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Biological functions of casein kinase 1 isoforms
and putative roles in tumorigenesis
Birgit Schittek* and Tobias Sinnberg*
Abstract

Isoforms of the casein kinase 1 (CK1) family have been shown to phosphorylate key regulatory molecules involved
in cell cycle, transcription and translation, the structure of the cytoskeleton, cell-cell adhesion and receptor-coupled
signal transduction. They regulate key signaling pathways known to be critically involved in tumor progression.
Recent results point to an altered expression or activity of different CK1 isoforms in tumor cells. This review
summarizes the expression and biological function of CK1 family members in normal and malignant cells and the
evidence obtained so far about their role in tumorigenesis.
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Introduction
Protein kinases represent an important therapeutic tar-
get for drug development since they play a central role
in signal transduction. By reversible phosphorylation of
their substrate proteins, kinases exert influence on sub-
strate activity, localization and function and thus play an
essential role in almost all cellular processes. The casein
kinases (CK) belong to the serine/threonine kinases and
can be subdivided further into either casein kinase 1
(CK1) or casein kinase 2 (CK2) families due to their high
homology in their catalytic domains [1]. This review fo-
cuses on the isoforms of the CK1 family, which have
non-redundant and essential functions in cell survival
and tumorigenesis [2].
In vertebrates, seven CK1 isoforms (α, β, γ1, γ2, γ3, δ

and ε) and several splice variants for CK1α, δ, ε and γ3
have been identified [1,3]. The CK1β-isoform has only
been found in cows. They differ in length and sequence
of the N-terminal (9–76 amino acids) and especially the
C-terminal (24–200 amino acids) non-catalytic domain
(Figure 1). By this, the molecular weight of the various
CK1 isoforms ranges from 37 kD (CK1α) up to 51 kD
(CK1γ3). The C-terminal domain plays a crucial role in
substrate specificity and in the regulation of kinase activity
[1,3-5]. The isoforms show a high homology, i.e. CK1δ
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and CK1ε are 98% identical in their kinase domain and
53% identical in their C-terminal regulatory domain [6].
Therefore, there is some redundancy with respect to sub-
strate phosphorylation - however, there are also examples
of distinct biological roles for the different CK1 isoforms.
Substrates and interaction partners of CK1 isoforms
In recent years an increasing number of substrates have
been identified that are phosphorylated by CK1 isoforms
in vitro or in vivo [1,4,5]. Several known substrates espe-
cially of the CK1α and δ isoforms are involved in onco-
genic signaling pathways as Wnt/β-catenin (β-catenin;
dishevelled (DVL); adenomatous polyposis coli (APC);
nuclear factor of activated Tcells, cytoplasmic 3 (NFATC3)),
p53 (p53; p53/E3 ubiquitin-protein ligase Mdm2 (MDM2)),
PI3K/AKT (forkhead box protein O1 (Foxo1)), and death
receptor signaling (Fas-associated death domain protein
(FADD); BH3-interactive domain death agonist (BID)). In
addition, various interaction partners have been identified
from which it is not known yet whether they can serve as
a CK1 substrate. These include proteins that are involved
in cell cycle, apoptosis induction, DNA repair, mitochon-
drial function and signal transduction. Moreover, several
proteins involved in oncogenic signaling pathways are pre-
dicted to interact with the different CK1 isoforms (Table 1).
These proteins mainly belong to the Hedgehog (GLI),
Hippo (MST, YAP), Wnt/β-catenin (Axin, Dvl1-3, FZD1
and 5, GSK3, Wnt3A), NFκB (NFκBIA), TGF-beta/Smad
(Smad3) or p53 (MDM2 and 4) -signaling pathways and
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Figure 1 Structure of casein kinase 1 family members. (A) Homology tree of the casein kinase 1 family consisting of six human casein kinase
1 isoforms: alpha, delta, epsilon, gamma1, gamma2 and gamma3. All available and corresponding protein sequences were retrieved from UniProt
(see IDs) and the aligned sequences were used to calculate the average distance tree (using the BLOSUM62 algorithm) visualized with jalview.
(B) Schematic drawings of the isoforms show conserved regions (yellow color) especially within the kinase domains (dark blue). Variable regions due to
transcript variants and alternative splicing are depicted in light blue resulting in variants differing in protein length: CK1α: 337/365 aa; CK1δ: 409/415 aa;
CK1ε: 416 aa; CK1γ1 393/422 aa; CK1γ2: 415 aa; CK1γ3: 311–455 aa. Phosphorylation sites (red) are occurring predominantly at the C-terminal ends of
the delta (Ser331/370/382/383/384/411) and epsilon isoforms (Ser343/354/362/363/389) and are known to be auto-inhibitory. An additional
phosphorylation site can be found within the 28 aa insertion of CK1α (Ser156). A nuclear localization signal is located in the long variant of the alpha
isoform (aa 160–163). A centrosomal localization signal [7] is located at the C-terminus in the delta (aa 278–364) isoform.
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hence are involved in regulation of the cell cycle, apoptosis
induction or cell survival. Many of these interactants are
known to be deregulated in tumor cells and interaction
with CK1 isoforms might trigger tumor initiation or pro-
gression [2].
A distinctive feature of CK1 family members is their

exclusive need of ATP to phosphorylate their substrates
and their independency of other co-factors. They show a
strong preference for primed, pre-phosphorylated sub-
strates [30]. Surprisingly, the substrate specificity defined
in vitro differs from in vivo for the different CK1 family
members [4] suggesting that the in vivo specificity is reg-
ulated by interaction partners, autophosphorylation or
subcellular localization. Interaction with cellular proteins
has been shown to be a major determinant of the locali-
zation of CK1 isoforms [31-35] and to either enhance or
inhibit their activity [12,13,36].

Biological functions of CK1-isoforms
The wide range of substrates shows that the CK1 family
members are involved in multiple cellular processes. For
example they are involved in the regulation of membrane
trafficking, cytokinesis, vesicular transport, ribosome bio-
genesis, DNA repair, signal transduction pathways and in
the circadian rhythm [1,5,37]. Up to now most evidence
points to important regulatory roles of the isoforms CK1α,
CK1δ and CK1ε, while the role of the gamma-isoforms
are still enigmatic and not very well investigated.
CK1α plays a role in the mitotic spindle formation dur-

ing cell division and in DNA repair mechanisms and par-
ticipates in RNA metabolism [1]. Antibodies specific for
CK1α block cell cycle progression during M phase in
mouse oocytes, which indicates that CK1α is required for
proper cell cycle progression in these cells [38,39]. CK1α
can be found at the centrosomes, microtubule asters and
the kinetochore [40]. In addition, it was shown that
mTOR cooperates with CK1α to promote its own full acti-
vation via the sustained degradation of the endogenous
mTOR inhibitor DEPTOR [41]. Similarly, CK1α regulates
apoptotic signaling pathways, however, there seems to be
cell type-specific differences. CK1α has been shown to
have an anti-apoptotic function in the extrinsic apoptosis
pathway. Its inhibition increased Fas-induced apoptosis in
Hela cells, whereas the overexpression of CK1α delayed
cell death, caused by the phosphorylation of BID, which
prevented the caspase 8 dependent cleavage of BID [9]. In
addition, CK1α inhibits TRAIL induced apoptosis by
modification of the TNF receptor or FADD at the death-



Table 1 CK1 interaction partners and substrates

Protein Description CK1 interaction
partners

Known Phospho-rylation
sites

Cellular process Reference

BCL10 B-cell CLL/lymphoma 10 α Apoptosis [8]

BID BH3 interacting domain death agonist α, δ T59, S64 (α, δ) Apoptosis [9]

FADD Fas (TNFRSF6)-associated via death domain α S194 (α) Apoptosis [10]

E2F1 E2F transcription factor 1 α Cell cycle [11]

Chk1 Checkpoint kinase 1 δ Cell cycle [12]

DDX3 DEAD box RNA helicase ε DNA repair [13]

SPRY2 Sprouty1 δ, ε FGF-signaling [14]

GLI1-3 GLI family zinc finger 1-3 α, δ, ε, γ1, γ2, γ3 Hedgehog signaling [15]

ANT2 Adenine nucleotide translocase 2 ε Mitochondrial function [16]

MST1 Mammalian sterile 20-like kinase 1 ε Hippo signaling [17]

NFKBIA Nuclear factor of kappa light polypeptide
gene enhancer in B-cells inhibitor, alpha

α NFκB signaling [18]

P65 NFκB subunit γ1 S536 NFκB signaling [19]

MDM2 MDMX
(MDM4)

Mouse double minute 2 or 4 homolog α p53 signaling [20]

TP53 Tumor protein p53 α, δ, ε, γ1, γ2, γ3 S6, S9 (α); T18 (δ) p53 signaling [21]

Foxo1 Forkhead box O1 δ, ε, γ1, γ2, γ3 S322 (α, γ1), S325 (α) PI3K/AKT signaling [22]

RAPGEF2 Rap guanine nucleotide ex-change factor 2 α S1244, S1248 Ras activation [23]

SMAD3 SMAD family member 3 γ2, ε TGF-beta/Smad signaling [24]

APC Adenomatous polyposis coli α, δ, ε all ε: S1279, S1392, S1504,
S1505, S1507, S1510

Wnt signaling [25]

AXIN1 AXIN2 Axin 1 and 2 α, δ, ε, γ1 Wnt signaling [4]

CTNNB1 Beta-catenin α, δ, ε S45 (α, δ) Wnt signaling [4]

NFATC3 Nuclear factor of activated T-cells α all α: T204, S207, T210,
S211, S215

Wnt signaling [26]

DVL1-3 Dishevelled, dsh homolog 1-3 δ, ε, γ1 Wnt signaling [4]

CSNK1D Casein kinase 1, delta ε Wnt signaling [4]

FZD1 FZD5 Frizzled homolog 1 or 5 γ1 Wnt signaling [27]

GSK3A GSK3B Glycogen synthase kinase 3 alpha or beta γ1 Wnt signaling [28]

WNT3A Wingless-type MMTV integration
site family, member 3A

γ1 Wnt signaling [29]

CK1 substrates are shown with known phosphorylation sites together with the involved cellular processes of the corresponding proteins. The following programs
were used for determination of interaction or phosphorylation: string-db.org, hprd.org; regphos.mbc.nctu.edu.tw, www.phosphosite.org. Only proteins validated by
biochemical assays are shown.
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inducing signaling complex (DISC) [42]. Therefore down-
regulation of CK1α leads to an enhancement of TRAIL-
induced cell death. Likewise, CK1α promotes cell survival
by interacting with the retinoid X receptor (RXR). Down-
regulation of CK1α enhances the apoptotic effect of RXR
agonists [43]. In contrast, overexpression of CK1α in
metastatic melanoma cells induces apoptosis [44].
In addition to the regulatory function in apoptosis sig-

naling pathways, CK1α is involved in the phosphoryl-
ation of G-protein coupled receptors (GPCRs) such as
the M3 and M1 muscarinic receptors and rhodopsin
[45]. These become phosphorylated by CK1α upon
agonist-induced desensitization [45,46]. Furthermore, CK1α
is involved in the phosphorylation of NFAT4 (nuclear
factor for activated T cells 4), so that its nuclear locali-
zation signal is masked and thus the activity of the tran-
scription factor is inhibited [47,48]. Recently, it was shown
in epithelial cells that in response to factors promoting cell
motility, CK1α in conjunction with IKKβ phosphorylate
the Rap guanine exchange factor 2 (RAPGEF2) leading to
its degradation by the proteasome which was shown to be
essential for the invasion of breast cancer cells [23].
CK1δ and CK1ε are known to be important regulators in

the circadian rhythm of eukaryotic cells. The central clock
genes period circadian protein homolog 1–3 (PER1-3) cycle
in a daily rhythm. Cytoplasmic PER is phosphorylated by
CK1, which induces its degradation [49]. When PER is in a
complex with cryptochrome (CRY), the phosphorylation
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site is masked and the complex together with CK1 translo-
cates to the nucleus where it represses another clock tran-
scription factor complex (the BMAL1/Clock complex) and
inhibits the transcription of most of the clock genes. Add-
itionally, CK1α was identified as a negative PER1 regulator
similar to the CK1δ isoform [50], however the binding of
CK1δ and ε to PER proteins seems to be much stronger
than CK1α [50]. Pharmaceutical inhibition of CK1ε was less
effective compared to pan CK1δ/ε inhibitors in prolonging
the circadian rhythm [51] proposing a dominant role of
CK1δ in the regulation of daily oscillating processes. Taken
together CK1s are important regulators of the circadian
rhythm [52,53]. Meanwhile it is known that CK1δ is in-
volved in the regulation of cell cycle progression and it was
recently shown that checkpoint kinase 1 (Chk1) is able to
interact and specifically phosphorylates CK1δ and by this
regulates the kinase activity [12]. Additionally, CK1δ inter-
acts with the spindle apparatus and regulates phosphoryl-
ation of α−, β−, and γ − tubulin [35,54,55]. It seems to be
essential for microtubule nucleation at the golgi [56]. Be-
sides tubulin phosphorylation CK1δ mediates the phos-
phorylation of microtubule associated proteins (MAPs),
stathmin and tau thereby regulating the dynamics of the
microtubule and spindle apparatus [34,35,57-59]. Recently,
it was shown that CK1δ mediates the phosphorylation of
Sid4 an important cytokinesis regulator [60] strengthening
the important function of CK1δ in cell proliferation. As
CK1δ and Chk1 are known to inhibit p53 via phosphoryl-
ation, pharmacological inhibition of both kinases resulted
in activation of p53 similar to the effect of the MDM2
inhibitor nutlin-3 [61]. CK1δ and CK1ε are able to
interact with Sprouty2 (SPRY2), which is a potent nega-
tive regulator of fibroblast growth factor (FGF) receptor
tyrosine kinase signaling. CK1 activity and binding are
necessary for SPRY2 mediated inhibition of FGF-
stimulated neurite outgrowth and FGF-dependent RAS
activation via GRB2/SOS [14]. It was further shown that
CK1δ and CK1ε are required for the biogenesis of small
ribosomal subunits and for the functionality of 40S riboso-
mal subunits in protein translation [37].

The role of CK1 isoforms in Wnt/β-catenin signaling
The CK1 isoforms CK1α, CK1δ and CK1ε have a com-
mon regulatory function in the Wnt/β-catenin signaling
pathway and act in a concerted manner [2]. Dishevelled
(Dvl), a key component in the Wnt/β-catenin signaling
pathway, becomes phosphorylated by CK1δ/ε upon
pathway activation by Wnts [62]. Recent evidence indi-
cates that there is a coordinated action of the different
CK1 isoforms to activate Wnt/β-catenin signaling in colon
adenocarcinoma cells [29]. In these cells CK1ε, but not
CK1α is required for the early response to Wnt3a stimula-
tion. The two protein kinases function sequentially: CK1ε
is bound to p120-catenin and E-cadherin and is required
for early responses to Wnt3a stimulation, such as recruit-
ment of Dishevelled 2 (Dvl-2), followed by the phosphor-
ylation of the Wnt co-receptors LRP5/6 by CK1γ which
leads to the recruitment of axin complexed with CK1α.
CK1α then phosphorylates p120-catenin and E-cadherin
causing a release of p120-catenin/E-cadherin from the
complex, and dissociation of CK1ε from p120 which ter-
minates the input signal. For pathway inactivation β-
catenin has to become N-terminally phosphorylated. In
order to be phosphorylated by GSK3β at the Ser residues
33, 37 and 41, β-catenin must first get primed by phos-
phorylation on Ser45 by CK1α [63,64]. Without priming
phosphorylation by CK1α, GSK3β does not phosphorylate
β-catenin and therefore β-catenin is not degraded. A
down-regulation of CK1α thus leads to an accumulation
of cytoplasmic β-catenin [44]. In mouse embryonic stem
cells DNA damage and its response (DDR) causes an acti-
vation of the canonical Wnt signaling by reduced CK1α
expression levels. The Wnt signaling was shown to limit
the p53 dependent apoptosis induction after DDR indicat-
ing a pro-survival effect of Wnt signaling [65]. Recently,
the DEAD-box RNA helicase DDX3 was identified as a
regulator of the Wnt/β-catenin signaling pathway by act-
ing as a regulatory subunit of CK1ε in a Wnt-dependent
manner. It binds to CK1ε, directly stimulates its kinase ac-
tivity, and promotes phosphorylation of the scaffold pro-
tein dishevelled [13]. Furthermore CK1ε is known to
phosphorylate adenomatosis polyposis coli (APC) together
with GSK3β which leads to an increased affinity of APC to
β-catenin causing a transfer of β-catenin from axin to
APC. This exposes β-catenin to the β-TrCP ubiquitin lig-
ase marking it for its proteasomal degradation [25,66].
Additionally CK1δ is capable to regulate the canonical
Wnt signaling on the level of lymphoid enhanced binding
factor 1 (Lef-1). Lef-1 is phosphorylated by CK1δ resulting
in the disassembly of the β-catenin/Lef-1 transcription fac-
tor complex thereby inhibiting the pathway [67].

The role of CK1 isoforms in p53 signaling
The tumor suppressor protein p53 as well as the p53
interacting proteins MDM2 and MDMX - both capable
to regulate p53 activity by inhibitory interaction - are
substrates of CK1 isoforms. The three CK1 isoforms
CK1α, CK1δ and CK1ε are capable to N-terminally
phosphorylate the p53 in vitro and in vivo resulting in
activation of p53. Furthermore, CK1δ can phosphorylate
MDM2, which leads to a reduced interaction with p53
and thus to stabilization and activation of p53 [68-70].
These data suggest that increased expression or activation
of CK1α or CK1δ are able to activate p53 and by this in-
crease cell cycle arrest and apoptosis induction. However,
there are differences in the ability of the CK1 isoforms to
either activate [70] or inactivate p53 [68,69] activity de-
pending on the cell types used or the experimental
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conditions. Knockdown or downregulation of CK1α in the
intestinal epithelium of mice [71], in human colon cancers
[72] or in leukemia cells [73] triggers p53 activation. Simi-
larly, one study showed that CK1α stably associates with
MDMX, stimulates MDMX-p53 binding, and cooperates
with MDMX to inactivate p53 [20]. These data suggest
that inhibition of CK1α activity increases p53 activity. In-
deed, knockdown of CK1α induces p53 transcriptional ac-
tivity by reducing the inhibitory effect of MDMX for p53
[74] since MDMX phosphorylation is necessary for inter-
action with p53. Furthermore, knockdown of CK1α re-
duces the interaction of MDM2 with p53 thus increasing
p53 activity [11].
Under stress conditions and when CK1 is highly ex-

pressed the situation differs: p53 is activated by an auto-
regulatory loop between p53 and either CK1α or CK1δ.
CK1α stimulates p53 probably by direct phosphorylation
of Thr18 and Ser20 [5,75]. Thereby, CK1α could be a
cellular fine-tuning tool for the regulation of p53 activ-
ity. It was shown that after genotoxic stress it comes to a
transcriptional activation of CK1δ by p53 [68]. Further-
more, DNA damage activates p53 in part by disrupting
CK1α-MDMX interaction and reducing MDMX-p53
binding affinity [20]. In addition, DNA damage leads to
an enhanced interaction between CK1δ/ε and MDM2
resulting in multisite phosphorylation of MDM2 by CK1
and enhanced MDM2 degradation and subsequently
enhanced p53 activity. Inactivation of CK1 (primarily
CK1δ or ε and to a lesser extent CK1α) results in accu-
mulation of MDM2, thus decreased p53 activity and re-
sistance to apoptosis induced by DNA damaging agents
[76]. In conclusion, depending on the cell system used,
CK1α and CK1δ are able to either increase or decrease
p53 activity by direct phosphorylation or modulating the
activity of the p53 interacting proteins MDM2 and
MDMX. Furthermore, the activity of p53 as well as
CK1α and CK1δ is increased under stress conditions
pointing to an autoregulatory loop between CK1 iso-
forms and p53.

Regulation of the expression and activity of CK1 isoforms
The expression and activity of CK1 family members
seems to be tightly regulated. Protein expression levels
can be found at www.proteinatlas.org. Surprisingly, not
much is known concerning the mechanisms involved in
regulating CK1 expression and kinase activity until now.
The expression of CK1α can be down-regulated by the
miRNA miR-155 [77]. Treatment of cells with insulin,
topoisomerase inhibitors, irradiation or viral transform-
ation is able to increase CK1 activity [1]. The subcellular
localization of the CK1 isoforms is mainly regulated by
binding to intracellular structures or protein complexes
and thereby plays a role in substrate-recognition and
CK1 activity [32-35,37,55]. Studies on the circadian
rhythm in mice showed that the nuclear localization of
CK1δ and CK1ε is regulated during the day [78].
Posttranscriptional mechanisms are involved in the

regulation of CK1α activity. In Hela cells two CK1α
transcripts have been described which result from alter-
native splicing [79,80]. The short 2.4kB transcript origi-
nates from the larger 4.2kB transcript due to the use of
an alternative polyadenylation site. Interestingly, the lon-
ger transcript has six adenine uridine rich element
(ARE) motifs in the 3'-untranslated region (in the short
transcript there is only one ARE-motif ), which lead to
increased RNA degradation of the 4.2 kB transcript.
Moreover, the long transcript harbors the above men-
tioned insertion of 84 bp or 28 amino acids in the catalytic
domain, which also causes a change in substrate affinity
[79]. Only the long splice variants of CK1α have a nuclear
localization sequence (PVGKRKR), which is responsible
for the transport of CK1α into the nucleus [81].
The activity of CK1 isoforms can also be regulated by

post-translational modifications, in particular phosphor-
ylations or proteolytic processing. For CK1δ and CK1ε it
was shown that the C-terminal domain is autopho-
sphorylated, which inhibits the kinase activity [82-84].
As mentioned earlier, CK1ε is activated after Wnt3a
stimulation by the removal of inhibitory C-terminal
phosphorylations. The responsible phosphatases are not
identified yet. Furthermore, part of the C-terminal do-
main can be cleaved, which increases kinase activity [1].
In addition, the three dimensional structure of CK1δ
plays a role in the regulation of activity. CK1δ forms di-
mers leading to an inhibition of kinase activity [85].
Allosteric regulatory mechanisms were recently identi-

fied by two working groups and seem to be major deter-
minants of CK1 kinase activity. Cruciat et al. showed
that ATP-dependent RNA helicase DDX3X (DDX3)
binds to CK1ε thereby allosterically activating the kinase
domain and triggering canonical Wnt signaling. Using
biochemical methods this novelty in kinase regulation
was extended to the isoforms alpha, delta and gamma2
[13]. It is estimated that different DDX proteins can allo-
sterically activate these CK1 isoforms (up to five fold). In
line with these findings was the identification of the
CK1α activating drug pyrvinium. This anthelmintic can
bind to all CK1 isoforms but activates only CK1α due to
conformational changes, thereby strongly inhibiting ca-
nonical Wnt signaling [86].

CK1 Isoform expression and tumorigenesis
The evidence obtained in recent years emphasizes the
importance of CK1 isoforms in cancer progression in
different types of tumors [2]. Microarray database ana-
lyses from tumor cell lines (http://discover.nci.nih.gov/
cellminer/analysis.do) and tissues (http://www.broadinstitute.
org/cancer/software/genepattern/datasets/;Ramaswamy

http://www.proteinatlas.org
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Multi-cancer) indicated that the CK1δ and CK1ε isoforms
are overexpressed on RNA level in many tumor types.
This includes cancers of bladder, brain, breast, colorectal,
kidney, lung, melanoma, ovarian, pancreatic, prostate and
the hematopoetic system. Expression of the CK1γ1-3 iso-
forms seems to be rather low in different cancers types
(Figure 2A, B). In addition, it has been shown that CK1δ
is overexpressed in cells of hyperplastic B cell follicles and
B cell lymphomas in p53 deficient mice [87]. In renal cell
carcinoma increased CK1γ3 expression was found [88].
In choriocarcinoma an increased expression of CK1δ
[55] and in ductal adenocarcinomas of the pancreas an
Figure 2 Expression of CK1 isoforms in cancer. (A) Shown are the colo
CSNK1D, CSNK1E, CSNK1G1, CSNK1G2, CSNK1G3) in different tumor types a
of 60 cancer cell lines from the NCI60 panel. Z-scores for the six isoforms w
heatmap generation using the Gene-Pattern online tools (http://genepatte
levels and red high expression levels. (B) The Ramaswamy Multi-cancer datase
genepattern/datasets/) was used for analysis of the z-scored expression levels
increased expression of CK1δ and CK1ε was detected
[89]. A tabulary overview can be found in the recent re-
view of Knippschild et al. [90].
RNA expression of CK1α is more variable with high

expression in cancers of the brain, prostate, lymphoma
and especially in leukemia (Figure 2A, B). In bladder
cancer, lung cancer and melanoma there is a trend to
decreased RNA expression of CK1α (Figure 2A, B). Ex-
pression analysis of CK1α in melanoma datasets of the
oncomine.org expression database clearly revealed a re-
duction in mRNA expression during melanoma progres-
sion. We confirmed the reduction of CK1α expression
r-coded RNA expression levels of CK1α, δ, ε, γ1, γ2, ε3 (CSNK1A1,
s determined by the CellMiner database for gene expression analysis
ere calculated and subjected to the Gene-Pattern analysis software for
rn.broadinstitute.org/gp/pages/index.jsf). Blue depicts low expression
t (public available at http://www.broadinstitute.org/cancer/software/
in different tumor tissue samples and again used for heatmap illustration.

http://www.broadinstitute.org/cancer/software/genepattern/datasets/;RamaswamyMulti-cancer
http://genepattern.broadinstitute.org/gp/pages/index.jsf
http://www.broadinstitute.org/cancer/software/genepattern/datasets/
http://www.broadinstitute.org/cancer/software/genepattern/datasets/
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on protein level [44]. The downregulation of CK1α ex-
pression in progressed melanoma tumors seems to be
mainly mediated by promoter methylation of the CK1α
gene [44]. In contrast, there is one recent report claim-
ing that CK1α expression is higher in melanoma com-
pared to benign nevi [91].
The expression data suggests that there are tumor-cell

specific differences in the functional activities and/or
relevance of CK1 isoforms in cancer. However, to gain
information about the relevance of the different CK1
isoforms in tumor progression, the CK1 protein expres-
sion as well as the kinase activity should be determined
since it is known that CK1 activity is regulated by post-
transcriptional mechanisms and posttranslational modifi-
cations (see above). Several CK1- substrates (see Table 1)
are known to play a role in tumorigenesis and are sub-
strates of different CK1-isoforms. Therefore it will be
important to clarify the redundancy in the activity of dif-
ferent CK1 isoforms. Furthermore, the mechanisms regu-
lating CK1 expression and activity in tumor cells are still
not well understood. Despite promoter methylation [44]
mutations could play a regulatory role. In breast carcin-
oma, mutations were found in the coding region of the
CK1ε gene [92]. In colonic adenoma, R324H mutations
are described in the CK1δ gene, and these were correlated
with an increased oncogenic potential of the lesions in-
cluding a higher transformation potential in vitro [93].
Interestingly, the R324H mutation did not significantly
alter the CK1δ kinase activity or the Wnt/β-catenin signal-
ing activity in vitro but had strong impact on the mor-
phological movement like secondary axis formation in
Xenopus embryos. Mutations in CK1 isoforms seems to be
rare, however, copy number variations seem to be more
frequent (see http://cancer.sanger.ac.uk/cosmic). Analysis
of the actual datasets of the cancer genome atlas (TCGA)
available at the cBioPortal for Cancer Genomics [94,95]
revealed the mutation pattern and copy number alter-
ations (CNA) in 24 different tumor types (Figure 3). The
total alteration frequency including CNAs and mutations
is generally rather low ranging from 4.8% in clear cell renal
cell carcinoma (ccRCC) for CSNK1A1 over 9.5% in liver
cancer for CSNK1D to 3.8% for CSNK1E in melanoma tu-
mors. Specific point mutation frequencies are even lower
and do not exceed 2.4% (as for CSNK1A1 in bladder can-
cer, for CSNK1D in lung squamous carcinoma and colo-
rectal or pancreatic cancer; point mutations in CSNK1E
seem to be very rare). Moreover the distribution of the de-
tected mutations along the primary structure of the CK1
isoforms shows no accumulation in certain domains or re-
gions which excludes the occurrence of hotspot mutations
like in BRAF or TP53 (Figure 3A). Therefore genomic al-
terations of CK1 isoforms which lead to functional hyper-
activity or defects may occur, however they seem to be
seldom events.
Functional role of CK1 isoforms in tumor progression
What are the functional consequences of deregulated CK1
expression in tumor cells? On a functional level it was re-
ported that CK1ε enhances the β-catenin-dependent pro-
liferation in breast cancer [97]. However, it was recently
shown that patients with oral cancers who had a loss of
CK1ε expression had a poorer overall survival rate than
patients who expressed CK1ε [98]. For CK1δ it was shown
that a point mutation in the C-terminal regulatory domain
of CK1δ (R342H) promotes the emergence of colorectal
adenomas independent of Wnt-/β-catenin [93]. In con-
trast, a downregulation of CK1δ and ε-isoforms induced
cell cycle arrest and apoptosis in a variety of tumor cell
lines of different origin. These effects were also Wnt/β-ca-
tenin-independent, but dependent on activated RAS and
inactive p53 [5,99]. It was also shown that impaired CK1δ
activity attenuates SV40-induced cellular transformation
in vitro and mouse mammary carcinogenesis in vivo [100].
Thus, depending on the experimental setup and the tumor
type CK1-isoforms seems to have a specific and non-
redundant role in tumorigenesis, however the results are
often contradictory. One reason might be that CK1 iso-
forms have also a regulatory function, which is independ-
ent of the kinase activity. It was described that CK1ε can
interact with mitochondrial proteins in ovarian cancer
cells and by this, increase growth and survival of the
tumor cells in a Wnt/β-catenin independent manner [16].
Until now most hints pointing to an important role in

tumor progression have been described for CK1α. Our
own previous work support the observation that CK1α
in comparison to the other CK1 isoforms have a domin-
ant and non-redundant function in metastatic melanoma
cells [44]. We identified CK1α as a novel tumor suppres-
sor and a key regulator of β-catenin signaling in melan-
oma cells. Knockdown of CK1α in primary melanoma
cell lines significantly enhanced the invasive capacity of
melanoma cell lines in vitro. This pro-invasive effect
after CK1α knockdown was reversible by inhibition of β-
catenin signaling, demonstrating the dependence of the
invasive phenotype on β-catenin in melanoma cells.
Moreover, knockdown of CK1α in a melanoma xenograft
model using melanoma cells with low intrinsic tumori-
genic potential strongly increased tumorigenicity and
stabilized β-catenin [101]. In line with, one study showed
that a pharmacological increase of CK1α protein level
and thereby a destabilization of activated β-catenin sig-
nificantly diminished melanoma cell migration [102].
Interestingly Chien et al. found high β-catenin levels to
be rather a good prognostic marker in melanoma as well
as to inhibit invasion probably by the promotion of dif-
ferentiation in conjunction with MITF [103,104]. In an-
other recent study Chien et al. described a bad overall
survival of BRAF inhibitor treated patients with tumors
expressing high β-catenin protein levels. This reveals

http://cancer.sanger.ac.uk/cosmic
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Figure 3 (See legend on next page.)
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Figure 3 Mutations in CK1 isoforms and cancer patient survival. (A) Mutation analysis of CK1 isoforms and overall survival of tumor patients
stratified in CK1 isoform expression classes. 24 different tumor entities were analyzed using the cBioPortal for Cancer Genomics [94,95] accessing
the newest TCGA datasets. The highest mutation frequency for CK1α was detected in clear cell renal cell carcinoma (ccRCC) with approx. 4.8%,
for CK1δ in liver cancer with approx. 9.5% and for CK1ε with approximately 3.8% (top diagrams). The distribution along the primary structure of
the three CK1 isoforms α, δ and ε was analyzed in the cBioportal using all available datasets (69 cancer studies containing data of 17584 tumor
samples). No hotspot mutation could be identified and only very low mutation frequencies were found (bottom diagrams). In comparison,
analysis of the oncogene BRAF and the tumor suppressor TP53 revealed high mutation frequencies and the hot spot mutations at BRAFV600D/E/
K/R or TP53R273C/H/L/P/S/Y. (B) Survival analysis of stratified cancer patients into high and low CK1 isoform expression (determined by microarray
gene expression analysis) was performed using the PPISURV online tool [96]. The studies showing the highest significant differences in overall survival
(OS) between CK1high and CK1low patients are shown as Kaplan Meier curves for the α, δ and ε isoforms (CK1 high expression in red, CK1 low
expression in green).
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that the different results probably refer to different, so
far non-identified melanoma subtypes [105].
Furthermore, the activation of CK1α kinase by the

above mentioned allosteric activator pyrvinium induces
cell death in colon carcinoma cell lines [86]. However,
pyrvinium was recently described to elicit cytotoxicity in
a CK1 independent manner by AKT downregulation
and GSK3 activation in 293 T cells [28] and it is known
to inhibit the unfolded protein response by GRP78 sup-
pression [106] as well as cancer cell protective autophagy
[107]. During melanoma progression CK1α expression is
lost and is not necessary for survival and cell cycle pro-
gression in metastatic melanoma cells. Overexpression of
CK1α retarded proliferation of metastatic melanoma cells
and induced cell death, whereas the primary melanoma
cell lines were mostly unaffected in their cell growth. This
is consistent with the data showing that re-expression of
CK1α in the lung cancer cell line A549 in which the ex-
pression of CK1α is also low causes reduced cell prolifera-
tion in vitro and tumor growth in vivo [108]. Our results
suggest that the effect of CK1α on proliferation and inva-
sion of melanoma cells in different stages of growth is at
least partly due to an effect on the Wnt/β-catenin signal-
ing pathway [44,101].
The effect of CK1α on tumor progression seems to be

also dependent on the activity of the tumor suppressor
p53. One study shows that loss of CK1α in the intestinal
epithelium of mice leads to hyperproliferation but not to
tumor development. An additional inactivation of the
p53 tumor suppressor gene or its target p21 is necessary
to ensure the emergence of high-invasive colorectal tu-
mors [71]. This suggests a non-redundant and dominant
role of CK1α compared to the other CK1 isoforms not
only in melanoma, but also in colorectal tumorigenesis.
Moreover expression levels of CK1α seem to be a pre-
dictive survival marker in colon cancer patients with
non-functional p53. Low CK1α expression levels were
shown to correlate with poor survival rates and a signifi-
cant hazard ratio of 4.7 hinting at a pro-oncogenic func-
tion of loss-of-CK1α on a p53 deficient background [72].
Furthermore, CK1α knockdown as well as additional in-
activation of p53 is necessary for tumors to progress. If
p53 is present, tumor cells will be eliminated by cell
cycle arrest or apoptosis. This assumption was verified
recently in acute myeloid leukemia, where it was shown
that inhibition of CK1α has only a therapeutic effect,
when p53 is active [73].
In the concept of tumorigenesis oncogenes play a piv-

otal role. However, excessive proliferative signaling as
well as sustained DNA damage response can trigger cell
senescence, commonly associated with a senescence-
associated secretory phenotype (SASP). The secreted
proteins include proinflammatory chemokines and tissue
remodeling factors that have on the one hand an auto-
crine, senescence reinforcing effect and on the other
hand a paracrine effect on neighbouring cells, leading to
bystander senescence and immune cell recruitment.
Interestingly, in cancer, SASP can increase proliferation
and invasion of tumor cells or induce angiogenesis. An-
other recently described pattern of secreted proteins from
senescent cancer cells can be subsumed as senescent-
inflammatory response (SIR) resulting in a cell-autonomous
initiation of inflammation, causing colonic tumor progres-
sion in a p21 deficient background. Usually, knockdown of
CK1α induces p53/p21 mediated arrest and a senescent
phenotype in p53 functional cells [71]. The group of Ben-
Neriah found out that in p53 (or p21) deficient murine
gut tumor cells the SIR factors that occur after CK1α
knockdown induce pro-invasive genes like PROX1 thereby
causing highly aggressive and hyperproliferative tumor
cells. The described effect was highly dependent on the
inflammatory response itself [109]. This shows that
CK1α is a negative regulator of the SIR and loss of CK1α
causes oncogene-like chronic stress which induces a pro-
oncogenic switch to cell-autonomous, tumor promoting
inflammation when p53 is inactivated.
In order to show the impact of CK1 isoforms on

tumor progression we analyzed the survival of different
cancer patients (17 types of cancer) depending on the
gene expression levels of the three CK1 isoforms α, δ
and ε using the PPISURV database [96], This database
includes 45 expression studies with approximately 8000
patient survival data sets. Analysis revealed after stratifi-
cation of the patients into the two classes high and low
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CK1α expressing tumors a significant correlation be-
tween prolonged overall survival (OS) and high expres-
sion levels for 12 (B cell lymphoma, breast cancer,
leukemia and lung cancer) out of 17 studies, whereas in
Table 2 Survival data from the PPISURV database showing corr
of cancer patients

Survival profile of CSNK1A1 across available datasets with (with p < 0.0

GEO dataset Cancer type

GSE10846 Diffuse large b cell lymphoma

GSE25065 Breast cancer

GSE25055 Breast cancer

GSE11121 Breast cancer

GSE39671 Chronic lymphocytic leukemia

GSE7390 Breast cancer

GSE13213 Lung cancer

GSE24080 Multiple myeloma

GSE22762 Chronic lymphocytic leukemia

GSE2034 Breast cancer

GSE31210 Lung cancer

GSE3494 Breast cancer

GSE17536 Colon cancer

GSE11969 Lung cancer

GSE17538 Colon cancer

GSE30682 Breast cancer

GSE30929 Liposarcoma

Survival profile of CSNK1D across available datasets (with p < 0.05)

GEO dataset Cancer type

GSE131213 Lung cancer

GSE25025 Breast cancer

GSE39671 Chronic lymphocytic leukemia

GSE22226 Breast cancer

GSE22762 Chronic lymphocytic leukemia

GSE31210 Lung cancer

GSE25065 Breast cancer

GSE18166 Astrocytic gliomas

GSE13041 Glioblastoma

Survival profile of CSNK1E across available datasets (with p < 0.05)

GEO dataset Cancer type

GSE10846 Diffuse large b cell lymphoma

GSE1456 Breast cancer

GSE11969 Lung cancer

GSE4271 High-grade glioma

GSE24450 Breast cancer

GSE18166 Astrocytic gliomas

GSE31210 Lung cancer

GSE39671 Chronic lymphocytic leukemia
5 studies (lung cancer, colon cancer and liposarcoma)
patients with high expression levels did worse. For CK1δ
there was positive correlation between high expression
and longer survival in 6 (breast cancer, leukemia and
elations of CK1 gene expression and overall survival (OS)

5)

GENE (Probe ID) P-value Effect sign

206562_S_AT 0.00051 Positive

208865_AT 0.000669 Positive

206562_S_AT 0.00141 Positive

208867_S_AT 0.00174 Positive

226920_AT 0.0021 Positive

208867_S_AT 0.00576 Positive

A_24_P251899 0.00715 Negative

208865_AT 0.00736 Positive

208866_AT 0.0119 Positive

206562_S_AT 0.0167 Positive

208866_AT 0.0179 Positive

208866_AT 0.0256 Positive

1556006_S_AT 0.0271 Negative

21556 0.0284 Negative

1556006_S_AT 0.0289 Negative

ILMN_1775058 0.033 Positive

208865_AT 0.0461 Negative

GENE (Probe ID) P-value Effect sign

A_23_P207896 0.000863 Negative

208774_AT 0.00101 Positive

207945_S_AT 0.00382 Positive

41429 0.00432 Positive

208774_AT 0.0122 Positive

207945_S_AT 0.0162 Negative

208774_AT 0.023 Positive

37202 0.0268 Positive

208774_AT 0.0272 Negative

GENE (Probe ID) P-value Effect sign

226858_AT 1.39e-05 Negative

222015_AT 0.002 Negative

13708 0.016 Negative

202332_AT 0.0281 Positive

ILMN_1708858 0.0296 Negative

28635 0.0303 Positive

202332_AT 0.032 Positive

234943_AT 0.0478 Positive
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glioma) out of 9 studies (3 correlated negatively) and for
CK1ε there was a rather mixed picture with 4 positive
(glioma, lung cancer and leukemia) and 4 negative cor-
relating studies (B cell lymphoma, breast cancer and
lung cancer) (Table 2 and Figure 3B). The higher num-
ber of significant studies showing a positive prognosis
for patients with high levels of CK1α expression hints to
the postulated function as tumor suppressor in some
cancers whereas the mixed pattern for CK1δ and espe-
cially CK1ε depicts a context dependent function of the
isoforms being either pro- or anti-tumorigenic.
However, it remains uncertain whether the CK1δ and

ε isoforms represent drivers of tumorigenesis or if their
disregulation and altered expression is rather the conse-
quence of other cellular oncogenic events. Therefore
critical genetic validation models should be developed in
order to prove the concept of CK1 isoforms as import-
ant regulators in tumorigenesis besides the development
of specific pharmacological inhibitors.

Pharmacological inhibition of CK1 isoforms
Due to the above described involvement of CK1 iso-
forms in tumorigenesis pharmacological inhibition of
CK1 familiy members could be of interest for targeted
cancer therapy. However, the development of isoform
specific inhibitors seems to be a demanding task since
the first known inhibitors like the ATP-competitive type
I inhibitors CKI-7 or IC261 are not highly specific and
show a rather broad effectivity against CK1 isoforms
with a predominance for δ and ε. IC261 showed activity
against pancreatic tumors in a xenograft mouse model
[89] as well as in a MYC-driven neuroblastoma model
[110]. Meanwhile, it is known that IC261 also efficiently
inhibits the polymerization of microtubules in a CK1 in-
dependent manner, Therefore it is questionable whether
the anti-tumorigenic effects are due to selective inhibition
of CK1δ. D4476, another CK1 inhibitor which shows some
selectivity towards the δ isoform, was successfully applied
in a leukemia mouse model causing the elimination of the
tumor cells. However, since the α isoform seems to be
dominant for the described mechanism in this model by
Jaras et al., the effects measured with D4476 might result
due to the inhibition of additional susceptible isoforms
and drug targets like CK1δ or the TGF-β type-I receptor
ALK5. Huart et. al reported a novel inhibitor belonging to
the class of pyrazolo-pyridine analogues that strongly in-
hibits CK1δ in conjunction with CHK1 thereby activating
the p53 pathway and inducing apoptosis in A375 melan-
oma cells. However, a similar analog described in the same
study but lacking the CHK1 inhibitory function showed
no apoptosis induction in A375 cells [61]. Further devel-
opments were undertaken by Bibian et al. in order to gen-
erate highly specific CK1δ/ε inhibitors resulting in a series
of purine scaffold inhibitors (SR-1277, SR-2890, SR-3029)
with IC50 values in the low nanomolar range. These inhib-
itors were also highly potent in inhibiting A375 melanoma
cell growth in a MTT viability assay. Interestingly, the
inhibition with less specific inhibitors like D4476 or
PF670462 did not show these inhibitory effects, proposing
a better cell penetration of the SR inhibitors and better ef-
ficacy [111]. In order to exclude any of the remaining very
few off-targets to be the main originators of the effects on
A375 melanoma cell viability, genetic tests (like knock-
downs or knockouts) targeting CK1 isoforms should be
performed. Further studies will be needed to determine
the cellular efficacy and specificity of these interesting
novel CK1 inhibitors. For detailed further information
about the development of additional CK1 inhibitors we
refer to the excellent review by Knippschild et al. [90].

Conclusions
CK1 isoforms can influence the development and pro-
gression of tumor cells, although they seem to have dif-
ferent effects depending on the tumor types. Their
ability to regulate several important signaling molecules
is modulated in different types of tumors. This suggests
that CK1 isoforms might be suitable targets for clinical
intervention. Especially their ability to regulate p53 and
Wnt-signaling, cell cycle progression and apoptosis in-
duction makes them attractive targets in tumor therapy.
Since the CK1 isoforms seems to have sometimes oppos-
ing roles in different tumor types it will be essential in
future to validate the effect of specific CK1 isoforms in
defined tumor types on cell cycle progression and signal
transduction. Since several kinase inhibitors are in pre-
clinical development there is hope that, among these,
some of the most effective inhibitors could delay or in-
hibit tumor progression.
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