edge matrix-
assembly containing 100 deidentified primary invasive
breast carcinoma specimens in a cohort described previ-
ously [33]. Immunohistochemistry was performed as de-
scribed previously [33] using pY-Stat5 (Epitomics, 1:200),
PTHrP (Santa Cruz, 1:200), and cytokeratin (DAKO,
1:100). AQUA analysis was performed using AQUA/
PM2000 (HistoRx) as described previously [33].

Adenoviral and lentiviral production and infection
Lentiviral particle production was performed as de-
scribed previously [33]. shRNA lentiviral vectors (Open
Biosystems, Lafayette, CO, USA) were obtained for
scrambled control (SC002), and Jakl (TRCN0000003102),
and Jak2 (TRCNO0000003180). The cells were infected with
lentivirus overnight and allowed to grow for 48 h before
hormone induction for an additional 24 h. LacZ, Stat5a,
Stat5b, and Dominant-negative-Stat5 (DN-Stat5) adenovi-
ruses were prepared using double cesium chloride centri-
fugation [53] and used for gene delivery into T47D cells
(1.5x10°%well in 6 well dish; multiplicity of infection = 5).
24 h after infection, cells were incubated with hormones
for another 24 h and subsequently harvested for immuno-
blot analysis.

Cell proliferation and soft agar assays

T47D cells were treated with vehicle, PRL, or 173-Estradiol
(E2) (Sigma) for 72 h. Triplicates of each condition were
plated and counted using the Countess Automated Cell
Counter (Invitrogen). For the soft agar assay, T47D cells
suspended in 0.3% agarose were plated on top of 0.6% agar-
ose. T47D cells were treated with media containing either
vehicle, PRL (20 nM), E2 (10 nM), or PRL + E2 for 2 weeks,
with fresh media and hormones added every 3 days. Each
condition was done in quadruplicate. Images were taken
from each well at 2 weeks and were analyzed for colony size
using Image].

Immunoblotting

T47D cells were lysed as described previously [54]. Pro-
teins were resolved by SDS-PAGE and immunoblotted
with antibodies to phospho-Stat5 (AX1, Advantex), and
total Stat5 (BD #610192), followed by secondary anti-
bodies Alexa Fluor 680-conjugated goat anti-mouse IgG
(Invitrogen) or IRDye 800 CW-conjugated goat anti-
rabbit IgG (Licor, Lincoln, NE, USA) depending on pri-
mary antibodies. Immunoblots were scanned using the
Odyssey Infrared Imaging System (Licor).

Gene ontology analysis and survival analyses
The PRL-regulated genes identified using mRNA expres-
sion microarrays were analyzed for enrichment of Gene
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Ontology Biological Process terms using the Database
for Annotation, Visualization and Integrated Discovery
(DAVID ) v6.7 [55,56]. A previously described collection
of mRNA microarray datasets compiled from public re-
positories [57] was used to evaluate the set of PRL-
induced transcripts in the context of clinical outcome.
Transcription levels for PRL-upregulated genes were av-
eraged into an expression signature and used to divide
samples into the lower quartile, interquartile range, and
upper quartile. Relapse-free and metastasis-free survival
differences in these groups were evaluated for signifi-
cance using the log rank test.
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