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castration resistance of prostate cancer
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Abstract

An important clinical challenge in prostate cancer therapy is the inevitable transition from androgen-sensitive to
castration-resistant and metastatic prostate cancer. Albeit the androgen receptor (AR) signaling axis has been
targeted, the biological mechanism underlying the lethal event of androgen independence remains unclear. New
emerging evidences indicate that epithelial-to-mesenchymal transition (EMT) and cancer stem cells (CSCs) play
crucial roles during the development of castration-resistance and metastasis of prostate cancer. Notably, EMT may
be a dynamic process. Castration can induce EMT that may enhance the stemness of CSCs, which in turn results
in castration-resistance and metastasis. Reverse of EMT may attenuate the stemness of CSCs and inhibit
castration-resistance and metastasis. These prospective approaches suggest that therapies target EMT and CSCs
may cast a new light on the treatment of castration-resistant prostate cancer (CRPC) in the future. Here we
review recent progress of EMT and CSCs in CRPC.
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Introduction
Prostate cancer is the leading cause of cancer incidence and
the second leading cause of cancer-related deaths amongst
males in the United States. Androgen deprivation therapy
(ADT) remains the mainstay therapy for advanced prostate
cancer in addition to surgery. Many studies have been
focused on androgen/androgen receptor (AR) signaling
axis. Drugs targeting AR pathway have been developed
in the past several decades, including estrogens (such
as diethylstilbestrol, a luteinizing hormone-releasing
hormone inhibitor), steroidal anti-androgens (such as
cyproterone acetate, megestrol acetate and medroxy-
progesterone acetate) and nonsteroidal antiandrogens
(such as flutamide, nilutamide and bicalutamide, androgen
receptor blockers), and gonadotropin-releasing hormone
(GnRH) antagonists (such as abarelix and degarelix).
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Although initially effective at regressing tumor growth,
these androgen deprivation therapies will ultimately fail,
rendering a lethal drug-resistant stage commonly known as
castration-resistant prostate cancer (CRPC). The biological
basis underlying the development of metastatic androgen-
independent prostate cancer has been addressed, mainly
focusing on AR over-expression, mutation, and cross-talk
to other growth factor signaling pathways [1]. Due to recog-
nition of continued AR signaling in the progress of CRPC,
several new drugs include MDV3100, abiraterone acetate
and VN-124-1 have been investigated in clinical trials, and
the former two drugs have been approved by US Food and
Drug Administration last year. However, the potential
mechanisms by which prostate cancer cells become CRPC
still remain largely unclear.
In recent years, accumulating evidences indicate that

epithelial-to-mesenchymal transition (EMT) and cancer
stem cells (CSCs) play important roles during the develop-
ment of drug resistance of prostate cancer. Unveiling the
molecular mechanisms responsible for EMT and CSCs
would help to develop new promising therapies for meta-
static prostate cancer in the future. In this review, we will
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summarize our current understanding regarding EMTand
CSCs in CRPC, including possible relationships between
EMT and CSCs and specific signaling pathways involved
during generation of EMTand CSCs (Figure 1).

Epithelial-to-mesenchymal transition and castration-resistant
prostate cancer
EMT has been known to be involved in a spectrum of
physiology and pathology process. Originally EMT is a
physiological process in which epithelial cells turn into
Figure 1 Contribution of EMT, CSC and related signaling to CRPC. Cas
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to leave the epithelium, invade into the stroma area,
and disseminate to distal organs, as reported in recent
studies [3-5].
Multiple proteins participate in EMT and its reverse

process, MET (Mesenchymal-epithelial transition). A
variety of biomarkers have been demonstrated for studies
on EMT, including E-cadherin, N-cadherin, Vimentin, Snail,
Zeb1, Twist and others [6]. Amongst them, E-cadherin
locates in the cell surface of epithelial tissues and mediates
cell-cell adhesion to bind cells together in the normal epi-
thelial cells. Its expression level is negatively correlated with
the occurrence of EMT and tumor invasion. On the
contrary, Vimentin (a cytoskeletal marker) and N-cadherin
(a cell surface marker) are associated with the initiation of
EMT and the progression from well differentiated adenoma
to invasive carcinoma. In addition, Snail, Slug, Zeb1, Zeb2
and Twist are able to down-regulate the level of E-cadherin
and drive EMT to occur [7].
Sun et al [2] have found that androgen deprivation re-

sults in EMT in the prostate cancer. Epithelial marker
(e.g. E-cadherin) levels are decreased whereas mesenchymal
marker (e.g. N-cadherin, Zeb1, Twist1, and Slug) expression
is increased in normal mouse prostate tissue following
castration. Similar changes are observed in castrated hu-
man LuCaP35 xenograft tumors. They also prove that an
EMT occurs in human samples undergoing ADT. During
the EMT transition, a mesenchymal marker Zeb1, a tran-
scription factor, mediates the progress by Zeb1‐AR feed-
back loop [2]. The evidence for Zeb1 to be involved in
CRPC has also been supported by another group. Graham
et al find that Zeb1 is markedly enhanced in prostate can-
cer cells and insulin-like growth factor-I (IGF-I) is respon-
sible for the overexpression of Zeb1 [8]. Twist, another
transcription factor, is highly expressed in prostate cancer
and twist expression is strongly associated with Gleason
score. Blockade of Twist increases the level of E-cadherin
and decreases the capability of invasion and migration
of androgen-independent prostate cancer cells [9,10].
In addition, Slug, another EMT transcription factor, is
regulated by androgen, cooperates with AR and promotes
the development of CRPC [11].
Similarly, Reiter and colleagues have found a remark-

able increase in N-cadherin expression in CRPC xeno-
grafts as well as in both primary and metastatic tumors
of patients with CRPC [12]. Application of exogenous
N-cadherin could induce EMT, invasion, migration of
multiple prostate cancer cell lines in vitro and in vivo.
Specific N-cadherin antibody could suppress the process
of EMT, decrease tumor growth, invasion and migration,
and block the progression to castration-resistance via
reducing the activity of AKT and IL-8 expression. There-
fore, this group has identified N-cadherin as a critical cause
of prostate cancer metastasis and CRPC. It is proposed that
therapies targeting this EMT component with monoclonal
antibodies will be a promising approach for further preclin-
ical and clinical validation.
Meanwhile, several EMT biomarkers have been demon-

strated to be associated with the development of prostate
cancer in the last decade. Loss of E-cadherin or switch of
E-cadherin to N-cadherin leads to destruction of cell-cell
adhesion, which drives adenoma to become carcinoma
[13]. As an osteoblast cadherin, Cadherin-11 could provide
association between prostate cancer cells and osteoblasts,
enhance the invasion and migration capacities [14]. Zinc-
finger transcription factor Snail could not only repress the
transcription and expression of E-cadherin but also trigger
EMT in prostate cancer [15]. Although these molecules
have been investigated for prostate cancer in general and
not specific for CRPC, they might be potential candidates
of EMT markers for CRPC.
In short words, these studies together suggest that

EMT and its biomarkers contribute to drug resistance
in prostate cancer [16]. E-cadherin, N-cadherin, Zeb1,
Twist, Slug, Snail and other EMT markers play import-
ant roles in the regulation of the invasive and metastatic
potential of prostate cancer cells. Therefore, therapeutic
strategies purporting to intervene EMT process or to
reverse EMT phenotypes might become alternatives
for future cancer therapy.

Cancer stem cells and castration-resistant prostate cancer
CSCs are proposed to be stem-like cells in tumors,
which have the ability to self-renew and to differentiate
into new diverse tumor cells. These cells are thought to be
a subpopulation of the tumor cells that express specific
surface antigens and possess mesenchymal phenotypes,
which are important in tumor initiation and progression
including castration resistance and metastasis.
As an important mechanism in the de novo theory of

CRPC, CSCs are referred to as malignant epithelial stem
cells in the lurker cell pathway [1]. Very early, John Isaacs
[17] has postulated that initial occurrence of a subpopula-
tion of androgen-independent tumor cells can cause the
fail of androgen ablation therapy and the development
of CRPC. Denmeade and colleagues [18] reveal that
the basal cells of prostate contain a subpopulation of
androgen-independent epithelial stem cells. In support
of this hypothesis, using a novel human prostate cancer
xenograft (LAPC-9), Craft et al [19] have reported that the
occurrence of CRPC attributed to clonal expansion of
a small percentage of androgen-independent cells. They
conclude that prostate cancers contain both androgen
sensitive and insensitive cells and selective pressure of
ADT alters the relative frequency of these cells, leading to
development of CRPC.
CSCs biomarkers are searched and used to identify

and isolate CSCs in prostate cancer. Frequently used
biomarkers in CRPC related CSCs include Nkx3.1, CD166,
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PSA-/LO, Nanog, Bmi-1 and Sox2 (Table 1). Other po-
tential biomarkers contain Lgr4, Sca-1, α2β1, CD44,
CD44+/α2β1hi/CD133+, CD44+ CD24-, p63, Lin-CD44+

CD133+Sca-1+CD117+,Trop2, ALDH1 and others (Table 1).
The features and related studies for each of the above
mentioned markers are listed in Table 1.
Several biomarkers have been identified to be associated

with the CSCs in CRPC. For example, Shen and colleagues
[20] have found that castration-resistant Nkx3.1-expressing
positive cells (CARNs), a subpopulation of luminal epi-
thelial cells, are CSCs in their study of lineage associ-
ation between normal prostate progenitor cells and
cancer cells. Basal cells decrease and luminal cells pro-
liferate in the oncogenic formation. Compared with
control Nkx3.1CreERT2/+; Pten+/+ mice with normal
phenotype, Nkx3.1CreERT2/+; Ptenflox/flox mice develop
high-grade prostatic intraepithelial neoplasia (PIN) and car-
cinoma following inducible deletion of Pten in the Nkx3.1
population [20]. In addition to the homeobox-containing
transcription factor Nkx3.1, some cell surface markers are
always available for identifying CSCs in both murine
and human prostate tissues. One of the surface markers,
CD166, is identified as a potential surface marker for
castration resistant tumor cells [21]. The level of CD166
increases in both murine castrated prostate epithelial
cells and human CRPC. CD166hi population isolated by
CD166 marker has higher capacity to form tumor-spheres,
compared with CD166lo population. In addition, compared
to TROP2hiCD49fhiCD166lo, TROP2hiCD49fhiCD166hi

subset detects increased regeneration capacity in vivo.
Over-expression of CD166 and CD166hi cells is correlated
with castration resistance in both Pten deleted mice and
human prostate cancer cells [21]. Interestingly, PSA−/lo

prostate cancer cells are also demonstrated as an import-
ant cell type for CRPC [22]. Compared with PSA+ cells,
PSA−/lo prostate cancer cells are more clonogenic and
tumorigenic. They resist to castration, form holoclones
and spheres and develop tumors. PSA−/lo prostate cancer
cells are enriched following ADT and initiate a new out-
break of tumor development. A decrease in the number
of PSA-producing cells is also observed by another group
in patients after ADT [23].
Of note, a couple of pluripotent stem cell markers

have also been associated with CRPC cells, further raising
the possibility that stem cells play critical roles in the
progression to a castration-resistant condition. For ex-
ample, Nanog facilitates the tumor cells to acquire CSCs
phenotypes and properties and promotes androgen inde-
pendence in androgen deprived environment. LNCaP cells
with over-expression of Nanog are easier to agglomerate
together to form clones and spheres in vitro and lead
to tumor in vivo following castration [24,25]. Similarly,
Witte and colleagues have also reported that Bmi-1
mRNA level is enhanced in castrated mice prostate tissues
and it maintains the stemness of p63+ stem cells. Sup-
pression of Bmi-1 slows down the progression of malig-
nant tumors in Pten-deletion prostate cancer model
[26]. Moreover, a recent study shows that Sox2 is a critical
regulator in self-renewal and tumor progression of hu-
man prostate cancer [27]. In addition, Sox2 could also be
suppressed by AR and closely associated with castration-
resistant tumor growth [28].
As many researchers believe that CSCs may arise from

the gene mutations in normal stem cells, it is important
to identify markers for stem cells in normal tissues. In this
regard, a couple of stem cell markers are recently identified
in normal prostates in addition to the above mentioned
biomarkers in CRPC. Gao and colleagues have generated a
functional prostate gland from Lin-CD44+CD133+Sca-1+

CD117+ stem cells [29]. Based on α2β1, stem cells of hu-
man prostate epithelial are identified and isolated by Collins
and colleagues [30]. A study from Burger et al indicates that
prostate stem cell antigen Sca-1, a cell surface marker,
is over-expressed in proximal regions of prostatic ducts.
Sca-1 cells purified from the proximal ducts have higher
capacity of proliferation [31]. Another recent study shows
that Lgr4 regulates both prostate epithelial stem cell dif-
ferentiation and prostate development [32]. Because the
stemness of stem cells is linked to tumorigenesis, the cells
expressing stem cell markers may be the origin for cancer.
The finding of these stem cell markers in the development
of prostate may provide a potential therapeutic target for
prostate cancer.
Altogether, CSCs are considered to be a novel theory

to elucidate the mechanism of surviving prostatic tumor
cells following castration. The biomarkers of CSCs could
be potential targets for treatment of castration-resistant
tumor cells. In conjunction with ADT, novel therapeutics
targeting CSCs, e.g. Nkx3.1+, CD166hi, TROP2hiCD49fhi

CD166hi, TRA-1-60/CD151/CD166, PSA−/lo, Nanog,
Bmi-1 cells, might be developed to eradicate remaining re-
fractory tumor cells and to prevent recurrence of CRPC.

Possible link between epithelial-to-mesenchymal transition
and cancer stem cells in castration-resistant prostate cancer
Numerous studies have shown that EMT and CSCs are
primary mechanisms for drug resistance in cancer in-
cluding CRPC. Recently, a few studies have shown that
characteristics of EMT are closely associated with the
signatures of CSCs, which could lead to tumor recurrence
and drug resistance phenotype.
Mani et al [33] recently find the experimental evidence

to connect EMT to the emergence of CSCs in breast can-
cer. They have demonstrated that after TGF-β treatment
(a potential inducer of EMT), differentiated mammary
epithelial cells give rise to CD44high CD24low stem-like
cells, as is seen in the case of induced by the expression
of well-known E-cadherin transcription repressors, such



Table 1 EMT markers, cancer stem cell markers and signaling pathways involved in EMT and CSC in prostate cancer,
especially in castration-resistant prostate cancer

EMT marker Function CRPC Refs

E-cadherin Regulates the invasive capacity of prostate cancer cells [3,57,58]

β-Catenin Regulates the process of EMT and metastatic phenotypes [59]

N-cadherin Promotes growth, metastasis and castration resistance in prostate cancer Yes [12,60,61]

Cadherin-11 Enhances migration and invasion capacity of prostate cancer cells, increases
the association with osteoblasts

[14,62]

Vimentin Promotes prostate cancer cell invasion and metastasis Yes [63]

Fibronectin Protects cells from undergoing apoptosis [64,65]

Collagen 1 Have an effect on EMT of prostate cancer cells [65]

alphaII(b)beta3 integrin Participates in the metastatic progression of prostatic adenocarcinoma [66]

Syndecan-1 Associates with Gleason score and tumor progression of prostate cancer [67-69]

Zeb1 Altering the invasive phenotype of Prostate cancer cells Yes [2,8,70]

Slug Correlates with advanced pathological grades of prostate cancer Yes [11,71]

Snail Contributes to prostate cancer progression and metastasis [4,5,72,73]

Twist Correlates with Gleason grading and metastasis Yes [9,10]

ETS-1 Mediates by TGF-β, affects cell growth and tumor formation Yes [74,75]

CSC markers Function CRPC Refs

Lgr4 Regulates early prostate development and stem cell differentiation [32]

α2β1 integrin Produces prostate-like glands [30]

CD133 Functions as a normal prostate stem cell marker and has tumor formation ability [76]

CD166 A potential surface marker for castration resistant tumor cells Yes [21]

PSA Displays increased colony and sphere-form capacity Yes [22]

CD44 Associates with cells of neuro-endocrine phenotype [77]

CD44+/α2β1hi/CD133+ Presents high proliferative ability in vitro and can differentiate to an
AR–positive phenotype similar to prostate cancers in vivo

[78]

CD44+ CD24(-) Exhibits stem cell characteristics and predicts overall survival in prostate cancer patients. [79]

Sca-1 Have high proliferative ability and high capacity to reconstitute prostatic tissue [31]

Nkx3.1 Indicates that luminal cells might be a cell of origin Yes [20]

p63 Produces all epithelial lineages of the adult prostate
(i.e., basal, luminal, and neuroendocrine cells)

[80,81]

Lin-Sca-1-CD49f+ (LSC) Produces prostatic tubule structures [82]

Lin-CD44+CD133+Sca-1+CD117+ Produces a prostate after transplantation in vivo [29]

Trop2 Trop2hi basal cells give rise to basal, luminal, and neuroendocrine cells in vivo [83]

ALDH1 Associates with a poor prognosis for patients with prostate cancer [84,85]

Nanog Promotes CSC phenotypes and properties in vitro and in vivo, promotes
AI phenotypes and CRPC regeneration

Yes [24,25]

Bmi-1 A key regulator of self-renewal activity, plays central roles in malignant
progression of prostate cancer

Yes [26]

Sox2 Inhibits by AR signaling and play an important role in CRPC Yes [28]

TRA-1-60, CD151 and CD166 Exhibits enhanced sphere-forming capacities in vitro and tumor-initiation capacities in vivo [86]

Signal pathway involved
CSC and EMT

Function CRPC Refs

AR A key regulator for the acquisition of EMT phenotypes Yes [42,45]

PTEN/AKT Promotes prostate tumor growth and metastasis [87]

AKT/GSK-3β Participates in TNFα-induced EMT process [88]

ERK Has a profound feedback on EGFR signaling [89]

AKT Has a great effect on cell migration via induction of the EMT characteristics [89]
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Table 1 EMT markers, cancer stem cell markers and signaling pathways involved in EMT and CSC in prostate cancer,
especially in castration-resistant prostate cancer (Continued)

TGF-β Associates with malignant progression of prostate cancer by activation of the EMT phenotypes [90,91]

CCL2/CCR2-STAT3 Promotes prostate cancer cell migration/invasion and EMT pathways Yes [92]

Hsp27-STAT3-Twist Promotes prostate cancer metastasis, regulates the process of EMT Yes [39]

PTEN and RAS/MAPK Accelerates prostate cancer malignant progression accompanied by
acquisition of EMT phenotypes and stem-cell like properties

Yes [37]

NF-kappaB Correlates with EMT in human prostate cancer cells and may be functionally
associated with the stem-like human prostate tumor initiation cells

[86,93,94]

JAK-STAT Participates in significantly different gene expression in prostate cancer stem cells [95]

PDGF-D Mediates EMT process and regulates cancer cell invasion [96]

IGF-1 Regulates EMT associated migration and invasion via elevated Zeb1 expression Yes [8]

FGFR-1 Leads to an EMT and distant metastasis [38]

EGFR Presents loss of cell-cell junctions with decreased epithelial markers and
enhanced mesenchymal markers

[89]

WNT Mediates EMT phenotypes and stemness maintenance of prostate cancer cells Yes [40,97]

Notch and Hedgehog Regulates drug resistance and plays important roles in malignant transformation Yes [98,99]

Hypoxia-ERβ-HIF-1a/VEGF-A Mediates EMT and have an implication in Gleason grading [100]

DAB2IP Regulates EMT and prostate cancer metastasis and serves as a target gene
of EZH2 in prostatic epithelium

[101-103]

p63/miR205 Suppresses cell migration and metastasis [104]

Produces changes in Golgi polarization
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as Twist and Snail. Very importantly, a recent elegant
study by Weinberg group indicates that Zeb1, a key
EMT regulator, is sufficient to switch the cells from a
non-cancer stem cell to a cancer stem cell status and is
required for the maintenance of the stemness of breast
cancer stem cells [34]. Similar phenomenon is observed
in pancreatic cancer. ZEB1, a signature of EMT, sup-
presses miR-200c, miR-203 and miR-128, which inhibit
pluripotency genes, such as the Bmi-1, Sox2 and Klf4
genes [35]. These studies have made a link between
EMT and CSCs stemness in breast cancer and pancre-
atic cancer and raise a possibility that EMT and CSCs
can contribute either alone or in conjunction with each
other to the initiation and progression of various types of
cancers, including prostate cancer. As expected, Kong et al
[36] further report that PC3 prostate cancer cells which are
forced to express PDGF-D display EMT characteristics and
show cancer stem-like cell features after over-expression
of pluripotency genes, such as the Nanog, Oct4, Sox2,
Lin28 and activation of polycomb repressor complex, which
is associated with increased clonogenic and prostasphere-
forming capacity in vitro and tumorigenicity in vivo. During
the process, miR-200b and miR-200c play a critical role
in linking EMT phenotypes and CSCs signatures. Over-
expression of miR-200 family leads to reversed EMT as
well as suppressed self-renewal ability by regulating Notch1
and/or Lin28B expression [36]. Sun et al [2] have also
presented the evidence that the association between
EMT induction and the emergence of prostate CSC-like
phenotype following androgen deprivation. By comparison
of the gene expression profiles of the prostate tissues from
normal mice to castrated mice, a dramatic decrease in
E-cadherin expression and an induction of the expression
of mesenchymal markers such as N-cadherin, Zeb1, Twist
and slug are observed after castration. Microarray gene ana-
lysis reveals that several mesenchymal markers, including
Vimentin, Zeb1, Zeb2, Twist1, Snail1 and Slug are signifi-
cantly increased in the Lin-CD44+CD133+Sca-1+CD117+

stem cells, as compared to those Lin-CD44-CD133-Sca-1-

CD117- mouse prostate non-stem cells [2].
Therefore, in addition to the breast and pancreatic

tissues, evidence from prostate cancer also indicate
that androgen deprivation or other inducers may lead
to an EMT phenotype accompanying with the acquisition
of stem cell properties. Taken together, modulation of EMT
may attenuate the stemness of CSCs.

Signaling pathways involved in epithelial-to-mesenchymal
transition and cancer stem cells in castration-resistant
prostate cancer
Although EMT and CSC play a pivotal role in the develop-
ment of CRPC, what mechanisms might be responsible for
EMT or CSC-conferred castration resistance are not well
understood. One key mechanism is likely related to the AR
and AR signaling, a classic pathway leading to CRPC [1].
Besides the AR axis, the activation has also been presumed
to be stimulated by some other pathways, such as growth-
factor receptor tyrosine kinase (RTK) activated pathways,
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Pten related pathway, signal transducers and activators of
transcription 3 (STAT3) related pathway, Wnt, Notch and
Hedgehog signaling pathways [37-41].

AR pathways
The precise role of AR axis in CRPC and prostate cancer
metastasis has been well recognized in the last decades.
In addition to the commonly known AR amplification
and AR mutant, recent studies have found that andro-
gens and the androgen receptor are functionally required
in the process of EMT and the maintenance of prostate
stem/progenitor cells. To some extent, androgens can in-
duce EMT in PC-3 and LNCaP prostate cancer cells, with
reduced epithelial marker expression and increased level of
mesenchymal marker. Androgens alone or in combination
with TGF-β enhance the capacity of prostate cancer cell
migration and invasion, with a significant increase in Snail
expression. Meanwhile, only low level of AR is required
in androgen-induced EMT phenotype alteration [42]. Via
a possible AR-Zeb1 bidirectional, negative feedback loop,
Sun et al [2] have found that androgen deprivation could
lead to EMT in both normal prostate and prostate cancer
tissues. In addition, Slug, another EMT transcription factor,
could cooperate with AR and promote the development of
CRPC [11]. A recent study reveals that mucin 1 (MUC1)
C-terminal subunit (MUC1-C) could form a complex with
AR, which could not only occupy the PSA promoter but
also associate with induction of the EMT modulated by
miR135b mediated [43] or ZEB1 mediated mechanism [44].
Moreover, MUC1-C overexpression in androgen sensitive
LNCaP cell also increases cell growth following androgen
depletion and anti-androgen (such as bicalutamide) treat-
ment, implicating its role in the occurrence of CRPC. Fur-
thermore, the methylation in CpG islands of AR promoter
is likely related to prostate stem/progenitor cells stemness
and differentiation. As a result, prostatic epithelial cells,
PCSCs and LNCaP progenitor/stem cells present low AR
expression due to high DNMT1/3 level and MBD2-AR
promoter binding. Moreover, treatment of prostate cancer
cells with 5-AZA, a specific DNA methylation inhibitor,
results in an inhibition of self-renewal/growth of prostate
stem/progenitor cells in vitro and reduces prostate tumori-
genicity in vivo [45].

Growth-factor receptor tyrosine kinase (RTK)
activated pathways
Progression of prostate cancer to CRPC is also associated
with enhanced expression of growth factors and receptors
capable of activating the receptor tyrosine kinase (RTK)
pathways. Utilizing the androgen refractory carcinoma
of the prostate (ARCaP) cell model, Graham et al in-
vestigated the effect of IGF-I on ZEB1 expression. The
ARCaPM (M=mesenchymal) cells show higher expression
of ZEB1 than the ARCaPE cells (E = epithelial). IGF-1
treatment up-regulates the mRNA and protein levels of
ZEB1 in vitro via activation of the MEK/ERK pathway.
Furthermore, treatment of prostate cancer cells with
ZEB1 siRNA results in a more epithelial morphology,
with increased expression of E-cadherin and decreased
N-cadherin, fibronectin expression, and suppresses prostate
cancer cell migration and invasion. These results together
suggest that IGF-1 is a key regulator of EMT in prostate
cancer, which induces cell invasion, metastasis and CRPC
[8]. Using an inducible FGFR1 (iFGFR1) prostate mouse
model, Acevedo et al have found that iFGFR1 activation
by chemical inducers of dimerization (CID) results in
prostate adenocarcinoma that is closely associated with
EMT, while CID withdrawal causes a full reversion of
PIN. iFGFR1-induced prostate cancer presents higher
nuclear EMT-associated Sox9 expression and liver and
lymph node metastases [38]. As a part of general signaling
activities for most growth factor receptors, activation
of endogenous c-Ras might be an important mechanism
for CRPC. For example, induced RasN17 expression
(a dominant negative form of Ras) in C4-2 cell line in-
creases the sensitivity to Casodex (an anti-androgen drug),
inhibits cell proliferation in vitro and causes a dramatic
regression of C4-2 xenografts after surgical androgen
ablation in vivo [46].

Pten related pathways
Pten loss and the activation of Pten/PI3K/AKT have
been well understood in prostate tumorgenesis and its
progression to castration resistance, indicating that Pten
related pathway may play an important role in CRPC.
Higher level of p-MAPK is observed in malignant and
CRPC prostate tissues than non-malignant specimens [37].
Using a series of prostate mouse models, Mulholland et al
[37] have reported that in contrast to Pb-Cre+;PtenL/L
and Pb-Cre+;K-rasL/W, prostate samples from Pb-Cre+;
PtenL/L;K-rasL/W mutants present an EMT phenotype,
with increased expression of mesenchymal molecules
including Vimentin, Fibronectin, Snail, Twist and Zeb1.
Thus, activation of RAS may contribute to the develop-
ment of EMT in Pten-deletion prostate epithelial cells.
As it is mentioned above, recent studies show that EMT
is mechanistically associated with the acquisition of cancer
stem cells. The Pten;K-ras prostates, which also present
a remarkable expansion of LSChi subpopulation, have
enhanced sphere-forming ability compared to Pten dele-
tion prostates. Further isolation by FACS show that only
Lin-EpCAMlowCD24low cells from C+;PtenL/L;K-rasL/W
mutants gain mesenchymal properties accompanied by
higher sphere-forming capacity. The EpCAMlow/CD24low

subpopulation displays mesenchymal cells signatures, with
enhanced level of AR and mesenchymal cell markers [37].
Therefore, activation of RAS/MAPK pathway may func-
tion as a second hit following changes of the well-known
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PTEN/PI3K/AKT pathway to androgen-insensitive pros-
tate cancer and CRPC [37].

STAT3 related pathway
Comparing hormone-naive tissue samples with CRPC
specimens, Rocchi et al [47] find that molecular chaperone
Hsp27 mRNA and protein level are increased after ADT.
Over-expression of Hsp27 in LNCaP cells displays highly
resistance to anti-androgen reagents in vitro and in vivo.
Compared with mock-transfected controls, tumor volume
and serum PSA levels are dramatically increased after
castration in LNCaP-Hsp27 tumors, suggesting that
increased Hsp27 levels can promote the development
of CRPC. Furthermore, treatment with Hsp27 antisense
oligonucleotides (ASO) or HSP27 shRNA can lead to an
inhibited proliferation in LNCaP cells, induce apoptosis
via inhibition of STAT3 activity in vitro and reduce the
capacity of tumorgenesis after castration in vivo. These
results have implied that Hsp27 might be a regulator of
STAT3-induced apoptosis in the condition of androgen
ablation and be a promising therapeutic target in CRPC
[47]. Another report about Hsp27 from their lab indicates
that Hsp27 over-expression can regulate EMT in prostate
cancer, accompanied by a mesenchymal cell morphology
switch. While Hsp27 promotes EMT with enhanced cell
migration and invasion ability, silencing Hsp27 could re-
verse these EMT phenotypes, with reduced STAT3 phos-
phorylation and its binding to the Twist promoter. These
observations suggest that instead of inducing apoptosis,
Hsp27 also functions as a key regulator for IL-6–induced
EMT via STAT3/Twist signaling pathway [39]. A recent
study from Collins and colleagues has explored the con-
tribution of STAT3 signaling pathway to prostate stem/
progenitor cells [48]. Treatment with either specific IL-
6 antibody or a specific pSTAT3 inhibitor (LLL12), leads
to a reduced colony-forming capacity of the stem-like cells
from a high-grade clinical prostate cancer sample. Using a
murine xenograft model derived from a castration-resistant
patient with generally activated STAT3, they found that
cells from the xenografts show dramatically decreased
tumorigenicity when treated with LLL12. These results
suggest that blocking STAT3 might be a novel strategy
in the future to suppress tumor initiation capability of
human prostate cancer [48].

Wnt pathways
In addition to the pathways mentioned above, alterations
in the Wnt, Notch and Hedgehog pathways have also
been reported to contribute to formation of CRPC. Based
on β-catenin immunocytochemical analysis, Wan et al
[49] have revealed the functional role of Wnt/β-catenin in
CRPC. In their study, high levels of β-catenin is observed
in human prostate cancer tissues, which is inversely linked
with AR expression, raising the possibility that low or no
AR expression activates Wnt/β-catenin signaling. This
evidence may explain the phenomenon that only low
level of AR lead to androgen-induced EMT phenotype
[42]. A recent study reports that Sox2 promotes EMT via
activation of WNT/β-catenin, with improved migration
and metastasis ability in vitro and in vivo. Over-expression
of Sox2 in human breast cell line-MDA231 and human
prostate cancer cell line DU145 causes enhanced migration
capacity and decreased levels of E-cadherin, DKK3 and
increased a-SMA, DVL1 and DVL3. Further experiments
indicate that Sox2 promotes EMT via binding to the pro-
moter of β-catenin [50]. Additional studies find that the
promoter of WIF1 (a WNT inhibitor) is hypermethylated,
resulting in its down-regulation in most prostate cancer
cell lines [51]. Consistent with the WIF1 over-expression
experiments, restoration of WIF1 by treating the cells with
5-Aza induces MET, a reverse process of EMT, with
upregulation of epithelial markers (E-cadherin, CK8/18),
down-regulation of mesenchymal markers (N-cadherin,
Fibronectin, Vimentin, Slug and Twist) and decreased
activity of MMP-2/9 in vitro. Meanwhile, over-expression
of WIF1 dramatically reduces tumor growth in a xenograft
mouse model, accompanied by an increased E-cadherin
and CK18 expression and a decreased vimentin level in
tumor tissues [51]. Moreover, WNT inhibitors reduce the
sphere-forming and self-renewal ability of prostate cancer
cells. The opposite results are observed when the cells are
treated with WNT3a, with an increased expression of
β-catenin, CK18, CD133 and CD44 [51]. Therefore, WNT
signaling affects the functions of CSCs [40].

Notch and hedgehog pathways
As an important regulator of cell fate determination, Notch
signaling is reported to play crucial roles not only in
prostate development but also in the progression of
prostate cancer. Recent studies have suggested that Notch
pathway elements are positively participated in both normal
and malignant prostate stem/progenitor cells [52]. Similar
to this observation, inactivation of Notch1 dramatically
suppresses the clonogenic and prostasphere forming
ability, implying that Notch1 is at least partially respon-
sible for maintaining the prostate stem/progenitor cells.
Expression of Notch1 is reported to be mediated by
miR-200b and miR-200c, which links CSCs signatures
with EMT phenotypes. However, further studies are re-
quired to unveil whether other Notch pathway elements
regulate cancer stem/initiating cell within the prostate
[36]. It has been well established that the Hedgehog (Hh)
signaling pathway plays central roles in developmental pat-
terning and regeneration of prostate epithelium. Treatment
with cyclopamine, a specific inhibitor of the Hh pathway,
suppresses tumor growth at 10 mg/kg and actual regres-
sion at 50 mg/kg in established PC3 and 22RV1 xenograft
tumors in vivo [41]. Moreover, cyclopamine suppresses
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transcription of the gene encoding nestin and the Polycomb
group protein Bmi-1, two stem cell markers, indicating
the role of Hh pathway activity in prostate progenitor
cells. Using the castration-regeneration cycle model, Hh
signaling pathway blockade by cyclopamine leads to loss
of regenerative capacity in rodent ventral prostates.
Examination of levels of Hh pathway targets PTCH
and GLI in metastatic and benign prostate tissues
shows that Hh pathway activity is strongly correlated
with prostate cancer metastasis, which is attributed to
the involvement of EMT [41].
Taken together, these results suggest that all the pathways

mentioned above can either function alone or in combin-
ation with each other during prostate cancer progression.
The advanced CRPC is linked with EMT and/or CSCs, re-
vealing a possible mechanism in the transition of prostate
cancer to an androgen-independent state. Drugs designed
to target these pathways may provide a promising direction
for the future treatment of CRPC.

Regulation of epithelial-to-mesenchymal transition activity,
stemness of cancer stem cells and specific signaling
pathways in castration-resistant prostate cancer
After recognizing the importance of EMT, CSCs and
related signaling pathways during the development of
CRPC, what we should do is to find a way to control these
elements by either reversing or inhibiting the activation
of these components so to prevent or alleviate CRPC.
Studies thus so far suggest that inhibition of any one of
these elements or multiple elements together are helpful
in alleviation of CRPC.
A promising example is the study on N-cadherin and

N-cadherin antibodies. As described above, Reiter and
colleagues have reported that N-cadherin could cause
metastasis and castration resistance of prostate cancer,
but antibodies blocking N-cadherin not only delay the
progression of prostate cancer to castration resistance
but also inhibit invasion, metastasis and castration-
resistant tumor growth in vitro and in vivo [12]. These
data warrants that N-cadherin antibodies be validated
in preclinical and clinical testing to determine their
general toxicity. Therefore, antibodies directly against
cell surface markers of EMT and/or CSCs might be a
reasonable way to control EMT and CRPC. Another way
to control EMT would be to use its related proteins and
pathways. OGX-427, which currently in phase II trials by
OncoGenex Pharmaceuticals, is another great example.
Heat shock protein 27 (Hsp27) induces IL-6 dependent
and independent EMT in prostate cancer by promoting
phosphorylation and nuclear translocation of STAT3, mak-
ing STAT3 to bind to the Twist promoter, and activating
Twist function. Shut down of Hsp27 reverses EMT and de-
creases migration, invasion, and matrix metalloproteinase
activity of prostate cancer cells. As an anti-sense inhibitor,
OGX-427 suppresses Hsp27 and reduces circulating
tumor cells and tumor metastasis [39]. Another group
also reports that regulators of EMT have a good effect
on several types of cancers (ovarian, nasopharyngeal
and esophageal carcinomas), especially in prostate can-
cer [53]. Chu and colleagues have applied two water-
soluble contents of garlic, S-allylcysteine (SAC) and
S-allylmercaptocysteine (SAMC), to suppress prolifer-
ation and invasion of androgen-independent prostate
cancer. The inhibitory effect appears to be due to the
reverse of EMT: mesenchymal to epithelial transition
(MET). During the reverse transition, E-cadherin is
restored and activated whereas Snail expression is de-
creased in prostate cancer cells [53]. One more evidences
of targeting EMT is the study of NPI-0052 by Baritaki and
colleagues [54]. They show that the proteasome inhibitor
NPI-0052 reverses castration resistance to androgen sensi-
tive via inhibiting EMT in human prostate cancer cell
lines. NPI-0052 regulates NF-κB-Snail-RKIP pathway
by suppressing NF-κB inhibition, down-regulating the
EMT biomarker Snail, and up-regulating Raf-1 kinase
inhibitory protein (RKIP). Snail is a crucial target for
reversal of resistance. Further experiments indicate that
administration of NPI-0052 leads to inhibit anti-apoptotic
gene and metastasis [15,54].
On the other hand, molecules targeting cancer stem cells

are investigated. Liu and colleagues have demonstrated
miR-34a as a potential therapeutic target against pros-
tate cancer stem cells [55]. CD44+ prostate cancer cells
are purified from xenografts in mice and primary tumors
in humans as prostate CSCs. They display enhanced
tumor proliferating and metastatic capacities in CD44+

population. MiR-34a is down-regulated in the CD44+

cells. Up-regulation of miR-34a leads to an inhibition of
sphere formation and tumor progression in prostate cancer
cells and in CD44+ cell. The study of miR-34a indicates that
a critical negative regulator of CSCs could be an attractive
therapeutic option in prostate cancer with a cancer origin
of stem cells. Similarly, another negative regulator of
prostate cancer stem cells is identified by Kroon and col-
leagues [48]. They demonstrate that pSTAT3 is expressed
specially in prostate stem-like and progenitor cells with co-
expression of IL-6 receptor gp80. If LLL12, a novel pSTAT3
inhibitor, is applied to prevent STAT3 from phosphoryl-
ation, the stemness of prostate cancer cells is inihibited,
resulting in significant reduction of cancer cell proliferation
in primary cultures from patients with high Gleason grades.
Strikingly, blocking pSTAT3 by LLL12 also abolishes
the outgrowth of castrated tumors from patients in a
mouse xenograft model. In addition, targeting the STAT3
pathway in prostate CSCs might be a promising therapeutic
way by another group. Hellsten and colleagues [56] find
that ALDH + prostate cancer cells are cancer stem cell-
like cells as they display the properties of CSCs such as
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self-renew, clonogenicity and tumorigenicity as well as
elevated expression of CD44 and integrin α2β1, two CSCs
markers, and pSTAT3. Besides galiellalactone, a direct
inhibitor of STAT3 pathway, in the culture medium,
suppresses proliferation of ALDH + cells. These findings
emphasize that targeting CSCs in prostate cancer is a con-
siderable therapeutic approach.
In addition to directly target EMT and CSC, potential

therapies targeting signaling pathways related to EMT and
CSC are also investigated. Mulholland and colleagues apply
mTOR inhibitor rapamycin and MEK inhibitor PD325901
to target the PI3K/AKT and RAS/MAPK signaling in an
in vivo prostate cancer model using a bioluminescence
image monitoring method. The combined treatment
decreases EMT phenotypes, cell proliferation, and metas-
tasis of the C+;PtenL/L;K-rasL/W; Rosa26-luc sphere cells
to the lung or the metastasis produced by stem/progenitor
cells purified from C+;PtenL/L;K-rasL/W transgenic
mice [37]. It is widely believed that castration enriches
stem/progenitor cells in the prostate. Using the castration
and androgen replacement prostate regeneration paradigm,
Hh pathway blockade by cyclopamine or Hh-neutralizing
5E1 antibody dramatically attenuates prostate regeneration
[41], implying that these Hh pathway inhibitors impede the
function of prostate stem cells.

Conclusions
In summary, castration resistance is a major clinic
problem. In addition to the classic AR signaling, recent
studies have present a large body of evidence that EMT
[57-75], CSCs [76-86] and specific signaling [87-104]
play important roles during the development of CRPC.
Initial experiments also suggest that there is a link between
EMT and CSCs. EMT appears to be a 2-way dynamic
process. It is proposed that while EMT may enhance the
stemness of CSCS and enhance the CRPC, reversing the
EMT or MET may attenuate the stemness of CSCs and
alleviate CRPC. Further studies will reveal more mo-
lecular mechanisms involved in CRPC. It is also possible
that these mechanisms can function either alone or in
combination with each other.
Nevertheless, focusing on the axis of EMT, CSCs and

specific signaling pathways is a novel, breakthrough
thinking in the war against CRPC. Among them, devel-
opment of antibodies against the surface biomarkers
including those EMT markers such as N-cadherin,
CSC markers such as CD133, and specific signaling
molecule such as HSP27 is the easier approach than
targeting the transcription factors or cytoplasmic mol-
ecules and might hold promise for a novel therapeutic
approach for the treatment of prostate cancer. Clinical
trials of molecules in these categories to rule out tox-
icity and to demonstrate efficacy are required to achieve
this goal.
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