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Mitochondrial Hsp90s suppress calcium-mediated
stress signals propagating from mitochondria to
the ER in cancer cells
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Abstract

Background: Resistance to cell death in the presence of stressful stimuli is one of the hallmarks of cancer cells
acquired during multistep tumorigenesis, and knowledge of the molecular mechanism of stress adaptation can be
exploited to develop cancer-selective therapeutics. Mitochondria and the endoplasmic reticulum (ER) are physically
interconnected organelles that can sense and exchange various stress signals. Although there have been many
studies on stress propagation from the ER to mitochondria, reverse stress signals originating from mitochondria
have not been well reported.

Methods: After inactivation of the proteins by pharmacologic and genetic methods, the signal pathways were
analyzed by fluorescence microscopy, flow cytometry, MTT assay, and western blotting. A mouse xenograft model
was used to examine synergistic anticancer activity and the action mechanism of drugs in vivo.

Results: We show in this study that mitochondrial heat shock protein 90 (Hsp90) suppresses mitochondria-initiated
calcium-mediated stress signals propagating into the ER in cancer cells. Mitochondrial Hsp90 inhibition triggers the
calcium signal by opening the mitochondrial permeability transition pore and, in turn, the ER ryanodine receptor,
via calcium-induced calcium release. Subsequent depletion of ER calcium activates unfolded protein responses in
the ER lumen, thereby increasing the expression of a pro-apoptotic transcription factor, CEBP homologous protein
(CHOP). Combined treatment with the ER stressor thapsigargin and the mitochondrial Hsp90 inhibitor gamitrinib
augmented interorganelle stress signaling by elevating CHOP expression, and showed synergistic cytotoxic activity

exclusively in cancer cells in vitro and in vivo.

signaling, Combination cancer therapy

Conclusions: Collectively, mitochondrial Hsp90s confer cell death resistance to cancer cells by suppressing the
mitochondria-initiated calcium-mediated interorganelle stress response.
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Background

Molecular chaperones assist in the correct folding and
conformational changes of their substrates, called client
proteins, and minimize their misfolding and aggregation
[1]. Heat shock protein 90 (Hsp90) is an ATP-dependent
molecular chaperone regulating the stability and functions
of client proteins that are often involved in signal trans-
duction during malignant transformation and progression
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[2,3]. Organelle-resident Hsp90 family proteins are pre-
sent in mitochondria and the endoplasmic reticulum
(ER), where they control protein homeostasis [4-6]. Hsp90
and its mitochondrial homolog, tumor necrosis factor
receptor-associated protein 1 (TRAP1), are abundant in
the mitochondria of many cancer cells [7-10], and their
regulation, client proteins, and cellular functions are quite
different from the cytoplasmic Hsp90 pool [4,11]. Mito-
chondrial Hsp90s are involved in tumor progression, cyto-
protection, and multidrug resistance, by reprogramming
cancer cell metabolism [12-16] and maintaining mito-
chondrial membrane integrity [7,17,18].
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Mitochondria integrate lethal and vital signals emanating
from various cellular compartments to cause cell death
through inner and outer membrane permeabilization [19].
Though the molecular mechanism is not fully elucidated,
cyclophilin D (Cyp-D) is believed to regulate the perme-
ability transition pore (PTP) in the mitochondrial inner
membrane [20-24]. Cancer cells elevate mitochondrial
Hsp90 expression, which suppresses Cyp-D function
to inhibit the deadly increase of membrane permeability
in the organelle [7]. PTP opening upon Cyp-D activation
increases mitochondrial inner membrane permeability
toward small molecules (<1,500 Da), resulting in loss of
mitochondrial membrane potential (A¥m), discharge of
matrix calcium stores, and swelling and rupture of the
mitochondrial outer membrane [19,25].

Calcium, a ubiquitous second messenger, is involved in
a broad variety of physiological events via its interaction
with effectors responsible for calcium-dependent processes
[26]. The ER and mitochondria are the major intracellular
calcium stores, regulating calcium homeostasis and signal-
ing [27,28]. They have a largely interconnected architecture
with numerous contacts, which facilitates inter-organelle
calcium transport by generating calcium hotspots proximal
to open calcium channels [29-31]. Both the ER and mito-
chondria contain calcium-triggered calcium release chan-
nels that can activate each other via positive feedback,
including ryanodine receptors (RyRs) and inositol 1,4,5-
trisphosphate receptors (IP3Rs) [19,32]. There is a growing
consensus that ER-mitochondria calcium crosstalk can co-
ordinate signaling for metabolism and cell death between
the organelles [28].

Although calcium signaling has been intensively studied,
reports of “mitochondria-initiated” calcium crosstalk
between mitochondria and the ER are scarce. Here,
we demonstrate a novel function of mitochondrial Hsp90s
that confers resistance to cancer cell death by inhibiting
the propagation of mitochondrial-origin calcium signals to
the ER.

Results

Mitochondrial Hsp90s modulate the mitochondrial
calcium store

To investigate whether mitochondrial Hsp90s modulate
mitochondrial calcium stores, we used the mitochondria-
targeted Hsp90 inhibitor gamitrinib, a conjugated of tri-
phenylphosphonium (a mitochondria-targeting moiety)
and geldanamycin (an Hsp90 inhibitor) [33,34]. A cyto-
toxic dose (30 uM) of gamitrinib dramatically increased
the intracellular calcium concentration within an hour
in human cervical (HeLa), prostate (22Rv1), and breast
(MDA-MB-231) cancer cell lines in calcium-free medium
(Figure 1A and B). A non-targeted Hsp90 inhibitor,
17-allylamino-17-demethoxygeldanamycin (17AAG), did not
increase cytosolic calcium (Additional file 1: Figure S1A),
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consistent with a previous report that gamitrinib is spe-
cific to mitochondrial Hsp90 without affecting cytosolic
Hsp90 function [33]. After gamitrinib treatment, PTP
opening and loss of mitochondrial membrane potential
(A¥Ym) occurred within 30 minutes (Figure 1C, TMRM
staining), whereas cytochrome c release, caspase activa-
tion, and cell death were not prominent until after 2 hours
(Figure 1C, cytochrome c¢ staining; Figure 1D), suggesting
that calcium flux concurs with PTP opening, prior to mito-
chondrial outer membrane permeabilization (MOMP).
Consistently, cytosolic calcium elevation was inhibited
by cyclosporin A (CsA) (Figure 1E), a potent Cyp-D in-
hibitor, blocking PTP opening [19]. Thus, mitochondrial
Hsp90 inhibition immediately induces PTP opening,
loss of A¥m, and discharge of the calcium stored in
the mitochondrial matrix. Thereafter, a cascade of MOMP,
cytochrome ¢ release, and caspase activation ensues
(Figure 1F).

Mitochondrial calcium release results in depletion of ER
calcium

The PTP opening has been shown to immediately
discharge calcium stored in the mitochondria [36];
however, after mitochondrial Hsp90 inhibition in this
study, calcium release continued even after a significant
drop in A¥m (Figure 1A and C), suggestive of additional
sources of calcium flux. We postulated that the primary
calcium-storing organelle, the ER, contributes to the
cytosolic calcium increase after gamitrinib treatment.
To prove this, we directly measured calcium depletion
using the calcium sensor protein, Cameleon, targeted to
mitochondria and the ER (mtCameleon and DIER, re-
spectively) [37]. Gamitrinib treatment resulted in FRET
signal loss in both mtCameleon- and D1ER-transfected
HeLa cells, comparable to that seen with FCCP or Thap
treatment (Figure 2A and B), clearly indicating calcium
depletion in the ER as well as in mitochondria. Consistent
with previous reports [33], gamitrinib has no effect on the
AW¥m of a normal MCF10A breast cell (Additional file 1:
Figure S1B and C), and the non-targeted Hsp90 inhibitor
17AAG did not affect the mtCameleon FRET signal
(Additional file 1: Figure S1D).

Calcium depletion in the ER evokes the unfolded protein
response and induces CHOP activation

Gamitrinib has been reported to trigger the unfolded
protein response in mitochondria, and, through unknown
mechanisms, to subsequently activate CHOP, the pro-
apoptotic transcription factor often induced during unfol-
ded protein responses in the ER (UPR™) [4,38-40]. siRNA
knockdown of the mitochondrial Hsp90 homolog TRAP1
results in spliced XBP1 mRNA production and eukaryotic
translation initiation factor 2« (elF2a) phosphorylation
(Additional file 1: Figure S2A and B), suggesting activation
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Figure 1 Mitochondrial Hsp90s modulate the mitochondrial calcium store. (A) Time course of cytosolic calcium increase. The ratio of the
emission fluorescence intensities at 340 and 380 nm excitation of Fura-2 labeled Hela cells in calcium-free medium was measured after 30 uM
gamitrinib treatment as described in Materials and Methods. (B) Increase of cytosolic calcium in 22Rv1 and MDA-MB-231 cells. Fura-2 fluorescence
ratio after 30 pM gamitrinib (Gami) treatment for 1 hour was calculated. Data are the mean + SEM of duplicated experiments and collected from
40 regions of interest (ROIs). (C) Mitochondrial membrane permeabilization. TMRM-loaded Hela cells were imaged to measure mitochondrial
membrane potential depolarization (A¥m) (left); alternatively, cytochrome c¢ redistribution was analyzed (right) at the indicated times after 30 pM
gamitrinib treatment as previously described [35]. White bar, 20 um. (D) Caspase activation and cell death induction. After 30 uM gamitrinib
treatment, Hela cells were labeled with FITC-DEVD-fmk (left, DEVDase activity) or propidium iodide (right, PI staining) and analyzed by flow
cytometry at the selected time points. (E) Cyclosporin A (CsA) blocks cytosolic calcium increase. Cytosolic calcium changes in Fura-2-labeled Hela
cells treated for 1 hour with 5 uM CsA and/or 30 uM gamitrinib were analyzed. Bar, 50 um. (F) Summary of sequential events following mitochondrial
Hsp90 inhibition. PTP opening is directly linked with the loss of A¥m and increase of cytosolic calcium. The calcium flux occurs prior to mitochondrial
outer membrane permeabilization (MOMP) and cytochrome ¢ release. *, p < 0.0001.

J

of UPRF® sensor proteins such as inositol-requiring protein ~ mRNA splicing (Figure 2C; Additional file 1: Figure S2C).
la (IREla) and PKR-like ER kinase [41,42]. Consistently, In addition to UPRF® sensor protein activation, CHOP in-
pharmacological inactivation of mitochondrial Hsp90s by  duction was clearly seen after both pharmacological and
gamitrinib also triggered elF2a phosphorylation and XBP1  genetic inhibition of mitochondrial chaperones (Figure 2C;
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Figure 2 Inhibition of mitochondrial Hsp90s depletes stored calcium in both mitochondria and the ER. (A) Mitochondrial calcium
depletion. After 30 uM gamitrinib and 10 uM FCCP treatment, confocal FRET images of mtCameleon-expressing Hela cells were reconstructed
from their emission fluorescence ratios at 535/480 nm with excitation at 440 nm (left). FRET ratios at the indicated time intervals were averaged
and plotted (right). (B) ER calcium depletion. FRET images of Hela cells transiently expressing D1ER were acquired at the indicated time points
after gamitrinib treatment (left) and analyzed to plot the FRET ratio (right). Selected ROIs are indicated as white circles. Bar, 10 um. Data in (A)
and (B) are mean + SEM collected from 30 ROIs. R.U,, relative units. (C) CHOP induction and elF2a phosphorylation. Hela cells were treated with
30 uM gamitrinib, 5 uM CsA, and 10 uM BAPTA as indicated and analyzed by western blotting. #, not significant; *, p < 0.001; **, p < 0.0001.

Additional file 1: Figure S2D). To investigate the crit-
ical involvement of mitochondrial calcium discharge
through the PTP for the ER stress response, gamitrinib
was administered in the presence or absence of the PTP
inhibitor CsA and the calcium chelator BAPTA. Both
substances compromised UPRER induction, resulting in a
dramatic reduction in eIF2a phosphorylation and CHOP
expression (Figure 2C).

Ryanodine receptors mediate mitochondrial

calcium-induced calcium depletion in the ER

IP3Rs and RyRs are ER membrane channels responsible
for calcium release from the organelle [26]. Silencing
IP3R1, the major isoform in HeLa cells [43] (Additional
file 1: Figure S3A), did not affect the elevation of cytosolic
calcium and the induction of CHOP after gamitrinib treat-
ment (Figure 3A and B), but was enough to compromise
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Figure 3 Ryanodine receptor (RyR)-mediated cytosolic calcium elevation. (A) IP3R silencing. After IP3R siRNA treatment, Fura-2 labeled Hela
cells were treated with 30 pM gamitrinib for 1 hour. The fluorescence ratio (340/380) was plotted. The data are mean + SEM collected from 30
ROIs in two independent experiments. (B) IPsR knockdown effect on CHOP expression. Control or IPsR1 siRNA-transfected Hela cells were
incubated with or without 30 pM gamitrinib for 2 hours. Cell extracts were analyzed by western blotting. (C) RyR inhibitors compromise cytosolic
calcium increase. Fura-2 labeled Hela cells were treated with 30 uM gamitrinib for an hour in the presence or absence of 300 uM tetracaine,
100 uM ryanodine, and 5 uM CsA, and emission fluorescence intensity ratios (340/380 nm excitation) were measured. Data are mean + SEM
calculated from 40 ROIs in two independent experiments. (D) Fura-2 imaging and RyR2 silencing. Control or RyR2-#2 siRNA-treated Hela cells
were labeled with Fura-2 and imaged after 30 uM gamitrinib treatment for an hour (left). The fluorescence ratio (340/380) was plotted (middle).
Knockdown efficiency of RyR2-#2 siRNA by western blotting (right). The data are mean + SEM collected from 30 ROIs in two independent
experiments. Bar, 50 pm. (E) Inhibition of CHOP induction by RyR inactivation. Hela cells were treated with 30 uM gamitrinib in the presence or
absence of 100 uM ryanodine. Cell extracts were analyzed by western blotting. (F) RyR2 silencing and CHOP expression. Hela cells were treated
with two different RyR2 siRNAs, incubated with 30 uM gamitrinib, for 2 hours and analyzed by western blotting. #, not significant; *, p < 0.0001.

lysophosphatidic acid-induced ER calcium release in  the dominant RyR isoform in HeLa cells [45-47], also
calcium-free medium (Additional file 1: Figure S3B).  blocked gamitrinib-induced cytoplasmic calcium increase
By contrast, specific RyR inhibitors such as ryanodine  (Figure 3D). Consistently, ryanodine and RyR2-specific siR-
(100 uM) and tetracaine (300 uM) [44] strongly inhibited ~ NAs inhibited elF2a phosphorylation and the subsequent
gamitrinib-induced ER calcium release, similar to the PTP  CHOP induction (Figure 3E and F). Collectively, our
inhibitor CsA (Figure 3C). Genetic knockdown of RyR2, data suggest that RyR, not IP3R, is the ER sensor that
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propagates the signal initiated by discharged calcium
from mitochondria in cancer cells.

Mitochondria-initiated calcium signaling plays an
important role in setting up the cell death threshold
Impaired mitochondrial function [16] (Figure 4A, TMRM
staining) and slightly elevated cytoplasmic calcium
(Figure 4A, Fluo-4 staining) were frequently found in
gamitrinib-treated cells, even at non-toxic dose of the drug.
Therefore, we hypothesized that calcium-mediated stress
propagation can render cells sensitive to additional stresses,
ie. lowering the cell death threshold. A representative
UPR™® inducer, Thap, was combined with gamitrinib to
test this hypothesis. Gamitrinib sensitized cancer cells to
Thap treatment at various concentrations, while the non-
targeted Hsp90 inhibitor 17AAG did not (Figure 4B
and C). Consistent with pharmacological data, TRAP1
knockdown also sensitized cancer cells to Thap treat-
ment (Additional file 1: Figure S4). The combination of
gamitrinib and Thap synergistically induced apoptotic
cell death, causing a dramatic increase in caspase activity
(Figure 4D).

Gamitrinib and Thap together elevate CHOP expression in
an RyR-dependent manner

Proapoptotic CHOP expression induced by combination
treatment with gamitrinib and Thap was faster and
higher compared to single-agent treatment (Figure 5A).
A cell-based reporter assay also showed elevated CHOP
transcription activity following combination treatment
(Figure 5B). siRNA-mediated knockdown of either CHOP
or RyR significantly suppressed this increased cytotoxic
activity, but did not affect the toxicity seen with single-
agent treatment (Figure 5C and D), suggesting important
roles of RyR and CHOP in the drug combination effect.
Silencing RyR compromised CHOP induction by the drug
combination but not by single-agent treatment (Figure 5E),
further confirming that RyR opening is an essential
upstream event in the stress response elevating CHOP
expression. CHOP-dependent death receptor 5 (DR5)
expression [48] has been reported before, but was not
involved in the drug combination, considering marginal
elevation of DR5 expression and no activation of caspase-
8 (Additional file 1: Figure S5A) [49]. Neither did reactive
oxygen species (ROS) scavengers affect the increase in
cytoplasmic calcium and CHOP induction (Additional
file 1: Figure S5B and C). Collectively, our data argue
that gamitrinib lowers the cellular threshold against
ER stresses by increasing CHOP expression in an RyR-
dependent manner.

Combined synergistic anticancer activities in vivo
The mitochondrial Hsp90 pool is dramatically elevated
in many cancer cells to cope with various stresses, but
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expression is very low or undetectable in most normal
tissues except brain and testis [7,8,10,51,52]. To test
whether mitochondrial Hsp90-regulated interorganelle
calcium signaling is functional in normal cells, we exam-
ined primary astrocytes from mouse brain, where Hsp90
expression in mitochondria is higher than in other
tissues [7]. Gamitrinib did not affect CHOP induction
and elF2a phosphorylation (Figure 6A), whereas Thap in-
creased CHOP expression in astrocytes (Additional file 1:
Figure S6A). Gamitrinib treatment in combination with
Thap did not sensitize astrocytes (Figure 6B), possibly due
to very low expression of both TRAP1 and Cyp-D in
astrocytes compared to cancer cells (Figure 6C). Collect-
ively, gamitrinib does not affect the cell death threshold in
astrocytes, probably due to the limited contribution of the
chaperones to PTP opening in normal cells; this is in stark
contrast with data from cancer cells (Figure 4B-D). Next,
the gamitrinib and Thap combination was further exam-
ined using a xenograft of relapsed prostate cancer cells
(22Rv1) [53], to test whether the cancer cell-specific low-
ering of the cell death threshold occurs in vivo. Because
Thap has been reported to be highly toxic in vivo [54], we
administered a very low dose of the drug. Suboptimal
individual doses of Thap and gamitrinib did not result in
significant inhibition of tumor growth, whereas combined
treatment inhibited tumor growth (Figure 6D) without
remarkable histological abnormalities and body weight
changes (Additional file 1: Figure S6B and C). Individual
treatment with either gamitrinib or Thap slightly elevated
CHOP expression, whereas combined treatment further
elevated CHOP expression synergistically in cancer cells,
but not in the brain or liver (Figure 6E; Additional file 1:
Figure S6D). Therefore, similar to the in vitro data, mito-
chondrial Hsp90 inhibition lowers the cell death threshold
of cancer cells to Thap treatment in vivo.

Discussion

Mitochondria are integrators of various cellular stress
signals that eventually make life-or-death decisions. We
show here that mitochondria can also produce calcium-
mediated stress signals and propagate them to neighbor-
ing organelles. For calcium signaling, interplay between
the permeability transition pore (PTP) in mitochondria
and ryanodine receptor (RyR) in ER was essential, and the
mitochondrial Hsp90 pool negatively modulates signal
commencement in cancer cells to protect them from
cellular stresses.

TRAP1 knockdown by siRNA showed a similar pheno-
type to simultaneous inactivation of both Hsp90 and
TRAP1 by gamitrinib. Considering functional overlap
between Hsp90 and TRAP1 in the regulation of PTP in
cancer cells [7,55], the lack of functional compensation by
the mitochondrial Hsp90 is quite unexpected, and may
suggest different protein interaction networks between
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Figure 4 Inhibition of mitochondrial Hsp90s sensitizes HelLa cells toward thapsigargin. (A) Cytoplasmic calcium and mitochondrial
membrane potential by suboptimal dose of gamitrinib. Fluo-4 or TMRM/MitoTracker-labeled Hel a cells were incubated with 5 uM gamitrinib for
24 hours and analyzed by confocal microscope. Bar, 20 um. (B) Combination effect in Hela. Hela cells were treated with various concentrations
of Thap in the presence of 5 uM of either 17AAG or gamitrinib, and analyzed by MTT assay (left). Alternatively, Hela cells were treated with 5 M
gamitrinib and/or 0.06 uM Thap for 24 hours and analyzed by the MTT assay. ***, p < 0.0001. (C) Combination effect in 22Rv1. 22Rv1 cells were
treated with various concentrations of thapsigargin in the presence of 2.5 uM of either 17AAG or gamitrinib for 24 hours, and analyzed by the
MTT assay (left). Alternatively, 22Rv1 cells were treated with 2.5 uM gamitrinib (Gami) and 0.06 uM Thap as indicated for 24 hours and analyzed
by the MTT assay. **, p = 0.0006. (D) Combination treatment induces apoptosis. Hela cells were treated with 10 uM gamitrinib and 0.5 uM Thap
as indicated, labeled with FITC-DEVD-fmk and propidium iodide, and analyzed by flow cytometry. (B) and (C) represent mean + SEM from three
independent experiments.
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Figure 5 Gamitrinib and Thap combination treatment elevates CHOP expression. (A) Synergistic increase in CHOP induction. 22Rv1 and
H460 cells were treated with 5 uM gamitrinib and 0.06 uM Thap as indicated and analyzed by western blotting. (B) CHOP reporter assay. PC3
cells stably transfected with a CHOP:-GFP reporter plasmid [50] were incubated with 2.5 uM gamitrinib and/or 0.02 uM Thap as indicated and
analyzed as described in Materials and Methods (left). Cells with more than twice the background fluorescence intensity were considered as
positive cells (right). Bar, 100 pm. Mean + SEM. **, p = 0.0036. (C) Silencing CHOP expression. Control or CHOP siRNA-transfected Hela cells were
treated with 0.06 pM Thap and 5 uM gamitrinib for 24 hours, and analyzed by MTT assay. Knockdown efficiency analyzed by western blotting
(bottom right). Mean £ SEM. *, p < 0.05. (D) Silencing RyR expression. Control or RyR siRNA-treated Hela cells were incubated with 0.06 uM Thap
and 5 uM gamitrinib for 24 hours, and analyzed by MTT assay. Knockdown efficiency analyzed by western blotting (bottom right). Mean + SEM.
* p < 0.05. (E) Knockdown of RyR2 by siRNA. Control or RyR2 siRNA-transfected 22Rv1 cells were incubated with 2.5 uM gamitrinib and/or

Hsp90 and TRAPI, or alternatively, that TRAP1 function-
ally dominates over Hsp90 in cancer mitochondria. There
is growing consensus that mitochondrial Hsp90 and
TRAP1 play important roles in neoplastic progression by
modulating a variety of mitochondrial pathways: meta-
bolic reprogramming, mitochondrial dynamics, reactive
oxygen species, autophagy, and cell death [55,56]. Thus,
to clearly address their roles in mitochondrial homeo-
stasis and tumorigenesis, the relative contribution of

the chaperones to the mitochondrial signal pathways
and the functional relationship between them should
first be discovered.

Calcium, in such stress signaling, does not merely
mediate mitochondria-ER communication, but is also
critical for PTP and RyR calcium channel opening.
Calcium released through one of the channels can trigger
the opening of the other through calcium-induced cal-
cium release (CICR) [19,32], which can eventually amplify
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Figure 6 Synergistic cancer-specific cytotoxicity in vivo. (A) CHOP induction in astrocytes. Astrocytes treated with 30 pM gamitrinib for

2 hours were analyzed by western blotting. (B) Thap in combination with gamitrinib. Astrocytes were treated with various concentrations of Thap
in the presence of 0, 2.5, 5, or 10 uM gamitrinib and the cell viability was analyzed by MTT assay. Data are from three independent experiments.
(C) TRAPT expression in astrocytes. TRAP1 and cyclophilin D (Cyp-D) expression in astrocytes isolated from mouse brain was compared with
cancer cell lines by western blotting. (D) Tumor xenograft experiment. Subcutaneous 22Rv1 xenografts were established as described in Materials
and Methods. At the end of the experiment, final tumor volumes were plotted (right). We used five mice per group and two tumors per animal.
(E) Analysis of CHOP expression in liver and tumor. Liver and tumor samples from three randomly selected mice for each treatment (total 12
mice) were analyzed by western blotting (left). After normalization of CHOP band intensities with 3-actin, relative CHOP intensities were calculated
(right). (F) Schematic diagram of the mitochondria-initiated stress signal. Chemical inhibitors are indicated in red. (B), (D), and (E) are the mean + SEM.

signals even with minute perturbation of mitochon-
drial chaperone functions (Figure 6F). Interestingly, IP3Rs,
major ER calcium channels allegedly requiring the ligand
IP5 as well as calcium for CICR [44], are not involved
in mitochondria-initiated calcium signaling, which further
argues that the mitochondria-initiated pathway occurs
through genuine CICR that is solely dependent on dis-
charged calcium.

Interplay and subsequent signal amplification between
the calcium channels are crucial to signaling, as inhib-
ition of either the PTP or RyR blocked calcium signaling.
The unknown mechanism of CHOP induction after in-
activation of mitochondrial Hsp90s in previous reports
[4,38-40] can be explained by this interplay. Further-
more, local calcium increases, seen as calcium hot-spots
after low-dose gamitrinib treatment (Fluo-4 staining in
Figure 4B), seem to be the consequence of the calcium
channel interplay, which is sufficient to provoke global
mitochondrial membrane potential reduction and UPRF®
induction. Without a large increase in cytoplasmic calcium
concentration, this is sufficient to propagate the stress
response, probably due to the closely apposed architecture
of the mitochondria and ER [29-31]. Thus, mitochondria-
initiated calcium signaling might be further supported by
the physical interconnection between mitochondria and
the ER, which forms a specialized microdomain of transi-
ent calcium [28,57] and can facilitate reciprocal PTP and
RyR activation via CICR.

Target-centered anticancer drugs often show limited
efficacies, poor safety, and resistance profiles due to com-
plicated signaling networks in many cancer cells [58,59].
Multicomponent and system-oriented therapeutics devel-
opment approaches could provide a solution [60,61]. The
target proteins of gamitrinib and Thap have fundamentally
different functions in distinct organelles [34,62,63]. When
combined, their anticancer activities were enhanced and
non-toxic doses of the drugs were sufficient in vitro and
in vivo to kill cancer, but not normal cells, through
calcium-mediated coordination of compartmentalized sig-
naling networks and synergistic elevation of CHOP ex-
pression. These pharmacological data further support the
function of mitochondrial Hsp90s as important regulators

of interorganelle crosstalk, increasing the stress threshold,
and identify these proteins as drug targets for the de-
velopment of novel combination cancer therapy. Thus, we
believe that mitochondrial Hsp90 inhibitors require fur-
ther system-oriented investigation to facilitate the de-
velopment of an effective and better multicomponent
anticancer regimen by combining antitumor drugs or even
non-antitumor drugs capable of inducing organelle stress.

Conclusions

Mitochondria-initiated and calcium-mediated propagation
of the stress signal plays an important role in coordinating
ER and mitochondrial stress responses, and is implicated
in lowering the cell death threshold in cancer cells. There-
fore, targeting the coordinated calcium stress signaling
pathway often suppressed in cancer cells might be a feas-
ible and effective strategy for the rational development of
cancer therapeutics.

Materials and methods

Cells and culture condition

HeLa, MDA-MB-231, and NCI-H460 cells were purchased
from the Korean Cell Line Bank and 22Rvl from the
American Type Culture Collection. Cell lines were main-
tained as recommended by supplier. Cells were cultured in
DMEM or RPMI medium (Lonza) containing 10% fetal bo-
vine serum (FBS; GIBCO) and 1% penicillin/streptomycin
(GIBCO) at 37°C in a 5% CO, humidified atmosphere.

Chemicals, plasmids and antibodies

Gamitrinib conjugated with triphenylphosphonium was
prepared as described previously [33]. MitoTracker, Fura-
2-AM, and tetramethylrhodamine methyl ester (TMRM)
were purchased from Molecular Probes, Ryanodine
was from Santa Cruz Biotechnology. Mn(IlII) tetrakis
(1-methyl-4-pyridyl) porphyrin (MnTMPyP) was from
Calbiochem. 1,2-bis(o-aminophenoxy) ethane-N,N,N;N’-
tetraacetic acid acetoxymethyl ester (BAPTA), cyclos-
porine A (CsA), carbonyl cyanide 4-(trifluoromethoxy)
phenylhydrazone (FCCP), tetracaine, and thapsigargin
(Thap), and N-acetylcysteine (NAC) and all other chemi-
cals, were from Sigma.
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Anti-CEBP homologous protein (CHOP) antibodies
were obtained from Cell Signaling; anti-RyR, anti-IP3R,
anti-elF2a and anti-cytochrome c antibodies from Santa
Cruz Biotechnology; anti-cyclopholin D from Calbio-
chem; anti-elF2a[pS52] from Invitrogen; anti-p-actin
from MP Biomedicals; and anti-TRAP1 from BD
Biosciences.

Astrocyte preparation

Primary cultures of astrocytes were prepared as previously
described [64]. Briefly, the mouse brain cortex, after re-
moving the meninges, was dissected and dissociated with
moderate pipetting. Cells were plated on 100-mm dishes
coated with 10 pg/ml poly-D-lysine (Sigma) and grown to
confluence in DMEM supplemented with 10% FBS,
10% horse serum (GIBCO), 100 units/ml penicillin, and
100 pg/ml streptomycin at 37°C in a 5% CO, humidified
atmosphere. Afterward, astrocytes were trypsinized and
plated on 6-well plates coated with poly-D-lysine to
administer drugs.

siRNA treatment

Small interfering RNAs (siRNA) against TRAP1, RyR2,
IP3R, and CHOP were synthesized by Genolution
(Korea) as follows:

RyR2-#1, 5'-AAGTGGTTCTGCAGTGCACCG; RyR2-#2,
5-AAGTACGAGTTGGAGATGACC; TRAP1-#1, 5'- AAA
CATGAGTTCCAGGCCGAG; TRAP1-#2, 5'- CCCGGTCC
CTGTACTCAGAAA; IP3R1-#1, 5-GAGAATTTCCTTGTA
GACATCTGCA; IP3R1-#2, 5'-GGCCTGAGAGTTACGTG
GCAGAAAT; IP3R2, 5'-GAGAAGGCTCGATGCTGAGAC
TTGA; IP3R3, 5'-CCGAGATGACAAGAAGAACAAGTTT;
CHOP-#1, 5'-AGAACCAGCAGAGGTCACAA; CHOP-#2,
5'-AAGAGAATGAACGGCTCAAGCG; control, 5-ACUCU
AUCUGCACGCUGAC. Cells were cultured on 6-well
plates at 50-75% confluence, transfected with 20 nM
siRNA mixed with G-Fectin (Genolution) for 48 hours,
and then analyzed or treated with drugs.

Analysis of cell viability and apoptosis induction

Cells (5 x 10° cells/well) were cultured in 96-well plates
overnight and treated with gamitrinib and Thap alone or
in combination for 24 hours. To determine cell viability,
cells were exposed to 3 (4,5-dimethyl-thyzoyl-2-yl)2,5
diphenyltetrazolium bromide (MTT), and crystalized
formazan was quantified by measuring the absorbance
at 595 nm with an Infinity M200 microplate reader
(TECAN). Absorbance data were compared with that of
vehicle control and expressed as percent viability. Alterna-
tively, after treatment with drugs, DNA content (propi-
dium iodide, red fluorescence) and caspase activation
(DEVDase activity, green fluorescence) of the cells were
analyzed using the Caspalag in situ apoptosis detection
kit (Millipore). Labeled cells were analyzed using the
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FACS Calibur™ system (BD Biosciences). Data were proc-
essed using Flow]Jo software (TreeStar).

CHOP reporter assay

To generate a CHOP reporter stable cell line, PC 3 cells
were co-transfected with 8 pg of a promoter construct
(CHOP::GFP) [50] obtained from Addgene (Addgene plas-
mid 21898) and 800 ng of puromycin linearized selection
marker (Clontech) using Lipofectamin (Invitrogen) per
manufacturer’s instructions. Transfected PC3 cells were
cultured in RPMI (Lonza) with 1 pg/ml puromycin (Clon-
tech) for 3 weeks and colonies were picked using cloning
cylinders. GFP expression was monitored in the IncuCyte™
imaging system (Essen Bioscience) at an excitation wave-
length of 450—-490 nm and an emission of 500-530 nm,
and analyzed by Image ] software (National Institutes
of Health).

Live cell imaging for intracellular calcium

HeLa cells were incubated with 5 uM Fura-2-AM for
30 min at 37°C and 5% CO,. After washing with Hank’s
Buffer, the cells were incubated with calcium-free
Locke’s solution (154 mM NaCl, 5.6 mM KCl, 3.2 mM
MgCl,, 5 mM HEPES, 10 mM glucose, 0.2 mM EGTA;
pH 7.4). Fluorescence changes were monitored every
5 minutes using an IX81 ZDC microscope (Olympus) at
an emission wavelength of 510 nm with dual excitation
at 340 nm and 380 nm. Images of the 340/380 fluores-
cence ratio were generated and analyzed by the Xcellence
software package (Olympus).

Imaging D1ER and mtCameleon

Fluorescence resonance energy transfer (FRET) measure-
ments were performed using an FV1000 laser confocal
scanning microsope (Olympus) with a FRET module and
a UPLSAPO 100x oil immersion objective with a 1.40
numerical aperture. HeLa cells were seeded on a Lab Tek
II slide chamber at 40-80% confluency in DMEM (Lonza)
supplemented with 10% FBS and 1% penicillin/strep-
tomycin at 37°C and 5% CO,. D1ER or mtCameleon
constructs (kind gifts from Dr. RY. Tsien, University of
San Diego) [37] were transfected into HeLa cells using the
Lipofectamine transfection reagent (Invitrogen) per manu-
facturer’s instructions. Cells were imaged at 24 or 48 hours
after transfection. All analyses were performed under
the same conditions. D1ER and mtCameleon, containing
FRET donor (CFP) and acceptor (citrine) components,
were excited with a 440-nm diode laser source; the emit-
ted fluorescence bands were separated by a grating and
detected by photomultiplier tubes in the CFP channel
(480 nm) and FRET channel (535 nm). The FRET ratio
(Rerer) Was calculated as described previously [65] from
confocal images using FV10-ASW 3.1 software (Olympus)
by pixel-by-pixel quantification of fluorescence intensity:
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Reret = Irer/Icep, Where Ipper and Icpp represent the
fluorescence intensities from the FRET and CFP channels,
respectively. The FRET ratio (relative units) was plotted
after comparing Reget values.

RNA extraction and reverse transcript-PCR

Total RNA was prepared from cells suspended in cold
PBS using the RNeasy mini kit (QIAGEN), and cDNA
was synthesized using the ProtoScript® First Strand
c¢DNA Synthesis Kit (New England Biolabs) using an
oligo(dT) primer. The PCR reaction was performed in a
Mastercycler PCR machine (Eppendorf) with the follow-
ing sets of oligonucleotide primers: glyceraldehyde phos-
phate dehydrogenase (GAPDH), 5'-CGGGAAGCTTGT
CATCAATGG-3" and 5'-GGCAGTGATGGCATGGAC
TG-3'; CHOP, 5'- CTTTCTCCTTCGGGACACTG-3’
and 5-AGCCGTTCATTCTCTTCAGC-3’; TRAP1, 5'-
ATGGCGCGCGAGCTGCGG-3" and 5'-CAGTCGTCC
TGCCTGCAA-3’; X-box binding protein 1 (XBP1), 5'-
CCTTGTAGTTGAGAACCAGG-3’ and 5'-GGGGCTT
GGTATATATGTGG-3'.

Xenograft tumor models

All experiments involving animals were approved by
UNIST (IACUC-12-003-A). 22Rv1 (7 x 10°) cells suspen-
ded in sterile PBS (200 ul) were injected subcutaneously
into both flanks of 6-week-old BALB/c nu/nu male mice
(Japan SLC Inc.) and allowed to grow to an average vol-
ume of approximately 100 mm?®, Animals were randomly
divided into four groups (two tumors/mouse, five mice/
group). Gamitrinib or vehicle (DMSO) dissolved in 20%
Cremophor EL (Sigma) in PBS was injected intraperitone-
ally, and Thap dissolved in 0.9% NaCl in PBS intraven-
ously. The mice were administered 10 mg/kg gamitrinib
and 0.2 mg/kg Thap twice a week. Tumors were measured
daily with a caliper, and tumor volume was calculated
using the formula: V = 1/2 x (width)* x length. At the end
of experiment, animals were euthanized, and organs in-
cluding brain, heart, kidney, liver, lung, spleen, and tumor
were collected for histology or western blotting. For histo-
logical analysis, harvested organs were fixed in 10% forma-
lin and embedded in paraffin. Sections (5 pm) were placed
on high-adhesive slides, stained with H&E, and scanned
using the Dotslide system (Olympus) with 10x magnifi-
cation. For western blot analysis, tissue samples were
lysed in RIPA buffer (50 mM Tris, pH 8.0, 150 mM
NaCl, 1% NP-40, and 0.25% N-deoxycholate) containing
protease inhibitor and phosphatase inhibitor cocktails
(Calbiochem) using a homogenizer (IKA).

Statistical analysis of data

All MTT experiments were duplicated and repeated
independently at least three times. Statistical analyses
were performed using the software program Prism 5.0
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(GraphPad). In an unpaired t-test, p <0.05 was consid-
ered significant.

Additional file

Additional file 1: Figure S1. Effect of 17AAG on calcium concentration
in the cytoplasm/mitochondria and gamitrinib normal cell effect.

Figure S2. Inhibition of mitochondrial Hsp90s activates ER stress sensors.
Figure S3. IP; receptors and lysophosphatidic acid (LPA)-induced
calcium flux. Figure S4. Sensitization of cancer cells to thapsigargin by
mitochondrial Hsp90 inhibition. Figure S6. Effect of combination drug
treatment on normal tissues.
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