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Abstract

Background: Chk1 forms a core component of the DNA damage response and small molecule inhibitors are
currently being investigated in the clinic as cytotoxic chemotherapy potentiators. Recent evidence suggests that
Chk1 inhibitors may demonstrate significant single agent activity in tumors with specific DNA repair defects, a
constitutively activated DNA damage response or oncogene induced replicative stress.

Methods: Growth inhibition induced by the small molecule Chk1 inhibitor V158411 was assessed in a panel of human
leukemia and lymphoma cell lines and compared to cancer cell lines derived from solid tumors. The effects on cell
cycle and DNA damage response markers were further evaluated.

Results: Leukemia and lymphoma cell lines were identified as particularly sensitive to the Chk1 inhibitor V158411 (mean
Glsg 0.17 uM) compared to colon (2.8 uM) or lung (6.9 uM) cancer cell lines. Chk1 inhibition by V158411 in the leukemia
and lymphoma cell lines induced DNA fragmentation and cell death that was both caspase dependent and independent,
and prevented cells undergoing mitosis. An analysis of in vitro pharmacodynamic markers identified a dose dependent
decrease in Chk1 and cyclin B1 protein levels and Cdc2 Thr15 phosphorylation along with a concomitant increase in
H2AX phosphorylation at Ser139 following V158411 treatment.

Conclusions: These data support the further evaluation of Chk1 inhibitors in hematopoietic cancers as single agents as
well as in combination with standard of care cytotoxic drugs.
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Background

The serine-threonine checkpoint kinases Chkl and Chk2
form central key components in the DNA damage signal-
ing response (DDR) [1]. Activation of the DDR results in a
number of cellular responses including checkpoint activa-
tion and cell cycle arrest, initiation of DNA repair, regula-
tion of transcription and apoptosis. The DDR can be
activated by a range of endogenous and external insults
including therapies currently used for the treatment of
cancer such as ionizing radiation and cytotoxic chemo-
therapeutic agents such as gemcitabine, irinotecan and
cisplatin [2,3]. Despite their similarity in name, Chkl and
Chk2 differ substantially in the structure of their kinase
pocket [4,5] and in their cellular function with Chkl
suggested to be the major component responsible for
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responses to DNA damage [3,6,7]. Inhibiting Chk1 follow-
ing genotoxic stress (such as that induced by cytotoxic
chemotherapy) results in checkpoint abrogation, inhib-
ition of DNA repair and induction of cell death in cells
with a defective p53 response [8,9]. Small molecule inhibi-
tors of predominantly the Chkl kinase have been readily
sought as a mechanism through which the anti-tumor ac-
tivity of cytotoxic chemotherapeutics may be increased
whilst sparing the normal cells [10-12]. This approach is
currently being tested in the clinic with a variety of agents
including LY2603618 [13], MK-8776 [14], GDC-0425 and
GDC-0575 in combination with a range of standard of
care chemotherapy drugs.

Evidence has begun to emerge that small molecule
Chk1 inhibitors may have significant single agent activity
in cancer cells with specific underlying genetic defects.
This is often defined as a synthetic lethal relationship
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[15,16]. These can so far be defined as having specific
defects in DNA-damage repair or response components,
or are constitutively dependent on the DDR to complete
an unperturbed round of DNA replication. The Fanconi
Anemia (FA) pathway is a DNA repair pathway that is
responsible for repairing crosslinked DNA [17]. Compo-
nents of the FA pathway has been found to be lost or
defective in a range of human cancers and are character-
ized by hypersensitivity to DNA crosslinking agents,
chromosomal instability and reliance on DNA repair
mediated by ATM. FA deficient cell lines were found to
be sensitive to Chk1 silencing by siRNA compared to FA
proficient cells [18]. Patients with complex karyotype
acute myeloid leukemia (AML) had high levels of consti-
tutive DNA damage (including high levels of pH2AX)
and checkpoint activation. AML blast cells derived from
these patients were sensitive to Chkl siRNA or the kin-
ase inhibitor UCN-01 compared to normal granulomo-
nocyte progenitors [19]. Sensitivity to Chkl inhibition
has also been linked to replicative stress in a number of
cancer cell types. In neuroblastoma cell lines, an siRNA
screen identified siRNAs against Chk1 as the most potent
inducers of cytotoxicity [20]. Chkl mRNA expression was
higher in MYC-Neuroblastoma-related (MYCN) amplified
cancers and Chkl was found to be phosphorylated on the
auto-phosphorylation site Ser296 and the ATM activation
site Ser345 in the absence of exogenous DNA damage in-
sults. Neuroblastoma cell lines were found to be more
sensitive to two Chkl inhibitors SB21807 and TCS2312
compared to three non-neuroblastoma cancer cell lines.
Sensitivity to SB21807 correlated with MYCN protein
levels. Inhibition of Chkl with the small molecule inhibi-
tor AR678 inhibited the proliferation of a range of melan-
oma cell lines with low nM efficiency in vitro. The
cytotoxicity of AR678 was suggested to be due to inhib-
ition of S-phase Chkl and failure of cytotokinesis or in-
duction of apoptotic death and sensitivity correlated with
levels of endogenous DNA damage most likely induced by
replicative stress [21].

We utilized our own novel, potent, selective small
molecule inhibitor of Chk1, V158411, to screen cell lines
from a range of cancer types in an effort to identify add-
itional tumor types for which single agent Chk1 inhibitor
therapy may prove a rational treatment option.

Results

Pharmacological inhibition of Chk1 is cytotoxic in
leukemia and lymphoma cell lines

Emerging evidence suggests that inhibiting the check-
point kinase Chkl, in addition to potentiating cytotoxic
chemotherapeutic agents, may exhibit single agent activ-
ity in cancers with underlying DNA repair, DNA damage
response or DNA replication defects. We used the highly
selective, potent checkpoint kinase inhibitor V158411 as
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a tool to identify cancer types where checkpoint inhib-
ition may be a rationale therapeutic option.

V158411 is a novel, potent, selective inhibitor of re-
combinant Chkl and Chk?2 kinases in vitro with 1Csys of
3.5 and 2.5 nM respectively [22]. Against a panel of 386
kinases in a wide panel binding assay, V158411 inhibited
the activity of one kinase (Chk1) in the range 99 — 100%,
three kinases 90 — 99% and 19 kinases 65 — 90% at 50 nM
(Figure 1A). In p53 defective HT29 cells, V158411 inhib-
ited the etoposide induced auto-phosphorylation of Chk1
on Ser296 with an ICsy of 48 nM and Chk2 on Ser516
with an ICsg of 904 nM indicating a 19-fold cellular select-
ivity for Chkl over Chk2. V158411 potentiated cytotoxic
chemotherapy in p53 defective cancer cells in vitro and
in vivo.

In a screen of cell lines, V158411 inhibited the prolifera-
tion of five out of six of the leukemia and lymphoma cell
lines tested with an average Glsy of 0.17 uM (Figure 1B
and 1C, and Table 1) following 72 hour exposure to the
drug. In comparison, the average Gl for the seven colon
cancer cell lines and for the seven lung cancer cell lines
were 2.8 uM and 6.9 pM respectively. To confirm this, a
second Chkl inhibitor PF-477736 [23] was also profiled.
As was observed for V158411, PF-477736 selectively
inhibited the proliferation of the same five leukemia and
lymphoma cell lines with an average Glso of 0.28 uM
(Table 1) compared to 1.7 pM for one lung and six colon
cancer cell lines (Figure 1C). There was a close correlation
between the sensitivity of a given cell line to V158411 and
PF-477736 (R*>=0.829, Figure 1D). Inhibition of cell
proliferation was accompanied by a rapid and sustained
increase in caspase-3/7 dependent apoptosis in all five
hematopoietic cancer cell lines (Figure 2A). This was
especially marked in the Raji and Jurkat cell lines where
treatment with 5-times the Gls, of V158411 increased
caspase-3/7 levels 13- and 6-fold respectively after 24 hours.
Cell death induced by Chkl inhibition could, however,
occur independently of caspase-3/7 activity. The caspase-
3/7 inhibitor zVAD-FMK effectively blocked V158411
induced caspase-3/7 activation (Figure 2B). Jurkat, Raji
or U937 cells treated with V158411 still underwent cell
death in the presence of the general caspase inhibitor
zVAD-FMK (Figure 2C). In both Jurkat and U937 but
not Raji cells, more cell death was observed in the ab-
sence of zVAD-FMK but was not blocked completely
by zVAD-FMK. This therefore suggests that Chkl in-
hibition in leukemia and lymphoma cells can induce
cell death through a variety of cell death pathways. To
further understand the effects of Chkl inhibition on
cell proliferation, two different drug exposure regimes
were compared in U937 cells. A single 24 hour pulse of
0.7 pM V158411 reduced the fraction of viable U937 cells
by 96% 24 hours after the end of treatment (Figure 2D).
However, the viable population rebounded rapidly with
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plotted. R? value was calculated using a linear trendline in Excel.

Figure 1 Inhibition of Chk1 inhibits cell proliferation in human leukemia and lymphoma cell lines. (A) Kinase selectivity profile of V158411.
V158411 was screened at 50 nM, duplicate single-point against a panel of 386 wild-type kinases using DiscoveRx KINOME scanMAX technology.

(B) V158411 inhibited the proliferation of leukemia and lymphoma cell lines compared to colon and lung cancer cell lines following 72 hour exposure
to the drug. Values are the average of at least 4 determinations. (C) Comparison of V158411 and PF-477736 anti-proliferative activity against leukaemia
and lymphoma cell lines compared to colon and lung cancer cell lines following 72 hour exposure to the drug. Values are the average of at least 4
determinations + SD. (D) Regression analysis of V158411 and PF-477736 Gls values. Glsg values from Figure 1C were converted to pGls, values and

the number of viable U937 cells increased 5.5-fold and
11-fold compared to the 24 hour cell count 48 and
72 hours after the end of treatment. Continual exposure
to 0.7 pM V158411 for 72 hours had a more marked and
permanent effect on U937 survival reducing the fraction
of viable U937 cells by 99.9%.

Inhibition of Chk1 induces DNA fragmentation and
prevents entry into mitosis

Pharmacological inhibition of Chkl with V158411 did
not induce a definitive cell cycle arrest in the five sensi-
tive hematopoietic cancer cell lines (Figure 3A and B).
However, changes in the ratio of cells in G1:5:G2/M was
observed in 3 of the 5 cell lines. In Jurkat cells, V158411
treatment reduced the fraction of cells in S and G2/M
relative to G1. In Raji and MV4;11, the fraction of cells
in S and G2/M was increased by V158411 treatment. This
was most noticeable for the MV4;11 cells (Figure 3C).
V158411 induced a dose dependent increase in the frac-
tion of cells with a sub-G1 DNA content. In Jurkat, HL60
and U937 cells, this accounted for nearly 90% of the cell
population at the higher concentrations (Figure 3D). This
is highly indicative of DNA fragmentation and cell death
via apoptosis. To evaluate if cells were progressing into
mitosis and undergoing death via mitotic catastrophe, we
utilized nocodazole to trap cells in mitosis. Treatment of
Jurkat, Raji or U937 cells with nocodazole led to an in-
crease in the fraction of cells in mitosis as evidenced by an
increase in the levels of phH3 (S10). Treatment with
V158411 prevented cells progressing through the cell

Table 1 Growth inhibition of leukemia and lymphoma
cell lines by V158411 and PF-477736

Cell p53 Glso (MM) £ SD Tumor type
line status
V158411 PF-477736

HL60 Mut  021+£0083 0.73+£0.033 Promyelocytic Leukemia

Jurkat Mut 012+007 0.12+0046 T-cell Lymphoma

K562 Mut 28116 19+14 Chronic Myelogenous
Leukemia

MV4-11 WT  0063+0033 0.13+£0.051 Acute Monocytic
Leukemia

Raji Mut 042+0.14 033+0.11  Burkett's Lymphoma

Uo37 Mut  0.034+0018 0.099+0.006 Histiocytic Lymphoma

Mut, mutant; WT, wild type. Glsq values are the mean of n >4+ SD.

cycle and becoming arrested in mitosis by nocodazole
(Figure 4). The addition of nocodazole did not prevent the
V158411 induced degradation of Chkl.

Chk1 inhibition induces Chk1 degradation and H2AX
phosphorylation

The effects of V158411 on biomarker changes in Jurkat,
Raji and U937 cells was evaluated. Treatment of all three
cell lines with V158411 for 24 hours lead to a dose
dependent decrease in Chkl protein levels and a con-
comitant increase in the amount of H2AX phosphory-
lated at Ser139 (Figure 5A). In addition, the levels of
Cdc2 phosphorylated at Tyrl5 and total cyclin Bl were
also reduced albeit at higher doses of V158411 than
those needed to reduce Chkl and induced pH2AX. In
U937 cells, a reduction in the amount of Histone H3
phosphorylation on Serl0 could be observed. A time
course of V158411 treatment in Jurkat and Raji cells in-
dicated that maximal Chkl, cyclin Bl and pCdc2 (Y15)
reduction occurred after 24 hours (Figure 5B). The kin-
etics of pH2AX induction differed between the two cell
lines with an increase in pH2AX observed after 6 hours
in Jurkat but not until 24 hours in Raji cells. The dur-
ation of pH2AX induction in Jurkat cells was maintained
for at least 24 hours. In both cells lines, the degradation
of Chkl was dependent on the presence of a functioning
proteasome. The proteasome inhibitor MG132 inhibited
the V158411 induced degradation of Chkl in Jurkat and
Raji cells (Figure 5C).

Western blot analysis of leukemia and lymphoma cell lines

In order to further understand the underlying mechan-
ism for sensitivity of Leukemia and Lymphoma cells to
the Chkl inhibitors and identify biomarkers that may be
potentially useful for identifying sensitive patients in
clinical studies, we examined the expression levels and
phosphorylation status of Chkl in these cell lines by
western blotting and compared it to a panel of six lung
lines (Figure 6). Chkl expression levels varied across the
cell lines with the highest expression levels identified in
NCI-H520 and K562 cells and very low levels in U937
and Raji cells. Phosphorylation of Chkl on either serine
296, 317 or 345 was highly variable across the cell lines
investigated. No correlation between Chkl expression
levels or phosphorylation on serine 296, 317 or 345 and
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Figure 2 V158411 induces caspase activation and cell death in human leukemia and lymphoma cell lines. (A) Treatment with 5-times the
Glsg of V158411 for 24 or 48 hours activated caspase-3/7 dependent apoptosis. Values are the average of 3 determinations + SD. (B) zZVAD-FMK
blocks V158411 induced caspase 3/7 activation. Cells were treated with 5- or 10-times the Glsy of V158411 in the absence or presence of 25 uM
2VAD-FMK. Values are the average of 3 determinations + SD. (C) Cell death in leukemia and lymphoma cell lines induced by V158411 can occur
independently of caspase-3/7 activity. Cells were treated with 5-times the Glsy of V158411 in the absence or presence of 25 uM zVAD-FMK for

24 hours. Values are the average of 3 determinations; error bars have been removed for clarity. (D) Continual treatment is more effective in inducing
cell death in U937 lymphoma cells than pulsed treatment. U937 cells were treated with 5- or 20-times the Glsg of V158411 either continually for

96 hours (left) or a 24 hour pulse (right). Values are the average of 3 determinations + SD.

sensitivity to the Chkl inhibitors could be identified.
There was an apparent increased basal expression level
of pChkl (S345) in lung cancer cell lines especially
A549, NCI-H23 and NCI-H520 but this was not signifi-
cantly higher than the leukemia and lymphoma cell
lines (P=0.02). There was no correlation between
pChkl (S345) expression levels and sensitivity to V158411
(Figure 6B, R* = 0.186). In three of the Chk1 inhibitor sen-
sitive leukemia/lymphoma cell lines, U937, HL-60 and
MV4-11, the endogenous levels of H2AX phosphorylated
on Ser139 was much higher compared to all other cell
lines. Across the whole panel of cell lines analyzed,
there was a weak correlation (R®=0.404) between
pH2AX (S139) expression and V158411 sensitivity but
no correlation (R*=0.250) when just the leukemia and
lymphoma subset of cell lines were analyzed (Figure 6B).

Discussion
Small molecule inhibitors of the checkpoint kinase Chk1
are currently undergoing early stage clinical evaluation
in combination with DNA damaging cytotoxic chemo-
therapeutic drugs such as irinotecan and gemcitabine.
Recent studies have started to identify cancer types sen-
sitive to Chk1 inhibition as single agents; that is, in the
absence of a cytotoxic chemotherapeutic drug. RNAi
studies have identified neuroblastoma [20] and Fanconi’s
Anemia [18] whilst small molecule inhibitor studies have
revealed triple-negative breast cancer [24] and an Ep-myc
driven model of lymphoma as potential clinical targets of
Chkl inhibitor therapy [25,26]. Here we further extend
this list of cancer types sensitive to Chk1 inhibitors as sin-
gle agents to include cancers of a hematopoietic origin.
Treatment of a diverse range of leukemia and lymph-
oma cell lines with the selective Chk1 inhibitors V158411
or PF-477736 potently inhibited the proliferation of these
cell lines and induced cell death that was both caspase-3/7
dependent and independent. This coincided with a reduc-
tion in the fraction of cells with a G1 DNA content and
an increase in sub-G1 DNA content along with reduction
in Chkl protein levels and increased phosphorylation of
H2AX on serine 139. The precise mechanism for the sen-
sitivity of the leukemia and lymphoma cell lines compared
to solid cancer cell lines remains to be fully understood.
Sensitivity of the hematopoietic cancer cell lines did not

correlate with total Chkl protein expression levels or with
the phosphorylation status of Chkl on serine 296, 317 or
345. This observation is counter to that of Cole et al. [20]
who identified neuroblastoma as a potential therapeutic
target for Chk1 inhibition and that sensitivity to Chk1 in-
hibition by either siRNA or small molecules correlated
with Chkl S296 phosphorylation. Likewise, our own study
in triple-negative breast cancer identified Chkl $296 and
to a lesser extent S317 phosphorylation status as a useful
prognostic marker of cell line sensitivity (data not shown).
Previous work by Davies et al. [27] identified the select-
ive Chkl inhibitor, Chkl-A, as anti-proliferative as a
single-agent in a range of human cancer cell lines in vitro.
In this study, they identified several blood-derived cancer
cell lines as particularly sensitive to Chk1l-A (HEL92.1.7
and Molm13) but overall, the blood-derived cancer lines
(average Glso 71 nM, n =6) were not dramatically more
sensitive to Chkl-A than those derived from solid tumors
(average Glso 125 nM, n=7). This is in contrast to that
observed with V158411, a novel Chk1 inhibitor structur-
ally distinct from Chkl-A. Hematopoietic-derived cell
lines (average Glso 0.17 puM, n=5) were around 28-fold
more sensitive to V158411 compared to cell lines derived
from solid cancers (average Glsp 4.8 pM, n=14). As ob-
served in our study, Chkl-A induced a collapse of DNA
replication and apoptosis without premature mitosis in
the HEL92.1.7 human erythroleukemia cell line [28]. This
corresponded with an increase in Chkl phosphorylation
on $345 and pH2AX on S139 and hyper-activation of
CDKs. These observations correlate closely with the effect
of V158411 single-agent activity in the cell lines utilized in
this study. Our work suggests that the mechanism of
growth inhibition and cell death observed with Chk1-A in
the HEL92.1.7 cell line by Davies et al. is applicable to a
wider range of blood-derived cancers. The observation
that Chk1-A exhibits potent single agent activity in solid
cancer cell lines as well as hematopoietic cancer cell lines
(in contrast to V158411 and PF-477736) suggests that
Chk1-A may inhibit additional kinases important for pro-
liferation and survival of solid cancer-derived cell lines.
The mechanism by which Chk1 inhibition leads to the
death of hematopoietic cells is yet to be fully elucidated
and understood. The molecular defects in these cell lines
most likely occur in pathways for which Chkl can
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Figure 3 Cell cycle changes induced in leukemia and lymphoma cells by V158411. (A) Cell cycle profiles of Jurkat, Raji and U937 cells were
determined by PI staining following treatment with the indicated concentrations of V158411 for 24 or 48 hours. (B) Quantification of the cell cycle
changes observed after 24 hour treatment to V158411. (C) Comparison of the fraction of cells in G2 and M relative to G1 in cells treated with DMSO or
the concentration of V158411 approximately equivalent to the Glso for 24 hours. (D) V158411 treatment for 24 hours increased the percentage of

leukemia and lymphoma cells with a sub-G1 DNA content.

mutually compensate to protect genomic integrity and
therefore Chk1 inhibition is synthetically lethal. Studies
in other cancer models provide possible mechanisms
which may leave these cell lines more Chkl dependent
than other solid cancer cell types such as lung or colon
cancer. Two possible mechanisms have so far been sug-
gested for Chkl inhibitor sensitivity: increased onco-
genic replicative stress or reduced DNA repair capacity
due to defects in specific DNA repair pathways espe-
cially those responsible for processing and repairing
DNA double strand breaks (DSBs) [29,30].

Two previous studies, one in neuroblastoma cells [20]
and another in a mouse derived Ep-myc driven lymph-
oma cell model [25], identified increased oncogenic rep-
licative stress due to amplification of the Myc oncogene
as a potential underlying mechanism for sensitivity to
Chk1 inhibition. In the Ep-myc lymphoma model, sensi-
tivity to the Chkl inhibitor PF-477736 was dependent
on a p53 wild type background. Apoptosis induced by
oncogenic replicative stress can be suppressed by ATR
and Chkl [29,31]. All the cell lines used in this study,
with the exception of MV4-11, are known to harbor am-
plifications of the c-myc oncogene [32,33] and therefore
increased replicative stress due to amplified Myc driven
proliferation [34] may underlie the sensitivity of some of
these cell lines. However, in contrast to the Ep-myc

lymphoma model, all of the four c-myc amplified sensi-
tive cell lines harbor mutations in p53 suggesting that
sensitivity to Chkl inhibitors may not be dependent on
a p53 wild type background. The CML cell line K562
has amplifications in the c-myc and l-myc oncogenes
but is resistant, compared to all the other leukemia and
lymphoma cell lines so far tested, to Chkl inhibitors as
single agents. Therefore additional factors along with
Myc induced oncogenic stress potentially contribute to
Chk1 inhibitor sensitivity.

MV4-11 cells harbor an internal tandem duplication
(ITD) in the juxtamembrane domain of FLT3 leading to
deregulated FLT3 kinase signaling that drives the prolif-
eration of this cell line [35]. Like deregulation of the
c-Myc oncogene, the FLT3-ITD mutation induces onco-
genic replicative stress [36,37] and may account for the
sensitivity of this cell line to Chk1 inhibition. Along with
U937 and HL-60 cells, MV4-11 cells exhibited a high
level of expression of H2AX phosphorylated on serine
139 under normal cell growth conditions. Increased ex-
pression of pH2AX (S139) is associated with increased
DNA damage especially double strand breaks [38] and
in MV4-11 cells is consistent with increased oncogenic
replicative stress induced by FLT3 mutation.

Molecular defects in pathways responsible for process-
ing DNA breaks, especially DNA double strand breaks,
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have been postulated to be potentially synthetically lethal
with Chkl inhibition. One example so far discovered is
in the Fanconi Anemia (FA) DNA repair pathway. The
Fanconi Anemia (FA) repair pathway is responsible for
repairing crosslinked DNA and maintaining chromosomal
stability [17]. FA deficient cell lines were found to be sensi-
tive to Chkl silencing by siRNA and the small molecule
Go06975 compared to FA proficient cells due to an accumu-
lation of unrepairable DNA double strand breaks [18]. Simi-
larly, AML with a complex karyotype demonstrate high
levels of constitutive DNA damage and checkpoint activa-
tion. siRNA against Chkl or the small molecule kinase

inhibitor UCN-01 reduced the clonogenic survival of patient
derived AML blast cells [19]. UCN-01 is a non-specific pan-
kinase inhibitor derived from staurosporine and effects in-
duced by this molecule cannot be reliably attributed to
Chk1 inhibition. Reduced or defective DNA strand break re-
pair capacity could underlie the sensitivity of leukemia and
lymphoma cell lines to Chkl inhibition. The sensitivity of
leukemia and lymphoma cell lines to Chkl inhibition may
be due to reduced DNA repair capacity, oncogenic replica-
tion stress or a combination of both mechanisms.

All the studies so far conducted have been undertaken
on established cell lines that grow indefinitely under
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optimal culture conditions. Selection of these cell lines for
growth in culture may have resulted in the selection for fac-
tors that drive cell proliferation in culture rather than
tumor proliferation in situ. Replicative stress due to deregu-
lated oncogenes, and hence sensitivity to Chk1 inhibitors,
may be amplified due to selection of cells that proliferate
rapidly in culture and may not truly reflect the oncogenic
replicative stress observed in human disease. Further work
is needed on leukemia and lymphoma samples derived

from patients that have undergone limited ex vivo culture
to confirm and understand these observations.

From these studies, Chkl inhibitors may be a useful
addition to the arsenal of drugs suitable for use in the
clinic against hematopoietic cancers. The ability to stratify
patients based on genetic markers predictive of sensitivity
will be necessary to achieve optimal clinical benefit. Stud-
ies so far suggest that deregulated Myc oncogene expres-
sion may be one such marker.
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Conclusions

Cell lines derived from human leukemias and lymphomas
exhibited greater sensitive to the Chkl inhibitor V158411
than cell lines derived from solid tumors. Replication
stress, due to oncogene activation, may account for the
sensitivity of these cell lines to Chkl inhibition. This data
supports the further evaluation of Chkl inhibitors in
hematopoietic cancers as single agents as well as in com-
bination with standard of care cytotoxic drugs.

Methods

Cell culture and cytotoxicity assay

All cells were obtained from the American Type Culture
Collection (ATCC) or Leibniz Institute DSMZ-German
Collection of Microorganisms and Cell Cultures (DSMZ)
and cultured in DMEM or RPMI containing 10% FCS
(Invitrogen). The cytotoxicity of V158411 was deter-
mined following exposure of cells in 96 well plates to a
10-point titration for 72 hours. Cell proliferation was de-
termined using sulphorhodamine B staining following
protein precipitation with 10% TCA for adherent cell
lines or cell titer glo (Promega) for suspension cell lines.
For cell counts, cells were seeded in 24 well plates and
counted daily using a haemocytometer following trypan
blue staining. Cells were diluted to maintain log phase
cultures.

Determination of caspase-3/7 dependent apoptosis

Cells were seeded in 96 well plates and treated with 5- or
10-times the GIso of V158411 for 24 or 48 hours.
Caspase-3/7 activity was determined using a homogenous
caspase-3/7 luminescence kit (Promega).

Antibodies and western blotting

Anti- pHistone H3 (S10) was obtained from Millipore;
Chk1, pChkl (S317), pChkl (S345), Cdc2, pCdc2 (Y15),
Cyclin B1 and pH2AX (S5139) from Cell Signaling Tech-
nologies and pChkl (S296) from Abcam. Treated and
untreated cells were washed once with PBS and lysed in
50 mM Tris-pH6.8, 2% SDS, protease and phosphatase
inhibitor cocktails (Roche) and boiled for 5 minutes.
Protein concentration was determined using BCA kit
(Pierce). Equal amounts of lysate were separated by
SDS-PAGE and western blot analysis conducted using
the antibodies indicated above.

Flow cytometry

Cells were seeded in 6-well plates and subsequently
treated with the indicated concentrations of V158411 for
24 or 48 hours. All cells were harvested, fixed in 70%
ethanol and stained with propidium iodide/RNase A.
Cell cycle profiles were examined by flow cytometry
using a FACSArray cytometer (BD) and FACSDiva soft-
ware (BD).
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