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Abstract

Background: With increased long-term survivors of childhood cancer patients, therapy-associated infertility has
become one of the most common late side-effects and significantly affects their life-quality. Therefore, evaluation
of anti-cancer agents on male reproduction and infertility prevention are urgently demanding. The proteasome
inhibitor bortezomib has been launched in clinical trials for childhood cancers, however, its potential side effects
on reproduction have so far been neither investigated experimentally nor reported in treated children. Thus the
present study is designed to explore the impact of bortezomib on male reproductive function and to gain insights
into how bortezomib exerts its adverse effects on man gonad, thereby providing pediatric oncologists relevant
information.

Methods: 35 day-old male mice were treated with one 11-day cycle of bortezomib and then sacrificed 2 days,
45 days, or 6 months later. A mating study was performed in the group followed for 6 months, and their pups
were analyzed on postnatal day 50. Serum follicle-stimulating hormone (FSH) and testicular testosterone levels were
measured. Testicular morphology was evaluated by light- and electron microscopy, and the underlying mechanisms
and pathways of testis damage were investigated.

Results: Testicular damage was visible already 2 days after stopping bortezomib and increased in severity by day
45. Then 80% of seminiferous tubules exhibited hypospermatogenesis with arrest at the levels of spermatogonia,
spermatocytes and round spermatids. Germ cells were specifically targeted by bortezomib as evidenced by
increased apoptosis mediated through activation of p53 and caspases. Even six months after the bortezomib
treatment, testis weight, sperm concentration and seminiferous tubule length remained at a decreased level,
indicating that spermatogenesis and tubular outgrowth could not fully recover. Combined with persistently
increased serum levels of FSH in these mice, our results demonstrate that bortezomib can have long-term effects
on testicular function, although fertility of bortezomib-exposed males remained and their offspring looked healthy.

Conclusion: Bortezomib treatment causes long-term gonadal dysfunction in male mice. Careful monitoring of
gonadal function in male childhood cancer patients treated with bortezomib is thus strongly recommended.
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Background
Despite highly improved anti-cancer strategies and
increasing numbers of cancer survivors, resistance of
malignant cells to chemotherapeutic agents leading
to relapsed and refractory cancer remains a major
concern. In addition, infertility, one of the severe late
side effects of intensive cancer treatment is also an
unfavorable factor that negatively influences the quality of
life among cancer survivors. Thus, new drugs for efficient
treatment of relapse and refractory cancer with fewer
side effects on the testis are highly desired.
The 26S proteasome is the enzymatic core engine of

the ubiquitin and proteasome dependent proteolytic
system (UPS), the major eukaryotic pathway for regulated
protein degradation. The UPS plays a pivotal role in
cellular protein turnover, protein quality control, antigen
processing, signal transduction, cell cycle regulation, cell
growth and survival, cell differentiation and apoptosis [1].
Selective degradation of proteins by UPS is a critical
determinant for maintaining cellular homeostasis [2],
and consequently, inhibition of the proteasome blocks the
processes of protein degradation leading to accumulation
of proteins that affect multiple signaling cascades within
the cells, thereby resulting in cell death and prevention of
tumor growth [3].
Bortezomib (Velcade®, formerly known as PS-341,

LDP-341 and MLM341) is an inhibitor of the 26S
proteasome [4]. Due to its profound anti-tumor effects,
bortezomib as the first proteasome inhibitor has entered
into the clinic for treatment of adult multiple myeloma
[5]. Promising results have been achieved from a phase II
clinical trial in adult patients with relapsed or refractory
indolent lymphoma [6]. In a recent phase I clinical
study in relapsed childhood acute lymphatic leukemia,
bortezomib was found to be efficacious when combined
with traditional chemotherapeutic drugs [7].
Although the clinical efficacy of bortezomib is evident

and many patients tolerate the treatment relatively
well, some serious adverse effects, such as neutropenia,
thrombocytopenia and heart failure, have been reported
[8]. In addition, experimental data have shown that
bortezomib selectively targets growth plate chondrocytes,
thereby leading to permanent growth failure in young
male mice [9]. So far, it is unknown if bortezomib may
also impair testicular function and fertility.
During gonadal and germ cell differentiation, ubiquitin,

the ubiquitin activating and conjugating enzymes E1, E2,
and UBC4, and the ubiquitin C-terminal hydrolase L1
(UCH L1) are all highly expressed by Sertoli cells,
spermatogonia, spermatocytes, and spermatids [10]. The
UPS is required for the degradation of numerous pro-
teins throughout the mitotic, meiotic and postmeiotic
developmental phases of spermatogenesis [11]. The activity
of the UPS is high during spermatogenesis [12] due
to the demanding requirement of massive breakdown
of cytoplasmatic and nuclear proteins during this
process [13-15]. Consistent with its multiple functions,
alterations of the UPS have been implicated in many
pathological processes and sub/infertility. Indeed, it
has been observed that targeted disruption of the
polyubiquitin gene Ubb results in male and female
infertility [16] and altered testicular gene expression
patterns [17]. Loss of UCHL1, a deubiquitating enzyme
responsible for regenerating monoubiquitin from the
ubiquitin-protein complex, decreased the rate of apoptosis
in the first round of spermatogenesis and increased
the numbers of premeiotic germ cells in immature
mice [18], whereas asymmetric distribution of UCHL1
in spermatogonia is associated with maintenance and
differentiation of spermatogonial stem cells [19]. In
contrast, overexpression of UCHL1 was accompanied by
reduced PCNA expression and abolishment of apoptosis
in spermatogonia, and spermatogenesis was blocked [20].
Moreover, mice lacking the UBC4-testis gene have a
delay in postnatal testis development [21]. Based on
these reports, we hypothesized that inhibition of the
26S proteasome, the core engine of the UPS would
lead to deleterious effects on testicular function. To
address this, we designed a study, in which a single
cycle of a clinically relevant dose of bortezomib was
administered to young male mice at the age of 35 days.
Our intent was to evaluate whether bortezomib has
testicular effects and impairs fertility of bortezomib-
exposed males, and/or has potential impacts on their
offspring.

Results
Bortezomib reduces testicular weight and sperm
concentration
A statistically significant reduction in testicular weight and
sperm concentration was observed in all groups treated
with bortezomib when analyzed 2 days, 45 days, and
6 months after the last injection (Table 1) compared to
controls, whereas body- and seminal vesicle weights were
unaffected at all-time points examined (data not shown).

Bortezomib causes germinal epithelial damage and
decreases longitudinal growth of the pubertal
seminiferous tubules
Examination of testicular sections from mice killed 2
days after the last bortezomib injection revealed that
approximately 30% of seminiferous tubules were damaged
in 4 out of 5 mice examined. The majority of affected
seminiferous tubules were located peripherally under the
testicular capsule (Figure 1C and D). Impaired seminifer-
ous tubules exhibited hypospermatogenesis with arrest
(mixed atrophy) showing spermatogonia (5.8%), spermato-
cyte (8.7%), and round spermatid (16.6%) as the most



Table 1 Testis weight, sperm concentration and length of seminiferous tubule in bortezomib treated and control mice

Follow-up period Group Testis weight, both
sides (mg) n=6

Sperm concentration
(106/ml) n = 6

Length of seminiferous
tubules (m) n = 4

2 days Control 91±0.001 3.30 ± 0.543 2.57 ± 0.131

Bortezomib 83 ± 0.002*** 0.89 ± 0.239* 2.36 ± 0.235

45 days Control 120 ± 0.003 4.62 ± 1.031 2.78 ± 0.103

Bortezomib 85 ± 0.003*** 1.31 ± 0.148*** 2.09 ± 0.123*

6 months Control 114 ± 0.003 11.73 ± 2.027 3.01 ± 0.021

Bortezomib 80 ± 0.006*** 3.12 ± 0.951*** 2.40 ± 0.272

Mean ± S.E.M; *P < 0.05, ***P < 0.001.
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advanced germ cell types in seminiferous tubule
cross-sections examined, respectively. Only 54.4% of
tubules displayed normal spermatogenesis. Altogether
15% of tubules showed a Sertoli cell only phenotype
(SCO, Figure 1C and D, arrows), no morphological
abnormalities of Sertoli and Leydig cells (LCs) were
observed. The length of the seminiferous tubules was
comparable to control (Table 1). Severely impaired semin-
iferous epithelia with degenerating germ cells exfoliating
in the lumen of seminiferous tubules were observed under
electron microscopy (Figure 2D arrows).
Forty-five days after treatment, 80% of the cross-

sections of the seminiferous epithelium revealed a
histopathological pattern of damage in all examined
animals receiving bortezomib (n = 5, Figure 1E and F).
SCO tubules were seen in 19.2% (Figure 1E and F, arrows)
with tubules showing spermatogonia (9.6%), spermatocyte
(20.1%) and round spermatid (30.7%) as the most ad-
vanced germ cell type accounted in the tubules examined,
Figure 1 Effect of bortezomib on testicular histology. Microphotograp
mouse (A, B), and in mice sacrificed 2 days (C, D), 45 days (E, F), or 6 mon
animals (C-H), spermatogenesis was variably impaired with tubules ranging fr
(mixed atrophy) and release of premature germ cells into the lumen (D, F, H,
epithelium with enlarged interstitial spaces (C-H, stars). Images were captured a
Corresponding images are displayed side-by-side.
respectively. Only 19.2% of the examined tubules showed
normal spermatogenesis. The length of seminiferous
tubules in these mice was significantly decreased
compared to the controls (Table 1). Electron microscopic
examination of testicular sections of these mice re-
vealed that germ cell loss had reduced the seminifer-
ous epithelium to only one single basal cell layer
(Figure 2E arrows). Remaining cells showed signs of
degeneration, i.e. irregular nuclear outline.
Six months after the cessation of bortezomib treatment,

10-15% of seminiferous tubule cross-sections (mainly
located subcapsularly) exhibited hypospermatogenesis
with arrest at the level of round spermatids in 2 out
of 4 mice examined. One mouse displayed 40-50% of
seminiferous epithelial cross-sections with the same
pattern of damage (Figure 1G and H, arrows). Compared
to the follow-up after 45 days, at 6months the number of
seminiferous tubules with normal spermatogenesis had
increased from 19.2% to 55.4%, whereas SCO tubules had
hs showing testicular histology in a 35 day old untreated control
ths (G, H) after the last bortezomib injection. In bortezomib-treated
om Sertoli cells only (arrows) to various degrees of hypospermatogenesis
triangles). Loss of germ cells was related to shrinkage of seminiferous
t 4× (A, E, C, G; bars 500 μm) or 60× (B, F, D, H; bars 50 μm) magnification.



Figure 2 Electron micrographs of testis pathology associated with bortezomib treatment. Lower panel shows electron micrographs of
testicular sections of mice sacrificed 2 days (D), 45 days (E), and 6 months (F) after the last bortezomib injection. Upper panels (A-C) display the
respective untreated controls. Magnification of all micrographs is 3000×. Damage includes the premature release of round spermatids (D, arrows)
and elongated spermatids (open triangle) as here illustrated in mice sacrificed 2 days after the last bortezomib injection. In mice sacrificed 45 days
post-treatment (E), the germ cell loss had reduced the height of the seminiferous epithelium into a single cell layer (arrows) with malformed nuclei
(open triangle). In mice killed 6 months after the last bortezomib injection (F), vacuolization of elongated spermatids (open triangles), impairment of
the acrosome formation (arrows), and degeneration of germ cells were evident.
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declined from 19.2% to 9.5%. The percentage of seminifer-
ous tubules that showed spermatogonia, spermatocyte and
spermatids as the most advanced germ cell type in this
group were 4.1%, 22.9% and 8.1%, respectively. The length
of seminiferous tubules increased from 2.09 ± 0.12 m to
2.40 ± 0.27 m but was still shorter than those in the
control group (3.01 ± 0.02 m, Table 1) indicating that
spermatogenesis and pubertal longitudinal growth of
seminiferous tubule were only partially recovered.
Electron microscopy showed numerous vacuoles in the
cytoplasm of elongated spermatids and electron-lucent
areas around the nuclei suggesting fluid accumulation
(Figure 2F, open triangles). Acrosome formation was
impaired in round spermatids (Figure 2F arrows).

Bortezomib treatment does not impair fertility
To determine whether a single cycle of bortezomib
administration impairs fertility, a mating study was per-
formed 6 months later. This showed that 31% (5 out of 16)
of females mated with males who had been exposed
to bortezomib became pregnant while 35% (7 out of 20) of
those females mated with unexposed males became
pregnant (P = 0.86). The litter sizes in corresponding
mother groups were 5.0 and 7.3 pups/mother (P = 0.07),
respectively. This shows that despite decreased adult
testicular volume and sperm counts, the fertility of
bortezomib exposed males was not impaired.

Bortezomib treatment does not affect the first generation
Next, we examined whether pups of bortezomib exposed
males were affected. In total, 6 bortezomib-derived
male pups were alive and developed normally. Mean
testis weight, sperm concentration and body weight in
these mice were 86 ± 0.011 mg, 2.60 × 106 ± 0.276/ml
and 23.6 ± 0.58 g, respectively, and the corresponding
parameters in control pups (n = 13) were 116 ± 0.031 mg,
2.96 × 106 ± 0.465/ml and 23.0 ± 0.36 g, respectively.
Frequency of pups surviving until the time of weaning
was 48% in bortezomib-derived litters and 57% in control
litters. Live-birth index and sex ratio were 13/25 (living
offspring/offspring born = 52%) and 13/12(♂/♀) in the
bortezomib treated group, while 31/51 (61%) and 25/26 in
controls, respectively. No statistically significant difference
was detected in any of these parameters. No marked
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morphological alteration was observed when testicular
histology was analyzed under light- and electron
microscope after pups in both groups had reached
adult age (data not shown).

Bortezomib increases serum FSH levels
Serum FSH levels were found to be significantly increased,
both 45 days and 6 months after the last injection of
bortezomib (Figure 3D). The levels of testicular testoster-
one were comparable to controls. When assessed 2 days
after the cessation of bortezomib treatment, testicular
testosterone levels were increased (Figure 3E).

Bortezomib treatment did not impair spermatogonial
proliferation
To assess whether germ cell proliferation was impaired
after bortezomib treatment, testicular sections were immu-
nostained applying an antibody against proliferating cellular
nuclear antigen (PCNA). No differences in the numbers of
proliferative germ cells per seminiferous tubule were
found between testes from bortezomib treated and
control mice or between the pup groups (Figure 3A,
Figure 3 Immunostaining of testicular sections with PCNA and quantifi
testicular testosterone. Proliferating germ cells in testicular sections from a
control (B) labeled with brown color (arrows) after immunostaining with PCN
tubule in all treated and pup groups, and their respective controls (C). Lower
2 days, 45 days, and 6 months follow-up mice and pups of bortezomib treate
is 20×. Ctl: control, Bort: bortezomib. PCNA: proliferating cell nuclear antigen.
B arrows and C), indicating that bortezomib did not
interfere with spermatogonial proliferation.

Bortezomib induces germ cell apoptosis through p53 and
the caspase 8- and 3 pathways
To determine how bortezomib caused testicular damage,
TUNEL staining, a method to detect DNA fragmentation
in nuclei was performed. Various types of germ cells,
including spermatogonia, spermatocytes, and spermatids,
were stained positively 2 and 45 days after the last adminis-
tration of bortezomib (Figure 4D, arrows). The germ cells
were TUNEL positive, while Sertoli (open triangle), peritub-
ular (arrowhead), and interstitial cells including Leydig cells
(solid triangle) did not show positive staining (Figure 4D).
In control mice, only a few germ cells were TUNEL positive
(Figure 4E, arrow). The number of TUNEL positive cells
per seminiferous tubule was significantly increased in mice
treated with bortezomib compared to controls (Figure 4F).
Thus, bortezomib specifically targets the germ cells
by inducing germ cell apoptosis.
Apoptosis can be induced by the intrinsic and extrinsic

pathways through up-regulation of p53 and caspase 8,
cation of proliferating germ cells and levels of serum FSH and
mouse exposed to bortezomib 45 days earlier (A) and a corresponding
A antibody. Quantification of proliferating germ cells per seminiferous
panels show serum FSH (D) and testicular testosterone (E) levels in
d animals and their corresponding controls. Magnification in (A) and (B)



Figure 4 Immunostaining for p53, active and precursor caspase 8 and active caspase 3, and fragmented DNA. Upper panels show
protein expression of p53 (A), active and precursor caspase 8 (B) and active caspase 3 (C) as detected by immunostaining (arrows) in testicular
sections of mice sacrificed 2 days after the last bortezomib injection. Inserts show negative controls of corresponding sections of (A), (B) and (C).
Lower panels show TUNEL staining of testicular sections in mice killed 2 days post-treatment (D) and their untreated controls (E). Germ cells were
positively stained (D, arrows) suggesting DNA fragmentation while Sertoli, peritubular and Leydig cells were all TUNEL negative (open triangle, arrowheads,
and solid triangle). Panel (F) shows the quantification of the numbers of TUNEL positive germ cells per seminiferous tubule in all treated and pup groups,
and the respective controls. Magnification of all pictures is 60×. *P < 0.05, **P < 0.01.
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respectively, with subsequent activation of the effector
caspase 3. To explore the roles of these pathways in
bortezomib-induced germ cell apoptosis, testicular
sections of mice killed 2 days after the last injection
of bortezomib were immunostained for p53, active
and precursor caspase 8, and active caspase 3 protein
expressions. In bortezomib-treated mice, numerous sperm-
atogonia, spermatocytes and spermatids were stained
positively for these markers (Figure 4A,B and C, arrows),
whereas controls were negative (inserts, downright
corners). This indicates that apoptosis is induced through
p53 as well as through the caspase 8- and caspase 3
activating cascades.

Discussion
A significant acute decrease in the testis weight and
sperm concentration was detected 2 days after the last
injection of bortezomib. Thirty percent of seminiferous
tubules exhibited hypospermatogenesis with arrest at
the levels of spermatogonia, spermatocytes or round
spermatids. Moreover, 15% of seminiferous tubule displayed
SCO. These observations indicate that bortezomib not
only affects rapidly dividing germ cells but also decreases
the number of quiescent spermatogonial stem cells. Thus,
bortezomib is a potent gonadal toxic drug.
The damage to spermatogenetic epithelium increased
when the follow-up period was extended to 45 days after
bortezomib exposure. At this point, 80% seminiferous
tubules exhibited hypospermatogenesis, with spermato-
gonia, spermatocytes and round spermatids being the most
advanced germ cell type. SCO was detected nearly in 20%
of examined tubules and serum FSH was elevated. The
length of seminiferous tubule was significantly shorter than
that in the controls. This means that bortezomib affects
also the longitudinal outgrowth of seminiferous tubules
in these pubertal mice and exhibits its adverse effects not
only on germ cells but also on Sertoli cells. In fact,
bortezomib-induced SC toxicity was further confirmed by
its action killing spermatocytes and spermatids in the
adlumenal compartment, which is normally protected by
the blood – testis barrier created by junctions between
neighboring SCs [22].
Testis weight, sperm concentration and length of the

seminiferous tubule remained at a decreased level six
months after bortezomib treatment, indicating that the
spermatogenesis and tubular outgrowth was able to only
partially recover and that bortezomib can have long-term
effects on testicular function.
In the present mouse study, serum FSH levels were

increased 45 days after the cessation of bortezomib
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treatment and these levels were persistently elevated
up to 6 months post-treatment, suggesting long-term
Sertoli cell dysfunction. Unfortunately, we could not
directly study Sertoli cell function by measuring inhibin
levels due to limited volumes of serum available. Significant
elevated levels of testicular testosterone were also detected
in mice 2 days after the last injection. We found that the
level of StAR protein (steroidogenic acute regulatory
protein) was higher in mice exposed to bortezomib
than that in control mice (data not shown). The StAR
is an important regulatory protein of steroidogenesis,
and administration of bortezomib inhibits the proteasomal
degradation of this protein, potentially leading to an
accumulation of StAR, thereby enhancing testosterone
production. Given the observation that no morphologic
alterations of LCs were found and that the levels of
testosterone returned to control values after 6 months,
we conclude that the steroidogenic function might be
unaffected after bortezomib treatment.
The seminiferous epithelium often recovers and

rapidly reestablishes normal spermatogenesis through
increased germ cell proliferation after toxicant withdrawal
[23]. Interestingly, we did not find any such recovery
taking place in the seminiferous tubules of those mice
being earlier exposed to bortezomib. It is likely that
bortezomib blocks the activity of the proteasome which
prevents degradation of the cyclin-dependent kinase
inhibitors p27Kip1 and p21Cip1, both known to arrest
cell cycle progression at G1 [24], and thereby germ
cell proliferation.
We can report that bortezomib caused testicular

damage by triggering apoptosis in germ cells. Our results
further showed that p53 induction and activation of
caspases 8 and 3 play important roles in bortezomib
induced germ cell apoptosis.
To evaluate whether bortezomib impairs fertility and

affects offspring, we performed a mating study in males,
which had been exposed to bortezomib 6months earlier. At
this point, sperms are differentiated from spermatogonia
that were earlier exposed to bortezomib. Fertility of these
mice was preserved. There was no difference in the litter
sizes and growth of pups was comparable to the controls.
No statistical significant differences between pup groups
were detected in testicular weights or sperm concentration
after pups had reached sexual maturity. Taking together,
our data demonstrate that bortezomib treatment does not
impair fertility of males, and their offspring are unaffected.
Recently, Manku and colleagues demonstrated that

bortezomib blocks the ability of retinoic acid to increase
the expression of differentiating spermatogonial markers
Stra8 and Dazl in gonocytes isolated from testes of
postnatal day 3 rats [25]. Differentiation of neonatal
testicular gonacytes to spermatogonia is a critical step
for the establishing of the spermatogonial stem cell
population, a crucial point for future fertility. In humans,
this process lasts from birth up to 4–5 years of age [26],
during which period, leukemia, the most common
malignant disease in children, occurs. Combining Manku’s
finding with our data, we speculate that treatment of
prepubertal boys with bortezomib could have deleterious
consequences on male reproduction. Further studies to
address this issue are demanded.
The bortezomib dose here used (1 mg/kg body weight)

has previously been shown to cause 50-80% proteasome
inhibition, which is clinically relevant [9,27]. It is also
important to point out that in the present study, the
impact of only a single cycle of bortezomib was evaluated.
In the clinical setting, up to 9 cycles, either with a single
drug or in combination with other chemotherapeutic
agents is usually used. Higher cumulative doses may
significantly affect spermatogenetic recovery leading
to sub/infertility.

Conclusion
The systemic administration of a single cycle of bortezomib
was shown to significantly affect spermatogenesis but also
to cause Sertoli cell dysfunction. This damage was not
fully recovered 6 months after the last administration of
bortezomib and led to decreased sperm concentration and
adult testicular volume. Based on our experimental data,
careful monitoring of gonadal function is suggested in
patients being treated with bortezomib.

Materials and methods
Animals and bortezomib treatment
Thirty-five day old (35d-old) C57B young male mice
were used (B&K Universal, Sollentuna, Sweden). At this
age, the testis development corresponds to what is seen in
pubertal boys. The mice were randomized into treatment
and control groups, 6 animals per group. In order to
mimic the clinical situation, each mouse was injected
intraperitoneally (i.p) with a relevant dose of bortezomib
[9] (1.0 mg/kg of body weight, dissolved in 0.9% NaCl.
Millennium Pharmaceuticals, Inc., MA, Cambridge, UK)
while controls received 0.9% of NaCl (vehicle) in intervals
as illustrated in Figure 5. To evaluate if bortezomib may
cause acute testis damage, what would happen in the testis
after it had gone through one cycle of spermatogenesis,
and whether potential recovery of spermatogenesis would
occur after long-time follow-up, we sacrificed mice 2,
45 days or 6 months after the last injection (Figure 5),
respectively. Vehicle-treated mice were pair-fed with equal
amounts of food as bortezomib-treated mice up to day 20
in order to avoid any influence of nutritional status. Blood
was collected from each animal at the time of killing by
heart puncture. Body, testes, epididymidis and seminal
vesicles were removed and scaled. One testis from each
mouse was fixed in Bouin’s fixative for morphological



Figure 5 Protocol for bortezomib treatment and follow-up. The chart illustrates male mice who at 35 days of age were treated with one
11-day-cycle of bortezomib (1 mg/kg, i.p; injection days indicated: d1, d4, d8 and d11) and then followed for 2 days, 45 days, or 6 months. For
mating study, male mice at the same age were treated with bortezomib or vehicle as mentioned above. Six months after these mice and their
controls were mated with 8–9 week-old healthy females and killed one day later. The resulting pups were sacrificed on postnatal day 50.
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studies and calculation of length of seminiferous tubule,
while part of the other testis was snap frozen and stored
at −80°C for testosterone measurement, and rest of the
tissue was fixed in glutaraldehyde in an s-collidine
buffer for electron microscopic analysis. Use and handling
of animals was approved by Stockholm North Animal
Ethics Committee (Permits number: N49/06, N9/07 and
N283/07).

Counting the number of sperms
Dual caudate epididymis were dissected out from the
epididymides of each animal and placed into 12-well
Petri dishes. Each cauda was further cut into 4 pieces
with iris scissors and incubated in 1 ml of pre-warmed
MEMα medium (Invitrogen AB, USA) in a 37°C water
bath for 15 minutes allowing sperms to swim out of the
tissues [28]. The number of living sperms in bortezomib-
and vehicle-treated mice was calculated after Trypan blue
staining under a light microscope.

Mating study
For mating study, in a second experiment, ten 35d-old
mice in each group were treated either with bortezomib
or 0.9% of NaCl as stated above and illustrated in
Figure 5. Two out of ten mice exposed to bortezomib
died and were excluded from the study. Six months after
the last injection of bortezomib or vehicle, each male
mouse from respective groups (n = 8 and 10 respectively)
was caged overnight together with two 8–9 week-old
healthy females prior to killing (Figure 5). Fertility index of
females (number of pregnant females vs. number of females
mated), litter size (mean number of pups/mother),
live-birth index (number of live offspring vs. number
of offspring produced), sex ratio, frequency of pups
surviving until the time of weaning and the nose-tail
length were measured and recorded. On postnatal day 50,
pups were sacrificed, testis weighed, sperm concentration
calculated, and testicular histology evaluated (Figure 5).

Histological examination
The procedures for fixation and sectioning of testes
followed by PAS staining of the testicular sections were
conducted as described earlier [29]. Testicular histology
was examined from each animal under the light
microscope and compared with controls. To estimate
seminiferous epithelial damage in detail, more than
100 images were captured serially from testicular sections
of each mouse. Between 18–20 round shaped cross
sections of tubules were selected randomly from images
mentioned above, and at least 4–5 mice per group were
analyzed. The relative number of seminiferous tubular
cross sections containing Sertoli cell only (SCO) or
spermatogonia, spermatocytes, round spermatids and
elongating/sperm as the most advanced germ cell type
were recorded and presented as mean values ± S.E.M
as whole group. For electron microscopy, testicular
tissues were fixed and analyzed in the same manner
as described previously [30].
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Calculation of the length of seminiferous tubules
In order to measure the length of seminiferous tubules, the
diameters of 18–20 round cross-cords randomly selected
from each mouse were measured. The proportion of inter-
stitial area was determined by point-counting methodology
[31] and seminiferous tubules area was converted by whole
testis area (referred to as 100%) subtracting the proportion
of interstitial area. Testicular length in each animal was
calculated using the formula [32]:
Length of the tubule (m) =

Volume of the testis mlð Þ � cord=tubule‘s area %ð Þ
π � diameter of the cord=tubule μmð Þ=2ð Þ2

and expressed as mean values ± S.E.M as whole group
(Table 1).

Immunohistochemistry
Antigen retrieval was performed in citrate buffer
(pH 6.0) containing 0.01% Tween-20 at 950 C for 20 min
in a microwave. Testicular sections were incubated with
10% of normal goat serum (for all antibodies) and 3%
H2O2 at room temperature (RT) for 15 minutes, respect-
ively. Thereafter, rabbit anti-mouse p53, active and precur-
sor caspase 8 (Santa-Cruz, sc-28206, sc-7890 respectively,
California, USA) and active caspase 3 (Ab-cam, ab-2302,
Cambridge, UK) antibodies were all at a 1:50 dilution
applied overnight at 4°C. Next day, sections were incubated
with a secondary goat anti-rabbit biotinylated antibody at a
1:300 dilution for 1 h at RT followed by incubation
with ABC agents and DAB substrate (all purchased
from Vector Laboratories, BA-1000, Burlingame, USA), as
described earlier [29].

In situ apoptosis and cell proliferation
TUNEL positive cells in testicular sections were detected
by terminal deoxyribonucleotidyl transferase-mediated
dUTP nick end labeling as described earlier [30]. Cell
proliferation was detected by staining of testicular sections
with a rabbit anti-mouse proliferating cell nuclear antigen
(PCNA) antibody (1:50, Santa Cruz, sc-7907) followed by
incubation with a secondary antibody, ABC agents and
DAB substrate as described above. For calculation of
TUNEL positive and proliferating germ cells, at least 50
round shaped seminiferous tubule cross-sections from
testicular sections of each mouse (n = 4) were counted.
The numbers of TUNEL positive and proliferating cells
were expressed as positive cells per seminiferous tubule.

Measurement of serum FSH and testicular testosterone
FSH levels were measured in serum with a rat FSH ELISA
kit (Biocode-Hycel, France, Cat: AE R004) according
to the manufacturer’s instructions. The concentration
of serum FSH was expressed in ng/ml. Intratesticular
testosterone concentrations were assayed as described
earlier [33]. Briefly, testicular tissues (30–50 mg) obtained
from individual mice were homogenized by sonication
(2 × 20 sec.) in a sodium phosphate buffer and then
centrifuged at 10.000 × g for 10 min. Testosterone
concentrations in the supernatants were determined
employing the coat-a-count RIA kit (Diagnostic products
Corp., Los Angeles, GA, USA) according to the manufac-
turer’s instructions and expressed as ng/gram tissue.

Statistical analysis
Results in Table 1 are presented as mean values ± SEM.
Differences between two groups were tested by t-test
followed by a Mann–Whitney Rank Sum Test if the nor-
mality test failed. Differences were considered statistically
significant for p-values <0.05.
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