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Abstract

targets for therapy of lung cancers.

immunoprecipitation plus Western blotting.

and Src Family Kinase inhibitors in lung cancer.

associated protein complexes/lipid rafts, RACK1T, Cbp\PAG

Background: Activation of receptors for growth factors on lung epithelial cells is essential for transformation into
tumor cells, supporting their viability and proliferation. In most lung cancer patients, EGFR is constitutively activated
without evidence of mutation. Defining mechanisms for constitutive activation of EGFR could elucidate additional

Methods: The approach was to identify lung cancer cell lines with constitutively activated EGFR and use systematic
selection of inhibitors to evaluate their effects on specific EGFR phosphorylations and downstream signaling
pathways. Interactions between receptors, kinases, and scaffolding proteins were investigated by co-

Results: The results revealed a dependence on Src family of tyrosine kinases for downstream signaling and cell
growth. Lyn, a Src family kinase functional in normal and malignant B-lymphocytes, was a defining signal
transducer required for EGFR signaling in Calu3 cell line. Src family kinase activation in turn, was dependent on
PKCRII. Lyn and PKC exist in membrane complexes of RACK1 and in association with EGFR which pairs with other
receptor partners. Silencing of Lyn expression with interfering siRNA decreased EGFR activation and cell viability.

Conclusions: The importance of Src family kinases and PKCRII in the initiation of the EGFR signaling pathway in
lung tumor cells was demonstrated. We conclude that phosphorylation of EGFR is mediated through PKCRII
regulation of Lyn activation, and occurs in association with RACK1 and Cbp/PAG proteins. We suggest that protein
complexes in cell membranes, including lipid rafts, may serve as novel targets for combination therapies with EGFR
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Introduction

The ErbB epidermal growth factor family of receptors
(EGFR) is often upregulated, amplified, mutated, or
overexpressed in cancer «cells [1-3]. EGFR is a
homodimer of ErbB1, but different family members can
heterodimerize with ErbB1 to yield functional partners,
some more active than EGFR itself (reviewed in [2,4]),
[5]. Immunohistochemical staining of normal human
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bronchial epithelium detects ErbB1, ErbB2 (HER2/Neu),
and ErbB3 (HER3) [6]. The signaling pathways triggered
by EGER are critical to lung cancer as blocking with
specific inhibitors results in cell death [7-12]. ErbB1
chains contain intracellular tyrosines some of which be-
come autophosphorylated by dimerization and serve as
docking sites for adaptor proteins that convey signals
downstream thus promoting cell survival, angiogenesis,
migration and tumor cell invasion [13,14]. Additional
phosphorylations of EGFR by other kinases stabilize and
enhance receptor activity [4,15]. The importance of
EGFR kinase activity in lung cancer is illustrated by
the approval of tyrosine kinase inhibitors (TKIs) as
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therapeutic agents. TKIs competitively bind and inhibit
the catalytic kinase domain preventing EGFR from initi-
ating signal transduction. Targeting EGFR in lung cancer
is particularly successful in patients with activation
mutations in ErbB1, while other NSCLC patients either
are partially responsive, have disease stabilization, or do
not respond at all [16-21]. Approximately 15% of tumors
in lung cancer patients exhibit EGFR activating muta-
tions and have significant responses to TKIs targeting
EGEFR. Resistant to EGFR inhibitors occurs and is associ-
ated with activation of additional signaling pathways, or
secondary mutations in the ErbB1 gene that make EGFR
less susceptible to inhibitors [20,22-27]. Resistance and
lack of responsiveness in the majority of metastatic lung
cancer patients emphasize the importance of identifying
additional targets for drug therapy. In some tumor cell
lines, EGF receptors are activated by unknown mecha-
nisms, hence we reasoned that cell lines could be used
to define additional proteins to target. Our approach
was to delineate mechanisms of constitutive phosphoryl-
ation of EGFR in lung adenocarcinoma cell lines. In
preliminary studies constitutive phosphorylation of the
EGFR at Y-845 and Y-992 in the Calu3 cell line was
found independent of EGF stimulation. The objective of
this study thus, was to determine the mechanisms lead-
ing to constitutive phosphorylation of EGFR. Once the
mechanisms are defined, then inhibitors can be selected
to counteract constitutive receptor activation.

Materials and methods

Cell lines

Lung adenocarcinoma lines A549, A427, H2122, H1299,
H1975 and Calu3 were obtained from ATCC. A549,
A427 and Calu3 were grown in DMEM high glucose
medium (Invitrogen) plus 10% fetal bovine serum
(Gemini) and supplements of Minimal Nonessential
Mineral & Vitamins, HEPES buffer, L-glutamine
(Invitrogen) as recommended plus 0.75 pg gentimycin/
ml. H1975, H1299, H2122 were grown in RPMI 1640
high glucose medium plus 10% FBS and 0.75 pg
gentimycin/ml.  Adherent cells were grown to
confluency in T-25 or T-75 tissue culture flasks,
washed in PBS, then detached with Cell Dissociation
Buffer (Invitrogen). For inhibitor studies, Calu3 cells
were seeded at 500,000 cells/well while H1975 cells
were seeded at 750,000 cells/well and allowed to ad-
here overnight to achieve 80-90% confluency before
serum starvation for 6 hours to overnight. Cells were
treated with various inhibitors or solvent vehicles in
serum-free medium as indicated.

Reagents
AG1478 Tyrphostin (AG) (EGER tyrosine kinase inhibi-
tor), SU11274 (SU) (c-Met tyrosine kinase inhibitor),
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Diphtheria toxin mutant CRM197 [blocks HB-EGF and
amphiregulin (AR)], and myristoylated PKCRII peptide
inhibitor I (Sigma); erlotinib (Erl) [EGFR tyrosine kinase
inhibitor, (Tarceva™) Genentech/Roche & OSI]; U0126
(U0) (MEK, and downstream Erkl/2 kinase inhibitor),
and human recombinant EGE, [Cell Signaling Technol-
ogy, Inc (CST)]; PP2 (Src-tyrosine kinase inhibitor),
GM6001 (pan-metalloproteinase inhibitor) and TAPI
(ADAM17 inhibitor) (Calbiochem); and Enzastau-
rin (LY317615, ENZA), [serine threonine kinase inhibi-
tor of PKCf3, (Lilly Oncology)]. Erlotinib (Tarceva™)
and LY317615 (Enzastaurin) were obtained through
Materials Transfer Agreements with OSI and Roche/
Genentech, and with Lilly Oncology, respectively.

Calcein AM proliferation assay

Cells were seeded at 15,000 cells per well into 96-well
flat bottom plates. After adherence and serum starvation
overnight, drugs or siRNA were diluted in serum free
medium, and added to wells in triplicate then incubated
at 37°C, 5% CO, for 4—6 hours before an equal volume
of Opt-MEM medium with 10% FBS but without antibi-
otics was added, then cultured for the length of times in-
dicated. Two hours before harvesting, 100 pl of 4 uM
BD™ Calcein AM was added to washed cells. Plates were
read at 485 nm and relative fluorescence units (RFU)
recorded. RFU of ten replicate wells were averaged and
analyzed for significance. Mann Whitney unit analysis
test was applied to relative fluorescent units (RFU) data
from 10 replicate wells and p values are reported.

Antibodies
Anti-EGFR, anti-phospho-EGFR  (Y-845), anti-phos-
pho-EGFR  (Y-992), anti-phospho-EGFR  (Y-1068),

anti-phospho-HER3/ErbB3 (Y-1289), anti-phospho-Akt
(Ser-473), anti-Akt, anti-phospho-GSK-3f3 (Ser-21/9),
anti-phospho-Src (Y-416), anti-Fyn, anti-Lyn, anti-Yes,
anti-Lck, anti-Hck, anti-phospho-Lyn (Y507), anti-p-
Actin and anti-phospho-p44/42 MAP kinase (Thr-202/
Y-204) antibodies (Cell Signaling Technology); anti-
ErbB2/HER2, anti-ErbB-3/HER3-clone 2 F12, anti-
phospho-PKCBII  (Y-641), and anti-human EGFR
neutralizing antibody (LA1, Upstate Biotechnology);
anti-phospho-c-Met (Y-1230,1234,1235) antibody (Invi-
trogen); mouse anti-RACK1 antibody (BD Biosciences);
and rabbit anti-RACK1 and anti-Cbp/PAG antibodies
(Santa Cruz Biotechnology). Mouse anti-Lyn, clone
10A6.2, and Milliplex® assays were from Millipore.
Horse radish peroxidase conjugated secondary anti-
bodies were: goat anti-rabbit Ig and goat anti-mouse Ig
antibodies (Southern Biotech), anti-rabbit light chain
TrueBlot®antibodies and anti-rabbit light chain
TrueBlot IP beads® (E-Bioscience).
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Cell lysates

Inhibitors or equal volumes of DMSO solvent vehicle
were added to adherent, serum-starved cells in 6-well
plates before preparation of cell lysates. Where indi-
cated, cells were stimulated with 500 or 100 ng/ml of
human EGF (CST) for five-ten minutes at 37°C before
medium was removed, and chilled cell lysis buffer imme-
diately added. Dissolving cells were sonicated 15 seconds
before microcentrifugation for 20 minutes. Supernatants
were removed and protein concentrations quantitated
using Bio-Rad Bradford protein assay. Generally
20-30 pg of protein were loaded into 7.5% Tris—HCl
pre-cast SDS-PAGE gels (BioRad).

MILLIPLEX® MAP 8-Plex phospho-Src (Tyr419) family
kinase immunoassay

Quantitative sandwich immunobead assays (Millipore)
were used to identify Y-419 phosphorylated SFK mem-
bers including Src, Yes, Fyn, Fgr, Lck, Hck, Blk and Lyn.
Cell-free lysates of unstimulated NSCLC cell lines were
incubated with specific antibody conjugated beads which
select a SFK member, followed by addition of biotiny
lated pan-anti-phospho-Src (Y419) to quantify the level
of Y-419 phosphorylation of that SFK member. Samples
were read in a luminex 100 reader after addition of
PE-conjugated StrepAvidin. All assays were performed
and analyzed with respect to a standard curve of Hela or
Ramos cell lysates according to manufacturer recom-
mended protocols.

Western blotting

SDS-PAGE were performed using pre-cast 7.5%
Tris—HCl gel (Bio-Rad) and electrophoresed in Tris
Glycine-SDS buffer at 100 volts for 99 minutes. Sepa-
rated proteins at 20-30 pg/lane were transferred to
PVDF membranes using a semi-dry transfer apparatus
(BioRad). Blotted membranes were washed, blocked
overnight on a rocker at 4°C, then incubated with 1:1000
primary antibody diluted in SignalBoost™ (Calbiochem),
5% BSA, or 5% milk in TBST. Secondary antibodies were
added at 1:2000 for 2 hours at 25°C. ECL substrate
(Amersham Biosciences) was added, then blots exposed
to film before developing. Anti-actin was used to control
for equal protein loading after other antibodies were an-
alyzed as stripping anti-phospho-blots and probing with
anti-EGFR for example was not a reliable method.

Immunoprecipitation

Two-five hundred pg of cell lysate proteins were incu-
bated with 4 pg of antibody overnight on a rotator at
4°C. Recombinant Protein A/G ultra-link resin (Pierce)
or Trueblot® anti-light chain IP beads (eBioscience)
were washed and added at 1:10 ratio of beads to lysate
volumes, then mixed further for 2-3 hours at 4°C.
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Immunoprecipitation mixtures were microcentrifuged
for thirty seconds, the beads washed, then pellets
resuspended in 20-65 pl 2x sample loading buffer,
boiled, cooled, and microcentrifuged before loading
10-15 ul into SDS-PAGE gels.

si-RNA transfection

Lyn siRNA (LYN ON-TARGET plus SMART pool) and
negative control siRNA [ON-TARGET plus Non-
Targeting siRNA pool, (Dharmacon)] were diluted to
250nM in antibiotic free OPTI-MEM with Glutamax
(Invitrogen) and mixed with an equal volume of trans-
fection reagent (DharmaFECT 2 diluted 1:40 in OPTI-
MEM) then incubated 20 minutes at room temperature
with shaking before 1.0 ml of each mixture was added to
cells adhered to duplicate wells of a 6-well plate. An-
other 1.0 ml of OPTI-MEM containing 10% FBS but no
antibiotics was added after 4—6 hours at 37°C, then the
plates were incubated for 48, 72, 96, and 144 hours as
noted. The kinetics and effectiveness of Lyn siRNA
knock-down was confirmed by Western blotting with
anti-Lyn or anti-phospho-Lyn. The sequences of the four
Lyn siRNAs in the SMARTpools were 1) UUACAU
CUCUCCACGAAUCG; 2) GAGAUCCAACGUCCAAUA
A; 3) GUGAUGUUAUUAAGCACUA and 4) GCGA
CAUGAUUAAACAUUA. The protocol to determine
the effect of Lyn siRNA knock-down on Calu3 cell via-
bility was modified to ten replicate wells in 96-well
plates of Calcein AM assay as described above.

Results

Constitutive phosphorylation of EGFR in NSCLC cell lines
Constitutive phosphorylation of EGFR at Y-845 in Calu3
and H1975 cell lines, and at Y-992 was seen in Calu3,
H1975, and A549 cell lines (Figure 1A). CLL cells did not
express EGFR and nonspecific staining with anti-phospho-
EGEFR antibodies was not observed. PCR and SSCP assays
did not detect activating mutations in Calu3 cells in exons
19 and 21 of the erbBI gene (data not presented and [28]),
hence Calu3 served as the target of our investigations.
H1975 cells on the other hand contain an activating muta-
tion in exon 21 resulting in EGFR phosphorylation.

To investigate mechanisms of constitutive activation
of EGFR, autophosphorylation was inhibited with EGFR-
tyrosine kinase inhibitor AG1478, and later confirmed
with erlotinib. Phosphorylation of Y-992 and Y-845 of
EGFR were still detectable in unstimulated, serum
starved Calu3 cells confirming that they are not auto-
phosphorylation sites, but are phosphorylated by up-
stream kinases (Figure 1B and data not presented)
[29,30]. AG1478 was functional as it inhibited down-
stream phosphorylation of Akt (Ser-473). Ligands were
not responsible for constitutive phosphorylation of
EGFR in unstimulated, serum starved Calu3 cells as
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Figure 1 Constitutive phosphorylation of EGFR in non-small cell lung cancer cell lines (NSCLC). (A) Constitutive phosphorylation of EGFR
at Y-845 and Y-992. Western blots from lysates of unstimulated NSCLC cell lines and chronic lymphocytic leukemia (CLL) cells were probed with
anti-phospho-EGFR (Y-845), anti-phospho-EGFR (Y-992), anti-EGFR or anti-actin antibodies as loading controls. (B) EGFR triggered
autophosphorylation is not responsible for constitutive EGFR (Y845) or (Y-992) phosphorylation in Calu3. Calu3 cells were incubated with EGFR
kinase inhibitor @ 1 uM AG1478, or an equal volume of DMSO solvent, for 1 hour with or without addition of 0.5 ug EGF in the final 10 minutes
before lysates were prepared and Western blotted with anti-phospho-EGFR (Y845 and Y-992), anti-phospho-Akt (ser-473), anti-Akt, or anti-actin.
(C) EGFR ligands are not responsible for constitutive phosphorylation in Calu3 cells. EGFR neutralizing antibodies, LA1 at 12.5, 25 or 50 pug were
incubated for 18 hours with Calu3 cells with or without 100 ng EGF in the final 5 minutes before lysates were prepared and Western blotted. (D)
Transactivation by membrane associated ligands was not responsible for constitutive phosphorylation of EGFR Y-992 or downstream
phosphorylation of Akt or Erk1,2. Calu3 cells were serum cultured with Corynebacterium diphtheriae toxin @ 10 ug/ml, 25 pM GM6001, 2.5 uM
TAPI, 100 uM H,0, or an equivalent volume of DMSO for 1 hour before lysates were prepared and Western blotted. (E) EGFR neutralizing
antibodies blocked phosphorylation in H1975 NSCLC cell line. LAl at 12.5 pg was added to H1975 cells for 18 hours. DMSO or 1 uM AG1478 was
added for 1 hour. Lysates were prepared for SDS-PAGE and Western blotting with anti-phospho-EGFR(Y-992) and anti-phospho-EGFR (Y-845) or
anti-actin. Caco-2 cells (ATCC #HTB-37, human colorectal adenocarcinoma) served as positive controls for the TACE (ADAM 17) inhibitors, GM6001
and TAPI [35] (data not presented).

increments of EGF neutralizing monoclonal antibody,
LAL, from 12.5 to 50 pg/ml failed to inhibit phosphoryl-
ation (Figure 1C). LAl, binds the EGFR extracellular
domain and competes for binding with ligands; EGE,
TGFa, and AR. LAl was effective as it inhibited EGEF-
ligand induced Y-992 and Y-845 phosphorylation in
H1975 cells (Figure 1E). Thus, phosphorylations regu-
lated by activating mutations in H1975 cell line were
susceptible to EGFR kinase inhibitors unlike constitutive
phosphorylation in Calu cells.

Potential transactivation by autocrine triggered release
of ligands including heparin binding-EGF (HB-EGF) and
TNFa by metalloproteases was investigated [31-33].
ADAM17 is responsible for shedding of AR, TGFa, EPR,
HB-EGF and HRG/NRG ligands from cell membranes
[34]. TAPI, a TACE/ADAMI17 specific inhibitor, and
GM6001 a broad acting matrix metalloproteinase inhibi-
tor, blocked the effects of metalloproteases on EGFR

phosphorylation and signaling in Caco-2 control cells [35],
but neither GM6001, nor TAPI, nor CRM-197, a
diphthotoxin mutant which specifically prevents HB-EGF
binding, blocked constitutive phosphorylation of Calu3
cells (Figure 1D). Constitutive activation of EGFR there-
fore was independent of transactivation via ADAM cleav-
age of membrane bound ligands and HB-EGF ligand
stimulation. Taken together these results demonstrate that
constitutive EGFR phosphorylations in Calu3 cells are in-
dependent of ligand binding and autophosphorylation.
These results directed the study to focus on upstream
intracellular kinases as the mechanism for constitutive
phosphorylation of EGER.

Src family kinases (SFK) contribute to constitutive
phosphorylation of EGFR

SFK have been demonstrated in lung tumor tissues [36]
and Src phosphorylates EGFR Y-845 in breast cancer
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cells [29,30]. The SFK inhibitor, PP2, ablated phosphor-
ylation of EGFR at Y-845 and Y-992, eliminated
downstream Akt phosphorylations, and decreased phos-
phorylated of Erkl,2 in Calu3 cells (Figure 2A). The
decrease in EGFR phosphorylation was specific for SFK
inhibition as the Mek/Erk1,2 inhibitor U0126 did not in-
hibit EGFR or Akt phosphorylation, but did block phos-
phorylation of Erkl,2 as reported. Calu3 cell viability
was decreased by inhibition of SFKs in a PP2 concentra-
tion dependent manner (Figure 2B). Inhibition of down-
stream kinase, Akt, with LY29004 revealed a similar
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concentration-dependent decline in viability while sub-
stantially higher concentrations of the EGFR tyrosine
kinase inhibitor, erlotinib, were required for an effect on
viability. DMSO served as the solvent vehicle control.
Lyn and Src were identified as the major phosphory-
lated SFK members detected by the Milliplex® luminex
assays in Calu3 cell lysates, while Yes was the major
phosphorylated SFK member detected in H1975
(Figure 2C). The Milliplex system uses specific
antibodies conjugated on beads to capture individual
SFK members, followed by a biotinylated anti-
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Figure 2 Src Family Kinase (SFK) expression and activation. (A) Src-kinase inhibitor PP2, blocked phosphorylation of EGFR at Y-845 and Y-992
and downstream phosphorylations of Akt and Erk1,2. Calu3 cells were serum starved for 6 hours, then cultured with 10 uM PP2, 10 or 20 uM
U0126, or an equivalent volume of DMSO for 1 hour with addition of recombinant EGF @ 1 pg/ml for the final 10 minutes; then lysates prepared
for SDS-PAGE and Western blotting with indicated antibodies. (B) PP2 decreased viability of Calu3 cells in a concentration dependent manner.
Calu3 cells were cultured in triplicate in 96-well plates, and serum starved for 8 hours before addition of the respective inhibitors with highest
concentrations for PP2 @ 20 puM; LY29004 @ 40 uM; Erlotinib @ 20 uM; and DMSO @ 4 pl; then dilutions of one-half through seven serial titrations
(7 — 1). After 70 hours, Calcein AM was added two hours before harvesting. (C) Distinct patterns of SFK activation were revealed in a quantitative
Milliplex assay of unstimulated Calu3 and H1975 cell lysates. MFI (median fluorescence intensity) equals sample - background. (D) Expression of
phosphorylated Lyn, Src, and an isoform of Fyn in Calu3 cell lysates were confirmed by Western blotting. Anti-phospho-Src (Y-416)
immunoprecipitates were blotted and probed separately with anti-SFK member antibodies including Yes, Lyn, Fyn, Hck, and v-Src. Anti-Hck
served as a specificity control in that no non-specific bands were observed in either the lysates or IP. (E) Lyn expression and phosphorylation
were further confirmed by direct immunoprecipitation. Calu3 cell lysates were incubated with anti-phospho-Src (Y-417), anti-vimentin isotype
control or no antibody. Duplicate immunoprecipitations were performed with recombinant protein A\G conjugated beads (PAG) (wells 2,5,7) or
TrueBlot ® anti-light chain beads (TB, wells 4,6,8). Control immunoprecipitations demonstrated no extraneous bands near mw of SFKs, 58-66 kDa.
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phosphorylation specific antibody to quantitate phosphor-
ylation of the captured Src family member (Figure 2C).
Western blotting to identify individual SFK members used
a reverse procedure where immunoprecipitations were
performed with anti-phosphorylated Src (Y-416), then
tested in Western blots with antibodies specific for individ-
ual Src family members. Lyn, Src and an isoform of Fyn
were detected in immunoprecipitates from Calu3 lysates
(Figure 2D). Yes was not phosphorylated while Hck was
not detected. Control immunoprecipitations were perfor-
med with recombinant protein A/G beads, TrueBlot® anti-
light chain beads, and isotype antibody controls to rule out
nonspecific binding or heavy chain Ig contaminations. Ex-
traneous bands were not observed in the molecular weight
range of SFK members in the control immunoprecipitates,
while Lyn was readily detected in anti-phospho-Src (Y-416)
immunoprecipitates (Figure 2E).

EGFR is physically associated with SFKs, c-Met, and other

ErbB chains

A physical association between phosphorylated EGFR
and c-Met was confirmed in Western blots of anti-
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phospho-c-Met (Y-1230,1234,1235) immunoprecipitates
where phosphorylated ErbB1 chains were pulled down
with antibodies to phosphorylated c-Met (Figure 3A).
EGFR kinase activity was responsible for c-Met phos-
phorylation as both erlotinib and AG1478, which target
the tyrosine kinase domain of EGFR, inhibited phos-
phorylation of c-Met (Figure 3B). The inhibition of SFK
activity with PP2 also inhibited phosphorylation of
c-Met and of ErbB3 supporting an upstream activity for
SFKs. The promiscuity of ErbB1 was further confirmed
in anti-ErbB3 and anti-ErbB2 immunoprecipitates
(Figure 3C). ErbB3 in the immunoprecipitates was acti-
vated by phosphorylation at Y1289. The physical associ-
ation of ErbB1 with c-Met, ErbB2, or ErbB3 expands
the network of signaling pathways that are activated
in cancer cells and illustrates why a single tyrosine
kinase inhibitor may not be sufficient to eradicate
disease. An association with SFKs further enhances
the spectrum of regulatory factors activated to alter
gene expression in lung cancer cells and illustrates
the importance of identifying the defining upstream
triggering factor or kinase.
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Figure 3 EGFR is physically associated with distinct Src family kinases, c-Met, and other ErbB family members. (A) Phosphorylated c-Met
and EGFR from are pulled down together in anti-phospho-c-Met immunoprecipitations. Western blots of unstimulated Calu3 lysates, anti-phos-
pho-c-Met (Y-1230,1234,1235) immunoprecipitates (IP), and “unbound” (*ub) proteins from IP supernatants were probed with anti-EGFR (Y-845)
and anti-c-Met. While all phosphorylated c-Met was pulled down, a portion of phospho-EGFR remained, likely unbound to phosphorylated c-Met.
(B) Unstimulated and serum-starved Calu3 cells were cultured with DMSO (DM) or 10 uM erlotinib (erl) for 3 hours, and 5 uM SU11274 (SU), 1 uM
AG1478 (AG), or 10 uM PP2 for 1 hour before lysates and Western blots were prepared and probed with anti-phospho-c-Met (Y-1230,1234,1235),
anti-phospho-Erk1,2 (Thr-202/Y-204), anti-phospho-ErbB3 (Y-1289), or anti-actin. (C) Immunoprecipitation of unstimulated Calu3 lysates with anti-
ErbB3 also pulled down ErbB2, phosphorylated EGFR, and phosphorylated ErbB3. Anti-ErbB2 reciprocally immunoprecipitated ErbB3 from
unstimulated Calu3 lysates. (D) Anti-Lyn pulled down EGFR but not phosphorylated c-Met (Left panels) while anti-Fyn pulled down neither EGFR
nor c-Met (Right panels) from unstimulated Calu3 lysates. Western blots of mouse anti-Lyn IPs (top left panel) were probed with anti-EGFR and
anti-phospho-Src (Y-416) while rabbit anti-Lyn IPs (lower left panels) were probed with anti-phospho-c-Met (Y-1230,1234,1235) and anti-phospho
-Src (Y-416). (E) Yes was associated with EGFR but not ErbB3 in H1975. Lysates from untreated H1975 cells were immunoprecipitated with
antibodies to ErbB3, phospho-Src (Y-416), EGFR, and vimentin. Western blots of the IPs were probed with anti-Yes and anti-phospho-Src (Y-416).
Anti-vimentin immunoprecipitates served as specificity controls.




Sutton et al. Molecular Cancer 2013, 12:76
http://www.molecular-cancer.com/content/12/1/76

Since Lyn was highly expressed in the Calu3 lung cancer
cell line, a role for Lyn in EGFR constitutive phosphoryl-
ation was investigated. Anti-Lyn antibodies pulled down
EGFR demonstrating their physical association. Phosphor-
ylated c-Met was not evident in anti-Lyn pull downs
(Figure 3D). Different species of hosts for anti-Lyn pro-
duction were used for immunoprecipitations to eliminate
potential heavy chain contaminations identified by the sec-
ondary antibody in the Western blots, hence mouse anti-
Lyn IPs were probed with rabbit anti-EGFR and pSrc while
anti rabbit Lyn IPs were probed with mouse anti-p-c-met,
Lyn and pSrc. While a phosphorylated Fyn isoform had
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been detected by immunoprecipitation, it had no physical
association with either EGFR or c-Met (Figure 3D).

Western blots confirmed the presence of phosphor-
ylated Yes in anti-phospho-Src (Y-416) immunopre-
cipitates of H1975 cell lysates (Figure 3E). Pull-down
experiments revealed that EGFR was physically
associated with Yes in H1975 cells as Yes was
co-immunoprecipitated with anti-EGFR antibodies
(Figure 3E). Anti-Vimentin IP served as a specificity
control for the co-immunoprecipitations and no Yes
or phosphorylated Src were non-specifically pulled
down.

A Lyn silencing in Calu3

~N

B Lyn silencing of Signalingin Calu3 cells

applied to relative fluorescent units (RFU) data from 10 replicate wells.
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Figure 4 Lyn siRNA inhibits EGFR activation, downstream phosphorylation of c-Met but not phosphorylation of ErbB3. (A) Lyn specific
SIRNA inhibits Lyn and EGFR phosphorylation. Calu3 cells were cultured with 12.5 nM Lyn siRNA and NC siRNA for 72, 96, and 144 hours before
lysates were prepared and 30 pg protein from each treatment loaded into SDS-PAGE wells for separation and Western blotting. Blots were
probed with anti-phospho-Lyn, anti-Lyn, anti-phospho-EGFR (Y-1068), anti-phospho-ErbB3 (Y-1289), and actin. (B) EGF triggered reexpression and
phosphorylation of Lyn was not evident after 144 hours of culture with 12.5 nM Lyn siRNA while NC siRNA had little effect on Lyn or EGFR
phosphorylation levels. EGFR phosphorylations were substantially decreased by Lyn siRNA. Serum-starved Calu3 cells were treated with Lyn and
NC siRNA, then cultured for 144 hours. EGF at 100 ng/ml was added for the final 10 minutes before lysates were prepared and 30 ug protein
from each treatment loaded into SDS-PAGE wells for separation and Western blotting. Multiple blots were probed with antibodies against
phospho-Lyn, non-phosphorylated Lyn control, phospho-EGFR (Y-845), phospho-EGFR (Y-1068), non-phosphorylated ErbB control, phospho-Src
(Y-416) or B-actin. (C) Lyn siRNA @ 12.5 nM significantly decreased cell survival after 72 hours of culture. Lyn siRNA decreased viability to highly
significant levels, p=<0.001 and 0.0433. Some nonspecific decrease in viability with NC siRNA was also evident but did not reach a similar level
of significance. Calcein AM uptake was used to measure cell viability during the last 2 hours of culture. Mann Whitney unit analysis test was
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Lyn contributes to NSCLC viability and signal

transduction

The importance of Lyn to EGFR signaling and cell via-
bility was investigated by treatment of Calu3 cells with
pools of 4 Lyn specific silencing RNAs and negative con-
trol siRNA. Decreased Lyn phosphorylation and protein
expression were demonstrated in Western blots of kin-
etic studies with Lyn-siRNA transfection (Figure 4A).
Decreased Lyn expression and phosphorylation readily
inhibited Y-1068 autophosphorylation of EGFR. No de-
crease in phosphorylation of ErbB3 was observed. EGF
stimulation of Calu3 cells after complete Lyn silencing
at 144 hours demonstrated no ligand triggered phos-
phorylation of Lyn, and decreased phosphorylation of
EGFR at the SFK-dependent Y845 phosphorylated site,
as well as at Y1068 autophosphorylation site (Figure 4B).
Lyn, Src, and EGFR phosphorylations remained evident
in Calu3 cells transfected with negative control siRNA
(Figures 4A and B).

A role for Lyn in cell survival was confirmed in that
transfection with Lyn-siRNA significantly decreased un-
stimulated Calu3 and H1975 cell viability significantly in
comparison to nonspecific inhibition of viability with
nonspecific control (NC) siRNA (Figure 4C). Thus, Lyn
plays a role in maintaining cell viability and signaling.

Activation of Lyn and SFKs

Inhibition of EGFR phosphorylation by silencing Lyn
RNA and a Src kinase specific inhibitor indicated that
Src functions upstream to activate EGFR. The possibility
that PKC was responsible for phosphorylating Src was
investigated with enzastaurin, a serine-threonine kinase
inhibitor that preferentially targets PKCP. Concentra-
tions of enzastaurin that inhibited PKCo,f phosphoryl-
ation led to decreased phosphorylations of EGFR
downstream pathways including Akt and GSK-3f3
(Figure 5A). PKCa,p inhibition resulted in total inhib-
ition of Src phosphorylation (Figure 5B). Since
enzastaurin has secondary kinase targets, a more spe-
cific, cell-permeable, PKCBII peptide inhibitor was used
and confirmed that PKCBII was responsible for regulat-
ing Src activation (Figure 5C). A PKCPII-dependent
pathway therefore is responsible for SFK activation in
Calu3 cells. Either PKCPII directly phosphorylates
serl2 of Src, or indirectly results from its activation
of CDK1/cdc2, or alternatively inactivates phospha-
tases that regulate SFK activity [37]. Peptide inhibi-
tors function by binding their targets causing them to
unfold, and subsequently become ubiquitinated, and
proteosomally digested. The fact that little PKCPII
protein was detected therefore demonstrates the
effective inhibitory nature of the PKCPII peptide in-
hibitor (Figure 4C).
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Figure 5 PKCB inhibition reduced constitutive activation of Src,
decreased phosphorylation of c-Met and ErbB3, and had
downstream effects on Akt and GSK-38 in both Calu3 and
H1975 cells. (A) PCKR inhibitor enzastaurin demonstrates that PKCI
is required for Src activation. Concentrations of enzastaurin from
0-20 uM were added to unstimulated, serum-starved cells for

3.5 hours before lysates were prepared for Western blotting. Multiple
blots were probed with antibodies against phospho-pan PKC,
phospho-PKCa,B, phospho-GSK-3, Akt and actin. (B) PKC inhibitor
blocks constitutive activation. Unstimulated, serum-starved Calu3
and H1975 cells were cultured for 3.5 hours with 10 uM enzastaurin
before lysates were prepared for Western blotting. Multiple blots
were probed with antibodies against phospho-ErbB3 (Y-1289),
phospho-c-Met (Y-1230,1234,1235), phospho-PKCa,B, phospho-Src
and actin. (C) Specificity of inhibition for PKCRII was confirmed by
culture of unstimulated Calu3 cells with 80 uM PKCRII specific
peptide inhibitor. Western blots were probed with anti-PKCpII
antibodies, anti-phospho-Src (Y-416) and anti-actin.

Regulation of EGFR activation occurs in complexes with
proteins associated with cell membranes

Membrane scaffolding and Src-regulatory proteins,
RACKI1 and Cbp/PAG respectively, were investigated to
determine whether they were in complexes with EGFR,
PKCRII and Lyn. Both RACK1 and Cbp/PAG were
detected in four NSCLC lines tested (data not presented)
thus, immunoprecipitation experiments were undertaken
to determine whether Lyn was associated with EGFR in
complexes with Cbp\PAG and/or RACKI. A physical as-
sociation between Lyn, RACK1, and Cbp/PAG in Calu3
cells was demonstrated in Western blotting of immuno-
precipitates (Figure 6). Anti-Lyn co-immunoprecipitated
RACKI1 and Cbp/PAG. In reciprocal studies, both anti-
Cbp/PAG and anti-RACK1 co-immunoprecipitated each
other as well as Lyn (Figure 6A). Anti-Fyn antibodies did
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Figure 6 Immunoprecipitations identify scaffolding and
regulatory proteins pulled down with Lyn, PKCB, and EGFR. (A)
Anti-phospho-Src (Y-416), Lyn, RACKT and Cbp/PAG co-immunopre-
Cipitate each other. Immunoprecipitates from unstimulated, serum
starved Calu3 cell lysates were performed with antibodies to Cbp/
PAG, phospho-Src (Y-416), Lyn, Fyn and RACK1. Western blots were
probed with anti-Lyn, and anti-RACK. No Lyn and minimally detec-
table quantities of RACK1 were immunoprecipitated by anti-Fyn. (B)
Cbp/PAG was associated with phosphorylated Src, Lyn and RACK1 in
Calu3 while anti-Fyn pulled down Cbp\PAG only in H1975 cells.
Western blots of immunoprecipitates from unstimulated, serum
starved Calu3 and H1975 cell lysates were probed with anti-Cbp
/PAG. (C) EGFR, PKCa or B, Cbp/PAG, and RACKT are all pulled down
with anti-Lyn. Immunoprecipitates with antibodies to Cbp/PAG, Lyn,
Fyn, RACK1, ErbB3 and phosphorylated-c-Met from Calu3 lysates
were probed in Western blots with antibodies to EGFR

and phospho-PKCa, .

not co-immunoprecipitate Cbp/PAG or RACK1 from
Calu3 cell lysates but did co-immunoprecipitate Cbp/
PAG from lysates of H1975 cells (Figure 6B).

EGFR, a plasma membrane receptor, is physically
associated with Lyn in Calu3 cells (Figure 3D). Lyn also
associates with RACK1 and Cbp\PAG (Figure 6). Fur-
thermore, PKCPII is required for phosphorylations of
SFKs that include Lyn (Figure 4C). Thus, a series of
pull-down experiments were performed to determine
whether PKC, RACK1 and Cbp\PAG exist together with
EGFR. Cbp\PAG partitions preferentially into mem-
branes where it also associates with RACK1 which binds
activated PKC. PKCa,f3 was localized with Cbp\PAG,
RACK1 and Lyn but not with Fyn, ErbB3 or phos-
phorylated c-Met (Figure 6C). Indeed, anti-Lyn pulled
down both phosphorylated PKCa, and EGEFR
(Figure 6C). PKCa,p was not detected in complexes
reciprocally pulled down by either anti-p-c-Met or
ErbB3. These studies thus suggest that EGFR associ-
ates with Lyn in membrane complexes of Cbp\PAG
and RACK1 where PKCRII can affect Lyn or Src
regulatory kinases and phosphatases resulting in acti-
vation of Lyn to phosphorylate EGFR and enhance its
signaling activity.
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Discussion

The EGEFR signal transduction pathway plays an import-
ant role in sustaining growth of lung cancer cells, yet
therapy with TKIs is effective only in a subset of pa-
tients, thus we used lung adenocarcinoma cell lines to
investigate mechanisms for constitutive phosphorylation
of EGFR in order to identify additional targets for ther-
apy. EGFER constitutive signaling in Calu3 cells was dem-
onstrated to be ligand-independent. ADAM17 protein,
an ErbB ligand sheddase, is upregulated and is required
for EGFR and ErbB3 ligand-dependent signaling in
NSCLC cell lines [38]. Yet, neither GM6001, a broad-
range metalloprotease inhibitor, nor TAPI, a potent
ADAM17 inhibitor, decreased EGFR phosphorylation at
constitutive sites or downstream signaling confirming
that cleavage of membrane associated ligands was not
responsible for EGFR constitutive phosphorylation. Also,
neutralizing antibodies did not block constitutive EGFR
activation. Constitutive phosphorylation of EGFR thus
was not due to ligand binding or transactivation.

Reportedly, SFKs phosphorylations of EGFR result in
enhanced signaling potential [29,30,39,40], and SFKs
were found to be responsible for EGFR constitutive acti-
vation (Figure 2). Lyn was physically associated with
EGFR and identified as the specific SFK responsible for
activating EGFR. While Lyn is preferentially expressed in
normal and malignant B-cells, Lyn is also found in epi-
thelial cells lining lung alveoli, and lining ducts from
mammary, prostate and gut tissues [41-45]. Lyn was re-
cently demonstrated as a requirement for internalization
of microbial aggregates in lung epithelial cells and for re-
sponses to pathogens [46-48]. Mice deficient in Lyn ex-
pression, or transfected to overexpress Lyn, exhibit
hyperactive B-cell receptor triggering, autoimmune dis-
eases, and asthma-like symptoms in their lungs thereby
emphasizing the importance of Lyn to lung physiology
[49-51]. While the role for Lyn in leukemias and lymph-
omas is well established, a role for Lyn in solid tumors
was only recently elaborated. Lyn was found to mediate
tumor progression in head and neck squamous cell car-
cinomas, thyroid cancer growth and metastasis, sarcoma
growth and survival, and a prognostic factor in colorec-
tal cancer [52-55]. Lyn may serve therefore as a potential
target for therapy in solid tumors.

Phosphorylated EGFR/ErbB1 chains are promiscuous
as their physical associations with ErbB3, ErbB2, and
c-Met were demonstrated in pull-down experiments
(Figures 3 and 6C). These associations have functional
consequences as inhibitor studies demonstrated that
EGFR is responsible for phosphorylations of c-Met.
Heterodimers also complicate EGFR targeted therapy as
inhibition of EGFR enhances ErbB2/ErbB3 or EGFR/c-
Met formation and activation [23,38,40,56]. SFKs also fa-
cilitate EGFR and c-Met heterodimer formation, and our
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studies emphasize the importance of SFKs to EGER acti-
vation [Figures 2, 3, 4, 5 and 6] [36,41,42,57,58].

PKCRBII was found to be critical to the downstream ac-
tivation of EGFR, as PKCSII regulates activation of SFKs
(Figure 5). PKCRII is known to regulate Src activation
via CDK1/cdc2 and phosphatases [37]. Once activated,
PKC becomes bound to the intracellular receptors,
RACK]I, stabilizing them within membrane lipid rafts
where RACK1s then bind enzymes, substrates, growth
factor receptors, integrins, and kinases [59-61]. RACK1
has been described as an inhibitory scaffold regulator of
Src [62,63]. Activated SFKs and Src-regulatory kinases
normally bind to Cbp/PAG which associates with
glycosphingolipid-enriched microdomains (PAG) in
membranes via palmitoylated tails [64-66]. Lyn can also
become anchored in membrane lipids via myristoylation
and palmitoylation, but in B-lymphomas Lyn has been
localized to lipid rafts with Cbp/PAG [51,67-69]. In our
studies, Cbp\PAG and Lyn were reciprocally co-
immunoprecipitated demonstrating their physical associ-
ation. A physical association between Lyn and EGEFR,
PKCa,f3, Cbp/PAG, and RACK1 was demonstrated in
pull down experiments indicating that multiple signaling
molecules form complexes or signalosomes with EGFR.
RACK1 molecules can form homodimers with non-
identical proteins bound to each so that one RACK1
partner could carry growth factor receptors such as
EGEFR, for example, while another could carry Lyn [70].
Alternatively Lyn could be brought into multi-protein
complexes bound to Cbp\PAG as RACK1 and Cbp\PAG,
Lyn and Cbp\PAG, were all reciprocally co-immuno-
precipitated from Calu3 lysates (Figure 6). These data
contrast with the EGFR mutationally activated H1975
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cells where there was no evidence for co-immunoprecip-
itation of RACK1 and Cbp\PAG.

The interplay between RACK1 and Cbp\PAG is critical
to Src family kinase regulation and to constitutive EGFR
activation. Others have demonstrated that RACK1 binds
the p110 active component of PI3Kinase, hence could
bring PI3Kinase together with EGFR growth factor
receptors to trigger downstream signaling [71]. In
B-lymphoma lines, the p85 adaptor component of
PI3Kinase was shown to bind to activated Cbp\PAG
[68]. An association between Cbp\PAG and RACK1 thus
could bring the two PI3Kinase components together
such that activation of EGFR would trigger the PI3K cas-
cade of signaling events. These latter studies emphasize
the importance of scaffolding and\or adaptor proteins
that pull receptors and kinases together within mem-
brane complexes so that signals can be transduced. As a
scaffolding protein, RACK1 would allow for the kinases
to function in a multi-protein complex, and initiate a
progression of activity to occur from PKCRBII to activate
Lyn, Lyn subsequently activating EGFR, followed by acti-
vation of PI3 kinase and c-Met, thus resulting in a cas-
cading of signaling events (Figure 7). RACKI’s relevance
to cancer progression was first demonstrated in breast
cancer where its expression serves as an independent
prognostic factor for poor outcome [71]. Elevated levels
of Rackl expression have been detected in lung cancer
[72], and silencing of RACKI expression has led to
suppressed cancer cell growth and invasion both in vitro
and in vivo [71,73]. In lung tumor cells that
have ligand-independent, constitutively activated EGER,
targeting of scaffolding proteins such as RACKI associ-
ated signaling complexes could result in the disruption
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of their functional capacities. Combining a Src kinase in-
hibitor with a drug targeting the scaffolding or adaptor
proteins along with an EGFR TKI could break up the sig-
naling unit thereby prevent further cell growth. Disruption
of EGER signalosomes could interfere with signaling even
when ErbBl is in promiscuous combinations with other
ErbB family members, c-Met, or other receptor chains
such as IGFR-1 [74-77]. Combination therapies to include
disruption of signaling complexes thus could be a success-
ful approach to eradicate lung cancer cells.
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