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Transducin β-like 1 X-linked receptor 1 suppresses
cisplatin sensitivity in Nasopharyngeal Carcinoma
via activation of NF-κB pathway
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Abstract

Background: Transducin β-like 1 X-linked receptor 1 (TBL1XR1) is an important transcriptional cofactor involved in
the regulation of many signaling pathways, and is associated with carcinogenesis and tumor progression. However,
the precise role of TBL1XR1 in these processes is not well understood.

Methods: We detected the expression of TBL1XR1 protein and mRNA in nasopharyngeal carcinoma (NPC) cell lines
and biopsies by western blotting, real-time PCR and immunohistochemical staining (IHC). Overexpression of
TBL1XR1 in NPC enhanced chemoresistance to cisplatin using two NPC cell lines in vitro and in vivo.

Results: TBL1XR1 was upregulated in NPC cell lines and clinical samples. The expression of TBL1XR1 was correlated
with several clinicopathological factors including clinical stage, T classification, N classification and patient survival.
Univariate and multivariate analysis revealed that TBL1XR1 was an independent prognostic factor for patient
survival. In vitro and in vivo studies demonstrated that TBL1XR1 high expression induced resistance to
cisplatin-induced apoptosis in NPC cells. Furthermore, we found that TBL1XR1 activated the NF-κB pathway and
promoted transcription of genes downstream of NF-κB, especially anti-apoptotic genes.
Conclusions: Upregulation of TBL1XR1 induces NPC cells resistance to cisplatin by activating the NF-κB pathway,
and correlates with poor overall survival of NPC patients. TBL1XR1 has a pivotal role in NPC and could be a valuable
prognostic factor as well as a novel biomarker for tailoring appropriate therapeutic regimes.
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Background
Nasopharyngeal carcinoma (NPC) is a common malignant
carcinoma of the head and neck region, and is more preva-
lent in regions of Southeast Asia and Africa than elsewhere
[1]. The etiological factors of NPC mainly consist of genetic
susceptibility, Epstein–Barr virus (EBV) infection and en-
vironmental factors [1]. Currently, the standard treatment
for NPC consists of radiotherapy and adjuvant cisplatin
chemotherapy. Although this therapeutic regimen results
in a high cure rate, a considerable number of patients suffer
from therapeutic resistance, distant metastases and local
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recurrence after treatment [2-6]. Thus, it is important to
understand the molecular events involved in the develop-
ment and progression of NPC, with an aim to explore ef-
fective strategies that can enhance the sensitivity of tumor
cells to drug-induced apoptosis.
Transducin β-like 1 X-linked receptor 1 (TBL1XR1) or

transducin β-like-related protein 1 (TBLR1) was originally
identified as a component of the nuclear receptor corepres-
sor (N-CoR) complex [7]. TBL1XR1 is high homology to
Transducin β-like protein 1 (TBL1); both contain F-box/
WD-40 repeats that are required for binding to the silen-
cing mediator for retinoid and thyroid hormone receptors
(SMRT) and the N-CoR corepressor complex, which medi-
ates transcriptional repression by unliganded nuclear recep-
tors [8,9]. TBL1XR1 also function as an E3 ubiquitin ligase
that recruits UbcH5 ubiquitin conjugating enzymes/19S
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proteasome, and subsequently replaces of corepressors
with coactivators in a ligand-dependent manner [10].
Previous studies have established TBL1XR1 as a key
player in the regulation of multiple signaling pathways
(Wnt/β-catenin, Notch, NF-κB, and nuclear receptor)
and gene transcription [10-13]. In addition, TBL1XR1 has
been found to affect carcinogenesis and tumor progression.
Liu et al. showed that TBL1XR1 is overexpressed in lung
cancer cells, and particularly in a human immortalized
bronchial epithelial cell line, indicating that the abnormal
expression of TBL1XR1 might be an early event during
lung cancer development [14]. Kadota and colleagues
observed that TBL1XR1 levels are amplified in breast
cancer, and the protein plays an oncogenic role in
breast cancer progression [15]. Furthermore, the hepatic
transcriptional cofactor, TBL1/TBLR1, was found to regulate
liver lipid metabolism via the nuclear receptor peroxisome
proliferator-activated receptor (PPAR)α, and the defi-
ciency of TBL1/TBLR1 activity induced liver steatosis
and hypertriglyceridemia [16].
In this study, we showed that TBL1XR1 is upregulated in

NPC cell lines and clinical samples, and TBL1XR1 expres-
sion levels were correlated with the clinicopathologic char-
acteristics of NPC patients. Furthermore, TBL1XR1 induced
anti-apoptotic abilities in NPC cells by activating NF-κB sig-
naling pathway. Our data indicated that TBL1XR1 is a novel
prognostic factor and may serves as an effective biomarker
for selective therapeutic regimen for NPC patients.

Results
Up-regulation of TBL1XR1 in NPC cells
Western blot analysis showed that TBL1XR1 was highly
expressed in all nine NPC cell lines, whereas it was
weakly detected in normal nasopharyngeal epithelial cells
(NPECs; Figure 1A). Reverse transcription (RT)-PCR and
real-time PCR were performed to detect and measure ex-
pression levels of TBL1XR1 mRNA. All nine NPC cell lines
showed significantly higher levels of TBL1XR1 mRNA
compared to NPECs (Figure 1B). This was consistent with
the high levels of TBL1XR1 protein measured in NPC cells.
To validate whether the upregulation of TBL1XR1 in

NPC cell lines was clinically relevant, we also examined
protein and mRNA levels in NPC tissues.TBL1XR1 was
found to be overexpressed to varying degrees in all 10 NPC
samples (Figure 1C), and was barely detectable in the three
healthy nasopharyngeal epithelial tissue samples. RT-PCR
and real-time PCR revealed that TBL1XR1 mRNA was
upregulated in tumor samples (Figure 1D), confirming
that TBL1XR1 is overexpressed in NPC patients.

TBL1XR1 expression correlates with clinicopathologic
characteristics of NPC patients
To further demonstrate TBL1XR1 protein is overexpressed in
clinical samples of NPC, we performed immunohistochemical
(IHC) staining on paraffin-embedded archived biopsies
(105 NPC samples and 3 normal nasopharyngeal epithe-
lial tissue samples). In agreement with the results above,
TBL1XR1 was barely detected in normal nasopharyn-
geal epithelial tissues, while strong expression was
observed in the tumor cells of NPC samples (Figure 2A).
TBL1XR1 was detectable in 94 of 105 (89.52%), and
high levels of expression were observed in 52 (49.52%)
of the samples (Table 1).
We also investigated the possible correlations between

TBL1XR1 expression levels and the clinicopathologic
characteristics of NPC. Analysis of 105 NPC samples indi-
cated that TBL1XR1 expression was correlated with clinical
staging (P = 0.001), T classification (P = 0.040), N classifica-
tion (P = 0.003), and patient survival (P = 0.001). These re-
sults show that the observed correlation between TBL1XR1
expression and NPC progression is clinically relevant.

Five-year survival rate in NPC patients
The results of the Kaplan–Meier survival analysis and log-
rank tests demonstrated that high expression of TBL1XR1
was correlated with poor prognosis in NPC patients
(P = 0.008 vs. low TBL1XR1 expression, Figure 2B). The
five-year overall survival rate of the group that expressed low
levels of TBL1XR1 was 78.939% (95% CI: 88.935%-62.153%)
compared to 59.183% (95% CI: 71.667%-44.758%) for the
group expressing high levels. Multivariate Cox regression
analysis indicated that TBL1XR1 was an independent prog-
nostic factor for overall survival in NPC (Table 2), and may
therefore act as a prognostic biomarker.

Increased TBL1XR1 expression suppresses
cisplatin-induced apoptosis
To investigate the biological effect of TBL1XR1 in NPC
progression, two NPC cell lines (SUNE1 and CNE2) were
established that stably overexpressed TBL1XR1 (Figure 3A).
Cells were treated with increased doses of cisplatin, a
commonly used chemotherapeutic agent. The proportion
of cells still alive after treatment was plotted on a survival
curve. Following cisplatin treatment, control cells exhibit a
marked decline in survival rate, while the decline in survival
of cells that overexpressed TBL1XR1 was much reduced
(Figure 3B). The results of TUNEL and Annexin-V binding
assays suggested that both TBL1XR1-overexpressing cell
lines exhibited enhanced resistance to cisplatin treatment
(Figure 3C and D). Taken together, these data indicated
that ectopic overexpression of TBL1XR1 could reduce
the effectiveness of cisplatin against NPC cells.

TBL1XR1 knockdown increases sensitivity to
cisplatin-induced apoptosis
In order to investigate the role of TBL1XR1 in apoptotic
pathways, TBL1XR1 expression was silenced using specific
shRNAs (Figure 4A). As expected, TBL1XR1 downregulated



Figure 1 Up-regulation of TBL1XR1 in NPC cells. (A) Western blotting analysis of TBL1XR1 protein level in normal nasopharyngeal epithelial cells
(NPEC) and 9 cultured NPC cell lines. GAPDH was used as a loading control. (B) Reverse transcription (RT)-PCR and real-time PCR analysis of TBL1XR1
mRNA level in normal nasopharyngeal epithelial cells (NPEC) and 9 cultured NPC cell lines. GAPDH was used as a loading control. * P ≤ 0.05.
(C) Western blotting analysis of TBL1XR1 protein level in three normal nasopharyngeal epithelial biopsies and 10 NPC samples. GAPDH was used
as a loading control. (D) Reverse transcription (RT)-PCR and real-time PCR analysis of TBL1XR1 mRNA level in three normal nasopharyngeal
epithelial biopsies and 10 NPC samples. GAPDH was used as a loading control. * P ≤ 0.05.
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cells were more sensitive to cisplatin than control cells;
survival curves were steeper (Figure 4B), and the quan-
tity of viable and non-viable apoptotic cells increased
(Figure 4C and D, respectively). In summary, TBL1XR1
played an important role in resistance to cisplatin
treatment in NPC cells.
Figure 2 TBL1XR1 expression correlates with clinicopathologic charac
protein in normal nasopharyngeal epithelial biopsies. (C and D) High TBL1
NPC tissues. A, C, E (SP, ×200) and B, D, F (SP, ×400). (G) Kaplan-Meier curv
versus high TBL1XR1 expression tumors. P values were calculated by log-ra
TBL1XR1 suppressed the sensitivity of NPC cells to
cisplatin in vivo
To examined the effect of TBL1XR1 on apoptosis in vivo,
nude mice were subcutaneously injected with CNE2 cells.
When tumors reached a volume of about 100 mm3, ani-
mals were randomly assigned to two groups and given an
teristics of NPC patients. (A and B) No expression of TBL1XR1
XR1 expression in NPC tissues. (E and F) Low TBL1XR1 expression in
es with univariate analyses for patients with low TBL1XR1 expression
nk test.



Table 2 Univariate and multivariate analysis of different
prognostic parameters in patients with nasopharyngeal
carcinoma by Cox-regression analysis

Characteristics Univariate analysis Multivariate analysis

No.
cases

P Regression
coefficient

(SE)

P Relative
risk

95% CI

T classification 0.001 0.198 0.010 1.753 1.146-2.683

T1 3

T2 32

T3 44

T4 26

N classification <0.001 0.151 0.005 1.540 1.143-2.076

N0 26

N1 44

N2 22

N3 13

TBL1XR1
expression

<0.001 0.325 0.043 2.013 1.024-3.958

Low or none 53

High 52

Table 1 Correlations between TBL1XR1 expression and
clinicopathologic characteristics of nasopharyngeal
carcinoma patients

Characteristics No.
cases

TBL1XR1 expression Chi-square

Low or none High Test P-value
No. cases(%) No. cases(%)

Gender

0.611Male 79 41(51.9) 38(48.1)

Female 26 12(46.2) 14(53.8)

Age(years)

0.766≤45 55 27(49.1) 28(50.9)

>45 50 26(52.0) 24(48.0)

Clinical Stage

0.001

I 2 2(100.0) 0(0.0)

II 21 18(85.7) 3(14.3)

III 49 22(44.9) 27(55.1)

IV 33 11(33.3) 22(66.7)

T classification

0.040

T1 3 3(100.0) 0(0.0)

T2 32 21(65.6) 11(34.4)

T3 44 19(43.2) 25(56.8)

T4 26 10(38.5) 16(61.5)

N classification

0.003

N0 26 18(69.2) 8(30.8)

N1 44 26(59.1) 18(40.9)

N2 22 5(22.7) 17(77.3)

N3 13 4(30.8) 9(69.2)

Patient survival

0.001Alive 59 39(66.1) 20(33.9)

Deceased 46 14(30.4) 32(69.6)
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intraperitoneal injection of 100 ml DMSO (control) or
cisplatin. Interestingly, the volumes and weights of tumors
formed by the CNE2-TBL1XR1 cells were not significantly
affected by cisplatin treatment (Figure 5A-C). However,
tumors formed by vector control cells, or by cells with
depleted endogenous TBL1XR1, exhibited a striking inhib-
ition of tumor growth in terms of both tumor volume and
weight after cisplatin treatment (Figure 5A-C). These results
are strongly indicative of TBL1XR1-associated resistance to
cisplatin, and are consistent with the other results.
To determine whether high TBL1XR1-expression alters

cell survival within tumors, we analyzed tumors harvested
from animals in indicated groups for apoptotic frequency.
As shown in Figure 5D, consistent with above results, after
cisplatin treatment, the percentage of apoptotic cells in tu-
mors obtained from the CNE2-TBL1XR1 group was signifi-
cantly reduced in comparison with that in tumors obtained
from the other group, strongly suggesting a suppressive
effect of elevated TBL1XR1 on cisplatin sensitivity within
the NPC cells.

TBL1XR1 activates NF-κB signaling pathway
TBL1XR1 is involved in multiple pathways, including
the Wnt/β-catenin, Notch, NF-κB, and nuclear receptor
pathways [10-13], The activation of NF-κB signaling is asso-
ciated with anti-apoptotic properties, and we investigated
whether TBL1XR1 promoted anti-apoptotic effects in NPC
cells via this pathway. The NF-κB luciferase assay revealed
that TBL1XR1 overexpression was accompanied by the
downregulation of NF-κB and genes downstream of NF-κB
(Figure 6A and B).
To establish the clinical relevance of this observation,

TBL1XR1 expression and NF-κB activation was measured
in 10 freshly collected clinical NPC samples. Real-time
RT-PCR, Western blot and EMSA assays showed that
TBL1XR1 protein levels were positively correlated with
mRNA levels of several NF-κB downstream target genes,
and also with NF-κB DNA binding. TBL1XR1 is upregu-
lated in NPCs, activates the NF-κB signaling pathway and
confers anti-apoptotic properties on these cells.
Moreover, when we further examined the effect of the

Epstein–Barr virus latent membrane protein 1 (LMP1)
on the expression levels of TBL1XR1 in SUNE1, CNE2 and
C666 NPC cells. Our result showed that neither overexpress-
ing nor silencing LMP1 had any influence on the mRNA
and protein levels of TBL1XR1 (Additional file 1: Figure S1),
implicating that the biological role of TBL1XR1 in NPC
cells herein was EBV-independent.



Figure 3 NPC Cells overexpressing TBL1XR1 proteins are less sensitive to cisplatin-induced apoptosis. (A) Overexpression of TBL1XR1 in
NPC cell lines. Western blotting analysis of TBL1XR in SUNE1-vector, SNUE-TBL1XR1, CNE2-vector and CNE2-TBL1XR1 cells. GAPDH was used as
loading control. (B) SUNE1-vector, SNUE-TBL1XR1, CNE2-vector and CNE2-TBL1XR1 cells treated by cisplatin (5 μg/ml, 10 μg/ml, 15 μg/ml,
20 μg/ml) for 48 hours. MTT analysis of the proportion of cells still alive after treatment. (C) Quantification of TUNEL positive cells. SUNE1-vector,
SNUE-TBL1XR1, CNE2-vector and CNE2-TBL1XR1 cells were treated by cisplatin (20 μg/ml) for 24 h, followed by TUNEL staining and the number
of TUNEL-positive cells was counted from 10 random fields of at least 500 cells. Results are expressed as percentages of total cells. (D) Flow
Cytometry analysis of Annexin V+/PI¯ cells after the indicated cell lines treated with cisplatin (20 μg/ml) for 24 h. Results are expressed as
percentages of total cells. * P≤ 0.05.
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Discussion
The key finding in this report lies in, for the first time,
the biological role of TBL1XR1 in NPC progression and
chemotherapy resistance. TBL1XR1 mRNA and protein
levels were both elevated in NPC cells in vitro, and this
was also observed in clinical samples. In addition,
in vitro assays indicated that TBL1XR1 promoted anti-
apoptosis in NPC cells by activating NF-κB pathway,
further cementing the role of TBL1XR1 as an oncogenic
protein [14,15].
Local recurrence and therapy resistance are the two

main problems associated with the treatment of NPC
patients. In this study, NPC cells were treated with cis-
platin, a standard chemotherapeutic agent that can also
enhance the effectiveness of radiotherapy when used in
combination with others. The MTT, TUNEL and
Annexin-V binding assays all showed that elevated
TBL1XR1 expression markedly reduced the ability of
cisplatin to kill NPC cells. Conversely, cells in which
TBL1XR1 was downregulated were more sensitive to
cisplatin.
The above results led us to believe that upregulation

of TBL1XR1 may reduce cisplatin-induced apoptosis in
NPC cells. Aberrant apoptotic signals is significantly
involved in oncogenesis and tumor regression in nu-
merous cancers, including NPC. Previous researchers
have identified several factors associated with apoptosis.
B-cell lymphoma 2 (Bcl-2), a classical anti-apoptosis
protein, has been shown to be overexpressed in biopsy
specimens from NPC patients, and Bcl-2 is predominately



Figure 4 Downregulation of endogenous TBL1XR1 expression decreases the resistance of NPC cells to apoptosis. (A) TBL1XR1
knockdown was achieved by introducing specific shRNA in NPC cells. Western blotting analysis of TBL1XR in SUNE1-vector, SNUE-TBL1XR1-Ri,
CNE2-vector and CNE2-TBL1XR1-Ri cells. GAPDH was used as loading control. (B) SUNE1-vector, SNUE-TBL1XR1-Ri, CNE2-vector and CNE2-TBL1XR1-Ri
cells treated by cisplatin (5 μg/ml, 10 μg/ml, 15 μg/ml, 20 μg/ml) for 48 hours. MTT analysis of the proportion of cells still alive after treatment.
(C) Quantification of TUNEL positive cells. SUNE1-vector, SNUE-TBL1XR1-Ri, CNE2-vector and CNE2-TBL1XR1-Ri cells were treated by cisplatin (20 μg/ml)
for 24 h, followed by TUNEL staining and the number of TUNEL-positive cells was counted from 10 random fields of at least 500 cells. Results are
expressed as percentages of total cells. (D) Flow Cytometry analysis of Annexin V+/PI¯ cells after the indicated cell lines treated with cisplatin (20 μg/ml)
for 24 h. Results are expressed as percentages of total cells. * P≤ 0.05.
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co-expressed with p53 in NPC [17-20]. The apoptotic
inhibitor, survivin, has been found to be upregulated in
NPC, and may serve as a potential prognostic marker
for NPC patients [21-23]. Other molecules have also
been reported to be correlated with the protection of
NPC cells from apoptosis [24-29]. However, the exact
mechanisms underlying the regulation of apoptosis in
NPC need to be explored conclusively.
NF-κB signaling plays an vital role in cell survival by up-

regulating gene products that block apoptosis. TBL1XR1, a
corepressor/coactivator exchange factor, has been reported
to regulate switch between gene repression and gene ac-
tivation in transcriptional regulation, and be involved in
activation of mutiple signalling pathways, including NF-
κB pathways [10]. Hoberg et al. proposed that TBL1XR1
function as an E3 ubiquitin ligase that recruits UbcH5
ubiquitin conjugating enzymes, and Ubc5-dependent tar-
geting to the proteasome and removes SMRT from NF-κB
binding region, subsequently replaces of SMRT with coac-
tivators in a ligand-dependent manner [6]. Above studies
suggested us that upregulation of TBL1XR1 in NPC,
may promote resistance to cisplatin-induced apoptosis



Figure 5 The impact of TBL1XR1 expression on tumor growth in vivo. The tumors formed by TBL1XR1-transduced CNE2 cells were larger
than the vector control tumors. Conversely, the tumors formed by TBL1XR1-silenced cells were smaller than the tumors formed by the RNAi-vector
cells. (A) Tumor volumes measured on the indicated days. Data points are presented as the mean tumor volume ± SD. (B) Representative images of
the tumors from all mice in each group. (C) Weights of the tumors from all mice in each group. (D) Representative immunofluorescent images
(Upper panel) and quantification (Lower panel) of TUNEL-stained cells in indicated tumors. The numbers of TUNEL-positive cells were counted
from 10 random fields and presented as percentages of total cell numbers.
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Figure 6 TBL1XR1 activates NF-κB signaling pathway. (A) Luciferase-reporter NF-κB activity in indicated cells. (B) Real-time PCR analysis indicating
an apparent overlap between NF-κB-dependent gene expression and TBL1XR1-regulated gene expression. The pseudo color represents the intensity
scale of TBL1XR1 vs Vector, or TBL1XR1 short hairpin RNA vs RNAi-vector, generated by a log2 transformation. (C) Analysis of expression and correlation
of TBL1XR1 with Bcl-2, Bcl-xl, c-FLIP and IκB mRNA expression, as well as NF-κB activity in 10 freshly collected NPC biopsies.
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via stimulating the NF-κB pathway. The results of the
NF-κB luciferase reporter assay demonstrated that
TBL1XR1 was indeed involved. In addition, real-time
RT-PCR results indicated that there was a strong positive
correlation between the expression of NF-κB target genes
and TBL1XR1 expression level in two independent NPC
cell lines. This relationship held true in ten freshly collected
clinical NPC samples, which emphasized the clinical
relevance of our findings.
TBL1XR1 is located at 3q26.32. Though the chromosome

region 3q21–q26.2 was previously reported to be frequently
amplified in NPC tissues [30,31]. By using the genomic PCR
assay, we did not find a significant change of TBL1XR1 copy
number in NPC tissues (Additional file 2: Figure S2),
indicating that TBL1XR1 overexpression is not due to the
genomic amplification. Interestingly, our results indicated
that TBL1XR1 was expressed at a very low level in nor-
mal samples, but markedly in NPC samples. Moverover,
TBL1XR1 mRNA and protein expression are significantly
correlated, suggeting that TBL1XR1 might be upregulated
at the transcriptional level. By analysis of the promoter re-
gion of TBL1XR1 using the CONSITE program, we found
two typical responsive E-BOX elements of transcriptional
factor c-myc, which has been reported to be overexpressed
in NPC [32]. Meanwhile, CpG islands were also observed
in TBL1XR1 promoter. Thus, it would be of great interest
to further investigate whether upregulation of TBL1XR1
in NPC is attributed to c-myc transactivation or demethyl-
ation of CpG islands in NPC samples.

Conclusion
In summary, this study has established clear links be-
tween the transcription cofactor TBL1XR1 and both
NPC progression and chemotherapy resistance. Neverthe-
less, understanding the precise role of TBL1XR1 in the pro-
gression of NPC and activation of the NF-κB signaling will
not only advance our knowledge of the mechanisms under-
lying NPC progression, but also help establish TBL1XR1 as
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a biomarker for clinical outcome and a potential thera-
peutic target in NPC.

Materials and methods
Cell lines
The normal nasopharyngeal epithelial cell line was cultured
at 37°C and 5%CO2 with keratinocyte serum-free medium
(Invitrogen, Carlsbad, CA) supplemented with epithelial
growth factor, bovine pituitary extract, 120 μg/ml strepto-
mycin and 120 μg/ml penicillin [33]. The human NPC
cell lines, including C666, CNE1, CNE2, SUNE1, Hone1,
HNE1, HK1, 5-8 F and 6-10B were grown in RPMI 1640
(Invitrogen) supplemented with 10% fetal bovine serum
(HyClone, Logan, UT) and 100 μg/μL streptomycin, and
100 μg/μL penicillin in a humidified incubator contain-
ing 5% CO2 at 37°C.

Patient information and tissue specimens
This study was conducted on a total of 105 paraffin-
embedded NPC samples, which were histopathologic-
ally and clinically-diagnosed NPC patients treated at
the Cancer Center, Sun Yat-sen University between April
2000 and January 2003. All 105 cases of NPC were undif-
ferentiated non-keratinizing carcinoma with World Health
Organization (WHO) type III pathology. The normal
nasopharyngeal epithelial tissues were obtained from three
patients undergoing nasopharyngeal mucosal biopsies,
who were subsequently diagnosed with chronic inflamma-
tion of nasopharyngeal mucosa. For the use of these clin-
ical materials for research purposes, prior patient consent
and approval from the Ethics Committees of the Cancer
Center, Sun Yat-sen University in advance of the study.

Plasmids and transfections
pMSCV/TBL1XR1-overexpressing human TBL1XR1 was
generated by subcloning the PCR-amplified human
TBL1XR1 coding sequence into pMSCV vector. To silence
endogenous TBL1XR1, two TBL1XR1 small hairpin RNA
(shRNA)s were designed and cloned into the pSuper-retro-
puro vector to generate pSuper-retro-TBL1XR1-RNAis,
respectively [34]. Retroviral production and infection were
performed as described previously [34]. Stable cell lines-
expressing TBL1XR1 or TBL1XR1 RNAis were passaged
and harvested after selection for 10 days with 0.5 μg/ml
puromycin medium.

RNA extraction, reverse transcription, and real-time PCR
Total RNA from cultured cells and fresh tissues were
extracted using the Trizol reagent (Invitrogen) accord-
ing to the manufacturer’s instruction. The extracted
RNA was pretreated with RNase-free DNase, and about
2ug RNA from each sample was used for cDNA synthesis
with iScriptcDNA Synthesis Kit (Bio-Rad Laboratories,
Hercules, CA). Real-time PCR primes were designed using
the Primer Express Software Version 2.0 and the primer
sequences are: TBL1XR1 forward primer: GAATTTCCT
TGTGCCTCCAT; TBL1XR1 reverse primer: TGCAACT
GAATATCCGGTCA; Glyceraldehyde-3-phosphate de-
hydrogenase (GAPDH) forward prime: 5′-GACTCAT
GACCACAGTCC ATGC-3′; GAPDH reverse primer:
5′-AGAGGCA GGGATGATGTTCTG-3′. Expression data
were normalized to the geometric mean of housekeeping
gene GAPDH to control the variability in expression levels
and calculated as 2-[(Ct of TBL1XR1) – (Ct of GAPDH)] , where
Ct represents the threshold cycle for each transcript.

Western blotting
Western blot analysis was performed according to standard
methods as described previously [34], using anti-TBL1XR1
rabbit polyclonal antibody (1:3,000; Sigma). Blot mem-
branes were stripped and reprobed with anti-GAPDH
antibody (1:1,000; Sigma) as a loading control.

Immunohistochemistry
Immunohistochemistry staining was carried out using
Histostain-Plus Kits (Invitrogen) following the manufac-
turer’s protocols. Two independent pathologists blinded to
the clinical parameters conducted the staining index (SI)
for TBL1XR1 expression. The staining results were scored
based on the following criteria: (i) percentage of positive
tumor cells in the tumor tissue: 0 (0%), 1 (1%–25%), 2
(26%–50%), 3 (51%–75%) and 4 (76%–100%); (ii) staining
intensity: 0 (no staining), 1 (weak staining = light yellow),
2 (moderate staining = yellow brown), and 3 (strong
staining = brown). The SI was calculated as staining
intensity score × proportion of positive tumor cells
(range from 0 to 12) [34]. An optimal cutoff value was
identified: the SI > 6 was used to define as TBL1XR1 high
expression while SI ≤ 6 as TBL1XR1 low expression.

MTT assay
5,000 cells were seeded in triplicate in 96-well plates, All
cells were incubation with Cisplatin (Hospira Australia
Pty Ltd., 5 μg/ml, 10 μg/ml, 15 μg/ml, 20 μg/ml) for
48 hours. 20 μl of 5 mg/ml MTT was added 4 hours prior
to the time points when 150 ml of DMSO was added for
each well. The absorbance was measured at 490 nm. All
experiments were performed in triplicates.

TUNEL assay
The DeadEndTM Fluorometric TUNEL System (Promega,
Madison, WI) was used for TUNEL assay according to the
manufacturer’s instruction. 3 × 104cells were seeded on cov-
erslips (Fisher Scientific) in 24-well plates. After 24 hours,
all cells were incubation with Cisplatin, followed by washed
once with cold PBS followed by fixation in freshly prepared
4% formaldehyde solution in PBS (pH 7.4) for 25 min at
4°C. The fixed slides were washed with PBS for 5 min and
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then permeabilized with 0.2% Triton X-100 solution in
PBS for 5 min. After a 5-min rinse with PBS, and cells
were covered with 100 μL Equilibration Buffer for
5 min, followed by a 60-min incubation with 2 x SSC at
37°C to terminate the reaction and a 5 min PBS wash.
The samples were then stained in the dark with 1 μg/ml
propidium iodide (PI) solution for 15 min. After a final
wash with H2O for 5 min at ambient temperature and
air-dry, samples were immediately analyzed under a fluor-
escence microscope using a standard fluorescein filter set
to view the green fluorescence of fluorescein at 520 nm,
the red fluorescence of PI at 620 nm.

Annexin-V binding assay
The ApopNexinTM FITC Apoptosis Detection Kit
(Millipore, Lake Placid, NY) was used to examine the
apoptotic cells according to manufacturer’s instruc-
tion. 3 × 105 cells were seeded in triplicate in 6-well
plates. After 24 hours, all cells were incubation with
Cisplatin, followed by washes with PBS and then with
an Annexin-V binding solution. Subsequently, 150 μl
of an Annexin-V antibody in Binding Buffer was added to
each culture well and incubated for 15 min, followed by
addition of 1.5 μL of PI at 1 mg/ml and a further incubation
for 5 min. 10,000 cells were analyzed on a flow cytometer
(FACSCalibur; BD Biosciences).

Luciferase assay
3 × 104 cells were seeded in triplicate in 24-well plates.
After 24 h, 500 ng NF-κB luciferase reporter plasmids
plus 5 ng of pRL-TK renilla plasmid (Promega) were co-
transfected into NPC cells using the Lipofectamine 2000
reagent (Invitrogen) according to the manufacturer’s rec-
ommendation. Luciferase and renilla signals were measured
48 h after transfection using the Dual Luciferase Reporter
Assay Kit (Promega) according to a protocol provided by
the manufacturer. Three independent experiments were
performed, and the data are presented as mean ± SD.

Electrophoretic Mobility Shift Assay (EMSA)
Briefly, the nuclear proteins were harvested from fresh
NPC biopsies using the NE-PER Nuclear protein extrac-
tion kit (Pierce Biotechnology) according to the man-
ufacturer’s instructions. The NF-κB binding probe was
synthesized with 5′ biotin labels. Binding reactions were
equivalent in that 20 fmol probe was incubated with 5.0 μg
nuclear proteins, and then subjected to non-denaturing
polyacrylamide gel electrophoresis. The NF-κB-DNA-bind-
ing complex shift was then dected using the LightShift
Chemiluminescent EMSA Kit (Pierce Biotechnology).
Oct-1-DNA-binding complexes served as a loading control.
The DNA probes used were as following: NF-κB: sense,
5′-AGTTGAGGGGACTTTCCCAGGC-3′, antisense,
5′-GCCTGGG AAAGTCCCCTCAAC-3′; OCT-1: sense,
5′-TGTCGAATGCAAATCACTAGAA-3′, antisense,
5′-TTCTAGTGATTTGCATTCGACA-3′.

In vivo experiment
Female BALB/c nude mice (4–5 weeks of age, 18–20 g)
were purchased from the Animal Center of Guangdong
Province and were housed in barrier facilities on a 12-
hour light/dark cycle. All experiments were approved by
the animal care committee at the Sun Yat-sen University
Cancer Center. The BALB/c nude mice were randomly di-
vided into 2 groups (12/group). One group of mice were
inoculated subcutaneously with CNE2-TBL1XR1/ CNE2-
Vector cells (1 × 106 suspended in 100 mL sterile PBS)
per mouse, another group of mice inoculated with CNE2-
Ri-Vector /CNE2- TBL1XR1-Ri2 cells (1 × 106 suspended
in 100 mL sterile PBS) per mouse. Tumor volume was
calculated using the equation (LxW2)/2. Mice were
checked every 2 days for xenograft development. When
tumors became palpable (about 100 mm3), each group
of mice mice were randomly divided into 2 subgroups
(6/group), followed by intraperitoneal injection of 100 mL
vehicle (dimethyl sulfoxide, DMSO), Cisplatin (5 mg/kg),
respectively, every2 days.

Statistical analysis
All statistical analyses were carried out using the SPSS
v.13.0 statistical software packages (SPSS Inc, Chicago,
IL, USA). The correlation between TBL1XR1 expression
and the clinicopathological characteristics was analyzed
by the Chi-Square test. Survival curves were plotted by
the Kaplan-Meier method and compared with the log-
rank test. The differences between experimental condi-
tions were compared using Student’s t tests. P ≤ 0.05 was
considered statistically significant.

Additional files

Additional file 1: Figure S1. TBL1XR1 expression is independent of
LMP1. (A) Overexpression of LMP1 in SUNE1 and CNE2 cell lines. Western
blotting analysis of TBL1XR in SUNE1-vector, SNUE-LMP1, CNE2-vector
and CNE2-LMP1 cells. GAPDH was used as loading control. (B) LMP1
knockdown was achieved by introducing specific shRNA in C666 cell line.
(C) Real-time PCR analysis of TBL1XR in SUNE1-vector, SNUE-LMP1,
CNE2-vector, CNE2-LMP1, C666-vector and C666-LMP1-Ri cells. TBL1XR1
expression levels are presented as fold changes relative to vector-control
cells and normalized to GAPDH. * P ≤ 0.05.

Additional file 2: Figure S2. The copy number of the TBL1XR1 gene
was measured by a TaqMan Copy Number Assay. RPPH1 gene on
chromosome 14 as a reference locus.
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CGH: Comparative genomic hybridization; shRNA: Small hairpin RNA.
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